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ABSTRACT

We propose a method for estimating static games of incomplete information. A static game is a

generalization of a discrete choice model, such as a multinomial logit or probit, which allows the

actions of a group of agents to be interdependent. Unlike most earlier work, the method we propose

is semiparametric and does not require the covariates to lie in a discrete set. While the estimator we

propose is quite flexible, we demonstrate that in most cases it can be easily implemented using

standard statistical packages such as STATA. We also propose an algorithm for simulating the model

which finds all equilibria to the game. As an application of our estimator, we study recommendations

for high technology stocks between 1998-2003. We find that strategic motives, typically ignored in

the empirical literature, appear to be an important consideration in the recommendations submitted

by equity analysts.
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1 Introduction

Game theory is one of the most commonly applied tools in economic theory, with substantive

applications in all major fields in economics. In some fields, particularly industrial organization,

game theory has not only transformed the analysis of market interactions, but also serves as an

important basis for policy recommendations. Given the importance of gaming in economic theory,

it is not surprising that the empirical analysis of games has been the focus of a recent literature in

econometrics and industrial organization.

In much of the literature, a discrete game is modeled much like a standard discrete choice

problem, such as the multinomial logit. An agent’s utility is often assumed to be a linear function

of covariates and a random preference shock. However, unlike a discrete choice model, utility

is also allowed to depend on the actions of other agents. A discrete game strictly generalizes a

standard random utility model, but does not impose the often strong assumption that agents act

in isolation. Early attempts at the econometric analysis of such games included Bjorn and Vuong

(1984), Bresnahan and Reiss (1991a), Bresnahan and Reiss (1991b). Other recent examples include

Haile, Hortacsu, and Kosenok (2003), Aradillas-Lopez (2005), Ho (2005), Ishii (2005), Pakes, Porter,

Ho, and Ishii (2005), Augereau, Greenstein, and Rysman (2005), Seim (2005), Sweeting (2005) and

Tamer (2003).

An important insight in the recent literature is that it is often most straightforward to estimate

discrete games in two steps. For examples see Aguirregabiria and Mira (2002), Bajari, Benkard, and

Levin (2004), Berry, Pakes, and Ostrovsky (2003) and Pesendorfer and Schmidt-Dengler (2003).

In a first step, the economist estimates the reduced forms implied by the model. This often boils

down to using standard econometric methods to estimate the probability that one, out of a finite

number of possible choices, is observed conditional on the relevant covariates. In the second step,

the economist estimates a single agent random utility model, including as controls the equilibrium

beliefs about the behavior of others from the first step.

In this paper, we propose an estimator that can be applied to static games of strategic interac-

tion. Like the two-step approach discussed above, we estimate the reduced form choice probabilities

in a first stage in order to simplify the estimation of the model. The approach that we propose,

however, differs from earlier work in four ways. First, much of the earlier literature on two step

estimation considered fully dynamic games. This made it difficult for researchers unfamiliar with

dynamic programming to understand how to estimate a game. Also, we note that to date, the ma-

jority of empirical applications of discrete games have been static. Therefore, proposing methods

for static games is of practical importance for many researchers.

Second, the approach that we propose can be done nonparametrically or semiparametrically.
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Much of the earlier literature on two-step estimation of games considered the case where the set

of regressors was discrete or the first stage was a correctly specified parametric model. In this

paper, we allow for continuous covariates and a fully nonparametric first stage. We establish

two useful properties of this estimator. First, despite the fact the first stage is nonparametric

and might converge at a slow rate, the structural parameters estimated in the second stage have

normal asymptotics and converge at a rate proportional to the square root of the sample size.

This follows from arguments based on Newey (1994). Second, we demonstrate in many cases our

model can be estimated, with correct standard errors, using a two stage least squares procedure in

a standard statistical package like STATA. We hope that the simplicity of this approach will make

the estimation of these models accessible to a larger audience of researchers. In Bajari and Hong

(2004) we demonstrate that the ideas in this paper can be generalized to dynamic games. However,

this estimator is more difficult to implement and requires quite distinct econometric arguments.

Third, we consider the problem of identification in games with continuous state variables. Our

results, as in Bajari and Hong (2004), show that a sufficient condition for identification is to

exclude payoff relevant covariates for a particular player i from the utilities of the other players.

For instance, in an entry model, if the productivity shock of firm i influences its own entry decision,

but only indirectly influences the entry decisions of other players, then our results imply that the

model is identified. An alternative identification strategy is to search for events that change which

equilibrium to the game is played, but otherwise do not influence payoffs. Our results can be

interpreted as standard rank conditions for an appropriately defined linear system. We note that

Pesendorfer and Schmidt-Dengler (2003) demonstrate that exclusion restrictions are sufficient for

identification in a particular set of entry games with discrete states. Sweeting (2005) demonstrates

that multiplicity of equilibrium can assist with identification in a symmetric location game.

Finally, we consider the problem of simulating the model, which is required to study predictions

of the model such as counterfactuals. It is widely known that models of the form that we consider

can generate multiple solutions. However, outside of certain specific examples (e.g., those studied

in Sweeting (2005)), it is not possible to analytically derive all of the solutions of the model or

even to determine the number of possible solutions. Therefore, we propose an algorithm that can

compute all of the equilibria to the model. This algorithm uses the “all solutions homotopy”, which

is available in standard numerical libraries such as hompack. Therefore, we can use this to find the

entire set of equilibrium actions at our estimated parameter values. We discuss the potential uses

of this algorithm in our application.

As an application of our methods, we model the determination of stock recommendations (e.g.

strong buy, buy, hold, sell) issued by equity analysts for high technology stocks listed in the NAS-

DAQ 100 between 1998 and 2003. The determination of recommendations during this time period
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is of particular interest in the wake of the sharp stock price declines for technology firms in 2000.

Recommended stocks underperformed the market as a whole during this period by a wide margin.

Highly-publicized allegations of conflicts of interest have called into question whether analysts were

more concerned with helping their firms win investment banking business than with producing

accurate assessments of the prospects for the firms under scrutiny. While there is a fairly large

literature in finance on recommendations, we are not aware of any papers that formally consider

the simultaneity of recommendations due to strategic motives.

In our model, recommendations submitted by analysts depend on four factors. First, recom-

mendations must depend on fundamentals and commonly shared expectations about the future

profitability of the firm. These expectations will be embedded in the stock price. Second, analysts

are heterogeneous, both in terms of talent and perhaps in terms of access to information. We try to

capture an individual analyst’s private belief about the stock by looking at the difference between

the quarterly earnings forecast submitted by the analyst (or the analyst’s brokerage firm) and the

distribution of forecasts from other firms. Mindful of the large number of inquiries into possible

conflicts of interest among research analysts, we include as a third factor a dummy variable for an

investment banking relationship between the firm and the analyst’s employer.

Finally, we consider the influence of peers on the recommendation decision. Peer effects can

impact the recommendation in different ways. Individual analysts have incentive to condition their

recommendation on the recommendations of their peers, because even if their recommendations

turn out to be unprofitable ex-post, performance evaluation is typically a comparison against the

performance of peers. More subtly, recommendations are relative rankings of firms and are not

easily quantifiable (or verifiable) objects. As such, ratings scales usually reflect conventions and

norms. The phenomenon is similar to the college professor’s problem of assigning grades. If a

professor were to award the average student with a C while other faculty give a B+ to the average

student, the professor might incorrectly signal his views of student performance. Even while there

is heterogeneity in how individual professors feel about grading, most conform to norms if only

to communicate clearly with students (and their potential employers) about their performance.

Similarly, analysts might have an incentive to benchmark their recommendations against perceived

industry norms.

The paper is organized as follows. In section 2 we outline the general economic environment.

For purposes of exposition, we develop many of the key formulae within the context of a simple

entry model. In section 3 we discuss the problem of nonparametric identification. In section 4 we

show how to derive nonparametric and semiparametric estimates of the structural parameters for

our class of models. Section 5 describes the all solutions homotopy algorithm for simulating the

model. Section 6 contains the empirical application to equity analyst recommendations. Section 7
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concludes the paper.

2 The model

In the model, there are a finite number of players, i = 1, ..., n and each player simultaneously

chooses an action ai ∈ {0, 1, . . . , K} out of a finite set. We restrict players to have the same set of

actions for notational simplicity. However, all of our results will generalize to the case where all

players have different finite sets of actions. Let A = {0, 1, . . . , K}n denote the vector of possible

actions for all players and let a = (a1, ..., an) denote a generic element of A. As is common in the

literature, we let a−i = (a1, ...ai−1, ai+1, ..., an) denote a vector of strategies for all players excluding

player i. We will abstract from mixed strategies since in our model, with probability one each player

will have a unique best response.

Let si ∈ Si denote the state variable for player i. Let S = ΠiSi and let s = (s1, ..., sn) ∈ S

denote a vector of state variables for all n players. We will assume that s is common knowledge to

all players in the game and in our econometric analysis, we will assume that s is observable to the

econometrician. The state variable is assumed to be a real valued vector, but Si is not required to

be a finite set. Much of the previous literature assumes that the state variables in a discrete games

lie in a discrete set. While this assumption simplifies the econometric analysis of the estimator and

identification, it is a strong assumption that may not be satisfied in many applications.

For each agent, there are also K + 1 state variables which we label as εi(ai) which are pri-

vate information to each agent. These state variables are distributed i.i.d. across agents and

actions. Let εi denote the 1 × (K + 1) vector of the individual εi(ai). The density of εi(ai) will

be denoted as f(εi(ai)). However, we shall sometimes abuse notation and denote the density for

εi = (εi(0), ..., εi(K)) as f(εi).

The period utility function for player i is:

ui(a, s, εi; θ) = Πi(ai, a−i, s; θ) + εi(ai). (1)

The utility function in our model is similar to a standard random utility model such as a multinomial

logit. Each player i receives a stochastic preference shock, εi(ai), for each possible action ai. In

many applications, this will be drawn from an extreme value distribution as in the logit model.

In the literature, the preference shock is alternatively interpreted as an unobserved state variable

(see Rust (1994)). Utility also depends on the vector of state variables s and actions a through

Πi(ai, a−i, s; θ). For example, in the literature, this part of utility is frequently parameterized as

a simple linear function of actions and states. Unlike a standard discrete choice model, however,

note that the actions a−i of other players in the game enter into i’s utility. A standard discrete
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choice model typically assumes that agents i act in isolation in the sense that a−i is omitted from

the utility function. In many applications, this is an implausible assumption.

In this model, player i’s decision rule is a function ai = δi(s, εi). Note that i’s decision does not

depend on the ε−i since these shocks are private information to the other −i players in the game

and hence unobservable to i. Define σi(ai|s) as:

σi(ai = k|s) =
∫

1 {δi(s, εi) = k} f(εi)dεi. (2)

In the above expression, 1 {δi(s, εi) = k} is the indicator function that player ı́’s action is k given

the vector of state variable (s, εi). Therefore, σi(ai = k|s) is the probability that i chooses action

k conditional on the state variables s that are public information. We will define the distribution

of a given s as σ(a|s) = Πn
i=1σ(ai|s).

Next, define πi(ai, s, εi; θ) as:

πi(ai, s, εi; θ) =
∑
a−i

Πi(ai, a−i, s; θ)σ−i(a−i|s) + εi(ai) (3)

where σ−i(a−i|s) = Πj �=iσj(aj|s). (4)

In (3), πi(ai, s, εi; θ) is player i’s expected utility from choosing ai when the vector of parameters is

θ. Since i does not know the private information shocks, εj for the other players, i’s beliefs about

their actions are given by σ−i(a−i|s). The term
∑

a−i
Πi(ai, a−i, s, θ)σ−i(a−i|s) is the expected

value of Πi(ai, a−i, s; θ), marginalizing out the strategies of the other players using σ−i(a−i|s). The

structure of payoffs in (3) is quite similar to standard random utility models, except that the

probability distribution over other agents’ actions enter into the formula for agent i’s utility. Note

that if the error term has an atomless distribution, then player i’s optimal action is unique with

probability one. This is an extremely convenient property and eliminates the need to consider

mixed strategies as in a standard normal form game.

We also define the deterministic part of the expected payoff as

Πi (ai, s; θ) =
∑
a−i

Πi(ai, a−i, s, θ)σ−i(a−i|s). (5)

It follows immediately then that the optimal action for player i satisfies:

σi(ai|s) = Prob {εi|Πi(ai, s; θ) + εi(ai) > Πi(aj, s; θ) + εi(aj) for j �= i.} (6)
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2.1 A Simple Example.

For expositional clarity, consider a simple example of a discrete game. Perhaps the most commonly

studied example of a discrete game in the literature is a static entry game (see Bresnahan and

Reiss (1991a), Bresnahan and Reiss (1991b),Berry (1992), Tamer (2003), Ciliberto and Tamer

(2003), Manuszak and Cohen (2004)). In the empirical analysis of entry games, the economist

typically has data on a cross section of markets and observes whether a particular firm, i, chooses

to enter a particular market. In Berry (1992) and Ciliberto and Tamer (2003), for example, the

firms are major U.S. airlines such as American, United and Northwest and the markets are large,

metropolitan airports. The state variables, si might include the population in the metropolitan

area surrounding the airport and measures of an airline’s operating costs. Let ai = 1 denote the

decision to enter a particular market and ai = 0 denote the decision not to enter the market. In

many applications, Πi(ai, a−i, s; θ) is assumed to be a linear function, e.g.:

Πi(ai, a−i, s; θ) =
{s′ · β + δ

∑
j �=i

1 {aj = 1} if ai = 1

0 if ai = 0
(7)

In equation (7), the mean utility from not entering is set equal to zero.2 The term δ measures the

influence of j’s choice on i’s entry decision. If profits decrease from having another firm enter the

market then δ < 0. The parameters β measure the impact of the state variables on Πi(ai, a−i, s).

The random error terms εi(ai) are thought to capture shocks to the profitability of entry that

are private information to firm i. Suppose that the error terms are distributed extreme value.

Then, utility maximization by firm i implies that:

σi(ai = 1|s) =

exp(s′ · β + δ
∑
j �=i

σj(aj = 1|s))

1 + exp(s′ · β + δ
∑
j �=i

σj(aj = 1|s))
for i = 1, ..., n (8)

In the system of equations above, applying the formula in equation (5) implies that Πi (ai, s; θ) =

s′ · β + δ
∑
j �=i

σj(aj = 1|s). Since the error terms are distributed extreme value, equation (6) implies

that the choice probabilities, σi(ai = 1|s) take a form similar to a single agent multinomial logit

model. We note in passing that it can easily be shown using Brouwer’s fixed point theorem an

equilibrium to this model exists for any finite s (see McKelvey and Palfrey (1995))).

We exploit the convenient representation of equilibrium in equation (8) in our econometric

analysis. Suppose that the econometrician observes t = 1, ..., T repetitions of the game. Let ai,t

2We formally discuss this normalization in our section on identification.
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denote the entry decision of firm i in repetition t and let the value of the state variables be equal

to st. By observing entry behavior in a large number of markets, the econometrician could form a

consistent estimate σ̂i(ai = 1|s) of σi(ai = 1|s) for i = 1, ..., n. In an application, this simply boils

down to flexibly estimating the probability that a binary response, ai is equal to one conditional

on a given set of covariates. This could be done using any one of a number of standard techniques.

We let L(β, δ) denote the pseudo-likelihood function defined as:

L(β, δ) =
T∏
t=1

n∏
i=1

⎛⎜⎜⎝
exp(s′·β+δ

∑
j �=i

σ̂j(aj=1|s))

1+exp(s′·β+δ

∑
j �=i

σ̂j(aj=1|s))

⎞⎟⎟⎠
1{ai,t=1}⎛⎜⎜⎝1 −

exp(s′·β+δ

∑
j �=i

σ̂j(aj=1|s))

1+exp(s′·β+δ

∑
j �=i

σ̂j(aj=1|s))

⎞⎟⎟⎠
1{ai,t=0}

Given first stage estimates of σ̂i(ai = 1|s), we could then estimate the structural parameters of the payoff,

β and δ, by maximizing the above pseudo-likelihood function. There are two attractive features of this

strategy. The first is that it not demanding computationally. First stage estimates of choice probabilities

could be done using a strategy as simple as a linear probability model. The computational burden of the

second stage is also light since we only need to estimate a logit model. A second attractive feature is that

it allows us to view a game as a generalization of a standard discrete choice model. Thus, techniques from

the voluminous econometric literature on discrete choice models can be imported into the study of strategic

interaction. While the example considered above is simple, it nonetheless illustrates many of the key ideas

that will be essential in what follows.

We can also see a key problem with identification in the simple example above. Both the first stage

estimates σ̂i(ai = 1|s) and the term s′ · β depend on the vector of state variables s. This suggests that we

will suffer from a collinearity problem in order to separately identify the effects of β and δ on the observed

choices. The standard solution to this type of problem in many settings is to impose an exclusion restriction.

Suppose, for instance, a firm specific productivity shock is included in s. In most oligopoly models, absent

technology spillovers, the productivity shocks of firms −i would not directly enter into firm i’s profits. These

shocks only enter indirectly through the endogenously determined actions of firms −i, e.g. price, quantity

or entry decisions. Therefore, if we exclude the productivity shocks of other firms from the term s′ · β, we

would no longer suffer from a collinearity problem. While this idea is quite simple, as we shall discover in

the next section, similar restrictions are required to identify more general models.

3 Nonparametric Identification

In this section, we consider the problem of identifying the deterministic part of payoffs, without making

particular assumptions about its functional form (e.g. that it is a linear index as in the previous example).

In the context of nonparametric identification, we let θ be completely nonparametric and write Πi (ai, a−i, s)

instead of Πi (ai, a−i, s; θ).

Definition We will say that Πi (ai, a−i, s) is identified if Πi (ai, a−i, s) �= Π′
i (ai, a−i, s) for some i = 1, ..., n

implies that for the corresponding equilibrium choice probabilities σi(ai = 1|s) �= σ′
i(ai = 1|s) for some

i = 1, ..., n.
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Formally, identification requires that different values of the primitives generate different choice probabilities.

If this condition is not satisfied, then it will be impossible for us to uniquely recover the structural parameters

Πi (ai, a−i, s) (for i = 1, ..., n) from knowledge of the observed choice probabilities, σi(ai = 1|s).
It is well known that even in a single agent problem, it is not possible to nonparametrically identify both

Πi (ai, a−i, s) and the joint distribution of the error terms F (εi). To take the simplest possible example,

consider a simple binary response model and assume that the error terms are normally distributed, as in the

probit model. Let σi(ai = 1|s) denote the probability that the response is equal to one in the data conditional

on s. Define Πi(ai = 0|s) = 0 and Πi(ai = 0|s) = F−1(σi(ai = 1|s)) where F−1 denotes the normal cdf. It

can easily be verified that this definition of Πi perfectly rationalizes any set of choice probabilities σi(ai = 1|s).
Since our model is not identified without a parametric assumption on the error term in even a simple probit

model, assumptions at least as strong will be required in the more general set up that we consider here.

In Bajari, Hong, and Ryan (2004) we demonstrate that when we allow for nonparametric Πi (ai, a−i, s) an

independence assumption is required to identify our model in even single agent problems. In what follows,

we will typically impose the assumption that the error terms are distributed i.i.d. extreme value since both

an independence and parametric form assumption on the error terms are required for identification.

Based on the discussion above, we shall impose the following assumption in order to identify the model.

A1 The error terms εi(ai) are distributed i.i.d. across actions ai and agents i. Furthermore, the parametric

form of the distribution F comes from a known family.

Analogous to the notation in the previous section, define Πi(k, s) =
∑

a−i
Πi(ai = k, a−i, s)σ−i(a−i|s).

It is straightforward to show that the equilibrium in this model must satisfy:

δi(s, εi) = k if and only if Πi(k, s) + εi(k) > Πi(k′, s) + εi(k′) for all k′ �= k. (9)

That is, action k is chosen if and only if the deterministic expected payoff and error term associated with

action k is greater than the analogous values of k′ �= k. An implication of (9) is that the equilibrium choice

probabilities σi(a|s) must satisfy:

σi(ai|s) = Pr {εi(ai) + Πi(ai, s) − Πi(0, s) > εi(k) + Πi(k, s) − Πi(0, s), ∀k = 0, . . . , K, k �= ai} (10)

Equation (10) is a simple consequence of (9) where we can subtract Πi(0, s) from both sides of the inequality.

Suppose we generate εi(ai) from an extreme value distribution as in the logit model. Then (10) implies

that:

σi(ai|s) =
exp(Πi(ai, s) − Πi(0, s))∑K
k=0 exp(Πi(k, s) − Πi(0, s))

(11)

A key insight due to Hotz and Miller (1993) is that equation (11) implies that the equilibrium choice

probabilities, σi(ai|s), have a one-to-one relationship to the “choice specific value functions”, Πi(ai, s) −
Πi(0, s). To see why, note that taking logarithms of both sides of (11) implies that for any k, k′:

log (σi(k|s)) − log (σi(k′|s)) = Πi(k, s) − Πi(k′, s).
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The one-to-one mapping between choice probabilities and choice specific value functions holds more

generally than in just the logit model. It is obvious that we should expect it in any model where the

distribution of εi has full support. We let Γ : {0, ..., K}× S → [0, 1] denote the map in general from choice

specific value functions to choice probabilities, i.e.

(σi(0|s), ..., σi(K|s)) = Γi (Πi(1, s) − Πi(0, s), ...,Πi(K, s) − Πi(0, s)) . (12)

We will denote the inverse mapping by Γ−1:

(Πi(1, s) − Πi(0, s), ...,Πi(K, s) − Πi(0, s)) = Γ−1
i (σi(0|s), ..., σi(K|s)) . (13)

The above analysis implies that we can invert the equilibrium choice probabilities to nonparametrically

recover Πi(1, s) − Πi(0, s), ...,Πi(K, s) − Πi(0, s). However, the above analysis implies that we will not be

able to separately identify Πi(1, s) and Πi(0, s), we can only identify the difference between these two terms.

Therefore, we shall impose the following assumption:

A2 For all i and all a−i and s, Πi(ai = 0, a−i, s) = 0.

The above assumption is similar to the “outside good” assumption in a single agent model where the mean

utility from a particular choice is set equal to zero. In the context of our entry model, this assumption is

satisfied if the profit from not entering the market is equal to zero regardless of the actions of other agents.

Just as in the single agent model, there are alternative normalizations that we could use to identify the

Πi(ai, a−i, s) just as in a single agent model. However, for expositional simplicity we shall restrict attention

to the normalization A2.

Given assumption A2 and knowledge of the equilibrium choice probabilities, σi(ai|s), we can then apply

the mapping in (13) to recover Πi(ai, s) for all i, ai and s. Recall that the definition of Πi(ai, s) implies that:

Πi(ai, s) =
∑
a−i

σ−i(a−i|s)Πi(ai, a−i, s), ∀i = 1, . . . , n, ai = 1, . . . , K. (14)

Even if we know the values of Πi(ai, s) and σ−i(a−i|s) in the above equation, it is not possible to uniquely

determine the values of Πi(ai, a−i, s). To see why, hold the state vector s fixed, determining the utilities of

all agents involves solving for n×K × (K + 1)n−1 unknowns. That is, there are n agents, for each action

k = 1, ..., K, utility depends on the (K + 1)n−1 possible actions of the other agents. However, the left

hand side of (14) only contains information about n × (K + 1) scalars holding s fixed. It is clearly not

possible to invert this system in order to identify Πi(ai, a−i, s) for all i, all k = 1, ....,K and all a−i ∈ A−i.

Related nonidentification results have been found by Bresnahan and Reiss1991a, 1991c and Pesendorfer and

Schmidt-Dengler (2003) in the context of dynamic games with discrete state spaces.

Obviously, there must be cross-equation restrictions across either i or k in order to identify the system.

One way to identify the system is to impose exclusion restrictions. Partition s = (si, s−i), and suppose

Πi(ai, a−i, s) = Πi(ai, a−i, si) depends only on the subvector si. An example of this might be in an entry

model. In this type of model the state is usually a vector of productivity shocks. While we might

expect the profit of firm i to depend on the entry decisions of other agents, it should not depend on the

10



productivity shocks of other agents. See Bajari, Hong, and Ryan (2004) for other examples of possible

exclusion restrictions that can be used in applications. If such an exclusion restriction is possible, we can

then write

Πi(ai, s−i, si) =
∑
a−i

σ−i(a−i|s−i, si)Πi(ai, a−i, si). (15)

Clearly, a sufficient identification condition is that for each si, there exists (K + 1)n−1 points in the support

of the conditional distribution of s−i given si, such that this system of equations form by these (K + 1)n−1

points given si is invertible. In other words, Let s1−i, . . . , s
(K+1)n−1

−i denote these points, then identification

requires that the matrix[
σ(a−i|sj−i, si), a−i = 1, . . . , (K + 1)n−1, j = 1, . . . , (K + 1)n−1

]
be nonsingular and invertible. Note that this assumption will be satisfied as long as s−i contains a continu-

ously distributed variable with Πi(ai, a−i, si) sufficient variability.

Theorem 1 Suppose that A1 and A2 hold. Also suppose that for each si, there exists (K + 1)n−1 points in

the support of the conditional distribution of s−i given si so that (15) is invertible. Then the latent utilities

Πi(ai, a−i, si) are identified.

Another approach to identification is to exploit the multiplicity of equilibria. Suppose that there is some

state variable z which shifts which equilibrium to the game is played, but otherwise does not enter into the

payoffs. Then we can write the payoffs are σi(ai|s, z) but the utilities do not directly depend on the variable

z. We shall give a detailed example of such a variable in our application which is due to the intervention

in the market by a regulator which we interpret as shifting the equilibrium to the game but not directly

entering payoffs. This generates variation in the right hand size of (15) which allows us to check similar rank

conditions. We note that Sweeting (2005) has also pointed out that the multiplicity of equilibrium can help

in identifying a special case of the model above.

4 Estimation

In the previous section, we demonstrated that there is a nonparametric inversion between choice probabil-

ities and the choice specific value functions, Π(ai, s). Furthermore, we demonstrated that the structural

parameters of our model are identified if appropriate exclusion restrictions are made on payoffs. In this

section, we exploit this inversion to construct nonparametric and semiparametric estimates of our structural

parameters.

Step 1: Estimation of Choice Probabilities. Suppose the economist has access to data on t =

1, . . . , T repetitions of the game. For each repetition, the economist observes the actions and state variables

for each agent (ai,t, si,t). In the first step we form an estimate σ̂i(k|s) of σi(k|s) using sieve series expansions

( see Newey (1990) and Ai and Chen (2003)). We note, however, that we could alternatively estimate the first

stage using other nonparametric regression methods such as kernel smoothing or local polynomial regressions.

11



Let {ql(s), l = 1, 2, . . .} denote a sequence of known basis functions that can approximate a real valued

measurable function of s arbitrarily well for a sufficiently large value of l. The sieve could be formed using

splines, Fourier Series or orthogonal polynomials. We let the basis become increasingly flexible as the number

of repetitions of the game T becomes large. Let κ(T ) denote the number of basis functions to be used when

the sample size is T. We shall assume that κ(T ) → ∞, κ(T )/T → 0 at an appropriate rate to be specified

below. Denote the 1 × κ(T ) vector of basis functions as

qκ(T )(s) = (q1(s), . . . , qκ(T )(s)), (16)

and its collection into a regressor data matrix as

QT = (qκ(T )(s1), . . . , qκ(T )(sT ).

One potential sieve estimator for σ̂i(k|s), k = 1, . . . , K is a linear probability model, i.e.:

σ̂i(k|s) =
T∑
t=1

1(ait = k)qκ(T )(st)(Q′
TQT )−1qκ(T )(s). (17)

Equation (17) is the standard formula for a linear probability model where the regressors are the sieve

functions κ(T ) in equation (16). We note that in the presence of continuous state variables, the sieve

estimator σ̂i(k|s) will converge to the true σi(k|s) at a nonparametric rate which is slower than
√
T .

Second Step: Inversion In our second step, we take as given our estimates σ̂i(k|s) of the equilibrium

choice probabilities. We then form an estimate of the expected deterministic utility functions, Π̂i(k, st) −
Π̂i(0, st) for k = 1, ..., K and t = 1, ..., T . This can be done by evaluating (13) using σ̂i(k|s) in place of

σi(k|s). That is:(
Π̂i(1, st) − Π̂i(0, st), ...Π̂i(K, st) − Π̂i(0, st)

)
= Γ−1

i (σ̂i(0|st), ..., σ̂i(K|st)) (18)

In the specific case of the logit model, this inversion would simply be:

Π̂i(k, st) − Π̂i(0, st) = log (σ̂i(k|st)) − log (σ̂i(0|st)) (19)

In an alternative model, such as one with normal shocks, we would need to solve a nonlinear system. In

what follows, we shall impose A2 so that Π̂i(0, s) = Π̂i(0, a−i, s) = 0 for all a−i.

Third Step: Recovering The Structural Parameters In the first step we recovered an estimate

of σ̂i(ai, s) and in the second step we recovered an estimate of the choice specific value function Π̂i(k, s). In

our third step, we use the empirical analogue of (14) to form an estimate of Π(ai, a−i, si). We shall assume

that we have made a sufficient number of exclusion restrictions, as discussed in the previous section, so that

the model is identified. For a given value of si, for a given a = (ai, a−i), we estimate Πi (ai, a−i, si) by

minimizing the following weighted least square function

Πi (ai, a−i, si), which are taken to be a vector of coefficients:

T∑
t=1

⎛⎝Π̂i(ai, s−it, si) −
∑
a−i

σ̂−i (a−i|s−it, si)Πi (ai, a−i, si)

⎞⎠2

w (t, si) , (20)
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where the nonparametric weights w (t, si) can take a variety of forms. For example,

w (t, si) = k

(
sit − si
h

)
/

T∑
τ=1

k

(
siτ − si

h

)
(21)

uses kernel weights, and other local weights are also possible. The identification condition in the previous

section ensures that the regressor matrix in this weighted least square regression is nonsingular asymptoti-

cally.

4.1 A Linear Model of Utility

The nonparametric estimation procedure described in the previous section follows the identification argu-

ments closely and offers the advantage of flexibility and robustness against misspecification. However, without

a huge amount of data nonparametric estimation methods can be subject to severe curve of dimensionality

when we intend to control for a large dimension of state variables s. Also, in small samples, different imple-

mentations of nonparametric procedures may lead to drastically different point estimates. Therefore in the

following we consider a semiparametric estimation where the deterministic utility components Πi (ai, a−i, s)

are specified to be a linear function of a finite dimensional parameter vector θ. This is the typical econometric

specification that is commonly used in the empirical literature. In this section we describe a straightforward

estimation and inference procedure for this model.

The deterministic part of the utility is assumed to take the form of

Πi (ai, a−i, si) = Φi (ai, a−i, si)
′
θ. (22)

In the above expression, the deterministic part of utility is a linear combination of a vector of basis functions,

Φi (ai, a−i, si). For instance, we might let utility be a linear index as in our simple entry game example of the

previous section. Alternatively, we might choose Φi (ai, a−i, si) to be a standard flexible functional form, such

as a high order polynomial, spline function or orthogonal polynomial. The estimator we discuss below can

easily be generalized to allow for the possibility that θ enters the utility nonlinearly. However, the exposition

of the properties of the estimator is facilitated by the linearity assumption. Also, most applications of

discrete choice models and discrete games usually are linear in the structural parameters of interest.

This linearity assumption implies that the choice specific value function, given ai and s, takes the

convenient form:

Πi (ai, s) = E [Πi (ai, a−i, si) |s, ai] = Φi (ai, s)
′
θ. (23)

where Φi (ai, s) is defined as:

Φi (ai, s) = E [Φi (ai, a−i, si) |ai, s] (24)

=
∑

a−i
Φi (ai, a−i, si)

∏
j �=i σ(aj = kj|s).

Arguing as in Section 2, it follows that if the error terms are distributed extreme value, the equilibrium

choice probabilities must satisfy:

σi (ai|s) =
exp

(
Φi (ai, s)

′
θ
)

1 +
∑K
k=1 exp

(
Φi (k, s)

′
θ
) . (25)
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More generally, if the error terms are not distributed extreme value, it may not be possible to express the

equilibrium choice probabilities in closed form as above. However, equation (6) implies that each σi (ai|s)
depends on σj (aj |s) , j �= i through (24). We denote this mapping as:

σi (ai|s) = Γi,ai (s, σj (k|s) , j �= i, k = 1, . . . , K) . (26)

If we define σ (s) to be the stacked vector of choice probabilities σi (k|s) for all k = 1, . . . , K, i = 1, . . . , n,

then we can collect (26) into a fixed point mapping:

σ (s) = Γ (σ (s)) . (27)

To emphasize the dependence on the parameter θ, we can also write

σ (s; θ) = Γ (s, θ; σ (s; θ)) . (28)

4.2 Semiparametric Estimation.

Step 1: Estimation of Choice Probabilities. The simple semiparametric procedure we propose

proceeds in two steps. We begin by forming a nonparametric estimate of the choice probabilities, σ̂i (k|s).
We will do this like above using a sieve approach, however, one could alternatively use kernels or a local

polynomial method.

σ̂i (k|s) = qκ(T )(s)′ (Q′
TQT )−1

T∑
τ=1

qκ(T )(sτ )1 (ai = k) . (29)

Given our estimates of the choice probabilities, we can then estimate Φi (k, s) correspondingly by

Φ̂i (k, s) =
∑
a−i

Φi (ai = k, a−i, si)
∏
j �=i

σ̂(aj|s) (30)

For instance, take the example presented in (7). In this example, Πi(ai = 1, a−i, s) = (s,
∑
j �=i 1{aj =

1})·(β, δ) where “ ·” denotes an inner product. Thus, in the above formula, Φ′
i(ai = 1, a−i) = (s,

∑
j �=i 1{aj =

1}) and θ = (β, δ). Then, given our first stage estimates of the choice probabilities, Φ̂′(ai = 1, a−i) =

(s,
∑

j �=i 1{aj = 1}σj(aj|s)).
Then for each parameter value θ, we can evaluate the empirical analogue of (28). For example, in the

multinomial logit case,

σi

(
ai|s, Φ̂, θ

)
=

exp
(
Φ̂i (ai, s)

′
θ
)

1 +
∑K

k=1 exp
(
Φ̂i (k, s)

′
θ
) (31)
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Step 2: Parameter Estimation. In the second stage a variety of estimators can be used to recover

the value of θ. Most of these estimators can be written as GMM estimators with a properly defined set of

instruments. To describe the second stage, define yikt = 1 if ait = k and yikt = 0 otherwise, for k = 0, . . . , K.

Define yit = (yi1t, . . . , yiKt) and the vector

σi

(
st, Φ̂, θ

)
=
(
σi

(
k|st, Φ̂, θ

)
, k = 1, . . . , K

)
(32)

Furthermore, collect yit, i = 1, . . . , n into a long vector yt with n × K elements, and similarly collect

σi

(
st, Φ̂, θ

)
, i = 1, . . . , n into a long vector σ

(
st, Φ̂, θ

)
with corresponding n × K elements. Then for

any dimension dim (θ) × (nK) matrix of instruments Â (st), a GMM estimator θ̂ can be defined by solving

the sample equations:

1
T

T∑
t=1

Â (st)
(
yt − σ

(
st, Φ̂, θ̂

))
= 0. (33)

The instrument matrix Â (st) may be known as A (st), may be estimated in the first stage (such as two-step

optimally weighted GMM), or may be estimated simultaneously (such as pseudo MLE). For example, with

a pseudo MLE method, θ̂ is defined by maximizing the pseudo likelihood function, which can be written as

the following because of the independent error terms across agents:

T∑
t=1

n∑
i=1

[
K∑
k=1

yikt log σi
(
k|st, Φ̂, θ

)
+

(
1−

K∑
k=1

yikt

)
log

(
1 −

K∑
k=1

σi

(
k|st, Φ̂, θ

))]
. (34)

In the following we let σ̂ikt (θ) = σi

(
k|st, Φ̂, θ

)
. The first order condition for the “pseudo” MLE estimator

is then given by

T∑
t=1

n∑
i=1

K∑
k=1

[
yikt − σ̂ikt (θ)

σ̂ikt (θ)
+

∑K
j=1 (yijt − σ̂ijt (θ))

1 −∑K
j=1 σ̂ijt (θ)

]
∂

∂θ
σi

(
k|st, Φ̂, θ̂

)
, (35)

In term of expressing it as an instrumental variable estimator, this corresponds to (33) with Â (st) equal to

the ∂
∂θ
σ
(
st, Φ̂, θ̂

)
× Ŵ (st, θ), where Ŵ (st, θ) is the nK × nK diagonal matrix, such that the ith diagonal

block, for i = 1, . . . , n, is given by⎡⎢⎢⎣
1

σ̂i1t(θ)
0 0

0
. . . 0

0 0 1
σ̂iKt(θ)

⎤⎥⎥⎦+

⎡⎢⎢⎣
1

σ̂i0t(θ)

...
1

σ̂i0t(θ)

⎤⎥⎥⎦ [1 · · · 1] , (36)

where σ̂i0t (θ) = 1 −∑K
j=1 σ̂ijt (θ). If we define W (st, θ) in analog to Ŵ (st, θ), except with Φ̂ replaced by

the true unknown Φ in each σ̂ikt (θ), then it is easy to verify that W (st, θ0) = V ar (yt − σ (st,Φ, θ0) |st)−1,

where the ith diagonal block of the block diagonal matrix V ar (yt − σ (st,Φ, θ0) |st) is given by⎡⎢⎢⎣
σi1t 0 0

0
. . . 0

0 0 σiKt

⎤⎥⎥⎦−

⎡⎢⎢⎣
σi1t

...

σiKt

⎤⎥⎥⎦ [σi1t · · ·σiKt] . (37)
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It is well known that the estimation errors in Â (st) will not affect the asymptotic distribution of θ̂ defined

by (33), regardless of whether Â (st) is estimated in a preliminary step or is estimated simultaneously with

θ̂. Therefore, the asymptotic distribution of the pseudo MLE is the same as that of an infeasible GMM IV

estimator with an instrument matrix A(st) which is given by

∂

∂θ
σ (st,Φ0, θ0) ×W (st, θ0) (38)

Here note that in terms of (28)

∂

∂θ
σ (st,Φ0, θ0) =

∂

∂θ1
Γ (st, θ1, σ (st; θ2))

∣∣∣∣
θ1=θ2=θ

(39)

Therefore, assuming all Φ are known, the MLE corresponds to the efficient choice of instruments Â (st)

in (33), under the efficiency framework of Newey and McFadden (1994). Therefore, next we will focus on

deriving the large sample properties of θ̂ defined by (33) where A(st) is known.

The estimator that we consider falls within the class of semiparametric estimators considered by Newey

(1994). A somewhat surprising conclusion is that even though the first stage is estimated nonparametrically

and can be expected to converge at a rate slower than
√
T , the structural parameters will be asymptotically

normal and will converge at a rate of
√
T . Moreover, under appropriate regularity conditions, the second

stage asymptotic variance will be independent of the particular choice of nonparametric method used to

estimate the first stage (e.g. sieve or kernel). As a practical matter, these results justify the use of the

bootstrap to calculate standard errors for our model.

In the appendix, we derive the following result, applying the general framework developed by Newey

(1990). Under appropriate regularity conditions, the asymptotic distribution of θ̂ defined in 33 satisfies the

following:

√
T
(
θ̂ − θ

)
d−→ N

(
0, G−1ΩG−1′)

,

where

G = EA (st)
∂

∂θ
σ (st,Φ0, θ0) , (40)

and Ω is defined such that

1√
T

T∑
t=1

A (st)
(
yt − σ

(
st, Φ̂, θ0

))
d−→ N (0,Ω) . (41)

In the appendix, we also compare the asymptotic variance of alternative estimators.

4.3 Linear Probability Model

Next, we demonstrate that in many cases it is possible to estimate our model using a simple two stage

least squares method. While the formal econometrics in this section are quite straightforward, we believe

that this observation is useful for researchers. Much of the previous literature on estimating games has

concentrated on the case of fully dynamic models and required an understanding of dynamic programming.
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In this section, we demonstrate that the methods in their simplest version only require invoking the ivreg

command in STATA.

To simplify notation, we will focus on a binary choice model in the following. The extension to multino-

mial models is straightforward. Therefore consider a special case of (1) where K = 1, Πi (0, a−i, s) = εi (0) ≡
0, θ, Φi (1, a−i, s; θ) = Φ1

i (si)
′
β + Φ1

i (a−i, s)
′
γ so that

ui (1, a−i, s; θ) = Φ1
i (si)

′
β + Φ2

i (a−i, s)
′
γ + εi (1) ,

and εi (1) is uniformly distributed on the interval (−1, 0). The decision rule of agent i is such that action 1

is chosen if and only if

E [ui (1, a−i, s; θ) |s] = Φ1
i (si)

′
β + E

[
Φ2
i (a−i, s) |s

]′
γ + εi (1) > 0.

Because of the uniform distribution assumption of εi (1), this implies that

P (ai = 1|s) = Φ1
i (si)

′
β +E

[
Φ2
i (a−i, s) |s

]′
γ,

which can be written as

ai = Φ1
i (si)

′
β +E

[
Φ2
i (a−i, s) |s

]′
γ + ηit (1) , (42)

such that E (ηit (1) |st) = 0.

In this model Φ1
i (si) and Φ2

i (a−i, s) are known functions, but β and γ are unknown parameters.

E
[
Φ2
i (a−i, s) |s

]
needs to be estimated nonparametrically. As before, this can be consistently estimated

by a linear least square regression with a sufficiently large number of sieve approximating functions in the

first step:

Ê
[
Φ2
i (a−i, s) |s

]
= qκ(T ) (s)′ (Q′

TQT )−1
T∑
τ=1

qκ(T ) (sτ )Φ2
i (a−iτ , sτ ) .

In the second step, a linear regression is used to estimate β and γ:(
β̂, γ̂

)
= arg min

β,γ

T∑
t=1

(
ait − Φ1

i (sit)
′ β − Ê

[
Φ2
i (a−it, st) |st

]′
γ
)2

.

Note that this is precisely a two stage least square estimator. Also note that this is a special case of (33)

where

Âi (st) =

(
Φ1
i (sit)

Ê
[
Φ2
i (a−it, st) |st

] ) ,
and σ

(
st, Φ̂, θ̂

)
= Φ1

i (sit)
′
β + Ê

[
Φ2
i (a−it, st) |st

]′ and yit − σi (st, θ0) = ηit(1).

In the following we will demonstrate that the ivreg procedure with the robust standard error options in

stata will give correct standard errors for this model, when ai is entered as the dependent variable, Φ1
i (s) is

entered as the exogenous regressor, Φ2
i (a−i, s) is entered as the endogenous regressor, and qκ(T ) (s) is used

as the set of instruments to instrument for Φ2
i (a−i, s). In other words, β̂ and γ̂ are computed as

θ̂ =

(
β̂

γ̂

)
= Â−1

T

1
T

T∑
t=1

Âi (st) ait,
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where

ÂT =
1
T

T∑
t=1

Âi (st) Âi (st)
′ .

Then it follows from a standard manipulation that

√
T

(
β̂ − β

γ̂ − γ

)
= Â−1

T

1√
T

T∑
t=1

m̂i (st, β, γ) ,

where

m̂i (st, β, γ) = Âi (st)
(
ait − Φ1

i (sit)
′
β − Ê

[
Φ2
i (a−it, st) |st

]′
γ
)
.

The asymptotic variance is then a special case of section (C). We will use a slightly different notation here

to facilitate comparison with 2SLS. In particular, it follows from Newey (1994) that

1√
T

T∑
t=1

m̂i (st, β, γ) =
1√
T

T∑
t=1

mi (st, β, γ) + op (1) ,

where mi (st, β, γ) = Ai (st) (ηit (1) − vit (1) γ) , and

vit (1) = Φ2
i (a−it, st) − E

[
Φ2
i (a−it, st) |st

]
.

The asymptotic distribution of the 2SLS estimator is then given by, letting A = EAi (st)Ai (st)
′:

√
T
(
θ̂ − θ

)
d−→ N

⎛⎜⎝0,A−1EAi (st)V ar
(
ηit (1) − vit (1)′ γ|st

)︸ ︷︷ ︸
Σ(st)

Ai (st)A−1

⎞⎟⎠ .

To obtain a consistent estimate of this asymptotic variance matrix, both A and Σ (st) needs to be estimated.

A can be estimated by AT . The key in estimating Σ (st) is to estimate ηit (1)−vit (1) consistently. This can

be estimated by

eit =ait − Φ1
i (sit)

′
β̂ − Φ2

i (a−it, st)
′
γ̂

=ait − Φ1
i (sit)

′
β̂ − E

[
Φ2
i (a−it, st) |st

]′
γ̂ − (

Φ2
i (a−it, st) − E

[
Φ2
i (a−it, st) |st

])′
γ̂.

Then EAi (st) Σ (st)Ai (st)
′ can be consistently estimated by

1
T

T∑
t=1

Âi (st) eite′itÂi (st)
′
.

Now note that this is precisely how Stata ivreg calculates robust standard errors for 2SLS estimators.

5 Fixed effect model of unobserved heterogeneity

5.1 Nonparametric identification

Unobserved heterogeneity can be a potentially important source of misspecification if it is not accounted for

in the model. In this section, we discuss how to introduce market specific fixed effects into our model. For
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each market t = 1, . . . , T , all the players in that market observe a market specific profit shifter αt that is not

observed by the econometrician. We will assume that αt is an unknown but smooth function of the state

variables st = (st1, . . . , stn) in that market, which we will denote as α (st). In principal, we would prefer a

model where the unobserved heterogeneity was not required to be a function of the observables. However,

in highly nonlinear models, such as ours, similar assumptions are commonly made (see, for example, Newey

(1994)).

This assumption is convenient technically since it implies that the equilibrium choice probabilities, σi can

still be written as a function of the state st. If the unobserved heterogeneity were not a function of st, then

it would be quite difficult to estimate the choice probabilities, σi since they would depend on an unknown,

market specific parameter in a nonlinear manner. There is no obvious method to identify or estimate the

first stage in this case.

With the inclusion of a market specific fixed effect, the mean period utility function in (1) for player i

in market t is now modified to

Πi(ai, a−i, s) = α (ai, s) + Π̃i(ai, a−i, s). (43)

In the above, and what follows, we drop the market specific subscript t for notational simplicity.

Under the normalization assumption that Πi (0, a−i, s) ≡ 0 for all i = 1, . . . , n, our previous results show

that, as in (14), the choice specific value functions Πi(ai, s) are nonparametrically identified. Note that the

choice specific value functions must satisfy ∀i = 1, . . . , n, ai = 1, . . . , K:

Πi(ai, s) =
∑

a−i
σ−i(a−i|s)Πi(ai, a−i, s)

= α (ai, s) +
∑

a−i
σ−i(a−i|s)Π̃i(ai, a−i, si). (44)

Obviously, since α (ai, s) is unknown but is the same function across all market participants, they can

be differenced out by looking at the difference of Πi (k, s) and Πj (k, s) between different players i and j. By

differencing (44) between i and j one obtains

Πi (k, s) − Πj (k, s) =
∑
a−i

σ−i (a−i|s) Π̃i(ai, a−i, si) −
∑
a−j

σ−j (a−j|s) Π̃j(aj, a−j, sj)

Here we can treat Π̃i(ai, a−i, si) and Π̃j(aj, a−j, sj) as coefficients, and σ−i (a−i|s) and σ−j (a−j|s) as regres-

sors in a linear regression. Identification follows as in Theorem 1. As long as there is sufficient variation in the

state variables si, sj , the coefficients Π̃i(ai, a−i, si) and Π̃j(aj, a−j, sj) can be nonparametrically identified.

We could nonparametrically estimate Π̃j(aj, a−j, sj) using an approach analogous to the nonparametric

approach discussed in section Section 4. However, in practice, semiparametric estimation will typically be a

more useful alternative. Denote the mean utility (less the market specific fixed effect) as:

Π̃i (ai, a−i, si) = Φi (ai, a−i, si)
′
θ. (45)

In practice, we imagine estimating the structural model in two steps. In the first step, we estimate

the equilibrium choice probabilities nonparametrically. In the second stage, we estimate Π̃i treating α (st)

as a fixed effect in a discrete choice model. Estimating discrete choice models with fixed effects is quite

straightforward is many cases.
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For instance, consider a model of entry and suppose that the error terms are distributed extreme value.

In the first step, we nonparametrically estimate Φ̂i (1, sit), the probability of entry by firm i when the state is

sit. As in the previous section, we could do this using a sieve linear probability model. In the second stage,

we can form a conditional likelihood function as in Chamberlain (1984)). This allows us to consistently

estimate θ when market specific fixed effects α (st) are present. The likelihood function is then:

logL =
T∑
t=1

(
log

[
exp

(
θ′

n∑
i=1

aitΦ̂i (1, sit)

)]
− log

[ ∑
dt∈Bt

exp

(
θ′

n∑
i=1

ditΦ̂i (1, sit)

)])

where Bt ≡ {dt :
∑n

i=1 dit =
∑n
i=1 ait} is the set of actions that give rise to the same number of entrants

as observed in the data. In other words, the likelihood is formulated conditional on the number of entrants.

One can follow similar steps as in previous derivations to prove consistency and demonstrate asymptotic

normality of this semiparametric conditional logit estimator where Φ̂i (1, sit) is estimated in the first stage

nonparametrically.

We also note that we could estimate this model using a using a panel data rank estimation type procedure

as in (Manski (1987)). While this is a more challenging model computationally, it is free of distributional

assumptions on the error term.

6 Computing Models with Multiple Equilibria.

In the previous sections, we have either assumed that the model has a unique equilibrium (which can be the

case, for example, for a linear probability interaction model), or that only a single equilibrium outcome out of

several possible multiple equilibria is being observed in the data set. However, in many static game models,

multiple equilibria are possible. The importance of multiple equilibria in empirical research is emphasized

by many authors, including Brock and Durlauf (2001) and Sweeting (2005). In the rest of this manuscript

we present a method for estimating parametric models of interactions in the presence of possible multiple

equilibria.

In the previous sections we have considered a model with known distribution F (εi) of the error terms

and a parametric model for the mean utility functions Πi (ai, a−i, θ). At every possible parameter value

θ, given the known distribution F (εi), equations (10), (12) and (14) defined a fixed point mapping in the

conditional choice probabilities:

σi(ai|s) = Γi

(∑
−i

σa−i (a−i|s) [Πi (k, a−i, s; θ) − Πi (0, a−i, s; θ) , k = 1, . . . , K]

)
. (46)

For example, under the linear mean utility specification (5), this system of fixed point mappings in the choice

probabilities takes the form of

σi(ai|s) = Γi

⎛⎝∑
a−i

σ−i(a−i|s)Φi(ai, a−i, s)′θ, ai = 1, . . . , K

⎞⎠ , i = 1, . . . , n. (47)

In previous sections, we have assumed that either there is a unique solution to this system of fixed
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mapping with K × n equations and K × n unknown variables

σi (ai|s) , ∀ai = 1, . . . , K, i= 1, . . . , n,

or that only one particular fixed point of this system gets realized in the observed data. However, this

system of fixed point mapping can potentially have multiple solutions, leading to the possibility of multiple

equilibria.

In the following of this section, we will first give a brief introduction to the use of homotopy methods

for finding multiple solutions to a system of nonlinear equations. We will then discuss how the homotopy

method can be used to compute multiple equilibria for our model of static interactions. In the next section,

we will describe an innovative estimation method that we develop for estimating the parameters in static

interaction models with multiple equilibria. While brief, this section is highly technical. Readers can proceed

to the application in section 7 after reading section 6.1.

6.1 The homotopy method

The homotopy continuation method (which will simply be referred to as the homotopy method in the rest of

the paper) is a well known generic algorithm for looking for a fixed point to a system of nonlinear equations.

Based on the particular nonlinear system of equations to be solved, a well designed homotopy system is

capable of finding multiple solutions of the nonlinear system, and in some cases, all solutions to the system.

A concise and clear introduction to the homotopy method can be found in the book by Zangwill and Garcia

(1981). Algorithms for implementing the homotopy method can be found in several papers including Watson,

Billups, and Morgan (1987), Kostreva and Kinard (1991), ? and ?.

Our goal is to find, for all possible parameter values and realized state variables s, the solutions for the

fixed point system (28):

σ − Γ (σ) = 0.

To simplify the notation, we suppress the fact that the choice probabilities depend on the state σ = σ (s).

The basic idea behind the homotopy method is to take a system for which we know the solution and

map this system into the system that we are interested in. Under the right conditions, the solution to the

original system will also map into the solution that we are seeking. Formally, a homotopy is a linear mapping

between the two topological spaces of functions of the form

H (σ, τ ) = τG (σ) + (1 − τ ) (σ − Γ (σ)) , τ ∈ [0, 1] , (48)

where each of H (σ, τ ) and G (σ) are vectors of functions with n×K component functions:

Hi,ai (σ, τ ) and Gi,ai(σ) for i = 1, . . . , n and ai = 1, . . . , K.

H (σ, τ ) is the homotopy function and τ is the homotopy parameter. As one can see, for τ = 1 we get

H (σ, 0) = G (σ) and for τ = 0 we obtain H (σ, 0) = σ − Γ (σ) so varying τ from 1 to 0 maps the function

G (·) into the function Γ(·). The homotopy method suggests that we start with τ = 1 and choose G (σ) to
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be a system for which it is very easy to obtain the solutions to G (σ) = 0. If for each 0 ≤ τ < 1, we can solve

for the nonlinear equations, H (σ, τ ) = 0, then by moving along the path in the direction of τ = 1 to τ = 0,

at the end of the path we should be able to reach a solution of the original nonlinear equations σ−Γ (σ) = 0.

This path then constructs a mapping between a solution of the initial system G (σ) = 0 and a solution to

the fixed point problem of interest, σ − Γ (σ) = 0.

In practice, algorithms for solving differential equations can be used to trace the path from τ = 1 to

τ = 0. At each τ , we denote the solution along a particular path by σ (τ ):

H (σ (τ ) , τ ) = 0.

By differentiating this homotopy function with respect to τ :

d

dτ
H (σ (τ ) , τ ) =

∂H

∂τ
+
∂H

∂σ
· ∂σ
∂τ

= 0.

This defines a system of differential equations for σ (τ ) with initial condition σ (1) calculated from the

solution of the (easy) initial system G (σ (1)) = 0. A number of computer algorithms are available to

compute numerical solutions of nonlinear systems of differential equations can then be used to trace this

differential equation system to reach an end point in the path of τ = 1 to τ = 0 in order to obtain a solution

σ (0) of the original system σ − Γ (σ) = 0.

A regularity condition is necessary to insure the stability and the proper behavior of the homotopy

differential equation system.

Condition 1 (Regularity) Let ∇ (τ ) denote the Jacobian of the homotopy functions with respect to σ at

the solution path σ (τ ):

∇ (τ ) =
∂

∂σ
Re{H (σ, τ )}

∣∣∣∣
σ=σ(τ)

,

where Re{H (σ, τ )} denotes the real component of the homotopy functions. The jacobian ∇ (τ ) has full rank

for almost all τ .

This condition ensures the smoothness and differentiability of the paths. It rules out cases of bifurcation,

branching and infinite spiraling. The mapping between G (σ) and σ − Γ (σ) is called a conformal one if the

path that links them is free of these complications. If a homotopy system satisfies the regularity condition,

it will either reach a solution or drift off to infinity.

Obviously, in applied work where the system of differential equations above will be solved numerically, it

will be convenient to work with conformal mappings. A convenient way of generating a conformal mapping,

or a homotopy that satisfies the above regularity condition, is to extend the original homotopy into the

complex space. A homotopy, as defined in equation (48) is extended to the complex space by permitting

the argument σ to take on complex values, which will result in complex values of the homotopy. When the

real and complex components of σ are considered two different sets of arguments, and the real and complex

components of the output are considered two different sets of components of the homotopy, this defines

a real valued homotopy with 2nK inputs and 2nK outputs. If the original homotopy (48) is an analytic
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function in the complex space, then the Cauchy-Riemann conditions will ensure that the extended real-value

2nK × 2nK homotopy system satisfies the regularity condition above.

The all solution homotopy is one where the initial system G (σ) is chosen such that, if we follow the paths

originating from each of the solutions to G (σ) = 0, we will reach all solutions of the original system σ = Γ (σ)

at the end of the path. The extension of a real homotopy system into the complex space is essential to the

idea of all-solution homotopy. It is related with the property of the complex space that conformal mappings

in the complex space do not change the algebraic properties of the sets. 3 The concept of conformal mapping

is widely used in complex analysis. It implies that we can conformally map a function with a complicated

set of roots to another function with a simple set of roots, then the results from an analysis of the function

with the simple set of roots should apply to the function with the complicate set of roots. An all solution

homotopy has to satisfy an additional path finiteness condition:

Condition 2 (Path Finiteness) Define H−1 (τ ) to be the set of solutions σ (τ ) to the homotopy system

at τ . H−1 (τ ) is bounded for all 0 ≤ τ < 1. In other words, for all τ > 0.

lim
||σ||→∞

H (σ, τ ) �= 0.

6.2 Multiple equilibria in static discrete games

As we noted in the previous section, the issue of multiple equilibria in static interaction models amounts

to the issue of computing all the fixed points to the system of equations of choice probabilities defined in

equation (46). Note that the argument to the mapping from expected utility to choice probabilities, Γ (·),
is linear in the choice probabilities of competing agents σ−i (a−i|s). Therefore, the question of possible

multiplicity of equilibria depends crucially on the functional form of Γ, which in turn depends exclusively on

the assumed joint distribution of the error terms.

Interestingly, if we are content with the linear probability model where Γ is a linear function of the

individual choice probabilities, and the model has only two agents, then the equilibrium will be guaranteed

to be unique and the issue of multiple equilibria is not relevant. Γ is a linear function of the individual

choice probabilities if the underlying utility functions depend linearly on the indicator function of whether

individual competitors make a particular choice or not. For example, this would be the case if the profit

from entering a market depends on the total number of competitors who also enter the market. On the

other hand, if we have nonlinear interactions of the individual choice probabilities in the linear probability

model, or if the joint distribution of the error term in the multinomial choice model is specified such that Γi
is a polynomial function for each i = 1, . . . , n, then all the equilibria can be found by choosing a homotopy

system where the initial system of equations

Gi,ai (σ) , i = 1, . . . , n and ai = 1, . . . , K.

3The conformal mapping is a mapping in the complex space that does not locally change the argument of a

complex number. It is known that if the function is analytic and does not have stationary points then the associated

mapping is conformal.
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takes the following simple polynomial form:

Gi,ai(σ) = σi (ai)
qi,ai − 1 = 0 for i = 1, . . . , n and ai = 1, . . . , K, (49)

where qi,ai is an integer that exceeds the degree of the polynomial of Γi,ai as a function of σ−i (a−i). This

results in a homotopy mapping

Hi,ai(σ, τ ) = τ{σi (ai)qi,ai − 1} + (1 − τ ) (σi (ai) − Γi,ai(σ)) , τ ∈ [0, 1]. (50)

For τ = 0 the system (48) coincides with the original system while for τ = 1 it is equal to the ’simple’ system

(49).

It is a well known result from complex analysis that there are exactly qi,ai complex roots to Gi,ai (σ) that

are evenly distributed on the unit circle. It is known that nondegenerate polynomial functions are analytic

and the regularity condition of the resulting homotopy system is automatically satisfied. The particular

choice of qi,ai also ensures the path finiteness property of the homotopy system (c.f. Zangwill and Garcia

(1981)).

While a polynomial model for Γ (·) is convenient for calculating multiple equilibria, it is rarely used in

applied problems because it is not clear what parametric utility specification will give rise to a polynomial

choice probability function. The most popular multinomial choice probability function is probably the

multinomial logit, which follows from the assumption of i.i.d. extreme value distributions in the unobserved

component of the latent utilities. The logit choice model is given in (25). Our analysis in the following will

consist of three steps. First we will establish that this model has a finite number of equilibria represented

by real solutions to (25). Second, we will show that by letting the degree of the initial polynomial system

increase to infinity at an appropriate rate, we will be able to find all the equilibria for the multinomial logit

choice model (25) using the homotopy method. We prove it by first verifying that the homotopy mapping

is regular in the complex space when the discontinuity points of the original function are isolated, and then

providing a method to make homotopy work in the small vicinity of discontinuity points.

It is not difficult to show that the fixed point system (25) has a finite number of solutions in the real

line. To see this, note that in general, this function is clearly continuous and infinitely differentiable with

nonsingular derivatives. In particular, it is easy to verify this condition for the multinomial logit and probit

models that are commonly used in practice. Consider a compact ball BR in RnK with radius larger than

1. By Sard’s theorem the set of irregular values of Γ (·) has measure zero. In particular, it can be verified

by differentiation through the implicit function theorem that zero is its regular value. This implies that the

submanifold of σ satisfying σ = Γ (σ) is compact as a closed subset of this ball BR. Thus it contains a

finite number of points. This verifies that the set of solutions in BR in finite. It is also obvious that all the

solutions must satisfy 0 ≤ σi (ai) ≤ 1 because of the choice probability functional form. Therefore there can

not be solutions outside BR.

While we have just shown that there are in general a finite number of multiple equilibria, to compute

these equilibria we need to make use of an all solution homotopy system. In particular, we choose to use the

all solution homotopy defined in (50). In the following we will show that there exists a homotopy system

of the form of (50) with a sufficiently high orders of the initial system qi,ai ’s, such that we will find all the
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solution to the original system of choice probabilities. As described in the previous subsection, verifying

the validity of the all solution homotopy requires checking the regularity condition and the path finiteness

condition, which in terms require extension of the real homotopy system into the complex space. Verifying

these conditions require us to specify the particular functional form of the joint distribution of the error

terms in the latent utilities. In the following we will focus on the multinomial logit case which is the most

widely used discrete choice model in the empirical literature.

The following Theorem 2 and Theorem 3 formally state this result. In the statement of the theorems,

σ = {σr, σi} denotes more generally a vector of the real part and the imaginary part of complex numbers

which extend the real choice probabilities we considered early into the complex space. Theorem 2 first

establishes the regularity properties of the homotopy outside the imaginary subspace.

Theorem 2 Define the sets H−1 = {(σr, σi, τ ) | H(σr, σi, τ ) = 0} and

H−1(τ ) = {(σr, σi) | H(σ, τ ) = 0} for σr ∈ R
nK, and σi ∈ R

nK .

Note that H is a homotopy of dimension R2nK that include both real and imaginary parts separately. Also

define, for any small ε, ℘ε = ∪i,ai{|σr,i,ai | ≤ ε} to be the area around the imaginary axis. Then:

1) The set H−1 ∩ {R2nK \ ℘ε × [0, 1]} consists of closed disjoint paths.

2) For any τ ∈ (0, 1] there exists a bounded set such that H−1(τ ) ∩ R2nK \ ℘ε is in that set.

3) For (σr , σi, τ ) ∈ H−1∩{R2nK\℘ε×[0, 1]} the homotopy system allows parametrizationH(σr(s), σi(s), τ (s)) =

0. Moreover, τ (s) is a monotone function.

Remark: Theorem 2 establishes the regularity and path finiteness conditions for the homotopy (50) for

the multinomial logit model in areas that are not close to the pure imaginary subspace in the complex

domain CnK . The homotopy system can become irregular along the pure imaginary subspace, because the

denominator in the system can approach zero and the system will become nonanalytic in the case. However,

the next theorem shows that there exists a sequence q such that homotopies with initial system of order q

will have paths that stay away from the imaginary subspace. Homotopies with these orders will be able to

trace out all the solutions of the original multinomial logit system.

Theorem 3 For given τ one can pick the power qi,ai of the initial function (49) such that the homotopy

system is regular and path finite given some sequence of converging polyhedra ℘ε, ε→ 0.

Theorem 3 implies that if we continue to increase the power qi,ai of the initial system (49) of the

homotopy, we will eventually be able to find all the solutions to the original multinomial logit system. This

also implies, however, we might lose solutions when we continue to increase qi,ai . But Theorem 3 does

imply that for sufficiently large qi,ai, no new solutions will be added for larger powers. In the monte carlo

simulation that we will report in the next section, we do find this to be the case.
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6.3 Monte Carlo Analysis

We perform several Monte-Carlo simulations for an entry game with a small number of potential entrants.

Player’s payoff functions for each player i were constructed as linear functions of the indicator of the rival’s

entry (ai = 1), market covariates and a random term:

Ui(ai = 1, a−i) = θ1 − θ2

⎛⎝∑
j �=i

1(aj = 1)

⎞⎠+ θ3x1 + θ4x2 + εi(a), i = 1, . . . , n. (51)

The payoff of staying out is equal to Ui(ai = 0, a−i) = εi(a), where the εi (a) have i.i.d extreme value

distributions across both a and i. The coefficients in the model are interpreted as: θ1 is the fixed benefit of

entry, θ2 is the loss of utility when one other player enters, θ3, θ4 are the sensitivities of the benefit of entry

to market covariates.

The game can be solved to obtain ex-ante probabilities of entry in the market. The solution to this

problem is given by:

Pi =
eθ1−θ2(

∑
j �=i Pj)+θ3x1+θ4x2

1 + eθ1−θ2(
∑

j �=i Pj)+θ3x1+θ4x2
, i = 1, . . . , n. (52)

Here Pi is the ex-ante probability of entry for the player i, Pi = p (ai = 1|x). Both coefficients of the model

and market covariates were taken from independent Monte-Carlo draws. The parameters of generated

random variables are presented in Table 6.1. The means and variances of parameter values and market

covariates were chosen so to have a fair percentage of cases with more then one equilibrium. For the games

with 3,4 and 5 players 400 independent parameter combinations for every player were taken. The modification

of the HOMPACK algorithm was run to solve for all equilibria in each game.

Throughout the Monte-Carlo runs both coefficients and covariates x1 and x2 were changing. So, every

equilibrium was calculated for a specific set of parameters. Summary statistics for the results of computations

are presented in Table 6.1. It is possible to see from Table 6.1 that in the constructed games the players

have approximately same average parameters in every type of game. This agrees with the symmetric form

of underlying data generating process for the coefficients and market covariates.

Table 6.2 and 6.3 tabulate the frequencies of different number of equilibria that are being observed in the

simulations, classified according to the number of players in the market. Interestingly, a dominant number

of simulations have only a single equilibrium. In addition, the frequency of observing multiple equilibria

seems to decrease with the number of players in the market. In other words, we observe a large number of

multiple equilibria in the two player case but only observe a handful of them in the five player case.

Table 6.4 tabulates the probability of entry of the first player classified by the number of equilibria

and the number of players in the market. In general, what we see from this table is that there is no clear

correlation pattern between the entry probability and the numbers of equilibria and players in the market.
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7 Application to stock market analysts’ recommendations and

peer effects

Next, we discuss an application of our estimators to the problem of analyzing the behavior of equity market

analysts and the stock recommendations that they issue (e.g. strong buy, buy, hold sell). There is a fairly

sizeable empirical literature on this topic. However, the literature does not allow for strategic interactions

between analysts. We believe that this is a very strong assumption. Accurate forecasts and recommendations

are highly valued, of course. But the penalty for issuing a poor recommendation depends on whether

competitor analysts also made the same poor recommendation. Therefore, the utility an analyst receives

from issuing a recommendation is a function of the recommendations issued by other analysts. Therefore,

we apply the framework discussed in the previous sections to allow payoffs to be interdependent.

There has been a revival of interest on the determinants of analyst recommendations as researchers

have tried to explain the remarkable behavior of the analysts in the run-up and subsequent collapse of the

NASDAQ in 2000. 4 The focus in this paper is on the recommendations generated for firms in the high tech

sector, which includes the firms most affected by the excitement surrounding the development of e-commerce

and the spread of the Internet. Given the great uncertainty surrounding the demand for new products and

new business models, the late 1990’s would seem to have been the perfect environment for equity analysts to

add value. Yet analyst recommendations were not particularly helpful or profitable during this period. For

example, the analysts were extremely slow to downgrade stocks, even as it was apparent that the market

had substantially revised its expectations about the technology sector’s earnings potential. Barber, Lehavey,

McNichols, and Trueman (2003) show that the least recommended stocks earned an average abnormal return

of 13% in 2000-2001, while the most highly recommended stocks earned average abnormal returns of -7%.

Observations like this have led commentators to wonder whether the analysts had ulterior motives for keeping

their recommendations unjustifiably optimistic, such as the pressure to win investment banking business.

Allegedly, this conflict of interest took the form of analysts keeping recommendations on stocks high in order

to appease firms, who would then reward the analyst’s company by granting it underwriting business or

other investment advisory fees.5 Indeed, these suspicions came to a head when New York State Attorney

General Elliot Spitzer launched an investigation into conflicts of interest in the securities research business.

In this application we develop an empirical model of the recommendations generated by stock analysts

from the framework outlined in section 1. We quantify the relative importance of four factors influencing

the production of recommendations in a sample of high technology stocks during the time period between

1998 and 2003.
4See for example Barber, Lehavey, McNichols, and Trueman (2003) and Chan, Karceski, and Lakonishok (2003).

Research prior to the NASDAQ collapse includes Womack (1996), Lin and McNichols (1998), and Michaely and

Womack (1999).
5In 1998, Goldman Sachs estimated that Jack Grubman, a prominent telecommunications industry analyst, would

bring in $100 to $150 million in investment banking fees. This estimate was based on the fees generated by 32 of

the stocks he covered that also had banking relationships with Citigroup, including WorldCom, Global Crossing and

Winstar Communications. (Wall Street Journal, October 11, 2002).
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First, recommendations must depend on expectations about the future profitability of a firm. There

should be some systematic component to these expectations common across all analysts and investors that

will be embedded in the current stock price.

Second, analysts are heterogeneous, both in terms of talent and perhaps in terms of access to information.

We try to capture an individual analyst’s private belief about the stock by looking at the difference between

the quarterly earnings forecast submitted by the analyst (or the analyst’s brokerage firm) and the distribution

of forecasts from other firms.

Mindful of the large number of inquiries into possible conflicts of interest among research analysts, we

include as a third factor a dummy variable for an investment banking relationship between the firm and the

analyst’s employer.

Finally, we consider the influence of peers on the recommendation decision. Peer effects can impact the

recommendation in different ways. Individual analysts have incentive to condition their recommendation

on the recommendations of their peers, because even if their recommendations turn out to be unprofitable

ex-post, performance evaluation is typically a comparison against the performance of peers. More subtly,

recommendations are relative rankings of firms and are not easily quantifiable (or verifiable) objects. As such,

ratings scales usually reflect conventions and norms. The phenomenon is similar to the college professor’s

problem of assigning grades. If a professor were to award the average student with a C while other faculty give

a B+ to the average student, the professor might incorrectly signal his views of student performance. Even

while there is heterogeneity in how individual professors feel about grading, most conform to norms if only

to communicate clearly with students (and their potential employers) about their performance. Similarly,

analysts have an incentive to benchmark their recommendations against perceived industry norms.

7.1 Data

Our data consist of the set of recommendations on firms that made up the NASDAQ 100 index as of

year-end 2001. The recommendations were collected from Thomson Firstcall. Firstcall is one of the most

comprehensive historical data sources for analysts’ recommendations and earnings forecasts, containing real-

time recommendations and forecasts from hundreds of analysts. It is common for analysts to rate firms on

a 5 point scale, with 1 denoting the best recommendation and 5 denoting the worst. When this is not the

case, Firstcall converts the recommendations to the 5 point scale (see Table 7.1).

We have 12,719 recommendations from analysts at 185 brokerage firms over this time period (see Table

7.2). The dependent variable in our data set is a recommendation submitted between January of 1998

and June of 2003 for a firm in the NASDAQ 100. The data set was formed by merging the earnings and

recommendations files from Firstcall. In a given quarter, for a given stock, we merge a quarterly earnings

forecast with a recommendation from the same brokerage.6 This will allow us to determine if analysts that

are more optimistic than the consensus tend to give higher recommendations. In the Firstcall data, quarterly

earnings forecasts are frequently made more than a year in advance. In order to have a consistent time frame,

6When there were multiple recommendations by the same analyst within a quarter, we chose to use the last

recommendation in the results that we report.
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we limit analysis to forecasts that were made within the quarter that the forecast applies.7 Note that not

every recommendation can be paired with an earnings forecast made within the contemporaneous quarter.

Recommendations that could not be paired with an earnings forecast were dropped from the results that

we report. However, qualitatively similar results were found for a data set where this censoring was not

performed. We choose not to report these results in the interests of brevity. The variables in our data

include:

• REC- Recommendation from 1-5 for a stock listed in the NASDAQ 100 recorded by I/B/E/S.

• QUARTER- Quarter during which the recommendation was submitted.

• STOCK-Name of the stock for which the recommendation applies.

• BROKERAGE-The brokerage employing the analyst.

• EPS-Earnings per share forecast submitted by the analyst’s brokerage associated with the recommen-

dation. Submitted during the same quarter as the recommendation.

• AEPS-Average of the earnings per share forecasts submitted for that quarter.

• %DEV-(EPS-APS)/APS, the percent deviation of an individual broker’s earnings forecast from the

average earning’s forecast.

• RELATION-A dummy variable that is one if the analyst’s brokerage engages in investment banking

business with the company to which the recommendation applies.

• IBANK-A dummy variable that is equal to one if the brokerage does any investment banking business

with stocks in the NASDAQ 100.

The investment banking relationship was identified from several different sources. First, we checked form

424 filings in the SEC’s database for information on the lead underwriters and syndicate members of debt

issues. When available, we used SEC form S-1 for information on financial advisors in mergers. We also

gathered information on underwriters of seasoned equity issues from Securities Data Corporation’s Platinum

database. To be sure, transaction advisory services (mergers), and debt and equity issuance are not the only

services that investment banks provide. However, these sources contribute the most to total profitability of

the investment banking side of a brokerage firm.

The average recommendation in our data set is 2.2, which is approximately a buy recommendation (see

Table 7.2). The mean value of RELATION is 0.035. The mean value of IBANK is 0.81. That is, 3.5 percent of

the analyst-company pairs in our data set were identified as having a potential conflict of interest due to some

kind of investment banking activity for the stock in question. Eighty-one percent of the recommendations

in our data were generated by firms engaging in investment banking with some firm list in the NASDAQ

100. Both of these variables are potentially useful measures of potential conflict of interest. The variable

7We chose to merge the brokerage field, instead of the analysts field, because the names and codes in the analysts

field were not recorded consistently across IBES data sets for recommendations. It was possible to merge at the level

of the brokerage.

29



RELATION is more direct, since it indicates that the brokerage is engaged in investment banking with the

company during the quarter the recommendation was issued. However, brokerages might view any company

it is giving a recommendation to as a potential client, particularly in the NASDAQ 100, where many of the

companies generated considerable investment banking fees.

The variable earnings was formed by merging the recommendations and earnings files in Firstcall. In a

given quarter, for a given stock, we merge the quarterly earnings forecast with the recommendation from the

same brokerage. This allows us to determine if analysts that are more or less optimistic than the consensus

tend to give higher recommendations. In the Firstcall data, quarterly earnings forecasts are frequently made

more than a year in advance. In order to have a consistent time frame, we limit analysis to forecasts that

were made within the quarter for which the forecast applies. We chose to merge the brokerage field, instead

of the analysts field, because the names and codes in the analysts field were not recorded consistently across

Firstcall data sets for recommendations. It was possible to merge at the level of the brokerage. Note that

not every recommendation can be paired with an earnings forecast made in the contemporaneous quarter.

7.2 Empirical model

An observation is a recommendation submitted for a particular stock during a specific quarter. We will

let t = 1, ..., T denote a quarter, s = 1, ..., S a stock and and i = 1, ..., I an analyst. We will denote a

particular recommendation by ri,s,t. The recommendation can take on integer values between 1 and 5, where

1 is the highest recommendation and 5 the lowest. Since the dependent variable can be naturally ranked

from highest to lowest, we will assume that the utilities come from an ordered logit. Let x(i, s, t) denote a

set of covariates that influence the recommendation for analyst i for stock s during quarter t. Let x(s, t)

denote a vector of (x(i, s, t)) of payoff relevant covariates that enter into the utility of all the analysts who

submit a recommendation for stock s during quarter q. Let z(s, t) denote a set of covariates that shift the

equilibrium, but which do not influence payoffs.

Define the utility or payoff to analyst i for a recommendation on stock s in quarter t to be,

yi,s,t = β′x(i, s, t) + ηE(r|x(s, t), z(s, t)) + εi,s,t (53)

In equation (53), the term E(r|x(s, t), z(s, t)) is the expected recommendation for stock s during quarter t

and εi,s,t is an error term drawn from an extreme value model. Thus, conforming to the expected actions

of peers enters into an individual analyst’s utility. The model would is the familiar ordered logit, where the

probability that a particular recommendation is observed is determined as follows:
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P (r = 1) = Φ(−β′x(i, s, t)− ηE(r|x(s, t), z(s, t))) (54)

P (r = 2) = Φ(μ1 − β′x(i, s, t) − ηE(r|x(s, t), z(s, t))) (55)

− Φ(−β′x(i, s, t) − ηE(r|x(s, t), z(s, t))) (56)

P (r = 3) = Φ(μ2 − β′x(i, s, t) − ηE(r|x(s, t), z(s, t))) (57)

− Φ(μ1 − β′x(i, s, t) − ηE(r|x(s, t), z(s, t))) (58)

P (r = 4) = Φ(μ3 − β′x(i, s, t) − ηE(r|x(s, t), z(s, t))) (59)

− Φ(μ2 − β′x(i, s, t) − ηE(r|x(s, t), z(s, t))) (60)

P (r = 5) = 1 − Φ(μ3 − β′x(i, s, t) − ηE(r|x(s, t), z(s, t))) (61)

In equations (53)-(61), the likelihood that determines the probability that the recommendation is r depends

on the latent estimated covariates β and η along with the cut points μ1 − μ3.

The analysis of the previous section suggests that identification depends crucially on having appropriate

exclusion restrictions. First, we need covariates that influence the payoffs of one particular agent, but not

other agents. In our analysis, the covariates will include IBANK and RELATION. This assumption would

imply, for instance, that the amount of investment banking done by Merrill Lynch should not directly

influence the recommendations submitted by analysts working for Goldman Sachs. We believe that this is a

reasonable assumption.

In addition, we have attempted to control for unobserved heterogeneity in several ways. First, in many

specifications, we include a full set of stock and quarter fixed effects to control for factors that remain fixed

in a quarter that influence recommendations. Second, we have controlled for unobserved heterogeneity using

both a fixed effects and random effects specification. Equations (53)-(61) imply that the probability of 1 or

a recommendation between 2 and 5 is a binary logit. This implies that we can estimate our model using a

fixed effect logit specification. We choose to present a random effect logit specification since almost all of

the coefficient estimates in the fixed effects logit model were insignificant. Given the number of observations

in our data, we believe that the fixed effect logit model is too diffusely specified. We therefore use random

effects instead.

7.3 Results

7.3.1 Fundamentals

The first question that we ask is the extent to which recommendations were determined by publicly observable

information about the stocks. In our data, these fundamentals correspond to time fixed effects, stock fixed

effects and the difference between an individual analyst’s beliefs about earnings and beliefs in the market as

whole. In Table 7.4, we run an ordered logit to explore these questions. The variable %DEV is the percentage

deviation of an analyst’s recommendation from the average recommendation and ABS. DEV is the algebraic

difference. In both cases, a more optimistic earnings forecast has the anticipated sign, but is not significant
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at conventional levels in any of the specifications that we have tried. On the other hand, quarterly and stock

fixed effects are almost all statistically significant (not reported in this Table). If quarter and stock fixed

effects proxy for publicly available information about the stock, then this information is considerably more

important than measures of an individual analyst’s optimism. We note, however, that there could be other

interpretations of these variables.

In Table 7.5, we report the estimated quarterly fixed effects and compare these estimates to the NASDAQ

Index and NASDAQ 100. The quarterly effects are labeled qdum2-qdum22 for the 2nd quarter (1998.Q2)

through the 22nd quarter (2003.Q2) of our data set. Several points emerge. First, the quarterly effects

are typically significant. Second, the quarterly effects are highly correlated with the NASDAQ index and

with the QQQ. We take these results as evidence that the quarterly effects can reasonably be interpreted

as reflecting publicly observed information about the the firms that is embedded in the share prices as

opposed to some other latent effects. The movement in share prices can explain most of the movement in the

recommendations in the previous tables. In Table 7.6, we regress the quarterly dummies on these indexes.

We find that the indexes are statistically significant at conventional levels and that the measures of goodness

of fit are quite high.

7.3.2 Conflicts of Interest

In Table 7.7 we run an ordered logit model of recommendations as a function of our conflict of interest

measures. The coefficient on RELATION indicates that potential conflicts of interest are statistically signif-

icant at conventional levels, except for the third column where quarterly and stock fixed effects are included,

and the fourth column where the full set of fixed effects are included along with the more inclusive IBANK

variable. The coefficient sign on RELATION is also consistent with our a priori beliefs that conflicts of in-

terest could lead to issuing more favorable recommendations. Consistent with the work of prior researchers

and market regulators, these results do suggest that a potential conflict of interest exists when a brokerage

engaged in investment banking business with a company that quarter. However, these results must be in-

terpreted with some caution. Since brokerage firms are expected to cover companies with whom they have

significant investment banking business, the firms have an incentive to select brokerages that already view

them favorably. It would be hard to imagine that a rational manager would want to hire an investment

banking firm that views her company in an unfavorable manner.

Interestingly, we note (column 4 of table 7.7) that when we include the IBANK variable denoting that

the brokerage firm has investment banking relationships with at least one firm in the index, the coefficient is

positive and significant. Evidently, analysts at general investment banking firm tend to issue slightly more

conservative recommendations. This is consistent with a view of the world that companies tended to select

investment banking firms that were more favorably disposed towards them. Alternatively, our results could

be interpreted as suffering from a bias due to some omitted variable.

Our results suggest that even though investment banking relationships may generate potential conflicts

of interest for equity analysts, the magnitude of the effects recommendations may be small in practice. No-

tice that measures of the goodness of fit are very low when only investment banking is included. Also, the

marginal effects of engaging in investment banking are small. In our data, the expected recommendation
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is -0.08 when we allow for quarterly fixed effects, but not stock fixed effects. This finding is not consistent

with the prosecutors belief that “unbiased” research, separate from investment banking, will generate rec-

ommendations less tainted by potential conflicts of interest. However, the behavior of analysts after large

settlements have been paid and significant damage has been done to their brokerage’s reputation, in some

cases, may be more conservative.

7.3.3 Peer Effects

The final question we consider is whether there are peer effects in submitting recommendations. We do

this in Tables 7.8-7.10 by using the two stage procedure described in the previous sections. We regress the

recommendations on a broker fixed effect, a full set of stock and quarterly dummies, IBANK, RELATION,

and %DEV. In Table 7.8, the regressions are done using linear regression while in the later tables we use

a 3rd order spline. We will let IVBELIEF denote the expected average recommendation, excluding broker

i. If the coefficient on IVBELIEF is positive, this means that broker i has an incentive to conform to the

recommendations of other brokers. If it is negative, it means there is a return from submitting a dissenting

recommendation.

In all of the specifications that we examine in Table 7.8, peer effects seem to be important. An individual

analyst will raise his recommendation proportionally to the recommendation that he expects from other

analysts. This is intuitive. A given recommendation does not make senses in isolation, but only relative to

the recommendations of other analysts. If no one else in the market is issuing recommendations of “market

underperform” or “sell”, an individual analysts may give the wrong signal by issuing such a recommendation

even if he believes the recommendation is literally true. It is worth noting that the results for our measure of

peer effects are not only statistically significant, but peer effects also explain the results quite well compared

to the other covariates. The Pseudo-R2 suggests that quarterly dummies, stock dummies and IVBELIEF

explain most of the variation in the data. We note that the presence of the peer effect is robust to allowing

for a more flexible first stage (see Table 7.9). Also, the peer effect remains significant allowing for unobserved

heterogeneity in the form of a stock/quarter specific random effect in Table 7.10.

With estimates of the model’s key parameters in hand, it is possible to simulate the model and find the

set of equilibria to the analyst recommendation game. In keeping with the static nature of our analysis, we

solve for all possible equilibria at two points in time: the first just prior to the regulatory regime change in

2000.Q1, and then again in 2003.Q1 after the Spitzer inquiry was well-underway. These results are based

on assuming that there are two analysts making a recommendation and that the recommendations are

determined as in (53)-(61). All of the variables are set to their sample averages for 2000.Q1 and 2003.Q1

respectively. The parameter values were set equal to the estimates in the last column of Table 7.8. Since we

are interested in the effect of investment banking on recommendations, we consider two cases: one is when

IBANK is 0 for both players and the other when it is 1 for both players.

Evidently, the pre-Spitzer era was characterized by two different equilibria (see Table 7.11). These

equilbrium differ by a roughly uniform, upward shift in the overall recommendation. This is consistent with

our story that there is the possibility of multiple equilibrium in our model, one of which has “grade inflation”.

In the post-Spitzer era, there was only one equilibrium. Overall, recommendations fall compared to either
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equilibrium in the pre-Spitzer era. This can be attributed, in large part, to the poor environment for high

technology stocks during this period.

We note that the average recommendation tends to fall when the firms engage in investment banking

business. This is because the coefficient on IBANK is positive in our estimates. Our model suggests that,

contrary to the allegations made by the prosecutor and in the press, on average, engaging in investment

banking does not tend to generate higher recommendations on average.

8 Conclusion

In this paper we propose a method for estimating static games of incomplete information. The method

we propose is semiparametric and does not require the covariates to lie in a discrete set. Perhaps most

importantly, the method is both flexible and easy to implement using standard statistical packages. We also

introduce an algorithm for computing all equilibria to a game, which is useful for policy simulations using

the estimated model.

We apply these methods to the problem of determining the factors that govern the assignment of stock

recommendations by equity analysts for a set of high tech stocks between 1998 and 2003. Two factors seem

to be most important for explaining the production of stock recommendations. First, publicly observable

information about the stocks under recommendation, as reflected in our time and quarter dummies, plays

a large role in explaining the distribution of recommendations. As we saw in Table 7.3, these variables

explained a large fraction of the variation in the data and were highly correlated with market indexes such

as the NASDAQ or QQQ. Simply put, recommendations improved in 1999-2000 as the stock market rose.

The second and most important factor for explaining recommendations is the peer group effect. Individual

analysts raise their recommendations proportionally to the recommendations they expect from their peers.

Investment banking relationships are shown to be statistically significant in the recommendations regressions,

but the economic effect of the investment banking relationship is estimated to be small, and the variable

does not add much to the total fit of the model.
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A Proof for Theorem 2

Before we set out to prove the theorem we need to introduce some notations. Collapse the indexation for

i = 1, . . . , n and ai = 1, . . . , K to a single index j = 1, . . . , nK. In other words, each j represents a (i, ai)

pair. First we will rewrite the expression (47) for the case of multinomial choice probability as:

σj =
exp (Pj(σ))

1 +
∑

k∈Ii
exp (Pk(σ))

, (62)

where Ii = {(i, ai) , ai = 1, . . . , K} is the set of all indices j = (i, ai) that corresponds to the set of strategies

available to player i, and Pj (σ) is the expected utility associated with player i for playing ai when j = (i, ai):

Pj (σ) = Pi,ai (σ) =
∑
a−i

σ−i (a−i|s)Φi (ai, a−i, s)
′ θ,

which is in general a polynomial function in σj . Let P(·) denote the vector-function of polynomials of size

nK × 1 that collects all the elements Pj(·) for j = 1, . . . , nK. Let Q be the product of the degrees of the

polynomial over all elements of the vector P(·). In other words, Q =
∏nK
j=1Qj where Qj is the degree of

polynomial Pj(·). For each complex argument ξ ∈ CnK the system of polynomials has exactly Q solutions.
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Because of this, for each ξ ∈ CnK we can find Q vectors σ∗ such that P(σ∗) = ξ. Let us denote each

particular vector σ∗ by P−1
(k)(ξ).

The complex-valued vector P(·) of dimension nK × 1 can be transformed into a real-valued vector of

dimension 2nK×1 by considering separately real and complex part of vector P(·). Because of the polynomial

property, each P−1
(k) (ξ) is a continuously differentiable function of ξ for almost all ξ. It is possible that for

some range of the argument ξ, two (or more) solution paths P−1
(k) (ξ) and P−1

(k′) (ξ) for k �= k′ might coincide

with each other. In this case we will relabel the paths k so that the merged paths create a total Q of smooth

solution paths P−1
(k) (ξ).

The following analysis will apply to each individual branch P−1
(k) (ξ), which we will just denote by P−1 (ξ)

without explicit reference to the path indice k. For j = 1, . . . , nK introduce the following notations: ξj =

xj + iyj , ρj = ‖ξj‖, ϕj = arctan
(
yj

xj

)
. Then a homotopy system can be constructed for (62) as:

H1j(ξ, τ) = {ρqj cos(qϕj) − 1}τ + (1 − τ )
{
Re{P−1(ξ)}−

− e2xj +exj cos(yj)+
∑

k �=j e
xj+xk cos(yj−yk)

1+
∑

k∈Ii
e2xk +2

∑
k∈Ii

exk cos(yk)+
∑

l∈Ii

∑
k �=l e

xk+xl cos(yl−yk)

}
and

H2j(ξ, τ) = {ρqj sin(qϕj) − 1}τ + (1 − τ )
{
Im{P−1(ξ)}−

− exj sin(yj)+
∑

k �=j e
xk+xj sin(yj−yk)

1+
∑

k∈Ii
e2xk +2

∑
k∈Ii

exk cos(yk)+
∑

l∈Ii

∑
k �=l e

xk+xl cos(yl−yk)

}
If the system P(·) is polynomial, P−1 (ξ) is smooth and has a Jacobian of full rank for almost all ξ.

Therefore, we can locally linearize it so that P−1(ξ) ≈ Λξ + C. (This expansion is used only for the purpose

of clarity. A sufficient fact for the validity of the proof is that there exist Λ and C such that |P−1(ξ)| ≤ Λ|ξ|+C
which is true if P(·) is a polynomial.) The homotopy system can then be written as:

H1j(ξ, τ) = {ρqj cos(qϕj) − 1}τ + (1 − τ )
{
Λjxj−

− e2xj +exj cos(yj)+
∑

k �=j e
xj+xk cos(yj−yk)

1+
∑

k∈Ii
e2xk +2

∑
k∈Ii

exk cos(yk)+
∑

l∈Ii

∑
k �=l e

xk+xl cos(yl−yk)

}
(63)

and

H2j(ξ, τ) = {ρqj sin(qϕj) − 1}τ + (1 − τ )
{
Λjyj−

− exj sin(yj)+
∑

k �=j e
xk+xj sin(yj−yk)

1+
∑

k∈Ii
e2xk +2

∑
k∈Ii

exk cos(yk)+
∑

l∈Ii

∑
k �=l e

xk+xl cos(yl−yk)

}
(64)

where Λj is the jth row of the nK×nK matrix Λ. Without loss of generality we will let C = 0 in subsequent

analysis for the sake of brevity because all the results will hold for any other given C. To simplify notation

we will denote:

Θi(x, y) =
∑
k∈Ii

e2xk + 2
∑
k∈Ii

exk cos(yk) +
∑
l∈Ii

∑
k �=l

exk+xl cos(yl − yk)

Now given some index k ∈ {1, . . . , Q}, we consider the solutions of the system {H(x, y, τ)} = 0 for all possible

real values of the vectors of x and y.

Now we set out to prove the statements of Theorem 2. First we will prove statement (2). Define ρ = ‖ξ‖
to be the Euclidean norm of the entire nK × 1 vector ξ. We need to prove that there will not be a sequence
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of solutions along a path where ρ→ ∞. We will show this by contradiction. Consider a path where ρ→ ∞.

Choose the component j of the homotopy system for which ρqj cos(q ϕj) → ∞ at the fastest rate among all

the possible indexes j where ρj → ∞. 8

Consider the real part of the homotopy function, H1j(·, ·, ·). The equation H1j(x, y, τ) = 0 is equivalent

to the equation H1j(x,y,τ)

τ(ρq
j cos(q ϕj)−1) = 0 for ρj > 1. The last equation can be rewritten as:

1 +
(1 − τ )

τ
(
ρqj cos(q ϕj) − 1

) {Λjx− e2xj + exj cos(yj) +
∑

k �=j e
xj+xk cos(yj − yk)

1 + Θi(x, y)

}
= 0. (65)

We will show that the second term in the curly bracket of the previous equation is uniformly bounded from

above in absolute terms:∣∣∣∣e2xj + exj cos(yj) +
∑

k �=j e
xj+xk cos(yj − yk)

1 + Θi(x, y)

∣∣∣∣ ≤ C and for a constant C, (66)

where the constant C can depend on ε. Therefore the term in the curly bracket in the homotopy (65) will

grow at most at a linear rate |x| ≤ Cρj . On the other hand, denominator τ
(
ρqj cos (qϕj) − 1

)
outside the

curly bracket grows at a much faster polynomial rate for large q. Hence the second term in (65) is close to 0

for large q for large values of ξ, and equation (65) can not have a sequence of solutions that tends to infinity.

In other words, there exists R0 > 0 such that for any ξ = (x, y) outside ℘ε with ‖ξ‖ ≥ R0 and any

τ ∈ (0, 1] we have that H1(x, y, τ) �= 0, that is, homotopy system does not have solutions. This implies that

H−1(τ ) ∩ ℘ε ⊂ BτR0
= {(x, y, τ) ∈ R

2nK \ ℘ε × (0, 1] ∩ ‖ξ‖ < R0}.

This proves the statement 2).

Finally, we will prove both statements 1) and 3) of Theorem 2. Again we consider the above homotopy

system on the compact set BτR0
. The homotopy function is analytic in this set so Cauchy - Riehmann

theorem holds. This implies that

∂H1j

∂xk
=
∂H2j

∂yk
and

∂H1j

∂yk
= −∂H2j

∂xk
, for all j, k = 1, . . . , 2nK.

This means that if the Jacobian is considered:

Ji =

(
∂H1j

∂x′
∂H1j

∂y′
∂H1j

∂τ
∂H2j

∂x′
∂H2j

∂y′
∂H2j

∂τ

)
,

then it contains at least one 2×2 submatrix with nonnegative determinant
[
∂H1j

∂xk

]2
+
[
∂H1j

∂yk

]2
. Calculating the

derivatives directly due to the fact that ε < ρ < R0 this determinant is strictly positive for all (x, y, τ) ∈ BτR0
.

8In case when instead of ρq
j cos(q ϕj) → ∞ we have that ρq

j sin(q ϕj) → ∞, the proof can be appropriately modified

by considering the imaginary part of the j-th element of the homotopy system without any further changes. The logic

of the proof can be seen to hold as long as there is a slower growing element of x or y. In case when all components

of x and y grow at the same rate to infinity in such a way that the second terms inside the curly brackets of (63) and

(64) explode to infinity, one can take a Laurent expansion around the values of yk’s such that the denominators are

close to zero. Then one can see that these terms in (63) and (64) explode to infinity at quadratic and linear rates in

1/(y − y∗), respectively. Therefore (63) and (64) can not both be zero simultaneously for large x and y.
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Therefore, the implicit function theorem verifies that the pair (x, y) can be locally parameterized by τ .

Moreover, this representation is locally unique and continuous. This proves the first statement. The same

arguments above, which show that the determinant is positively almost everywhere, also immediately implies

the third statement. �

Proof of equation (66):

We are to bound the left hand side of equation (66) by a given constant. First of all we can bound the

denominator from below by

‖1 + Θi(x, y)‖ ≥
∥∥∥∥∥1 +

∑
k∈Ii

e2xk

∥∥∥∥∥ −
∥∥∥∥∥∥2
∑
k∈Ii

exk cos(yk) +
∑
l∈Ii

∑
k �=l

exk+xl cos(yl − yk)

∥∥∥∥∥∥ ,
as ‖a+ b‖ ≥ ‖a‖ − ‖b‖. Then we can continue to bound:

‖1 + Θi(x, y)‖ ≥ 1 +
∑

k∈Ii
e2xk − 2

∑
k∈Ii

exk −∑
l∈Ii

∑
k �=l e

xk+xl . (67)

The last expression was obtained taking into account the fact that

max
yk, k∈Ii

‖2
∑
k∈Ii

exk cos(yk) +
∑
l∈Ii

∑
k �=l

exk+xl cos(yl − yk)‖

is attained at the point cos(yk) ≡ cos(yk − yl) = 1, ∀k, l ∈ Ii.

For the same reason, we can bound the numerator from above by∥∥∥e2xj + exj cos(yj) +
∑
k �=j e

xj+xk cos(yj − yk)
∥∥∥ ≤ e2xj + ‖exj cos(yj)

+
∑

k �=j e
xj+xk cos(yj − yk)

∥∥∥ ≤ e2xj + exj +
∑

k �=j e
xj+xk .

Recall that j - th component was assumed to be the fastest growing x component as ρ→ ∞. Then from

equation (67) for some small but positive constant ψ we can write:

‖1 + Θi(x, y)‖ ≥ 1 + ψe2xj

Collecting terms we have that:

‖e2xj +exj cos(yj)+
∑

k �=j e
xj+xk cos(yj−yk)‖

‖1+Θi(x,y)‖ ≤ 1+e2xj +exj +
∑

k �=j e
xj+xk

1+ψe2xj
.

which is clearly uniformly bounded from above by a large constant.

The same arguments can be used by looking at the imaginary part of the homotopy system when there

exists a yj that converges to infinity at the fastest rate. �

B Proof for Theorem 3

For the clarify of exposition we will present the proof in the case of two strategies for each player. In the

case with more than two strategies for each player, the expansions for the homotopy system will be more
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complex and will involve more terms in the denominator. But the proof strategy is very similar, except it

involves more points around which expansions have to be taken.

In the two strategy case case, we can rewrite the homopoty system (63) and (64) as

H1j(ξ, τ) = {ρqj cos(qϕj) − 1}τ + (1 − τ )
{

Λjxj − e2xj +exj cos(yj)

1+e2xj +2exj cos(yj)

}
,

and

H2j(ξ, τ) = {ρqj sin(qϕj) − 1}τ + (1 − τ )
{

Λjyj − exj sin(yj)
1+e2xi +2exj cos(yj)

}
.

We need to check the presence of solutions in the small vicinity of the imaginary axis. Now consider

positive increments of xj such that xj is equal to some small value ε. If we linear the above homotopy system

around xj = 0, we can approximate them linearly by

H1j =τqεyq−1
j − (1 − τ )ε

2
1

1 + cos(yj)
− 1 + τ

2
+ λjj(1 − τ )ε+

∑
k �=j

λjkxk(1 − τ )

H2j =τyqj + (1 − τ )
∑
k

λjkyk − 1 − τ

2
sin(yj )

1 + cos(yj )
− τ

(68)

where λjj is the j, jth element of the Λ matrix.

One can see that these two functions are continuous everywhere except for the set of points {yj =

π + 2πk, k ∈ Z} where cos (yj) = −1.

We will prove that for appropriate large values of q this system has no solutions in the vicinity of this

set. First of all note that if we take a second order expansion of 1 + cos (yj) around some y∗j = π + 2πk we

can approximate 1 + cos (yj) ≈ 1
2

(
yj − y∗j

)2. Then we can further linearize these two equations in (68) to:

H1j =τqεy∗ q−1
j − λjj(1 − τ )ε+

∑
k �=j

λkjxk(1 − τ ) − 1 + τ

2
− (1 − τ )ε

(yj − y∗j )2

H2j =τy∗ qj + (1 − τ )λjjy∗j −
∑
k �=j

λkjyk(1 − τ ) − τ + (1 − τ )
1

(yi − y∗i )

(69)

where we have also used sin (yj) ≈ − (yj − y∗j
)
.

Now we can construct a sequence of homotopies with the order q increasing to infinity at appropriate

rate such that these homotopies do not have solutions with extraneous solution of |yj | → ∞. This sequence

of q is constructed by letting q = 1+1/ε, as ε → 0. Along this sequence, we will see below that the solutions

yj − y∗j to H1j and H2j will be of different orders of magnitude. Therefore there can not solutions yj − y∗j
that simultaneously satisfy both equations H1j = 0 and H2j = 0.

To see this, consider the first part H1j = 0 of (69). For small ε only the first term τqεy∗ q−1
j = O

(
y
∗ 1

ε

j

)
and the last term (1−τ)ε

(yj−y∗j )2 dominate. Therefore the solution yj − y∗j has to have the order of magnitude

O
(√

1
ε y

∗− 1
2ε

j

)
. On the other hand, for the second part H2j = 0 of (69). For small ε only the first term

τy∗ qj = O
(
y
∗ 1

ε

j

)
and the last term (1 − τ ) 1

(yi−y∗i ) dominate. Therefore the solution yj − y∗j has to have the

order of magnitude O
(
y
∗− 1

ε

j

)
which increases to ∞ much slower than O

(√
1
ε
y
∗− 1

2ε

j

)
as ε → ∞. Therefore
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there can be no solution yj to both H1j and H2j simultaneously for the sequence of q chosen above. This

proves that the homotopy is path finite along that sequence of q.

The considered homotopy function is analytic outside the balls of fixed radius around the members of

countable set of points {xj = 0, yj = π + 2πk}, k ∈ Z
9. Therefore a monotone smooth parametrization is

available except for the interior of these balls because the determinant of the Jacobian is strictly positive

everywhere else.

This establishes regularity of the homotopy and concludes the proof. �

Proof of equation (68): We consider each term individually. First of all

ϕ = arctan (y/ε) =
π

2
− arctan (ε/y) ≈ π

2
− ε

y
.

Hence, as long as q is chosen so that qπ/2 is 2kπ + π
2

for some k,

cos (qϕ) = cos (q arctan (y/ε)) ≈ cos

(
q
π

2
− q

ε

y

)
= sin

(
qε

y

)
≈ qε

y
.

Together with ρq ≈ yqj , this gives the first term in H1j.

Secondly, a first order expansion around ε = 0 gives

exj sin(yj)
1 + e2xi + 2exj cos(yj)

≈ 1
2

+
1
2
ε

1
1 + cos (yj)

.

Therefore the H1j is proved in (68).

The second part of H2j follows similarly, noting that given the choice of q where sin(qϕ) = 1, and

ρqj ≈ yqj , and the first Taylor expansion term for exj sin(yj)
1+e2xi+2exj cos(yj)

vanishes.

End of proof for equation (68).

C Semiparametric Variance

To derive Ω, we need to follow Newey (1990) and derive the asymptotic linear influence function of the left

hand side of the above relation. For this purpose, note that

1√
T

T∑
t=1

A (st)
(
yt − σ

(
st, Φ̂, θ0

))
=

1√
T

T∑
t=1

A (st) (yt − σ (st,Φ0, θ0)) − 1√
T

T∑
t=1

A (st)
(
σ
(
st, Φ̂, θ0

)
− σ (st,Φ0, θ0)

)
.

Since Φ̂ depends only on the nonparametric estimates of choice probabilities σ̂j (k|s) , j = 1, . . . , n, k =

1, . . . , K in (29) through (24), the second part can also be written as

1√
T

T∑
t=1

A (st) (Γ (st, θ0; σ̂ (s)) − Γ (st, θ0; σ0 (s))) ,

9Moreover, it is possible to check that the homotopy system has no solutions when all arguments are purely

imaginary in case if q is an arbitrary odd number
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where σ̂ (s) is the collection of all σ̂j (k|s) for j = 1, . . . , n and k = 1, . . . , K, and the function Γ (·) is

defined in (28). Then using the semiparametric influence function representation of Newey (1994), as long

as Γ (st, θ, σ (s)) is sufficiently smooth in σ (s) and as long as the nonparametric first stage estimates satisfy

certain regularity conditions regarding the choice of the smoothing parameters, we can write this second

part as

1√
T

T∑
t=1

A (st) (Γ (st, θ0; σ̂ (s)) − Γ (st, θ0; σ0 (s)))

=
1√
T

T∑
t=1

A (st)
∂

∂σ
Γ (st, θ0; σ0 (s)) (yt − σ (st, θ0)) + op (1) .

In other words, if we write Γσ (s) = ∂
∂σΓ (st, θ0; σ0 (s)), we can write

1√
T

T∑
t=1

A (st)
(
yt − σ

(
st, Φ̂, θ0

))
=

1√
T

T∑
t=1

A (st) (I − Γσ (st)) (yt − σ (st, θ0)) + op (1) .

Therefore we can derive the asymptotic distribution of the two-step semiparametric θ̂ defined through

(33) as

√
T
(
θ̂ − θ0

)
= − (EA (st) Γθ (st))

−1 1√
T

T∑
t=1

A (st) (I − Γσ (st)) (yt − σ (st, θ0)) + op (1) .

Hence
√
T
(
θ̂ − θ0

)
d−→ N (0,Σ)

where Σ is equal to

E (A (st) Γθ (st))
−1 [

EA (st) (I − Γσ (st))Ω (st) (I − Γσ (st))
′
A (st)

′]
E
(
Γθ (st)

′
A (st)

′)−1
.

In the above, we have defined

Γθ (st) =
∂

∂θ1
Γ (st, θ1, σ (st; θ2))

∣∣∣∣
θ1=θ2=θ0

,

and

Ω (st) = V ar (yt − σ (st, θ0) |st) .

The efficient choice of the instrument matrix (which can be feasibly estimated in preliminary steps without

affecting the asymptotic variance) is then given by

A (st) = Γθ (st)
′ (I − Γσ (st))

−1 Ω (st)
−1 (I − Γσ (st))

−1′
.

With this efficient choice of the instrument matrix, the asymptotic variance of θ̂ becomes(
EΓθ (st)

′ (I − Γσ (st))
−1 Ω (st)

−1 (I − Γσ (st))
−1′

Γθ (st)
)−1

. (70)
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C.1 Efficiency Considerations

We present two efficiency results in this section. First of all, we show that with the above efficient choice of

the instrument matrix A (st), the semiparametric two step estimation procedure above is as efficient as the

full maximum likelihood estimator where the fixed point mapping in (28) is solved for every parameter value

θ which is then nested inside maximum likelihood optimization to obtain choice probabilities as a function

of θ. Secondly, we show that estimating σ̂ (st) may even improves efficiency over the hypothesis case where

σ (st) is known and the pseudo MLE in (34) is used to estimate θ (but using Φ0 instead of Φ̂).

C.1.1 Efficiency comparison with full maximum likelihood

Consider a full maximum likelihood approach where a fixed point calculation (assuming the solution is

unique) of (28) is nested inside the numerical optimization. For each θ, (28) is solved to obtain σ (st, θ) as

a function of θ, which is then used to form the likelihood function as in (34). Define the total derivative of

(28) as

d

dθ
σ (st, θ0) =

d

dθ
Γ (st, θ, σ (st; θ))

∣∣∣∣
θ=θ0

=Γθ (st) + Γσ (st)
d

dθ
σ (st, θ0)

which can be used to solve for

d

dθ
σ (st, θ0) = (I − Γσ (st))

−1 Γθ (st) . (71)

Following the same logic as the discussions of pseudo MLE after (34), but with the pseudo log likelihood

function replaced by the full maximum likelihood function, it is easy to show that the asymptotic distribution

of the full maximum likelihood estimator, which is the same as an iv estimator with the instruments chosen

optimally, satisfies

√
T
(
θ̂FMLE − θ0

)
d−→ N (0,ΣFMLE)

where

ΣFMLE =
(
E
d

dθ
σ (st, θ0)

′ Ω (s)−1 d

dθ
σ (st, θ0)

′
)−1

.

Using (71), we can also write

ΣFMLE =
[
EΓθ (st)

′ (I − Γσ (st))
−1 Ω (st)

−1 (I − Γσ (st))
−1 Γθ (st)

]−1

.

This is identical to (70) for the asymptotic variance of the two step semiparametric iv estimator when the

instrument matrix is chosen optimally.
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C.1.2 Efficiency comparison with infeasible pseudo MLE

Consider an infeasible pseudo MLE, which is similar to (34) except with Φ̂ replaced by the true but unknown

Φ0:

T∑
t=1

n∑
i=1

[
K∑
k=1

yikt log σi (k|st,Φ0, θ) +

(
1−

K∑
k=1

yikt

)
log

(
1 −

K∑
k=1

σi (k|st,Φ0, θ)

)]
. (72)

The asymptotic variance of this estimator is similar to that of ΣFMLE except with d
dθσ (st, θ0)

′ replaced by

Γθ (st). In other words,

ΣIPMLE =
[
EΓθ (st)

′ Ω (st)
−1 Γθ (st)

]−1

.

where IPMLE stands for infeasible pseudo MLE.

The relation between ΣFMLE and ΣIPMLE is obviously ambiguous and depends on the response matrix

Γσ (st). It is clear possible that ΣFMLE < ΣIPMLE , in which case estimating Φ̂ may improve efficiency over

the case where Φ0 is known.
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Table 6.1: Characteristics of the Parameters 
PARAMETER MEAN VARIANCE DISTRIBUTION 

θ1 2.45 1 Normal 
θ2 5.0 1 Normal 
θ3 1.0 1 Normal 
θ4 -1.0 1 Normal 
x1 1.0 0.33 Uniform 
X2 1.0 0.33 Uniform 

 
 

Table 6.2 (i): Results of Monte-Carlo Simulations, n=3. 
PARAMETER MEAN STD. DEV MAX MIN 

# of equilibria 1.592 1.175 7 1 
P1 0.366 0.362 0.998 0 
P2 0.360 0.367 0.995 0 
P3 0.363 0.348 0.993 0.003 

 
 

Table 6.2 (ii): Results of Monte-Carlo Simulations, n=4. 
PARAMETER MEAN STD. DEV MAX MIN 

# of equilibria 1.292 0.777 5 1 
P1 0.278 0.328 0.981 0.001 
P2 0.246 0.320 0.981 0.003 
P3 0.276 0.338 0.999 0.001 
P4 0.280 0.338 0.987 0.002 

 
 

Table 6.2 (iii): Results of Monte-Carlo Simulations, n=5. 
PARAMETER MEAN STD. DEV MAX MIN 

# of equilibria 1.106 0.505 5 1 
P1 0.104 0.201 0.964 0 
P2 0.138 0.252 0.975 0 
P3 0.315 0.338 0.992 0 
P4 0.356 0.385 0.983 0 
P5 0.319 0.344 0.982 0 

 
 
 
 
 
 
 
 
 



Table 6.3 (i): Frequencies for the number of equilibria, n=3. 
# OF EQUILIBRIA NUMBER OF CASES FREQUENCY (%) 

n=1 192 47.93 
n=3 132 33.06 
n=5 64 16.12 
n=7 12 2.89 
Total 400 1.00 

 
Table 6.3 (ii): Frequencies for the number of equilibria, n=4. 

# OF EQUILIBRIA NUMBER OF CASES FREQUENCY (%) 
n=1 287 71.84 
n=3 93 23.30 
n=5 20 4.85 
Total 400 1.00 

 
Table 6.3 (iii): Frequencies for the number of equilibria, n=5. 

# OF EQUILIBRIA NUMBER OF CASES FREQUENCY (%) 
n=1 373 93.16 
n=3 25 6.21 
n=5 2 0.62 
Total 400 1.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6.4 (i): Entry Probability of First Player, n=3. 
# OF EQUILIBRIA MEAN STD 

n=1 0.375 0.386 
n=3 0.337 0.341 
n=5 0.353 0.322 
n=7 0.601 0.367 

 
Table 6.4 (ii): Entry Probability of First Player, n=4. 

# OF EQUILIBRIA MEAN STD 
n=1 0.211 0.300 
n=3 0.431 0.328 
n=5 0.129 0.235 

 
Table 6.4 (iii): Entry Probability of First Player, n=5. 

# OF EQUILIBRIA MEAN STD 
n=1 0.116 0.216 
n=3 0.080 0.206 
n=5 0.007 0.232 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 7.1: Recommendation Variables. 
RECOMMENDATION NUMERICAL VALUE RECORDED BY 

I/B/E/S 
Strong Buy 1 
Buy 2 
Hold 3 
Underperform 4 
Sell 5 

 
 
 

Table 7.2: Summary Statistics. 
VARIABLE MEAN STD. MIN. MAX. NOBS 

Recommendation 2.210 0.9168 1 5 12719 
Relation 0.0350 0.1839 0 1 12719 
Ibank 0.8155 0.3878 0 1 12719 
Earnings 0.1111 0.2439 -3.010 1.720 12719 

 
 
 

Table 7.3: Tabulation of Recommendations by Quarter. 
VARIABLE/TIME 

PERIOD 
Q1 1998 Q1 2000 Q2 2003 

% Recs. Equal to 1 30.51 46.73 11.65 
% Recs. Equal to 2 30.51 41.46 18.12 
% Recs. Equal to 3 37.62 11.81 53.07 
% Recs. Equal to 4 1.02 0.00 12.62 
% Recs. Equal to 5 0.34 0.00 4.53 

 
  

Table 7.4 Ordered Logit Estimates of the Effect of Fundamentals. 
VARIBLE COEF. COEF. COEF. COEF. 

%DEV -.0539 (-0.276) -.1030 (-0.519) - - 
ABS. DEV   -.1030 (-0.519) - 

     
Log Likelihood -16171.589 -14861.218 -14861.218 -14861.352 

Psueo-R2 0.0000 0.0810 0.0810 0.0810 
Fixed Effects none quarterly,stock quarterly, stock quarterly, stock

In the ordered logit model, the dependent variable is the analyst’s recommendation as coded by IBES.  This 
takes on discrete values from one to five.  In the table above, t-statistics are included in parentheses.  Most 
of the quarterly and stock fixed effects are significant in the specifications that we study. 
 
 
 
 



 
 

Table 7.5 Quarterly Effects Versus Market Indexes. 
VARIABLE COEFFICIENT T-STATISTIC NASDAQ QQQ 
qdum2 -0.1865 -1.979 1,770  
qdum3 -0.15266 -1.803 1,509  
qdum4 -0.24117 -2.258 1,928  
qdum5 -0.27011 -3.134 2,207 102.25 
qdum6 -0.36868 -4.297 2,467 103.87 
qdum7 -0.46412 -5.485 2,752 120.12 
qdum8 -0.43603 -5.149 3,341 148.63 
qdum9 -0.6408 -7.394 4,732 214.5 
qdum10 -0.43113 -4.973 3,471 85.19 
qdum11 -0.35704 -3.958 4,252 103 
qdum12 -0.08381 -1.031 2,664 64.06 
qdum13 0.07177 0.955 2,126 46.97 
qdum14 0.04712 0.632 2,131 85.19 
qdum15 0.063716 0.79 1,802 36.51 
qdum16 0.128908 1.671 1,915 39.29 
qdum17 0.217669 2.86 1,745 34.15 
qdum18 0.349657 4.631 1,613 30 
qdum19 0.630952 8.753 1,403 26.05 
qdum20 1.009163 13.389 1,887 21.07 
qdum21 0.572553 7.596 1,345 24.72 
qdum22 0.989535 12.45 1,374 26.06 

 
 
 

Table 7.6 Regression of Dummies on Market Indexes. 
VARIABLE COEFFICIENT COEFFICIENT 

Constant .8208896 (3.965) 0.6270 (4.3) 
Nasdaq Index -.0003467 (-4.960) - 
QQQ Price - -0.007 (-4.7) 
   
Nobs 21 18 
R2 0.48 0.6830 

 
 
 
 
 
 
 
 



Table 7.7 Ordered Logit Estimates of the Effect of Conflicts of Interest. 
VARIBLE COEF. COEF. COEF. COEF. 

RELATION -.3231 (-6.19) -.1108 (-2.06)   .05397 (0.94)   .03932 (0.68) 
IBANK    .1080 (4.18) 

     
Log Likelihood -16152.389      -15314.605 -14860.888      -14855.94 

Psueo-R2 0.0012 0.0530 0.0811 0.0814 
Fixed Effects none quarterly quarterly, stock quarterly, stock

In the ordered probit model, the dependent variable is the analyst’s recommendation as coded by IBES.  
This takes on discrete values from one to five.  In the table above, t-statistics are included in parentheses.  
We do not report ancillary parameters, such as the cut values and values of the fixed effects. 

 
 
 
 
 

Table 7.8  Ordered Logit Estimates including Peer Effects (Parametric First Stage) 
VARIABLE COEF. COEF. COEF. COEF. 

IVBELIEF 1.121982 
(24.66) 

 

1.108108 
(7.90) 

.2531818 
(5.80) 

.2531353 
(5.75) 

IBANK 
 

- - -      .2938029 
        (4.41) 

RELATION 
 

- 
 

- - -.0879437 
(-1.16) 

 
%DEV - - - .0073782 

(0.71) 
 

     
Log Likelihood -15113.967 -14930.088 -14823.868 -14535.476 
Psueo- 2R  0.0472 0.0588 0.0830 0.0837 
Fixed Effects none stock quarterly, stock quarterly, stock
In the ordered logit model, the dependent variable is the analyst’s recommendation as coded by IBES. This 
takes on discrete values from one to five. In the table above, t-statistics are included in parentheses (the t-
statistic for the variable IVBELIEF is corrected using bootstrap). IVBELIEF is constructed by subtracting 
the individual fitted values (divided by the number of the other analysts for a specific stock in a specific 
quarter) from the conditional expectations of fitted values (conditional on quarter and stock), with these 
fitted values being from the parametric first stage regression. Most of the quarterly and stock fixed effects 
are significant in the specifications that we study. 
 
 
 
 
 
 
 



Table 7.9  Ordered Logit Estimates including Peer Effects (Semiparametric First Stage) 
VARIABLE COEF. COEF. COEF. COEF. 

IVBELIEF 1.121863 
(10.73) 

 

1.108009 
(23.20) 

.2542394 
(5.95) 

.2540114 
(5.90) 

IBANK 
 

- - - .2935598 
(4.41) 

RELATION 
 

- - -       -.0880207 
(-1.16) 

%DEV - - - .0072834 
(0.70) 

     
Log Likelihood -15113.55 -14929.674 -14545.766 -14535.35 
Psueo- 2R  0.0472 0.0588 0.0830 0.0837 
Fixed Effects none stock quarterly, stock quarterly, stock
 
In the ordered logit model, the dependent variable is the analyst’s recommendation as 
coded by IBES. This takes on discrete values from one to five. In the table above, t-statistics are included in 
parentheses (the t-statistic for the variable IVBELIEF is 
corrected using bootstrap). IVBELIEF is constructed by subtracting the individual fitted values (divided by 
the number of  the other analysts for a specific stock in a specific quarter) from the conditional expectations 
of fitted values (conditional on quarter and stock), with these fitted values being from the first stage 
semiparametric sieve regression. Most of the quarterly and stock fixed effects are significant in the 
specifications that we study. 
 
 
Table 7.10  Random Effect Estimates including Peer Effects (Semiparametric First Stage) 

VARIABLE COEF. COEF. COEF. COEF. COEF. 
IVBELIEF .766924 

(11.53) 
 

- 
 

- 
 

.7631302 
(11.51) 

  .7672082 
   (10.63) 

IBANK 
 

- .6669054 
(7.94) 

- - .6559327 
(7.87) 

RELATION - - -.2539996 
(-1.61) 

-.1754189 
(-1.22) 

-.2416273 
(-1.67) 

      
Log 
Likelihood 

-6454.5547 -6687.9966 -6717.4526 -6453.8047 -6423.6011 

The dependent variable is equal to zero if the analyst’s recommendation is recorded as 1 
(i.e. strong buy) in IBES and one otherwise. IVBELIEF is constructed by subtracting the individual fitted 
values (divided by the number of analysts for a specific stock in a specific quarter) from the conditional 
expectations of fitted values (conditional on quarter and stock), with these fitted values being from the first 
stage semiparametric sieve regression. In the table above, t-statistics are included in parentheses (the t-
statistic for the variable IVBELIEF is corrected using bootstrap). There was a unique fixed effect for 
each stock during each quarter. In the data, 3447 observations were dropped due to all 
positive or negative recommendations. 
 
 



Table 7.11 Equilibrium Simulations. 
 REC=1 REC=2 REC=3 REC=4 REC=5 
IBANK=0 
QUARTER=9 

0.6353 0.2785 0.08113 0.4650E-03 0.3400E-04 

IBANK=1 
QUARTER=9 
FIRST 
EQUILBRIUM 

0.06847 0.68742 0.22397 0.014376 0.5753E-02 

IBANK=1 
QUARTER=9 
SECOND 
EQUILBRIUM 

0.4042 0.4009 0.1821 0.01183 0.87246E-04 

IBANK=0 
QUARTER=21 

0.2096 0.4076 0.3507 0.2967E-02 0.2235E-03 

IBANK=1 
QUARTER=21 

0.09775 0.2936 0.5316 0.7127E-02 0.5653E-03 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




