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ABSTRACT

This paper characterizes a robust optimal policy rule in a simple forward-looking model, when the

policymaker faces uncertainty about model parameters and shock processes. We show that the robust

optimal policy rule is likely to involve a stronger response of the interest rate to fluctuations in

inflation and the output gap than is the case in the absence of uncertainty. Thus parameter uncertainty

alone does not necessarily justify a small response of monetary policy to perturbations. However

uncertainty may amplify the degree of "super-inertia" required by optimal monetary policy. We

finally discuss the sensitivity of the results to alternative assumptions.
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1 Introduction

During the last decade, economists have given increasing attention to the study of interest-rate

feedback rules for the conduct of monetary policy. While some have focused on the estimation of

central banks reaction functions, and the description of actual monetary policy (see, e.g., Taylor,

1993, Judd and Rudebusch, 1998, Clarida et al., 2000), others have characterized optimal policy

rules in the context of particular models of the economy (see, e.g., contributions collected in Taylor

1999a, Giannoni and Woodford, 2002, 2003, among many others). In reality, however, policy

decisions need to be made despite considerable uncertainty about the actual functioning of the

economy. Policymakers typically set their instrument without knowing the true model of the

economy, and they generally do not know precisely how their policy actions will affect the variables

that they care about. The prevalence of uncertainty has recently induced researchers to explore

various ways to characterize desirable policy rules in the face of uncertainty (see Walsh, 2003).

A popular idea due to Brainard (1967), and emphasized by Blinder (1998) and others, is that

policymakers should be cautious in the presence of uncertainty about the true parameters of a

model. By “cautious” it is often meant that the instrument of monetary policy should be moved

by less than in the absence of parameter uncertainty.1 Some authors have therefore suggested that

optimal policy rules that take proper account of the uncertainty surrounding model parameters

should be less aggressive, and thus closer to estimated policy rules.2 However, a number of recent

studies have challenged this conventional wisdom. For instance, in Giannoni (2002), we argue that

the opposite result is likely to be obtained in a simple forward-looking model that has been used

in many recent studies of monetary policy. In that paper, we show that simple Taylor rules that

are robust to uncertainty about structural parameters of the model may be more responsive to

fluctuations in inflation and the output gap than the optimal Taylor in the absence of parameter

uncertainty.

We call robust optimal policy rules policy rules that perform best in the worst-case parameter

configuration, within a specified set of parameter configurations. Policy rules of this kind have

1As Brainard (1967) pointed out, this result holds in his setup provided that the exogenous disturbances and the
parameters that relate the policy instrument to the target variable are not too strongly correlated.

2See Clarida et al. (1999), Estrella and Mishkin (1999), Hall et al. (1999), Martin and Salmon (1999), Svensson
(1999), Rudebusch (2000), Sack (2000), Söderström (2000), and Wieland (1998), among others.
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recently been advocated by Sargent (1999), Hansen and Sargent (2000, 2003, 2005), Stock (1999),

Onatski and Stock (2002), and Tetlow and von zur Muehlen (2001).3 Robust rules are designed

to avoid an especially poor performance of monetary policy in the event of an unfortunate para-

meter configuration. They guarantee to yield an acceptable performance of monetary policy in the

specified range of models.

This paper generalizes the results obtained in Giannoni (2002) in several important ways. First,

instead of restricting ourselves to Taylor rules, we determine a robust optimal monetary policy rule

in a family of rules that is flexible enough to implement the optimal plan, if the parameters are

known with certainty. Second, we allow the model to be affected by a variety of exogenous shocks,

instead of assuming a single composite exogenous perturbation. We emphasize in particular the

distinction between efficient and inefficient supply shocks, as they have different welfare implica-

tions, and consider uncertainty about the relative importance of each kind of shock. Thirdly, we

consider robustness of monetary policy not only to uncertainty about critical structural parame-

ters, but also to uncertainty about the degree of persistence in the shock processes. Moreover,

we emphasize the importance of deriving the model from microeconomic foundations in order to

determine precisely how the exogenous disturbances are transmitted through the economy. This

turns out to be important for the determination of the worst-case parameter configuration.

While it is often believed that monetary policy should be less responsive in the presence of

uncertainty, we show that the opposite is likely to be true in the model considered. For a reasonable

calibration of the model, the robust optimal policy rule requires the interest rate to respond more

strongly to fluctuations in inflation, in changes in the output gap, and to lagged interest rates, than

in the absence of uncertainty. This result depends however on the way the exogenous shocks affect

the economy, and on the degree of uncertainty about the types of supply shocks.

The rest of the paper is organized as follows. The next subsection reviews briefly some of

the recent literature on robust monetary policy. Section 2 describes the method used to derive

the robust optimal policy rule. Section 3 presents a simple optimizing monetary model. While

the model is similar to models presented in a number of recent studies, we briefly expose the

microeconomic foundations of this model to specify precisely how exogenous disturbances affect

3Von zur Muehlen (1982) is an early study of such monetary policy rules.
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the endogenous variables, when there is uncertainty about the structural parameters of the model.

Section 4 characterizes both the optimal policy rule in the absence of uncertainty, and the robust

optimal policy rule when there is uncertainty, and discusses the sensitivity of the results to various

assumptions. Finally, section 5 concludes.

1.1 Related literature

The uncertainty faced by policymakers takes many different forms. The data that measures impor-

tant economic concepts is often imperfect as it may contain measurement errors or be available only

after policy decisions are made, and some of the key macroeconomic variables such as the output

gap and shocks are generally not directly observed by the central bank. Optimal policy in such

environments is analyzed by Aoki (2003), Orphanides (2003), and Svensson and Woodford (2003,

2004). Others, including this paper, assume that the state of the economy is perfectly observed

once the shocks are realized, but that policymakers don’t know the true model of the economy, so

that they only have an imperfect knowledge of effect of policy actions on key economic variables.

Therefore, they seek to determine policy rules that are robust to uncertainty about the correct

model of the economy.

One approach, first advocated by McCallum (1988, 1999), and followed by Christiano and Gust

(1999), Taylor (1999b), Levin, Wieland and Williams (1999, 2003), Levin and Williams (2003),

determines policy rules that perform well across a range of models, by simulating given rules in a

number of different models. Brock, Durlauf and West (2003, 2004) have made further advances by

proposing a formal framework – Bayesian model averaging – and statistics grounded in decision

theory to systematically evaluate alternative policy rules in the face of model uncertainty. An

advantage of this approach is that it allows an analysis of model uncertainty when the models

considered are potentially very different from each others. While extremely useful for understanding

the effects of particular rules in various models, existing applications of this approach do actually

not determine an “optimal” rule in the face of model uncertainty.

Other studies have sought to characterize optimal policy in particular classes of models, taking

into account uncertainty about various aspects of the model. Researchers have for instance consid-

ered uncertainty about the parameters of the model and have used Bayesian methods to determine
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the policy that minimizes the expected loss, given a prior distribution on the parameters. This

approach, initially started by Brainard (1967) and developed by Chow (1975) has more recently

been followed by Clarida et al. (1999), Wieland (1998), Estrella and Mishkin (1999), Hall et al.

(1999), Martin and Salmon (1999), Svensson (1999), Sack (2000), Rudebusch (2001), Söderström

(2000, 2002), and Kurozumi (2003) among others. Most of these studies focus on backward-looking

models, and support Brainard’s popular result that optimal policy should be less aggressive in the

face of parameter uncertainty.4

Another branch of the literature has looked for robust rules that minimize a loss criterion in some

worst-case scenario, within a specified set of possible scenarios. One justification for this approach

is the view that uncertainty about the true model of the economy takes the form of uncertainty in

the sense of Knight (1921), i.e., a situation in which the probabilities on the alternative models are

not known, so that Bayesian methods cannot be used to compute the expected loss over different

models.5 Furthermore, it has been shown by Gilboa and Schmeidler (1989) that if the policymaker

has multiple priors on the set of alternative models, and his preferences satisfy uncertainty aversion

in addition to the axioms of standard expected utility theory, the policymaker faces a min-max

problem: to minimize his loss in the worst-case scenario, i.e., when the prior distribution is the

worst distribution in the set of possible distributions. Several authors have recently applied robust

control theory, to derive robust monetary policies of this kind. These authors have however focused

on different types of uncertainty.

For instance, Sargent (1999), Hansen and Sargent (2005), and Kasa (2002) consider very un-

structured uncertainty by appending to their equations shock terms that represent model misspeci-

fications – i.e., deviations of the model actually used from the true model – and limit uncertainty

by imposing a penalty on the statistical distance (the relative entropy) between the model used

and the perturbed model. They compute robust policies by minimizing a given loss criterion in

the worst-case realization of the shock process that represent misspecifications. In contrast, Stock

(1999), Onatski and Stock (2002), Onatski (2000a, 2000b), Onatski and Williams (2003), and

4One notable exception is Söderström (2002) who shows that uncertainty about the persistence of inflation induces
the policymaker to respond more aggressively to shocks. Clarida et al. (1999) and Kurozumi (2005) consider a
forward-looking model.

5Knight (1921) first made the distinction between “known risk,” i.e. a situation in which a distribution of outcomes
is known, and “uncertainty”, i.e., a situation in which no known probability distribution exists.
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Tetlow and von zur Muehlen (2001) consider more structured non-parametric uncertainty. They

construct a non-parametric set of models around some reference model that approximates the true

model of the economy, but they impose some structure on the set of possible models. They then

seek to determine rules that minimize the loss for the worst possible model. These authors measure

the robustness of given policy rules with the maximal size of the uncertainty set that does not

include models with an indeterminate equilibrium or unstable models. While they can measure the

degree of robustness of given rules, they are able to characterize the actual min-max rules only for

simple types of uncertainty.

In this paper, as in Giannoni (2002), we consider uncertainty about the parameters of a struc-

tural forward-looking model. In contrast to Hansen and Sargent (2005), we maintain the rational

expectations framework, by assuming that the private sector knows the true model of the economy,

while the policymaker faces model uncertainty. We find the parametric treatment more intuitive,

transparent, than a non-parametric approach, and believe that it allows modelers to quantify their

degree of confidence more easily. This approach allows us furthermore to characterize analytically

the robust rule, in sufficiently simple models. While we allow for uncertainty about a relatively

small number of parameters, in the analysis below, one can in principle specify a large class of model

uncertainty with parameter uncertainty, to the extent that the models can be nested parametrically.

For instance, uncertainty about the variables entering particular equations, the numbers of lags of

such variables, the importance of backward versus forward-looking behavior may be analyzed with

parameter uncertainty. In practice, however, this approach may be more restrictive than the un-

structured approach, as it may not be feasible to analyze the effects of a very large number of

uncertain parameters. Approaches based on unstructured uncertainty may thus provide more con-

venient methods in cases in which one is worried about a wide range of possible misspecifications

around a reference model. Parameter uncertainty is also not well suited to address uncertainty

about models that are “disjoint” or very different from each other, and Bayesian model averaging

methods advocated by Brock et al. (2003, 2004) may be more suited in such contexts.

So far, there is no clear answer to whether robust policy rules in the presence of uncertainty

should in general be more or less aggressive than optimal rules absent model uncertainty, even
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among the papers that use min-max objective functions.6 Sargent (1999), Stock (1999), and

Onatski and Stock (2002) find that robust policy requires in most cases stronger policy responses,

in backward-looking models. We obtain similar results for a simple forward-looking model and in

the face of parameter uncertainty. Onatski (2000b) finds robust rules to be more responsive to the

output gap and less responsive to inflation in a model that involves both forward- and backward-

looking elements. Whether robust policy rules should in general be more or less aggressive than

optimal rules absent model uncertainty depends critically both on the model and the type of uncer-

tainty – i.e. structured or non-structured – considered. In section 4.4, we discuss how changing

various assumptions about the model can affect the results.

2 Uncertainty and Robust Optimal Monetary Policy

In reality, central banks and researchers do generally not know with certainty the true parameters of

their model, in addition to not knowing the exogenous disturbances. In this paper, we assume that

the parameters of the economic model are unknown to the policymaker, but remain constant over

time. The policymaker commits credibly at the beginning of period 0 to a policy rule for the entire

future. He chooses a policy rule to minimize some loss criterion L0, while facing uncertainty about

the true parameters of the economy. We denote by ψ the vector of coefficients that completely

characterizes the policy rule, and we simply call ψ a “policy rule”. We assume furthermore that

the policy rules ψ are drawn from some finite-dimensional linear space Ψ̃ ∈ Rn.

In contrast, agents in the private sector are assumed to know the true parameters of the economy.

They act optimally, i.e., in a way to maximize their utility subject to their constraints, in every

period, and in every state. Specifically, we assume that the private sector may be one of many

different types. Its type is determined once and for all, before period 0, and is characterized by the

finite-dimensional vector of structural parameters θ = [θ1, θ2, ..., θm]
0 defined on the compact set

Θ ⊆ Rm. Agents in the private sector know the true type θ, but the central bank does not.

We write qt for the vector of endogenous variables at date t, and q for the stochastic process

6 It is sometimes believed that the results differ importantly for a Bayesian or a min-max approach. This is however
not generally true. Onatski (2000a), for instance, shows that the results obtained with the min-max approach are
very similar to those obtained with the Bayesian approach in the Brainard (1967) setting.
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{qt}∞t=0 , specifying qt at each date as a function of the history of exogenous shocks until that date.
The behavior of the private sector is determined by a set of equations for each date t, and each

state. These may be written compactly as

S (q, θ) = 0. (1)

The restrictions imposed by the commitment to the policy rule at each date can in turn be written

as

P (q, ψ) = 0. (2)

A rational expectations equilibrium is then defined as a stochastic process q (ψ, θ) satisfying the

structural equations (1) and the policy rule (2), at each date, and in every state. We restrict our

attention to a subset Ψ ⊆ Ψ̃ of policy rules that result in a unique bounded rational expectations
equilibrium, and let q (ψ, θ) denote this equilibrium.

When the structural parameters are known with certainty, the optimal monetary policy rule

that is optimal relative to the subset of rules Ψ can be defined as follows.

Definition 1 In the case of known structural parameters θ, let Ψ be a set of policy rules such that

there is a unique bounded equilibrium. Then an optimal monetary policy rule is a vector ψ0

that solves

min
ψ∈Ψ

E [L0 (q (ψ, θ))]

where L0 (q) is the policymaker’s loss function, and the unconditional expectation is taken over all

possible histories of the disturbances.

To characterize parameter uncertainty, we assume that the vector θ of structural parameters

lies in a given (known) compact set Θ, and that the distribution of θ is unknown. As argued

in the previous section, it results from Gilboa and Schmeidler (1989) that if the policymaker has

multiple priors on Θ (including the priors that any element θ ∈ Θ holds with certainty), and

his preferences satisfy uncertainty aversion in addition to the axioms of standard expected utility

theory, the policymaker’s problem is to minimize his loss in the worst-case parameter configuration.

The optimal policy rule is then the robust rule defined as following.
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Definition 2 Let Ψ be a set of policy rules such that there is a unique bounded equilibrium process

q (ψ, θ) for all ψ ∈ Ψ, θ ∈ Θ. In the case of parameter uncertainty, a robust optimal monetary
policy rule is a vector ψ∗ that solves

min
ψ∈Ψ

½
max
θ∈Θ

E [L0 (q (ψ, θ))]

¾
(3)

where L0 (q) is the policymaker’s loss function, and where the unconditional expectation is taken

over all possible histories of the disturbances.

Given that the unknown parameter vector is in Θ, the policymaker can guarantee that the loss

is no higher than the one obtained in the following “minmax” equilibrium.

Definition 3 Aminmax equilibrium is a bounded rational expectations equilibrium q∗ = q (ψ∗, θ∗) ,

where ψ∗ ∈ Ψ is a robust optimal monetary policy rule and θ∗ maximizes the loss E [L0 (q (ψ∗, θ))]

on the constraint set Θ.

However, the equilibrium that actually realizes (given the exogenous processes) depends upon

the true value of θ, and is hence unknown to the policymaker.

To characterize the robust optimal policy rule, we apply the method proposed in Giannoni

(2002).7 This method relates the solution to the problem (3) to a pure strategy Nash equilibrium

(NE) of a zero-sum two-player game between a policymaker and a malevolent Nature. In this game,

the policymaker chooses the policy rule ψ∗ ∈ Ψ to maximize his loss L (ψ, θ) ≡ E [L0 (q (ψ, θ))]

knowing that a malevolent Nature tries to hurt him as much as possible. Symmetrically, Nature

chooses the parameter vector θ∗ ∈ Θ to maximize the policymaker’s loss, knowing that the pol-

icymaker is going to minimize it. A NE of this game, (ψ∗, θ∗) , involves a best response on the

part both players. Moreover, since this is a zero-sum game, the equilibrium action of each player

is a minmaximizer so that the equilibrium strategy ψ∗ is a solution to (3) (see Giannoni, 2002, for

additional details).

7Brock, Durlauf, and West (2003) propose a related approach to derive robust policy rules in the case of local
uncertainty about the parameter vector. The approach adopted here, however, can be applied to situations in which
the uncertainty is large.
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The solution procedure involves the four following steps to characterize the robust optimal rule

ψ∗.8

1. Optimal equilibrium for any given parameter vector θ.We determine the equilibrium process

q∗ (θ) that minimizes the loss L̂ (q) ≡ E [L0 (q)] subject to the restrictions imposed by the
structural equations (1) for any θ ∈ Θ.

2. Candidate minmax equilibrium. Using q∗ (θ) from step 1, we determine numerically the can-

didate worst parameter vector θ∗ in the allowed set, i.e., the parameter vector that maximizes

L̂ (q∗ (θ)) in the set Θ. The process q∗ (θ∗) is the candidate minmax equilibrium.

3. Optimal policy rule. We look for a policy rule ψ∗ that implements the candidate minmax

equilibrium, i.e., that solves P (q∗ (θ∗) , ψ∗) = 0. We then verify that the policy rule ψ∗ is in

Ψ, i.e., that it results in a unique bounded equilibrium process q (ψ∗, θ) for all θ ∈ Θ.

4. Check for existence of global NE. We verify that (ψ∗, θ∗) is a global NE, hence that q (ψ∗, θ∗)

is indeed a minmax equilibrium, by checking that the solution candidate θ∗ maximizes the

loss L (ψ∗, θ) on the constraint set Θ, i.e., that there is no vector θ† ∈ Θ satisfying

L
³
ψ∗, θ†

´
> L (ψ∗, θ∗) (4)

given the policy rule ψ∗.

Steps 1 and 3 determine the policymaker’s best response ψ∗ = ψ∗ (θ∗) to a given parameter

vector θ∗. Step 2 and 4 insure in turn that θ∗ is Nature’s best response to ψ∗. It follows that a

profile (ψ∗, θ∗) that satisfies steps 1 to 4 is a NE, and hence that ψ∗ is the robust optimal rule

that we are looking for. Step 4 is required to insure that the candidate worst parameter vector

computed in step 2 is indeed Nature’s best response to the robust optimal rule ψ∗ on the whole
8The method presented in Giannoni (2002) is more general than the one summarized here for two reasons. First,

it considers a loss function of the form L0 (q, θ) , where the second argument allows the coefficients of the loss function
to be functions of the parameter vector θ. Second, it allows one to characterize robust optimal rules in restricted
families of policy rules. As these restricted families of rules impose restrictions besides (1) and (2) on the space of
possible processes, the space of possible processes is parametrized by an alternative parameter vector f. We don’t
need to consider this complication here, as the family of policy rules that we consider below does not impose any
additional restrictions besides (1) and (2).

9



constraint set Θ, so that (ψ∗, θ∗) is not only a local NE – i.e., a situation in which each player’s

strategy is at least locally a best response to the other player’s strategy – but also a global NE.

Note that a global NE may not exist, even though a robust optimal rule should still exist. However,

in applications such as the one in section 4, a global NE will exist.

While steps 2 and 4 require a numerical maximization of the loss function with respect to θ, on

the set Θ, it is simpler to characterize the robust optimal rule following the four steps mentioned

here, than trying to solve (3) directly. Indeed, solving (3) would require maximizing the loss function

over θ for any given policy rule ψ, until the robust rule ψ∗ is obtained. In addition, the solution

procedure proposed here may allow one to obtain an analytical characterization of the robust rule

as will be the case in section 4.9

3 A Simple Optimizing Model for Monetary Policy Analysis

The model that characterizes the behavior of the private sector is a variant of the “new Keynesian”

or “new synthesis” model presented, e.g., in Clarida et al. (1999) and Woodford (2003). In order

to understand precisely how the shocks affect the economy, we briefly describe the model that

characterizes the private sector’s behavior, and then turn to the objective of monetary policy.

3.1 Underlying Structural Model

We assume that there exists a continuum of households indexed by j and distributed uniformly on

the [0, 1] interval. Each household j consumes all of the goods and supplies a single differentiated

good. It seeks to maximize its lifetime expected utility given by

E0

( ∞X
t=0

βt
h
u
³
Cj
t ; ξt

´
+ χ

³
M j

t /Pt; ξt

´
− v (yt (j) ; ξt)

i)
(5)

where β ∈ (0, 1) is the household’s discount factor (assumed to be equal for each household), M j
t

is the amount of money balances held at the end of period t, yt (j) is the household’s supply of its

9Note that if we compute the worst vector θ∗ by maximizing directly L (q (ψ∗ (θ) , θ)) with respect to θ ∈ Θ,
we would obtain the solution to maxθ∈Θ {minψ∈Ψ E [L0 (q (ψ, θ))]} , and not necessarily the parameter vector θ that
solves (3). The solution to both problems is however the same provided that it is part of a global NE. Our four-step
procedure guarantees that we obtain the robust policy rule that we are looking for, provided that a global NE exists.
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good, Cj
t is an index of the household’s consumption of each of the differentiated goods defined by

Cj
t ≡

∙Z 1

0
cjt (z)

ϕt−1
ϕt dz

¸ ϕt
ϕt−1

, (6)

and Pt is the corresponding price index. The consumption index aggregates consumption of each

good, cjt (z) , with an elasticity of substitution between goods, ϕt > 1, at each date. In contrast to

Dixit and Stiglitz (1977) however, we let the elasticity of substitution vary exogenously over time.

As will appear more clearly below, such perturbations to the elasticity of substitution imply time

variation in the price elasticity of demand of each good, and variations of the desired markup. The

stationary vector ξt represents disturbances to preferences. For each value of ξ, the functions u (·; ξ)
and χ (·; ξ) are assumed to be increasing and concave, while the disutility from supplying goods,

v (·; ξ) , is increasing and convex.
Expenditure minimization and market clearing imply that the demand for each good j is given

by

yt (j) = Yt

µ
pt (j)

Pt

¶−ϕt
(7)

where pt (j) is the price of good j, and Yt = Ct ≡
R 1
0 C

j
t dj represents aggregate demand at date t.

We assume that financial markets are complete so that risks are efficiently shared. It follows

that all households face an identical intertemporal budget constraint, and choose identical state-

contingent plans for consumption, and money balances. We may therefore drop the index j on

those variables.

Each household maximizes (5) subject to its budget constraint, and the constraint that it satis-

fies the demand for its good (7). It follows that the optimal intertemporal allocation of consumption

satisfies a familiar Euler equation of the form

1

1 + it
= Et

(
βuc

¡
Yt+1; ξt+1

¢
uc (Yt; ξt)

Pt
Pt+1

)
, (8)

where it denotes the nominal interest rate on a riskless one-period nominal bond purchased in

period t. We will consider a log-linear approximation of this relationship about the steady state

where the exogenous disturbances take the values ξt = 0 and where there is no inflation. We
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let Ȳ and ı̄ be the constant values of output and nominal interest rate in that steady state, and

define the percent deviations Ŷt ≡ log
¡
Yt/Ȳ

¢
, ı̂t ≡ log

³
1+it
1+ı̄

´
, πt ≡ log (Pt/Pt−1) . The log-linear

approximation to (8) is

Ŷt = EtŶt+1 − σ−1 (̂ıt − Etπt+1) + σ−1δt (9)

where σ ≡ −uccC̄
uc

> 0 represents the inverse of the intertemporal elasticity of substitution in private

expenditures, and where

δt ≡ ucξ
uc

¡
ξt − Etξt+1

¢
(10)

represents exogenous disturbances to (9). Equation (9), which represents the demand side of the

economy, is often called the “intertemporal IS equation” as it relates negatively desired expenditures

to the real interest rate. We assume that δt is independent of σ.10

Monetary policy has real effects in this model because prices do not respond immediately to

perturbations. Specifically, we assume as in Calvo (1983) that only a fraction 1−α of suppliers may
change their prices at the end of any given period, regardless of the the time elapsed since the last

change. Because of monopolistic competition, each household chooses the optimal prices {pt (j)},
taking as given the evolution of aggregate demand and the price level, that determine the location

of the demand for its product (7). Each supplier that changes its price in period t chooses its new

price to maximize the present discounted value of its expected future profits. Log-linearizing the

resulting first-order conditions, we obtain the following aggregate supply equation

πt = κ
³
Ŷt − Ŷ n

t

´
+ βEtπt+1, (11)

where κ > 0, and Ŷ n
t represents the natural rate of output, i.e., the percentage deviations from

steady-state of the level of output that would obtain with perfectly flexible prices (see, e.g., Wood-

ford, 2003, for details). As further shown in the appendix of Giannoni (2000), the natural rate of

output satisfies

Ŷ n
t =

1

ω + σ

µ
ucξ
uc

ξt −
vyξ
vy

ξt − μt

¶
, (12)

10This is true, for instance, for any utility function of the form u (C, ξ) = υ (C)·w (ξ) where υ and w are independent
of each other, since σ = −υ00C̄

υ0 , and δt =
w0
w

¡
ξt − Etξt+1

¢
in this case.
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where ω > 0 represents the elasticity of each firm’s real marginal cost with respect to its own

supply and μt represents percent deviations of the desired markup ϕt/ (ϕt − 1) from steady state.

Note that while the natural rate of output depends upon both supply and demand exogenous real

perturbations, it is completely independent of monetary policy. Because of market power, however,

steady-state level of output is inefficiently low. As the percent deviations of the efficient rate of

output – i.e., the equilibrium rate of output that would obtain in the absence of price rigidities and

market power – are given by Ŷ e
t =

1
ω+σ

³
ucξ
uc
ξt − vyξ

vy
ξt

´
, exogenous time variation in the desired

markup results in deviations of the efficient rate of output from the natural rate given by

Ŷ e
t − Ŷ n

t =
1

ω + σ
μt.

As we will evaluate monetary policy in terms of deviations of output from its efficient level, it will

be convenient to define the “output gap” as

xt ≡ Ŷt − Ŷ e
t . (13)

Using this, we can rewrite the two structural equations (9) and (11) as

xt = Etxt+1 − σ−1 (̂ıt − Etπt+1) + ω

(ω + σ)σ
δt +

1

ω + σ
εt (14)

πt = κ

µ
xt +

1

ω + σ
μt

¶
+ βEtπt+1, (15)

where δt is the demand shock defined in (10), and where

εt ≡ vyξ
vy

¡
ξt − Etξt+1

¢
is an adverse “efficient” supply shock. We suppose that the vector of shocks ut ≡ [δt, εt, μt]0 satisfies
E(ut) = 0, and that these perturbations are independent of the parameters σ, κ, or ω.11

As in Giannoni (2000), we call the exogenous disturbance to the aggregate supply equation, μt,

an “inefficient supply shock” since it represents a perturbation to the natural rate of output that is

11Again, εt is independent of ω if, for instance, the disutility of supplying goods is of the form v (y, ξ) = ' (y)·ν (ξ) .
(See footnote 10.)
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not efficient. While μt represents fluctuations in the desired markup, this term may alternatively

represent variations in distortionary tax rates, or variations in the degree of market power of

workers. We prefer to call μt an “inefficient supply shock” rather than a “cost-push shock” as

is often done in the literature (see, e.g., Clarida et al., 1999), because perturbations that affect

inflation by changing costs may well change the efficient rate of output as well as the natural rate

of output. It follows that cost shocks are represented in our model by changes in xt rather than μt.

Many recent studies have emphasized the role of the “natural” or “efficient” rate of interest for

evaluating the stance of monetary policy (see, e.g., Blinder 1998, Woodford, 2003). The efficient

rate of interest, i.e., the equilibrium real interest rate that would equate output to the efficient rate

of output, Ŷ e
t , is defined here as

ret ≡
ω

ω + σ
δt +

σ

ω + σ
εt. (16)

Equation (14) can then be rewritten as

xt = Etxt+1 − σ−1 (̂ıt − Etπt+1 − ret ) . (17)

It is clear from (16) that the efficient rate of interest depends both on demand shocks δt and efficient

supply shocks εt. It follows from (17) that monetary policy is expansive or restrictive only insofar

as the equilibrium real interest rate is below or above the efficient rate. If the central bank was

perfectly tracking the path of ret , then the output gap would be zero at all times, and inflation

would only depend on fluctuations in μt.
12

3.2 Monetary Policy

We now turn to the objective of monetary policy. The policymaker is assumed to have the following

loss function

L0 = E0

(
(1− β)

∞X
t=0

βt
h
π2t + λx (xt − x∗)2 + λiı̂

2
t

i)
(18)

12There is an additional first-order condition that determines the optimal holdings of monetary balances as a
function of equilibrium consumption (or output), the nominal interest rate, and the price level. When monetary
policy determines the nominal interest rate, as is the case here, this condition can be omitted as it has no effect on
the equilibrium values of inflation, output, and nominal interest rate. The presence of real balances in the utility
function (5) matters however for the determination of the loss function below.
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where λx, λi > 0, are weights placed on the stabilization of the output gap and the nominal interest

rate, and where x∗ ≥ 0 represents some optimal level of the output gap. (Note that we implicitly
assume that the optimal levels of both inflation and the interest rate are zero). As in many studies

of monetary policy, we assume that the policymaker seeks to stabilize fluctuations in inflation and

in the output gap. We furthermore assume that he also cares about the variability of the nominal

interest rate, as a result of transaction frictions. Friedman (1969) has argued that high nominal

interest rates involve welfare costs of transactions. Whenever the deadweight loss is a convex

function of the distortion, then it is desirable to reduce not only the level but also the variability of

the nominal interest rate (see Woodford, 1990, 2003). Such a loss criterion can finally obtained as

a second-order Taylor approximation to the utility function of the household’s lifetime utility (5) in

equilibrium, when the parameters are known with certainty. We will assume that the policymaker

minimizes the unconditional expectation of the above loss criterion, E [L0] , where the expectation

is taken with respect to the stationary distribution of the shocks. As a result, optimal policy will

be independent of the initial state.

We characterize monetary policy in terms of interest-rate rules. Specifically, we assume that

the policymaker commits credibly at the beginning of period 0 to a feedback rule of the form

ı̂t = Pt (πt, πt−1, ..., xt, xt−1, ..., ı̂t−1, ı̂t−2, ..., ut, ut−1, ...) (19)

for each date t ≥ 0. The policymaker determines the functions Pt (·) , t = 0, 1, 2, ... to minimize

the loss E [L0] subject to the structural equations (14) and (15). As the objective is quadratic and

the constraints are linear in all variables, we may without loss of generality restrict our attention

to linear functions Pt (·) . Using the notation of section 2, we denote by ψ the finite-dimensional

vector of coefficients that completely characterizes {Pt (·)}∞t=0 , and we call ψ a “policy rule”.

3.3 Calibration

The model considered here is very similar to a simplified version of the econometric model that

Rotemberg and Woodford (RW) (1997, 1999) have estimated for the US economy. The structural

equations in RW correspond to (9) and (11) only when conditioned upon information available
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two quarters earlier.13 We will use their estimates to calibrate our model, in the baseline case.

RW calibrate β, setting it at 0.99. They estimate σ = .1571, κ = .0238. The standard errors (se)

for these parameters are respectively 0.0328 and 0.0035. These numbers were computed for the

RW model using the estimation method explained in Amato and Laubach (2003).14 Finally, RW

calibrate ω, setting it at 0.4729. As we will consider uncertainty also about ω we will assume that

the standard error is 0.0946, corresponding to 20% of the calibrated value (which is approximately

in line with the uncertainty about σ and κ). We assume that the uncertainty about the critical

structural parameters is given by the approximate 95% intervals

[σ, σ̄] = [σ − 2seσ, σ + 2seσ] = [0.0915, 0.2227]

[κ, κ̄] = [κ− 2seκ, κ+ 2seκ] = [0.0168, 0.0308]

[ω, ω̄] = [ω − 2seω, ω + 2seω] = [0.2837, 0.6621] .

In Section 4.4, we consider the case in which there is much more uncertainty about these parameters,

so that these intervals are considerably wider. For simplicity, we assume that β is known with

certainty. We now turn to the calibration of the variance-covariance matrix of the exogenous

disturbances. RW estimate the process for the exogenous variables Ĝt, Ŷ
S
t in their model. This

process is given by

⎡⎢⎣ Ĝt+1

Ŷ S
t+1

⎤⎥⎦ =

⎡⎢⎣ c1

c2

⎤⎥⎦ Z̄t−1 +

⎡⎢⎣ d1

d2

⎤⎥⎦ ēt
Z̄t = BZ̄t−1 + Uēt

13When conditioning both the intertemporal IS equation and the aggregate supply equation in RW (1997) upon
information available at t− 2, we obtain

Et−2Yt = Et−2Yt+1 − σ−1Et−2
³
R̂t − π̂t+1

´
+Et−2

³
Ĝt − Ĝt+1

´
Et−2π̂t = κEt−2

³
Yt − Ŷ S

t

´
+ βEt−2π̂t+1,

where Yt, π̂t, R̂t represent respectively output, inflation, and the nominal interest rate expressed as percentage de-
viations from steady state in RW (1997), and where Ĝt is an exogenous variable representing autonomous changes
in demand, and Ŷ S

t represents exogenous disturbances to the aggregate supply equation. Defining Ŷt ≡ EtYt+2,
πt ≡ Etπ̂t+2, ı̂t ≡ EtR̂t+2, σ

−1 ucξ
uc

ξt ≡ EtĜt+2, and Ŷ n
t ≡ EtŶ S

t+2, we obtain (9) and (11).
14 I am grateful to Thomas Laubach for providing me with these numbers.
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where Etēt+j = 0 for all j > 0, and the variance-covariance matrix of the state vector Z̄t is Ω.

The variables EtĜt+2 and EtŶ S
t+2 in their model correspond respectively to σ

−1 ucξ
uc
ξt and Ŷ

n
t in our

model. It follows that the process for δt is given by

δt = σEt

³
Ĝt+2 − Ĝt+3

´
= σc1

¡
Z̄t − EtZ̄t+1

¢
= σc1 (I −B) Z̄t.

Let us define the supply shock

st ≡ μt +
vyξ
vy

ξt

We know from (12) that st =
ucξ
uc
ξt − (ω + σ) Ŷ n

t . It follows from the above equations that

st = σEtĜt+2 − (ω + σ) EtŶ
S
t+2

= hZ̄t

where h ≡ σc1 − (ω + σ) c2. While we can characterize the process for st, we don’t have enough

information to determine the split between the efficient component vyξ
vy
ξt, and the inefficient supply

shock μt.We therefore simply assume that μt = νst and
vyξ
vy
ξt = (1− ν) st, where ν is some constant

between 0 and 1. It follows that the processes for the two supply shocks are given by

εt = (1− ν)h
¡
Z̄t − EtZ̄t+1

¢
= (1− ν)h (I −B) Z̄t,

and

μt = νhZ̄t.

As a result, the variance-covariance matrix of the vector of exogenous disturbances ut is given by

E
¡
utu

0
t

¢
=

⎡⎢⎢⎢⎢⎣
σc1 (I −B)

(1− ν)h (I −B)

νh

⎤⎥⎥⎥⎥⎦Ω
⎡⎢⎢⎢⎢⎣

σc1 (I −B)

(1− ν)h (I −B)

νh

⎤⎥⎥⎥⎥⎦
0

. (20)
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We will compute the covariance matrix for different values of ν. Below we will consider uncertainty

about ν, knowing only that ν lies between 0 and 1.15 Finally, we will assume that the three exoge-

nous shocks follow an AR(1) process, with coefficients of serial correlation of ρδ, ρε, ρμ. Woodford

(1999) argues that the coefficient of autocorrelation of the natural rate of interest is 0.35. We will

consider as a benchmark the case in which ρδ = ρε = ρμ = 0.35, but we will also consider the case

in which there is uncertainty about the coefficients of autocorrelation, allowing their values to be

anywhere in the [0, 0.8] interval. The benchmark parameters are summarized in Table 1.

4 Robust Optimality within a Flexible Class of Interest-Rate Rules

We now turn to the characterization of optimal monetary policy within a flexible class of interest-

rate rules Ψ̃ that allow the instrument to respond to past variables. We define Ψ̃ as the set of policy

rules

ψ = [ψπ, ψx, ψi1, ψi2]
0

satisfying

ı̂t = ψππt + ψx (xt − xt−1) + ψi1ı̂t−1 + ψi2ı̂t−2 (21)

at all dates t ≥ 0.16 As will become clear below, the set Ψ̃ is flexible enough to include a fully

optimal rule in the case of any parameter vector θ ∈ Θ (if the parameters were known with

certainty), though it is still specific enough to contain only one rule consistent with the optimal

plan in any such case. Moreover this class of rules includes recent descriptions of actual monetary

policy such as the one proposed by Judd and Rudebusch (1998). We start with the characterization

of the optimal plan for a given θ, and propose an interest-rate rule that implements that plan. We

next determine the minmax equilibrium, and the robust optimal policy rule that implements it.

15The assumption that both μt and
vyξ
vy

ξt are proportional to st may seem unappealing as it implies that these
variables are perfectly correlated, as long as 0 < ν < 1. However, as we will see below, once we consider uncertainty
about ν, the variance-covariance matrix of ut that matters is actually either the one for which ν = 0 or the one for
which ν = 1.
16As we evaluate monetary policy regardless of specific initial conditions, the policy rule is assumed to be inde-

pendent of the values the endogenous variables might have taken before it was implemented. Specifically, we assume
that the policymaker considers the initial values as satisfying i−2 = i−1 = x−1 = 0, whether they actually do or not.
Equivalently, we could assume that the policy rule satisfies i0 = ψππ0+ψxx0, i1 = ψππ1+ψx (x1 − x0) +ψi1i0, and
(21) at all dates t ≥ 2.
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4.1 Optimal Plan with Given Parameters

To characterize the optimal plan for a given parameter vector θ ∈ Θ, we determine the stochastic
process q∗ (θ) of endogenous variables that minimizes the unconditional expectation of the loss

criterion (18) subject to the constraints (14) and (15) at all dates t ≥ 0, and in every state that
may occur at date t, i.e., for every possible history of the disturbances until that date. In terms

of the notation laid out in section 2, we determine the stochastic process q∗ (θ) that minimizes the

loss L̂ (q) subject to the restrictions (1) imposed by the structural equations (14) and (15). The

policymaker’s Lagrangian can be written as

L = E

(
E0 (1− β)

∞X
t=0

βt
³h
π2t + λx (xt − x∗)2 + λiı̂

2
t

i
+2φ1t

∙
xt − xt+1 + σ−1 (̂ıt − πt+1)− ω

(ω + σ)σ
δt − 1

ω + σ
εt

¸
+2φ2t

∙
πt − κ

µ
xt +

1

ω + σ
μt

¶
− βπt+1

¸¶¾
. (22)

The first-order necessary conditions with respect to πt, xt, and ı̂t are

πt − (βσ)−1 φ1t−1 + φ2t − φ2t−1 = 0 (23)

λx (xt − x∗) + φ1t − β−1φ1t−1 − κφ2t = 0 (24)

λiı̂t + σ−1φ1t = 0 (25)

at each date t ≥ 0, and for each possible state. In addition, we have the initial conditions

φ1,−1 = φ2,−1 = 0 (26)

indicating that the policymaker has no previous commitment at time 0. Note that since the

objective function is convex in q, and the constraints are linear in q, (14), (15), and (23) — (25)

at all dates t, together with the initial condition (26) are not only necessary but also sufficient to

determine the bounded optimal plan {πt, xt, ı̂t, φ1t, φ2t}. In the steady-state, i.e., in the absence of
perturbations, (14), (15), and (23) — (26) reveal that the endogenous variables remain constant at
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the values

πop = xop = iop = φop1 = 0

φop2 = −λx
κ
x∗.

It will be convenient to replace φ2t with φ̂2t ≡ φ2t − φop2 so that the constant drops out of (24).

Using (25) to substitute for the interest rate, we can rewrite the dynamic system (14), (15), (23),

and (24) in matrix form as

Et

⎡⎢⎣ zt+1

φt

⎤⎥⎦ =M

⎡⎢⎣ zt

φt−1

⎤⎥⎦+mut, (27)

where zt ≡ [πt, xt]0 , φt ≡
h
φ1t, φ̂2t

i0
, ut ≡ [δt, εt, μt]0 , and M and m are matrices of coefficients.

Following Blanchard and Kahn (1980), this dynamic system has a unique bounded solution (given

a bounded process {ut}) if and only if the matrix M has exactly two eigenvalues outside the unit

circle. Investigation of the matrix M reveals that if a bounded solution exists, it is unique.17 In

this case the solution for the endogenous variables can be expressed as

qt = Dφt−1 +
∞X
j=0

djEtut+j (28)

where qt ≡ [πt, xt, ı̂t]0 , and the Lagrange multipliers follow the law of motion

φt = Nφt−1 +
∞X
j=0

njEtut+j (29)

for some matrices D, N, dj , nj that depend upon the parameters of the model. Woodford (1999)

has emphasized that in the optimal plan with given structural parameters, the endogenous variables

should depend not only upon expected future values of the disturbances, but also upon the prede-

termined variables φt−1. This dependence indicates that optimal monetary policy should involve

inertia in the interest rate, regardless of the possible inertia in the exogenous perturbations. In fact,

as argued by Woodford (1999), policymakers who choose optimal actions by disregarding their past

17The matrix M has two eigenvalues with modulus greater than β−1/2 and two with modulus smaller than this.

20



actions and past states of the economy, don’t achieve the best equilibrium when the private sector

is forward-looking. The central bank should realize that the evolution of its goal variables depends

not only upon its current actions, but also upon how the private sector foresees future monetary

policy. It should therefore act in a way that affects the response of the private sector appropriately.

As will become clearer below, it can do so by committing itself to a rule of the kind (21).

Figure 1 plots with solid lines the optimal response of the interest rate, inflation, and the output

gap to an unexpected demand shock, in the baseline calibration.18 The disturbance δt unexpectedly

increases by 1 at date 0 and is expected to return to steady state following an AR(1) process with a

coefficient of autocorrelation of ρδ = 0.35. The path that the efficient rate of interest (16) is expected

follow is indicated by the dashed-dotted line in the upper panel. Similar impulse responses would be

generated by an adverse efficient supply shock, i.e., an increase in εt. While the policymaker could

in principle completely stabilize the output gap and inflation, by tracking the path of the efficient

rate of interest, it is optimal to increase the nominal interest rate by less than the efficient rate

of interest at the period of the shock because the policymaker also wants to dampen fluctuations

in the nominal rate of interest. As monetary policy is relatively expansionary, inflation and the

output gap increase in response to the perturbation. The short-term interest is also more inertial

than the efficient rate. Inertia in monetary policy is especially desirable here because it induces

the private sector to expect future negative output gaps which in turn have a disinflationary effect.

Therefore, by acting in an inertial way, the policymaker can offset the inflationary impact of the

shock without having to raise the short-term interest much. Qualitatively similar figures would be

obtained for different degrees of serial correlation in the perturbations.

Figure 2 displays with solid lines the optimal response of the endogenous variables to an un-

expected inefficient supply shock μt. Specifically, we assume that the desired markup increases

unexpectedly by one percentage point at date 0, and is expected to return to steady-state accord-

ing to AR(1) process with coefficient of autocorrelation ρμ = 0.35. Figure 2 reveals that it is optimal

to slightly raise the nominal interest rate. This helps maintaining the output gap (and output since

there is no change in Ŷ e
t ) below steady state for several periods. As a result, the private sector

18The impulse responses of all variables are reported in annual terms. Therefore, the responses of ı̂t and πt are
multiplied by 4.
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expects a slight deflation in the future, which removes some inflationary pressure already at the

time of the shock.

4.2 Optimal Interest-Rate Rule with Given Parameters

We now turn to the determination of an optimal interest rate rule, namely the policy rule in the

family (21) that implements the optimal plan, for given structural parameters θ. We solve (25) for

φ1t and (24) for φ̂2t, and use the resulting expressions to substitute for the Lagrange multipliers in

(23). This yields

ı̂t =
κ

λiσ
πt +

λx
λiσ

(xt − xt−1) +
µ
1 +

κ

βσ
+ β−1

¶
ı̂t−1 − β−1ı̂t−2 (30)

for all t ≥ 0.19 As this equilibrium condition relates the endogenous variables in the optimal plan,

the policy rule

ψ∗ (θ) =
∙

κ

λiσ
,
λx
λiσ

,

µ
1 +

κ

βσ
+ β−1

¶
,−β−1

¸0
(31)

satisfies the restrictionsP (q∗ (θ) , ψ∗ (θ)) = 0. Furthermore, since the endogenous variables entering

(30) minimize the loss criterion L̂ (q) subject to the constraints (1) in the optimal plan, the following

lemma guarantees that ψ∗ (θ) is an optimal rule for any given θ ∈ Θ, provided that it results in a
unique bounded equilibrium.

Lemma 4 Suppose that q∗ (θ) minimizes L̂ (q) subject to (1) for any given θ ∈ Θ, and that there
exists ψ∗ (θ) ∈ Ψ that solves P (q∗ (θ) , ψ∗ (θ)) = 0 for all θ ∈ Θ. Then ψ∗ (θ) ∈ argminψ∈Ψ L (ψ, θ).

Proof. First note that since ψ∗ (θ) ∈ Ψ, the latter policy rule results in a unique bounded
equilibrium. Suppose as a way of contradiction that there exists a policy rule ψ† (θ) ∈ Ψ, ψ† (θ) 6=
ψ∗ (θ) , satisfying L

¡
ψ† (θ) , θ

¢
< L (ψ∗ (θ) , θ) . By definition of L (·) and L̂ (·) we have L (ψ, θ) =

L̂ (q (ψ, θ)) for all ψ ∈ Ψ, θ ∈ Θ, so that L̂ ¡q ¡ψ† (θ) , θ¢¢ < L̂ (q (ψ∗ (θ) , θ)) = L̂ (q∗ (θ)) . But then

q∗ (θ) cannot minimize L̂ (q) subject to (1).
19See remarks in footnote 16.
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The dynamic system obtained by combining (14), (15), and (30), has the property of system

(27) that, if any bounded solution exists, it is unique.20 Moreover it can be shown, at least in the

baseline parametrization, and for all values θ ∈ Θ of our example, that ψ∗ (θ) is the unique optimal
policy rule in the set Ψ̃ (see Appendix B1 in Giannoni, 2000).

Notice that this rule makes no reference to any of the exogenous shocks. It achieves the minimal

loss regardless of the processes that describe the evolution of δt, εt, and μt, provided that the latter

processes are stationary (bounded).21 If we would allow for a broader class of policy rules than

Ψ̃, other interest-rate feedback rules may implement the same optimal plan. Woodford (1999),

for example, proposes a rule in which the interest rate depends upon current and lagged values of

the inflation rate as well as lagged interest rates in a similar model in which there is no inefficient

supply shock. While his rule makes no reference to the output gap, it is dependent upon the driving

process of the efficient rate of interest.

Equation (30) indicates that to implement the optimal plan, the central bank should relate

the interest rate positively to fluctuations in current inflation, in changes of the output gap, and

in lagged interest rates. While it is doubtful that the policymaker knows the current level of the

output gap with great accuracy, the change in the output gap may be known with greater precision.

For example, Orphanides (2003) shows that subsequent revisions of U.S. output gap estimates have

been quite large (sometimes as large as 5.6 percentage points), while revisions of estimates of the

quarterly change in the output gap have been much smaller.

Note finally that the interest rate should not only be inertial in the sense of being positively

related to past values of the interest rate, it should be super-inertial, as the lagged polynomial for

the interest rate in (30)

1−
µ
1 +

κ

βσ
+ β−1

¶
L + β−1L2 = (1− z1L) (1− z2L)

involves a root z1 > 1 while the other root z2 ∈ (0, 1) . A reaction greater than one of the interest rate
to its lagged value has initially been found by Rotemberg and Woodford (1999) to be a desirable

20The eigenvalues of this system are the same as the eigenvalues of M in (27) plus one eigenvalue equal to zero. As
there is one predetermined variable more than in (27), this system yields a unique bounded equilibrium, if it exists.
21See Giannoni and Woodford (2002, 2003) for the characterization of policy rules which are optimal regardless of

the shock processes in the context of more general models.
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feature of a good policy rule in their econometric model with optimizing agents. As explained

further in Woodford (2003), it is precisely such a super-inertial policy rule that the policymaker

should follow to bring about the optimal responses to shocks when economic agents are forward-

looking. Because of a root larger than one, the optimal policy requires an explosively growing

response of the interest rate to deviations of inflation and the output gap from target.22

This is illustrated in Figure 3 which displays the response of the interest rate to a sustained

1 percent deviation in inflation (upper panel) or the output gap (lower panel) from target. In

each panel, the solid line represents the optimal response in the baseline case. The corresponding

coefficients of the optimal policy rule are reported in the upper panel of Table 2 (lines indicated

by ψ0). For comparison, the lower panel of Table 2 reports the coefficients derived from Judd

and Rudebusch’s (1998) estimation of actual Fed reaction functions between 1987:3 and 1997:4.23

Table 2 reveals that the estimated historical rule in the baseline case involves only slightly smaller

responses to fluctuations in inflation and the output gap than the optimal rule. However the

estimated response to lagged values of the interest rate is sensibly smaller that the optimal one.

As a result, the estimated historical rule involves a non-explosive response of the interest rate to a

sustained deviation in inflation or the output gap, represented by the dashed-dotted lines in Figure

3.

Table 2 also reports the loss E [L0] along with the following measure of variability

V [z] ≡ E
(
E0

"
(1− β)

∞X
t=0

βtz2t

#)

of the endogenous variables π, x and ı̂, for the various policy rules and parameter configurations.

The statistic V [z] determines the contribution of each endogenous variable to the loss E [L0] , as

the latter measure is a weighted sum of V [π] , V [x] , and V [̂ı] with weights corresponding to those

of the loss function (18).24 The lines of Table 2 indicated by θ0 report statistics evaluated using the

22 Interestingly, the rules preferred by Levin et al. (1999), while not super-inertial, involve a coefficient near unity
on the lagged interest rate.
23The estimated historical policy rule refers to regression A for the Greenspan period in Judd and Rudebusch

(1998).
24All statistics in Table 2 are expressed in annual terms. The statistics V [π] , V [̂ı] , and E [L0] are therefore

multiplied by 16. Furthermore, the weight λx reported in Table 1 is also multiplied by 16 in order to represent the
weight attributed to output gap variability (in annual terms) relative to the variability of annualized inflation and of
the annualized interest rate.
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baseline parametrization. This table indicates to what extent the optimal rule results in a lower

loss than the estimated historical rule.

While optimal policy would involve an explosive behavior of the interest rate in the face of

a sustained deviation of inflation or the output gap, such a policy is perfectly consistent with a

stationary rational expectations equilibrium, and a low variability of the interest rate in equilibrium.

(In Table 2, V [̂ı] is always smaller when the interest rate is set according to the optimal flexible

rule, than when it is set according to the estimated historical rule.) In fact, the interest rate does

not explode in equilibrium because (as appears clearly in Figures 1 and 2) the current and expected

future optimal levels of the interest rate are sufficient to counteract the effects of an initial deviation

in inflation and the output gap by generating subsequent deviations with the opposite sign of these

variables.

4.3 Robust Optimal Policy in the Presence of Parameter Uncertainty

So far we have assumed that all parameters are known with certainty. We now determine the

robust optimal policy rule that obtains when the policymaker faces uncertainty about the three

structural parameters σ, κ, and ω, the degrees of serial correlation of the exogenous perturbations

ρδ, ρε, ρμ, and the parameter ν describing the importance of the inefficient supply shocks. We

consider uncertainty about the parameter vector θ =
£
σ, κ, ω, ρδ, ρε, ρμ, ν

¤0 within a specified set
Θ =

£
θ, θ̄
¤
, where the extent of uncertainty for σ, κ, and ω is given by the approximate 95%

confidence intervals mentioned in section 3.3, and reported in Table 1.25 We assume that the

coefficients of autocorrelation lie in the [0, 0.8] interval,26 and we allow ν to lie anywhere in the

[0, 1] interval. We assume that the preference parameters of the policymaker, λx and λi, are known

to the policymakers, and are kept fixed regardless of the values of the structural parameters, for

simplicity and because we view it as plausible that policymakers know their preferences despite the

25While the elasticities σ and ω are directly related to the underlying microeconomic foundations of the model, the
parameter κ is a composite of structural parameters such as the degree of price rigidity α, the elasticity of substitution
across goods. Since these parameters matter for welfare only through their effect on κ, and since the same aggregate
supply equation can be derived with alternative microeconomic foundations, we find it more general to consider
uncertainty about the parameter κ rather than some of its components.
26Alternative intervals yield similar results. It is important for our methodology, however, that the interval of

uncertainty be closed.
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fact that they don’t know the true model.27

In the previous section, we have characterized the optimal equilibrium for any given parame-

ter vector θ. Following the solution method summarized in section 2, we need to determine the

candidate worst-case parameter vector, i.e., the parameter vector θ∗ that obtains in the candidate

minmax equilibrium. Once the worst-case parameter vector is identified, it will be straightforward

to determine the robust optimal rule.

4.3.1 Worst-Case Parameter Vector and Minmax Equilibrium

We now determine the worst-case parameter vector θ∗, i.e., the vector θ that maximizes the loss

function L̂ (q∗ (θ)) on the constraint set Θ, or in other words the vector determining the minmax

equilibrium q∗ (θ∗) . For any parameter vector θ ∈ Θ, the structural equations (14), (15) and the
first-order conditions (23) — (25) can be written in matrix form, as in (27), and standard methods

can be applied to get the solution of the form (28) — (29). As in the certainty case, the bounded

solution is unique if one exists. Equations (28) — (29) can then be used to compute the loss

L̂ (q∗ (θ)) . Maximizing this loss function with respect to θ ∈ Θ, we obtain:

θ∗ =
£
σ, κ̄, ω, ρ̄δ, ρε, ρ̄μ, ν̄

¤0 (32)

= [0.0915, 0.0308, 0.2837, 0.8,−, 0.8, 1] .

Note that ρε may take any value in the allowed interval [0, 1] , since the loss is maximized when

ν∗ = 1, i.e., when there are no efficient supply shocks. We performed the maximization of L̂ (q∗ (θ))

numerically starting from a large number of different initial values for θ, including values close to

the boundaries of the set Θ. There are a few local maxima, but none of them yields a loss higher

than the one implied by the parameter vector reported above.

The minmax equilibrium involves very persistent shocks in the more general model of the

previous sections. Indeed, the worst-case values for the coefficients of serial correlations are equal

27Alternatively, if the policymaker’s loss function is interpreted strictly as a second-order approximation to the
expected utility of the representative household in the underlying microeconomic model, and there is no uncer-
tainty about how the model relates to the policymaker’s preferences, the parameters λx and λi are related to the
model’s structural parameters. As a result uncertainty about the underlying model parameters should translate into
uncertainty about λx and λi. Kurozumi (2003) and Walsh (2005) consider such a case.
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to the upper bound 0.8. Note that this is true even though the variance-covariance matrix of the

shocks (20) is given, and independent of ρδ, ρε, and ρμ.

To get some intuition about the worst-case parameter values for σ, κ, and ω, we consider

temporarily a simple case in which monetary policy is assumed to be non-inertial – i.e., it does

not depend on lagged variables – and all shocks are i.i.d. In this case, all future variables are

expected to remain at steady state in equilibrium (Etxt+1 = Etπt+1 = 0), so that the two structural

equations (14) and (15) reduce to

ı̂t = −σxt + ω

ω + σ
δt +

σ

ω + σ
εt (33)

πt = κ

µ
xt +

1

ω + σ
μt

¶
. (34)

These two equations are represented by respectively the lines IS and AS in Figures 4a to 4c.

Figure 4a represents the effects of a unit exogenous increase in δt. In the case in which the

parameters are known with certainty, the IS curve shifts vertically from IS (σ0, ω0) to IS0 (σ0, ω0) ,

by an amount ω0
ω0+σ0

. The policymaker faces a trade-off between the stabilization of inflation and

the output gap on one hand, and the interest rate on the other hand. He could completely stabilize

inflation and the output gap by raising the interest rate by ω0
ω0+σ0

. Such a policy is however not

optimal as the policymaker also cares about fluctuations in the interest rate (see loss function (18)).

He acts optimally by increasing the interest rate to some level i0t , and letting the output gap increase

to x0t . In the lower panel of the figure, inflation rises to π
0
t . In the presence of parameter uncertainty

and a demand shock, the worst case is obtained when σ is as low as possible, and ω is as high as

possible, so that σ∗ = σ and ω∗ = ω̄. As (33) reveals, it is in this case that a given increase increase

in δt results in the highest possible upward shift of the IS curve. Furthermore, as this implies a

flatter IS curve, the output gap increases by more, for given nominal interest rate. On the supply

side, the worst value for κ is obtained when κ∗ = κ̄, so that any given change in the output gap is

associated with a large change in inflation. It follows that the policymaker who seeks to minimize

the loss in the worst-case parameter configuration optimally sets the interest rate above i0t in the

presence of uncertainty, in order to contain the increase both in the output gap and in inflation.28

28The fact that the nominal interest rate rises above i0t in the presence of uncertainty does not necessarily mean that
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Figure 4b shows that the effects of a unit exogenous increase in εt are qualitatively similar to

those of a shock to δt when parameters are known with certainty. Note that it is the IS and not the

AS schedule that shifts following an efficient supply shock. The IS schedule shifts upwards to IS’

by an amount σ0
ω0+σ0

. However, in the presence of parameter uncertainty, the worst-case value for ω

is ω, because it generates the largest shift of the IS schedule. As before, the worst-case value for κ

is κ̄, so that a given non-zero output gap results in the largest change in inflation. It is however not

trivial to determine a priori the worst-case value for σ.Whether σ∗ is σ, σ̄, or any value in between

depends on the parameter values. For the calibration of Table 1, it is σ̄, as this is the value which

is responsible for the largest upward shift of IS, even though it implies a steeper IS schedule.

Figure 4c illustrates the effects of an inefficient supply shock, which shifts the AS curve from

AS (κ0) up to AS0 (κ0) , in the absence of parameter uncertainty. The policymaker faces a trade-off

between the stabilization of inflation on one hand, and the output gap on the other hand. He acts

optimally by raising the interest rate to some level i0t , so that the output gap decreases to x
0
t , and

inflation increases to π0t . In the presence of parameter uncertainty, the worst-case slope of the AS

curve is again obtained when κ∗ = κ̄, and the horizontal shift of the AS curve is largest when

σ∗ = σ, and ω∗ = ω. In the upper panel, however, we notice that the worst slope of the IS curve

obtains when σ∗ = σ̄, so that the policymaker needs to increase the interest rate by more, to obtain

a given change in the output gap.

To summarize, while the worst-case value for κ is κ̄ regardless of the shock considered, the

worst-case parameter values for σ and ω depend in general on the parametrization of the model,

and the relative importance of the disturbances. For the parametrization summarized in Table 1,

the worst-case parameter configuration involves σ∗ = σ and ω∗ = ω in the model considered.

4.3.2 Robust Optimal Policy Rule

Following the solution procedure reviewed in section 2, once the worst-case parameter vector θ∗

has been determined, we characterize the robust optimal policy rule simply by looking at the best

response ψ∗ (θ∗) to this vector, assuming that a global NE does exist. As (31) is the best response

the policy rule involves larger responses to variables such as inflation and the output gap, since the latter variables
may increase too. However, we know from (30) that the robust optimal rule requires larger responses to fluctuations
in inflation and the output gap when the worst-case values for σ and κ are respectively σ and κ̄.
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to any given θ, the candidate robust optimal policy rule, ψ∗ = ψ∗ (θ∗) satisfies

ı̂t =
κ̄

λiσ
πt +

λx
λiσ

(xt − xt−1) +
µ
1 +

κ̄

βσ
+ β−1

¶
ı̂t−1 − β−1ı̂t−2. (35)

The couple (ψ∗, θ∗) constitutes at least a local NE, and the policy rule satisfying (35) is a robust

optimal policy rule, provided that a global NE exists.

In accordance with step 4 of our solution procedure, we verify that the couple (ψ∗, θ∗) is also

a global NE. We do so by maximizing the loss function L (ψ∗, θ) ≡ E [L0 (q (ψ∗, θ))] numerically
with respect to θ ∈ Θ. This loss function results from the equilibrium obtained by combining the

structural equations (14), (15) for any given θ, and the candidate robust optimal policy rule ψ∗

satisfying (35). We repeated the maximization many times, starting each time from a different

initial values for θ. We obtained again that the vector θ∗ defined in (32) maximizes this loss

function. It follows that by choosing θ∗, malevolent Nature best-responds to the policy rule ψ∗,

and that (ψ∗, θ∗) is indeed a global NE. Because θ∗ is the only equilibrium parameter vector, and

ψ∗ ≡ ψ∗ (θ∗) is the unique best response to θ∗ in the set Ψ̃, the profile (ψ∗, θ∗) constitutes the

unique global NE, and ψ∗ is the unique robust optimal policy rule in the class Ψ̃.

Denoting by σ0 ∈ (σ, σ̄) and κ0 ∈ (κ, κ̄) the parameter values in the absence of model uncer-
tainty, and noting that σ < σ0 and κ0 < κ̄, one observes, by comparing (30) and (35) that the

policymaker reacts more strongly to perturbations to inflation, changes in the output gap, and the

lagged interest rate than is the case in the absence of uncertainty. To give a sense of the magnitude

of optimal policy coefficients, we report in the middle panel of Table 2 the robust optimal rule (35)

(lines indicated by ψ∗), in addition to the optimal policy rule (30) in the certainty case (lines ψ0).

The lagged polynomial for the interest rate can be written as

Baseline : 1− 2.163L + 1.010L2 = (1− 1.481L) (1− .682L)

Robust : 1− 2.350L + 1.010L2 = (1− 1.784L) (1− .566L) .

As the larger root is even greater in the presence of uncertainty, the interest rate is super-inertial

to an even greater extent when the central bank follows the robust optimal rule. As illustrated
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in Figure 3, the robust optimal rule (dashed line) involves (i) a larger response to a sustained

increase in inflation, at every time, (ii) a larger response to a sustained increase in the output gap,

at every time, and (iii) a faster asymptotic rate of explosion of both of these responses (thus a

greater degree to which the policy rule is super-inertial). But again, the presence of a root larger

than one is consistent with a stationary rational expectations equilibrium. This is illustrated for

instance by the dashed lines in Figures 1 and 2, which represent the impulse responses of the

endogenous variables when the policymaker follows the robust optimal policy rule (but when the

true parameters are those of the baseline calibration).

4.4 Sensitivity of Robust Policy to Alternative Assumptions

We just argued that the robust optimal policy rule involves larger responses of the interest rate

to endogenous variables. Equation (35) indicates however that the robust optimal rule depends

critically on the worst-case values for σ and κ. While the parameters ω, ρδ, ρε, ρμ, ν don’t enter

directly the policy rule (35), they may still have an indirect effect by affecting the worst-case values

for σ and κ. To get a sense of how robust our conclusions are, we consider alternative assumptions

about the uncertainty surrounding the structural parameters.

4.4.1 Robust Policy with Little Uncertainty

As discussed in section 4.3.1, the worst-case value for κ remains the upper bound κ̄ regardless of the

importance of the shocks considered, and the values of the other structural parameters – at least

when monetary policy is non-inertial. This induces the policymaker to let the interest rate react

more strongly to fluctuations in inflation and lagged interest rates, in the presence of parameter

uncertainty. The story is potentially more complicated for the parameter σ. For the calibration

summarized in Table 1, though, the worst-case value is σ. Figure 5 indicates that κ̄ and σ remain

the worst-case values for κ and σ, under alternative assumptions about ω and the degree of serial

correlation of the perturbations, ρ, when ν is maintained at its worst-case value ν∗ = 1. This figure

represents contour plots of the loss criterion E [L0] as a function of the parameters κ and σ, when

monetary policy is conducted according to the robust optimal rule (35). These contour plots are

produced for various values of ω and ρ, and we report the cases in which ω is respectively ω, the
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baseline value ω0, and ω̄, and ρ is respectively 0, 0.35, and 0.8. The star in each plot indicates the

baseline values for σ and κ. The figure reveals that the worst-case couple (κ∗, σ∗) – indicated by

a circled star – is in each case in the lower right corner, i.e., (κ̄, σ). Similar results are obtained

for alternative values for ω and ρ, and for alternative values of ν, provided that ν is larger than a

critical value around 0.5. This suggests that the robust optimal rule is not affected by alternative

assumptions about ω and ρ, as long as the maximum value allowed for ν, i.e., ν̄ is large enough.

However, if ν̄ is sufficiently small – so that most supply shocks are known to be mostly efficient

supply shocks εt – then the worst-case value for σ may be σ̄, as argued in subsection 4.3.1. For

instance, if ν is constrained to lie in the interval [0, 0.3] , then the worst-case value for ν turns out

to be its lower bound 0. It follows that the worst case value for σ is σ̄. In this case, the response

to fluctuations in the output gap would be smaller in the presence of uncertainty than in the

certainty case, as λx (λiσ̄)
−1 < λx (λiσ0)

−1 .Whether the robust rule responds more to fluctuations

in inflation and in the lagged interest rate depends in the end on the amount of uncertainty about κ

relative to the one about σ. In our numerical example, if the worst case value for σ is σ̄, it appears

from (35) that the response coefficients to fluctuations in inflation and the lagged interest rate are

also smaller in the presence of uncertainty, since κ̄/σ̄ = 0.0308/0.2227 < 0.0238/0.1571 = κ0/σ0.

To summarize, the robust optimal policy rule (35) does not depend on ω, ν and the coefficients

of serial correlation of the shocks, provided that the uncertainty about ν is such that ν̄ is large

enough. However, if ν̄ is constrained to be sufficiently small, then the worst-case value for σ is σ̄,

and the robust optimal rule is less aggressive than the optimal rule absent parameter uncertainty.

4.4.2 Robust Policy with Large Uncertainty about σ, κ, ω

The analysis has so far assumed that the uncertainty about the critical parameters σ, κ, ω, is

bounded by an estimate of their respective 95% confidence intervals. The degree of parameter un-

certainty assumed might however be considered as relatively small. To check further the robustness

of our results, we consider an alternative calibration of the amount of uncertainty by allowing the
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intervals to be considerably larger. Specifically, we assume

[σ, σ̄] = [0.05, 1] (36)

[κ, κ̄] = [0.01, 0.5] (37)

[ω, ω̄] = [0.1, 1] . (38)

We repeat the steps laid down in section 2. For this alternative calibration, we find again that the

worst-case parameter configuration involves σ∗ = σ, κ∗ = κ̄ and ω∗ = ω. The robust optimal policy

rule is thus again of the form (35).

By how much the policymaker should let the interest rate respond to fluctuations of inflation,

the output gap and past values of the interest rate actually depends on the particular degree of

uncertainty assumed, in particular on the values attributed to κ̄ and σ. In any case, the qualitative

result remains the same: in the face of uncertainty about the structural parameters, the robust

optimal rule involves larger responses of the interest rate to fluctuations in inflation, output gap

and lagged interest rate, than is the case in the absence of uncertainty, and that response is larger

the higher κ̄ and the lower σ.

4.5 Welfare Comparisons

In the model considered, the worst-case parameter vector lies at the boundary of the relevant set.29

Such a parameter configuration may thus be viewed as very unlikely, compared to other parameter

configurations. One may thus not find it attractive to adopt a policy rule that is optimal only in

some unlikely situation. It is important to remember, however, that the robust policy rule is not

optimal for any arbitrary unlikely parameter vector. By being optimal for the worst-case situation,

it guarantees that the losses encountered will not be “too” large.

To get a sense of the benefits and costs of adopting a robust optimal rule, we compare in

Figures 6-10 its welfare implications assuming different parameter situations. Figure 6 compares the

performance of the robust optimal rule ψ∗ and the rule that is optimal in the absence of parameter
29While this does not always need to be the case in the context of parameter uncertainty (see, e.g., Giannoni,

2002), analyses of unstructured uncertainty a la Hansen and Sargent (2005) do involve a worst-case scenario on the
boundary of the set of relevant models.
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uncertainty (ψ0) both in the baseline case
¡
θ0
¢
and in the worst-case parameter configuration (θ∗).

Each panel plots the loss as a function of one parameter, keeping the remaining parameters either at

their baseline or their worst-case value. The figure reveals that the welfare losses are much larger for

the worst-case parametrization than in the benchmark case, regardless of the policy rule adopted.

While both rules result in almost identical losses in the baseline calibration (θ0), it appears that

the robust rule performs marginally better than the baseline rule when the parameters are close

to their worst-case value.30 Note however from Table 2 that both ψ0 and ψ∗ perform significantly

better than the estimated historical rule.

Even though the overall welfare losses are broadly similar with the robust optimal rule ψ∗ and

the optimal rule absent model uncertainty (ψ0), Figures 7-9 show that the policy rules have very

different implications for the volatility of inflation, the output gap and the nominal interest rate.

The robust optimal policy brings about a lower variability of inflation than the rule ψ0, but it is

responsible for a larger volatility of the output gap and the nominal interest rate than the rule ψ0.

Thus, in the model considered, the robust rule is one that guards mostly against inflation volatility.

Figure 6 displayed modest welfare gain from the robust optimal rule. This is however due to

the relatively small degree of uncertainty is assumed about the parameters κ and σ. If instead, we

assume that σ, κ, ω lie in the larger intervals given by (36) — (38), we observe from Figure 10 that

the robust optimal rule described in the subsection 4.4.2 achieves much lower welfare losses than

the rule ψ0 for parameter configurations not even close from the worst-case situation. In contrast,

around the baseline calibration, the robust optimal rule’s welfare performance is only marginally

worse than the one of ψ0. It should be clear from this example, that when the degree of parameter

uncertainty is sufficiently large, the benefits of following the robust rule dominate the costs.

5 Conclusion

In this paper, we have characterized a robust optimal policy rule in a simple forward-looking

model, when the policymaker faces uncertainty about the parameters of the structural model and

30The figure also reveals that if all elements of θ with the exception of one, reach their worst-case values at the
respective values in θ∗, then the remaining element of θ also maximizes the loss at the corresponding value in θ∗.
This illustrates the fact that θ∗ is a best response on the part of malevolent Nature to the robust rule ψ∗.
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the nature of the shock processes. We have derived the structural model from first principles to

determine precisely how the exogenous perturbations are transmitted to the endogenous variables.

The optimal policy rule considered here has a number of advantages with respect to simpler

policy rules such as the Taylor rule. First, as it implements the optimal plan in the absence

of parameter uncertainty, it achieves the lowest possible loss, and hence performs better than

restricted policy rules.31 Second, the analytical characterization of the optimal rule allows us to

identify to what extent the policy rule is sensitive to particular parameters. While the optimal

Taylor rule derived in Giannoni (2002) depends critically on the characteristics of the exogenous

shock processes, the optimal rule proposed here does not depend them, in the absence of parameter

uncertainty. The invariance to various specifications of the shock processes is an attractive feature

of the optimal rule, especially when exogenous disturbances cannot be observed directly. The robust

optimal rule depends however indirectly on the assumptions about the shock processes to the extent

that they affect the worst-case parameter configuration, but this turns out having little impact.

Another interesting feature of the optimal rule is that it is super-inertial, i.e., it involves response

coefficients to lagged interest rates that are larger than one. As first shown in Rotemberg and

Woodford (1999), and Woodford (1999), this feature of monetary policy allows the central bank to

affect the private sector’s expectations appropriately.

We have shown that in the presence of parameter uncertainty, the robust policy rule implies

that the interest rate responds in general more strongly to fluctuations in inflation, to changes in

the output gap, and is super-inertial to an even greater extent, than is the case in the absence of

uncertainty. This result holds quite generally in the model considered, provided that there is enough

uncertainty in particular about the type of supply shocks. Even if he responds more strongly, in

the presence of parameter uncertainty, the policymaker is cautious in our framework. In fact he is

even more cautious than in Brainard’s model, as he cares very much about worst-case situations.

We presented an example in which “being cautious” does not necessarily mean “to do less”.

The robust optimal rule derived here is designed to be robust against a specific type of un-

certainty, namely uncertainty about some key parameters of the model, and the results obtained

here are specific to the environment considered. One may however be uncertain about many other

31For a comparison of the performance of both rules in the absence of parameter uncertainty, see Giannoni (2000).

34



aspects of the model such as the formation of expectations, the variables entering each equation,

the number of lags of each variable, and so on. Some of these types of uncertainty can be stud-

ied in the context of parameter uncertainty, and the approach described in section 2 can still be

applied in such cases. This approach has the advantage of being transparent, allowing a simple

characterization of the robust optimal rule, and providing an intuitive understanding of the results

obtained. However if the uncertainty considered involves disjoint models or, in significantly larger

models, uncertainty about a very large number of parameters, the proposed approach may not be

feasible. In this case, alternative methods imposing less structure on the uncertainty, or methods

based on model averaging may be better suited.
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Table 1: Calibrated Parameter Values

Structural parameters (benchmark case)

β σ κ ω

estimate: 0.99 0.1571 0.0238 0.4729

std. error: − 0.0328 0.0035 0.0946

lower bound: − 0.0915 0.0168 0.2837

upper bound: − 0.2227 0.0308 0.6621

Shock processes

Variance-covariance matrix

of ut ≡ [δt, εt, μt]0 when ν = 0.5

3.0150 1.6058 14.1131

43.9248 39.1573

122.9095

serial correlation: ρδ = ρe = ρμ = 0.35

Loss function

λx λi

0.048 0.236
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Table 2: Policy Rules and Statistics

Coefficients of policy rule Statistics
π t x t x t- 1 i t- 1 i t- 2 V[π ] V[x ] V[i ] E[L 0]

Optimal Rules
ν  = 0 (ψ 0,θ 0) 0.641 0.325 -0.325 2.163 -1.010 0.130 10.599 1.921 1.097

(ψ 0,θ ∗) 0.641 0.325 -0.325 2.163 -1.010 0.408 9.488 5.838 2.247
(ψ ∗,θ 0) 1.424 0.559 -0.559 2.350 -1.010 0.126 7.334 2.806 1.144
(ψ ∗,θ ∗) 1.424 0.559 -0.559 2.350 -1.010 0.366 5.325 6.635 2.192

ν = .5 (ψ 0,θ 0) 0.641 0.325 -0.325 2.163 -1.010 0.213 4.435 0.718 0.597
(ψ 0,θ ∗) 0.641 0.325 -0.325 2.163 -1.010 0.790 24.659 2.116 2.482
(ψ ∗,θ 0) 1.424 0.559 -0.559 2.350 -1.010 0.182 3.831 1.081 0.622
(ψ ∗,θ ∗) 1.424 0.559 -0.559 2.350 -1.010 0.592 26.086 2.439 2.429

ν = 1 (ψ 0,θ 0) 0.641 0.325 -0.325 2.163 -1.010 0.569 5.759 0.257 0.908
(ψ 0,θ ∗) 0.641 0.325 -0.325 2.163 -1.010 2.431 88.093 0.724 6.859
(ψ ∗,θ 0) 1.424 0.559 -0.559 2.350 -1.010 0.490 7.057 0.415 0.929
(ψ ∗,θ ∗) 1.424 0.559 -0.559 2.350 -1.010 1.833 97.981 0.848 6.769

Estimated  Historical
ν  = 0 (ψ ,θ 0) 0.424 0.297 -0.032 1.160 -0.430 0.079 11.852 2.952 1.349

(ψ ,θ ∗) 0.424 0.297 -0.032 1.160 -0.430 1.284 14.891 14.184 5.357
ν  = .5 (ψ ,θ 0) 0.424 0.297 -0.032 1.160 -0.430 0.465 3.737 1.504 1.001

(ψ ,θ ∗) 0.424 0.297 -0.032 1.160 -0.430 11.782 9.122 17.341 16.322
ν  = 1 (ψ ,θ 0) 0.424 0.297 -0.032 1.160 -0.430 1.363 1.469 0.959 1.661

(ψ ,θ ∗) 0.424 0.297 -0.032 1.160 -0.430 36.041 22.245 27.291 43.568

Note: The estimated historical rule refers to Judd and Rudebusch (1998). 
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Figure 1: Impulse responses to a shock δ (ρδ = 0.35).
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Figure 3: Interest-rate response to a permanent increase in inflation and in the output gap.
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