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1 Introduction

Beginning with Basu (1983), many researchers have found significant evidence over the post-
1963 period of a book-to-market effect, where stocks with high book-to-market ratios have
higher average returns than what the CAPM predicts. This inference is based on conventional
OLS with asymptotic standard errors, which relies on the assumptions that factor loadings are
constant and that the market risk premium is stable. However, both of these assumptions are
violated in data. In particular, betas of book-to-market portfolios vary substantially over time.
For example, betas of the highest decile of book-to-market stocks reach over 3.0 prior to 1940
and fall to -0.5 at the end of 2001 (see also Kothari, Shanken and Sloan, 1995; Campbell and
Vuolteenaho, 2004; Adrian and Franzoni, 2005).

After taking into account time-varying betas and market risk premia, we find that the con-
ditional alpha of a book-to-market strategy, which goes long the top decile of stocks sorted by
book-to-market ratios and shorts the bottom decile of stocks sorted by book-to-market ratios, is
statistically insignificant in the long run. Strong evidence of a book-to-market effect can only be
found in the post-1963 subsample based on standard OLS inference that assumes betas and mar-
ket risk premia are constant. Thus, OLS inference is potentially misleading in small samples.
Over the long run from 1926 to 2001, there is little evidence of a book-to-market premium and,
under a conditional CAPM with time-varying betas, the market factor alone is able to explain
the spread between the average returns of portfolios sorted on their book-to-market ratios.

When betas vary over time, standard OLS inference is misspecified and cannot be used to
assess the fit of a conditional CAPM. Moreover, when betas vary over time and are correlated
with time-varying market risk premia, OLS alphas and betas provide inconsistent estimates of
conditional alphas and conditional betas, respectively. We prove that the magnitude of the in-
consistency in the unconditional OLS alpha, relative to the true conditional alpha, cannot be
determined without direct estimates of the underlying time-varying conditional beta process.
This is true even if higher frequency data or short subsamples are used. Moreover, the com-
mon practice of employing rolling OLS estimates of betas understates the variance of the true
conditional betas. The limiting distribution of the OLS alpha is also distorted from the stan-
dard asymptotic distribution which assumes constant betas. This distortion is intensified when
shocks are very persistent in small samples. Consequently, a large unconditional OLS alpha
may not necessarily imply the rejection of a conditional CAPM.

We estimate a conditional CAPM with time-varying betas, time-varying market risk premia,
and stochastic systematic volatility. We directly take into account the time variation of condi-



tional betas in estimating conditional alphas, rather than relying on incorrect OLS inference.
Since conditional betas are very persistent, it is not surprising that small samples can generate
significant OLS alphas that do not take into account time-varying betas. Thus, our model can
explain the appearance of a book-to-market effect inferred from OLS alphas in the post-1963
subsample but not in the pre-1963 subsample, even when the true conditional alpha is constant
and close to zero.

Our modelling approach has several advantages. First, Harvey (2001) shows that the esti-
mates of the betas obtained using instrumental variables are very sensitive to the choice of in-
struments used to proxy for time variation in the conditional betas. Instead of using instrumental
variables, we treat the time-varying betas as latent state variables and infer them directly from
stock returns. Second, previous estimates of time-varying betas by Campbell and Vuolteenaho
(2004), Fama and French (2005), and Lewellen and Nagel (2005), among others, assume dis-
crete changes in betas across subsamples but constant betas within subsamples. That is, they
consider the variation across averages of betas in each window, but ignore the variation of the
betas within each window. In contrast, we treat betas as endogenous variables that slowly vary
over time and directly estimate them.

Third, we capture predictable time variation in both the conditional mean and the condi-
tional volatility of the market excess return. We model time-varying market premia by using
a latent state variable for the conditional mean of the excess market return, similar to Merton
(1971), Johannes and Polson (2003), Brandt and Kang (2004), among others. We use a stochas-
tic volatility model that provides a better fit to the dynamics of stock returns compared to the
GARCH models commonly used in the literature to model time-varying covariances (see com-
ments by Danielsson, 1994, among others). An additional advantage of our framework is that
we can take into account prior views on the strength of the book-to-market effect on conditional
alphas. Furthermore, we also explicitly examine the finite-sample bias in unconditional OLS
alphas and show how their posterior distributions differ from the distributions of conditional
alphas.

Over the post-1963 sample, a book-to-market trading strategy that goes long the highest
decile portfolio of stocks sorted on book-to-market ratios (value stocks) and goes short the low-
est decile portfolio of book-to-market ratio stocks (growth stocks) has an OLS alpha of 0.60%
per month with a robust asymptotic p-value, ignoring time variation of betas, of less than 0.01.
However, under a one-factor conditional model with time-varying betas, OLS alphas of this
magnitude frequently arise in small samples of around forty years. The 0.60% per month point



estimate of the OLS alpha lies at the 67%-tile and more than 10% of the left-hand talil lies
below zero. In contrast, there is little evidence that the conditional alpha is statistically signif-
icant. Using a diffuse prior, more than 10% of the lower-left tail of the posterior distribution

of the book-to-market strategy conditional alpha lies below zero. Only an empiricist with an
extremely strong prior belief in the existence of the book-to-market premium would conclude
that a book-to-market premium exists. Thus, standard OLS inference grossly overstates the
statistical significance of the book-to-market premium, even when robust asymptotic t-statistics
are employed because it does not take into account time-varying factor loadings.

Our research goals are related to two contemporaneous papers by Lewellen and Nagel
(2005) and Petkova and Zhang (2005), who also examine whether a conditional CAPM can
explain the book-to-market effect. Lewellen and Nagel (2005) contend that no reasonable de-
gree of covariation in conditional betas and market risk premia can generate the high average
returns associated with value stocks in the post-1963 sample. However, they do not address
the non-existence of the book-to-market effect in the pre-1963 sample and do not incorporate
the larger variation in betas found over the long run from 1921-2001. In addition, Lewellen
and Nagel's method of inferring the dynamics of time-varying conditional betas with a series
of OLS regressions with constant betas produces inconsistent estimates of both conditional al-
phas and betas. Petkova and Zhang (2005) also argue that while there is a positive correlation
of shocks to the betas of value stocks and shocks to the market risk premium, this correlation
is not high enough to explain the book-to-market effect. This correlation is only estimated in-
directly, through instrumental proxies for conditional betas and market risk premia. Neither
Lewellen and Nagel (2005) nor Petkova and Zhang (2005) examine the distortions induced by
time-varying betas on the asymptotic distribution of the OLS alphas, which has as much impor-
tance for statistical inference as the size of the bias in the OLS alpha.

Our results question the conventional wisdom that there exists a strong evidence of a book-
to-market effect. In particular, we find that a single-factor model performs substantially better
than previously believed at explaining the book-to-market premium. Whereas Davis (1994)
and Davis, Fama and French (2000) argue for the existence of a book-to-market effect prior to
1963 and advocate the use of an unconditional three-factor model, they neither examine the fit
of an unconditional one-factor regression nor estimate a conditional CAPM. We demonstrate
that a single conditional one-factor model is sufficient to explain the average returns of book-
to-market portfolios both post-1963 and over the long run. We do not claim that a conditional
CAPM is the complete model for the cross-section of stock returns. In particular, more powerful



tests like the stock characteristic approaches of Daniel and Titman (1997) may be able to reject
multi-factor models and their implied conditional CAPM counterparts. Nevertheless, our results
show that a simple conditional single-factor model can account for a substantial portion of the
book-to-market effect and that the evidence for the book-to-market effect is not as strong as
previously believed.

The remainder of the paper is organized as follows. Section 2 discusses various aspects
of the book-to-market portfolio returns over the long run from 1926 to 2001. In Section 3,
we show that estimating time-varying betas by standard OLS estimators produces biased and
inconsistent estimates with distorted asymptotic distributions. We show that the magnitude of
the inconsistency and the distortion cannot be corrected without directly estimating the condi-
tional betas. In Section 4, we develop a methodology for consistently estimating time-varying
betas in a conditional CAPM. Section 5 presents the estimation results and examines the book-
to-market effect under parameter uncertainty, time-varying factor loadings, and small sample
biases. Finally, Section 6 concludes.

2 The Book-to-Market Effect Over the Long Run

We focus on the set of decile portfolios sorted on book-to-market ratios constructed by Davis
(1994) and Davis, Fama and French (2000)Ve use the return on a value-weighted portfolio

of all stocks listed on the NYSE, AMEX, and NASDAQ as the market return. All returns are
calculated in excess of the one-month Treasury bill rate from Ibbotson Associates. Our data dif-
fers from other contemporaneous studies in that we focus on the overall book-to-market effect.
Loughran (1997) notes that the book-to-market effect is much stronger among smaller stocks. In
contrast to our approach that focuses purely on standard book-to-market sorted portfolios, Fama
and French (1993, 2005), Lewellen and Nagel (2005) and Petkova and Zhang (2005) enhance
the book-to-market effect by placing greater weight on small stocks. These authors construct
2 x 3 orb x 5 size and book-to-market sorted portfolios. Section 2.1 reexamines the evidence
for the book-to-market effect using OLS one-factor regressions. In Section 2.2, we take a first
glance at examining the time-varying nature of betas of the book-to-market portfolios.

!We obtain data on book-to-market portfolios from Kenneth French’s data library, which is at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Deutaary/.



2.1 Returns on Book-to-Market Portfolios

In Table 1, we report average monthly raw returns and volatilities together with OLS alphas and
betas estimated from standard OLS regressions over various samples:

~OL 50L L
Tit = a2t + B9 Srm,t + 5% % (1)

wherer; ; is the excess stock return,,, is the excess market return, azrﬁfs is an orthogonal
shock. In equation (1), we denote the estimated alpha of the OLS modél“ds with an

OLS superscript to emphasize that it is an alpha constructed under the assumptions of OLS.
Similarly, we also distinguish the OLS estimate of systematic market risk expa&tir&, with
anOLS superscript. We appenri?~S and 325 with T' subscripts to emphasize that the OLS
estimates are computed over a sample sizB.dVhile a2 and 3255 in equation (1) should

also carryi subscripts to denote that they differ across stocks, we omit them for clarity.

Panel A of Table 1 lists summary statistics for the full sample from July 1926 to December
2001, while Panels B and C cover the subsamples from July 1926 to June 1963 and from July
1963 to December 2001, respectively. For each of these subsamples, we report alphas and betas
estimated by OLS, assuming constant alphas and betas over each subsample. We also report
statistics on a book-to-market strategy (“BM” portfolio) which is a zero-cost portfolio that goes
long the decile 10 book-to-market portfolio (value stocks) and goes short the decile 1 book-to-
market portfolio (growth stocks). We compute t-statistics of the OLS alphas using Newey-West
(1987) standard errors.

The first surprising result in Table 1 is that the alphas from an unconditional one-factor
model are insignificant for book-to-market sorted portfolios over the long run, from 1926 to
2001. In Panel A, which uses the full 75 years of data, there is a weakly increasing relationship
between the mean returns and the book-to-market ratios. However, once we control for the
market beta, the individual OLS alphas become insignificant and we observe no pattern between
the OLS alphas across the book-to-market deéilds. particular, the Newey-West t-statistic
for the difference between the OLS alphas of the lowest and highest book-to-market decile
portfolios is only 0.9 Much of the lack of a pattern in the alphas can be attributed to the
weakly increasing pattern in the betas. Similarly, over the 1926-1963 subsample reported in

2 Neither Davis (1994) nor Davis, Fama and French (2000) run a simple unconditional CAPM regression, or

test for the significance of size or book-to-market factors relative to an unconditional one-factor model.
3 A Gibbons-Ross-Shaken (1989) (GRS) test for joint significance ofi¥hacross all portfolios fails to reject

at the 5% level over 1926-2001. Even from 1963-2001, the GRS test p-value is only borderline significant with a
p-value of 0.05.



Panel B, we also fail to find any evidence of a book-to-market effect, as the difference in OLS
alphas between value stocks and growth stocks is slightly negative, at -0.16% per month.

In contrast, most prior empirical work examining the book-to-market effect has focused on
the period after July 1963, which we report in Panel C. In this post-1963 subsample, the uncon-
ditional one-factor model fails. This latter sample has received significantly more attention than
the earlier sample because data on firm book values are readily available on COMPUSTAT after
this date. The raw average monthly returns of the portfolios over this period exhibit an increas-
ing pattern across the book-to-market decile portfolios. The difference in returns between the
value stocks and the growth stocks is 0.53% per month, with a Newey-West t-statistic of 2.16.
Once we control for the market factor in an OLS regressioniftfe’ estimates become strictly
increasing and the spread in the expected returns widens to 0.60% per month, with a Newey-
West t-statistic of 2.51. Unlike the pre-1963 subsample, there is no pattern in the betas across
the book-to-market portfolios. This is the familiar result of Fama and French (1992, 1993), who
report a strong book-to-market effect in the latter half of the century using OLS alphas.

The main difference across the two subsamples is the presence of a pattern in the OLS es-
timates of betas in the pre-1963 subsample, but not in the post-1963 subsample. This finding
indicates two important facts. First, betas of the book-to-market portfolios appear to vary sub-
stantially across time. In the pre-1963 subsample, the OLS beta of the book-to-market strategy
is positive at 0.69 and is large enough to explain the performance of the strategy. In the post-
1963 subsample, the OLS beta is negative at -0.16 and can no longer explain the performance
of the book-to-market strategy. The second fact is that the unconditional OLS regression of
equation (1) is misspecified. The OLS specification assumes that betas are constant, but they
clearly differ across the two subsamples. We now examine in greater detail the time-varying
nature of betas across the long run from 1926 to 2001 and examine the implications of making
inference using a misspecified OLS regression described by equation (1).

2.2 Rolling OLS Betas of Book-to-Market Portfolios

We use rolling OLS betas estimated over shorter 60-month windows to provide some evidence
which suggests that the true conditional betas vary over time. While the rolling 60-month OLS
regression is a common procedure for assessing time-varying betas (since as early as Fama and
MacBeth, 1973), we emphasize later in Section 3 that rolling OLS betas do not directly reveal
the true betas since OLS estimates of conditional betas are misspecified. Nevertheless, rolling
OLS betas can provide some rough characterizations of the true conditional beta process. In



particular, the rolling OLS beta estimates provide a glimpse of what the autocorrelation and
standard deviation of the true conditional betas are, and can be used to form a prior for our
estimates of the true beta data-generating process.

Table 1 shows a remarkable drift in the OLS betas of the book-to-market portfolios over
time. For example, in Panel B, from July 1926 to June 1963, stocks with the highest book-to-
market ratios have the highest betas. The decile 10 value stock portfolio has a high average
return of 1.24% per month and a corresponding Iﬁglﬁs of 1.66. In contrast, Panel C shows
that in the post-1963 subsample, stocks with the highest book-to-market ratios have an OLS
beta of 32-5 = 0.95, but a very high average return of 0.91% per month. To visually illustrate
the variation in the OLS betas that we observe in the data, we plot rolling estimates of the market
OLS betas over time in Figure 1, similar to Franzoni (2004), Campbell and Vuolteenaho (2004),
and Adrian and Franzoni (2005). We compute rolling estimates of the time-varying betas by
regressing portfolio returns on the market return using rolling samples of 60 months.

Figure 1 shows that the rolling OLS betas of value stocks are highly persistent, but broadly
reflect a downward trend. In particular, the value stock OLS betas reach a high of 2.2 during
the 1940s and fall to around 0.5 in December 2001. Figure 1 also shows that the variation in
the OLS betas of the growth stock portfolio is much smaller than the variation of the value
stock OLS betas. Nevertheless, there is still some evidence that the OLS betas of growth stocks
have a slow, mean-reverting component. However, these 60-month rolling OLS betas are, at
best, 60-month averages of variation in the true conditional betas. Hence, these plots of time-
varying OLS betas strongly suggest that the true conditional betas also vary over time. Since
the rolling OLS betas of value stocks in Figure 1 resemble a random walk, we also expect the
true conditional betas to be very persistent.

In summary, a one-factor unconditional regression can account for the book-to-market ef-
fect over the full sample (1927-2001) and over the pre-1963 sample, but fails over the post-1963
sample. A one-factor unconditional regression produces [afgé estimates for the book-to-
market strategy only over the post-1963 sample. Moreover, betas of portfolios are not constant
as assumed in standard OLS specifications, but vary significantly across time. These results
have several implications. First, while the one-factor CAPM regression fails to reject the null
thata@™® = 0 in the long run, this does not mean that we can conduct correct inference regard-
ing the true conditional alpha from a data-generating process with time-varying betas since OLS
regressions are misspecified. Similarly, while the OLS alpha of the book-to-market strategy is a
largea?L5 = 0.60% per month post-1963, this also does not necessarily imply that there exists



a positive conditional alpha in the true data-generating process. The fact that the parameters
in the OLS regressions change so dramatically across samples suggests that betas, and perhaps
other characteristics of the market, vary over time. Furthermore, the instability of the OLS esti-
mates also suggests that the effects of small sample bias and parameter uncertainty may play a
role in robust statistical inference. Since the OLS regressions are misspecified, we now develop

a framework for making robust inference in a setting with time-varying risk loadings.

3 Theory

The goal of this section is to emphasize the difference between a conditional CAPM and the un-
conditional one-factor regression estimated by OLS. We show that when conditional betas vary
over time, OLS cannot provide consistent estimates of either conditional betas or conditional
alphas. Section 3.1 illustrates the differences between a conditional CAPM and an uncondi-
tional CAPM. In Section 3.2, we use a highly stylized model to derive closed-form asymptotic
distributions for the OLS estimators (but we use a richer specification for our empirical work
in Section 4). Sections 3.3 and 3.4 characterize the limiting asymptotic distributions for OLS
betas and OLS alphas, respectively.

3.1 The Conditional and Unconditional CAPM

Our model is a reduced-form version of a conditional CAPM:
Tig = a + Birmt + O€it, (2)

wherer; ; is the excess stock return,,, is the excess market retur,, is an independent and
identically distributed (1ID) standard normal shock that is orthogonal to all other shocks, and
represents the stock’s idiosyncratic volatility. We define the conditional beta of siadke

standard way as:
. COVt71<7’i,tarm,t)

B = 3)

val,_1 (Tmﬂg)

and definen” to be the conditional alpha which is the proportion of the conditional expected

return that is left unexplained by the stock’s systematic exposure. We append the conditional
alpha,a®, with a C' superscript to distinguish it from the estimate of alpha obtained from the
misspecified OLSq°™%, from equation (1). While®, 3, andé should also carry subscripts

to denote that they differ across assets, we omit them for ease of notation.



To complete the model, we specify the dynamics of the market excess return as:

Tt = bt + /ViEmt, (4)

whereyu; = E;_[r,,+] denotes the conditional mean of the market ané var,_,[r,, ;] denotes
the conditional market volatility. Under the null of the conditional CAPM, the conditional alpha
is zero,a® = 0, and the systematic risk representedys solely responsible for determining
expected returns. If we reject the null hypothesis thfat= 0, we would conclude that the
conditional CAPM cannot price the average excess returns ofasset

The unconditional CAPM used by Black, Jensen and Scholes (1972), Fama and MacBeth
(1973), Fama and French (1992, 1993) and others differs from the conditional CAPM in equa-
tion (2) by specifying a constant beta over the entire sample period. Many authors, including
Fama and French (1993), estimate the regression (1) on portfolios of stocks sorted by book-
to-market ratios and reject that the OLS alph&~, is equal to zero. However, using the
unconditional factor model in equation (1) estimated by OLS to make inference regarding the
conditional CAPM in equation (2) is treacherous for several reasons.

First, Jagannathan and Wang (1996) show that if time-varying conditional betas are cor-
related with time-varying market risk premia, then the conditional CAPM in equation (2) is
observationally equivalent to an unconditional multifactor model:

Elri:) = af + cov(y, 11¢) + B, (5)

where3 = E(8;) andi,, = E(r,,) are the unconditional means of the beta and the market
premium process, respectively. Under the null of a conditional CAPM, we would expect that
the estimate of the unconditional OLS alplig™®, captures both the conditional alphef;,

and the interaction of time-varying factor loadings and market risk premia.

Second, Jagannathan and Wang (1996) show that we need multiple unconditional factors in
the OLS regression in equation (1) to capture the same effects as the single-factor conditional
model in equation (2), due to the da@¥, ;) term in equation (5). Hence, any statement made
about the failure of an unconditional CAPM to capture the spread of average returns in the cross-
section does not imply that a conditional CAPM cannot explain the cross-sectional spread of
average returns. Our main focus is on the ability of the conditional CAPM in equation (2) to
explain the cross-section of average returns of stocks sorted by book-to-market ratios, rather
than on the unconditional OLS CAPM regression in equation (1).

Third, a conditional CAPM implies an unconditional one-factor model only in the case
when 3; is uncorrelated withu;. In this special case, equation (5) reduce&io ;] = o +

9



Bli,. However, when conditional betas and market risk premia are correlated, OLS fails to
provide consistent estimates of both the conditional alpha and the conditional betas in equation
(2). Moreover, the degree of the inconsistency depends on unknown parameters driving the
conditional beta process that are not directly observed. Hence, any inference on the conditional
CAPM in equation (2) cannot be made on the basis of OLS estimates of the unconditional
one-factor model in equation (1). Finally, the limiting distributions of the OLS alphas and
betas ¢2-5 and 3255 in equation (1)) are significantly distorted from their conventional OLS
asymptotic distributions that assume constant factor loadings. We now illustrate each of these
points in the context of a very simple model for which we can analytically derive the limiting
distributions ofa?"5 and 5%,

3.2 A Simple Model

We first consider the simplest possible setting where stisc&xcess returny; ;, is driven by
a time-varying beta process. Suppose that in the true conditional model, @ydr,, . are
stochastic and correlated with an unconditional correlatiop,,0f. In this simplest possible
setting, we specify that:

515 I'LD N(B76%)

and .y A N(fim,02), (6)

wherej is the unconditional beta*zg is the unconditional variance of beta,, is the uncon-
ditional mean of the excess market retusp, is the variance of the excess market return, and
corr(rmt, Bt) = pmp- IN the statistics literature, this is a standard random coefficient model (see,
for example, Cooley and Prescott, 1976).

Our goal is to characterize the asymptotic distribution of the OLS estimators:

T T

~OLS __ l o AOLSl
(074 = T Tit T T Tmi,t

t=1 t=1
1 « AR
and QO-*LS = (T Z(Tm,t - 7:m>2> (? Z(rm,t - fm)ﬁ,t) y (7)
t=1 t=1
wherer,, = (1/T) > r.,. represents the sample average of the excess market return, under
the data generating process of equation (6). We relegate the full derivation of the asymptotic
distribution of T (4255 — E[a2ES]) and /T (3955 — B[32L5]) to Appendix A%

4 Standard statistics textbooks recognize that in applying OLS to the model of equations (2) and (6), OLS is

10



We note that the OLS alpha and beta estimates in equation (7) are not pivotal statistics, as
their distribution depends explicitly on the parameters of the data-generating process in equation
(6). But, the OLS alpha is precisely the statistic most often used by researchers to judge the
significance of any CAPM anomaly. Our focus is not to develop a pivotal statistic to estimate
time-varying betas, but rather to show how the OLS alpha and beta distributions are affected by
time-varying betas. Thus, we point out that inference based on OLS alpha and beta estimates
are unreliable in the presence of time-varying factor loadings.

3.3 Asymptotic Distribution of v/T (3955 — E[32L5))

To understand the distortions that OLS induces on a system with time-varying betas relative to
the standard case, it is helpful to write the residual teff}1?, of the regression (1) in the form

of an omitted variablés, — 3)r, +:

5%]:5 = (B — B)rms + G€is (8)
Unlike the usual case of a constant beta, this omitted variable is a product of two normal distri-
butions and can cause at least three distinct problems in the OLS estimates. First, the residuals
are heteroskedastic. Second, in practigeis likely to be very persistent (but is assumed to
be IID in this simple setting for tractability), which leads to serial correlations in the residuals.
Both the problem of heteroskedasticity and serial correlatimftfr? can, in principle, be cor-
rected by a heteroskedasticity and autocorrelation consistent (HAC) estimator like Newey and
West (1987). Note that this is only an asymptotic correction, so a HAC estimator still ignores
the effect of any small sample distortion and bias. The major problem that cannot be corrected
by using a HAC estimator is that the OLS residua@?s , are correlated with the regressor,
rm.t,» Which leads to biased and inconsistent OLS estimates:

B30"5) = B+ P2 g, (9)

Tm

inconsistent (see, for example, Greene, 2002), but they do not derive the limiting distribution of the OLS estimators.
As we show, this derivation is non-trivial as it involves quadratic functions of normals, but this exercise is necessary
to interpret both the bias and the sampling dispersion of the OLS estimates. Foster and Nelson (1996) develop
a series of rolling weighted OLS regressions, where the optimal weights are a function of the underlying data
generating process, that can provide efficient estimates of conditional betas. This case is different to the standard
OLS regressions run over the whole sample that are common in the literature. Foster and Nelson also do not
consider asymptotic distributions of OLS alphas with time-varying conditional betas.

11



The magnitude of the inconsistency @~ in equation (9) depends on the unknown pa-
rameters3, pns, 65, andji,,. Lewellen and Nagel (2005) make inferences on the properties
the conditional alphas and the conditional betas by estimating a series of high frequency OLS
regressions in subsamples. However, note that the inconsistency term in equation (9) depends
on the ratio ot 3 to &, which is invariant to the sampling frequency and can be potentially very
large. Moreover, even if subsample regressions are used to estimate OLS betas, this does not
remove the inconsistency since the conditional betas continue to vary within windows. Hence,
there is no way to correct for the inconsistency without know#ng,,s, ands s, and these pa-
rameters can only be obtained by directly estimating the conditional beta series. In data, since
the market risk premia and the variance of the market change over time (see Schwert, 1989),
the magnitude of the inconsistency of the OLS estimé?é,s, is also time-varying. The OLS
beta provides a consistent estimate of the mean of the true beta process only in the case when
the betas are uncorrelated with the market retpg, = 0.

There is also a distortion of the standard limiting distribution induced by the presence of
time-varying betas. The asymptotic distributiom@T'(52-5 — E[52%5]) is given by:

VI~ B 4 (0.8 125,058 + (- it + 7). GO
The last term for the asymptotic variancesi$/a2,, which is the asymptotic variance for the
standard OLS case without any time variation in the betas<0). The other two terms reflect
the contribution of the endogenous regressdhat increases the variance of tﬁ%s estimator
relative to the constant beta case.

This increase is not small, even if the betas are uncorrelated with the market return. For
example, suppose that,; = 0, i, = 0.0066, anda,, = 0.055, where the excess market
parameters are calibrated from the sample mean and sample standard deviation of the monthly
excess market returns over 1927-2001. We set the stock idiosyncratic volatifity=a0.06
and set thess parameter of the book-to-market portfolios to be 0.468. The last parameter
represents the monthly unconditional standard deviation of the betas, which we discuss below
in Section 5.1. Then, the ratio of the true asymptotic variance in equation (10) to the standard
OLS asymptotic variance is approximately two. This is a conservative estimate begause
is unlikely to be zero. Hence, the true limiting varianceﬁé‘l“ is likely to be larger than the
variance implied by standard OLS theory. Therefore, even if we know the correct adjustment
for the inconsistency of thé?LS estimator, we cannot at all be confident about the precision of
the estimate of the conditional beta.
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3.4 Asymptotic Distribution of v/T(425 — E[a25])

Jaganathan and Wang (1996) and Lewellen and Nagel (2005), among others, note that the OLS
estimate of alpha@?X?, is a biased estimate of the conditional alph, in the conditional

~

CAPM specified in equation (2). In our simple mode|a$-] is given by:
E[a0"] = o 4 222052 — 2. (11)

Note thata2L provides a consistent estimate«f only when the market return process and
the conditional betas are uncorrelated.plfs # 0, then direct knowledge of the conditional
beta process is required to correct for the inconsisteney”df. As a rough estimate, if we
assume thag,,s = 0.1 (see below)gs = 0.468, i,,, = 0.0066, anda,, = 0.055, then equation
(11) indicates that$>° overstates the true value af by over 0.26% per month.

In our simple model, the asymptotic distribution of the OLS estimaf{é?, is given by:

VT (62" — E[a2™))

2 (01072853 + (1 )k + )22 + 0+ )T ) - 2)

The asymptotic variance af$~° in equation (12) has three terms. The third tefia?, +
i2,)a% /a2, is the regular asymptotic variance for the OLS estimate for the intercept term in
an environment with non-stochastic betas. In cases wheig large, the asymptotic variance
of 4255 increases substantially when is not zero, relative to the standard OLS asymptotic
variance. Again, we cannot compute the degree of distortion relative to the regular OLS stan-
dard error case without knowing; andp,,s. Moreover, these parameters cannot be estimated
without knowing the conditional, latent beta series. Using asymptotic theory, we can estimate
the increase in the asymptotic varianc&8f induced by the time-varying regressors by using
a HAC estimate of the variance only in the special case whgn= 0. Whenpg,, # 0, HAC
estimators are invalid.

In summary, we cannot obtain consistent estimates of conditional betas or alphas by OLS.
Neither the adjustments for the magnitude of the inconsistency nor the corrections for the dis-
tortions in the asymptotic variances of the OLS estimators can be accomplished without direct

5 The term we analyze here is not fully present in the empirical analysis of conditional alphas of Lewellen and
Nagel (2005) because they (counter-factually) assume that OLS is consistent within each subsample. Our method
consistently accounts for the time variation in conditional betas within a given window where Lewellen and Nagel
have assumed the OLS betas are consistent.

13



knowledge of the dynamics of the conditional beta process. We now propose a richer model with
time-varying conditional betas, time-varying market risk premia, and time-varying systematic
volatility and explain how such a model can be estimated.

4 A Conditional CAPM with Time-Varying Betas

The asymptotic distributions af 75255 — E[3°L5)) andvT (4255 — E[a°9]) in equations

(10) and (12) are likely to understate the true variatior3gfs and a2%S in small samples

for two reasons. First, we expect that rather than the conditional betas being drawn from an
IID process, conditional betas are more likely to incorporate predictable, slow, mean-reverting
components. While we derived the asymptotic distributions using a Central Limit Theorem that
can be generalized to incorporate persistengg,ia high autocorrelation of the process will

cause the asymptotic variance to significantly understate the true variance in small samples.
Second, the market process is also empirically not a normal 11D process. A more realistic em-
pirical description of the market return is that it also incorporates persistent components both in
its conditional mean and conditional volatility. The addition of time-varying components in the
market return process further distorts the asymptotic inference of the OLS estimators. For our
empirical application, we enrich the simple model of the previous section to incorporate persis-
tent conditional betas, time-varying market risk premia, and stochastic systematic volatility.

4.1 The Model

In our fully specified conditional CAPM, we assume that the latent conditional betas in equation
(2) follow an AR(1) process:

C’ _
Tig = O + By + 08y

and 5 = [o+ ¢pBi_1 + 0sepe, (13)

whereg; refers to the conditional beta of stoclefined in equation (3). Again, in equation (13),
a%, By, &, o, ¢3, andoy should all have subscripts, but we omit them for simplicity. We are
interested in; , representing the returns on the book-to-market strategy. Following the standard
set-up of a conditional factor model where the idiosyncratic volatility shocks are uncorrelated
with systematic components, we specify to be drawn from an [ID normal distribution that is
independent of the shocks to the systematic components.
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We expect that the conditional betas in equation (13) vary slowly over timegyittose to
one. This view is suggested both from economic theory and from prior empirical studies. For
example, Gomes, Kogan and Zhang (2003), suggest that betas are a function of productivity
shocks, which are often calibrated with an autocorrelation of 0.95 at the quarterly horizon.
This translates into a monthly autocorrelation of conditional betas above 0.98. In Santos and
Veronesi (2004), stock betas change as the ratio of labor income to total consumption changes,
which is also a highly persistent variable. Since the firms in the book-to-market portfolios
change over time, portfolio reconstitution could also cause time variation in the portfolio betas.
Since the OLS rolling betas in Figure 1 have a wide range, we expect that the conditional shocks
to the true betas of the book-to-market portfolios can be quite variabte, could be large. In
data, Fama and French (1997) also report substantial variation in factor loadings for industry
portfolios, while Ferson and Harvey (1999) show that there is a large variation in the market
betas of portfolios sorted by size and book-to-market ratios. Hence, our prior js, tsladuld
be highly persistent and conditional shocksii@an potentially be large.

We further specify that the excess market retutp,, in equation (4) has a conditional
market risk premiumy,, and exhibits stochastic systematic volatility,

Tt = bt + /VtEm s, (14)

where

He = Ho+ gbuﬂ’t—l + Ou€ut
and Inv, = vo+ ¢pyInvig + opeyy. (15)

The shockss,, +, €, ande,,;, are normally distributed zero mean, unit standard deviation, nor-
mally distributed shocks that are potentially correlated. In equation (15), we allow the market
risk premium to be a slowly mean-reverting latent process. This is the same specification used
in the portfolio allocation literature, beginning with Merton (1971). We model log volatility as

a latent AR(1) process, following Jacquier, Polson and Rossi (1994). The log process restricts
volatility to be positive and induces fat tails in the distribution for the market return. Since
Brandt and Kang (2004) find that the correlation betwegnande,,, is insignificant, we set

this correlation to be zero. We also specify; ande,; to be orthogonal. However, we let ;

ande, , have a correlation gf,,. This captures a leverage effect, and allows market conditional
expected returns and stochastic volatility to move together. To allow the market risk premia to
be correlated with conditional betas, wedgt ands g, in equations (13) to (15) have a non-zero
correlation ofp,,3.
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The OLS alphaa$h, estimated from the regression (1) is an implied function of the pa-
rameters) = (po ¢, 04 Vo v Tu puw Bo 5 05 7 a© p,s) of the model and the sample
sizeT. Similar to the setting of our simple model in Section 3.2, the limiting distribution of
25 depends on the beta process and the market return process. However, the asymptotic dis-
tribution of the OLS alpha in our richer empirical specification (equations (13) to (15)) cannot
easily be derived in closed form. In our estimation method, we directly estimate the conditional
betas,{3;}, and the conditional alpha, and we construct the implied distribution @
numerically. We stress that our implied distributions of the OLS estim#fé$ and 3255 are
based on the null of the model in equations (13) to (15). However, we show that the model
matches the evidence in data on rolling OLS betas and expect that inference under alternative
models which allow similar time variation in betas and the market risk premium to also induce
large distortions in the distributions of the OLS statistics relative to their standard distributions.

The reduced-form conditional CAPM in equations (13) to (15) falls within the class of
conditional CAPM models developed by Harvey (1989), Shanken (1990), Ferson and Harvey
(1991, 1993, 1999), Cochrane (1996), and Jagannathan and Wang (1996). Most of these stud-
ies use instrumental variables to model the time variation of betas as a linear function of the
instruments. Our betas are also time-varying, but instead of relying on instrumental variables,
we parameterize the beta itself as an endogenous latent process. This has the advantage of not
relying on exogenous predictor variables to capture time-varying betas and avoids any poten-
tial omitted variable bias from mis-specifying the set of predictor variables (see Harvey, 2001,
Brandt and Kang, 2004). Instead, we infer the betas directly from portfolio returns. Second,
we directly model the variation in the betas across time. Campbell and Vuolteenaho (2004),
Adrian and Franzoni (2004), Franzoni (2004), and Lewellen and Nagel (2005) document that
the betas of book-to-market portfolios change over time, but they do so by estimating constant
beta models over different subsamples of data. Section 3.3 shows that this procedure leads to
biased and inconsistent estimates with distorted asymptotic distributions.

A special case of our model is an unconditional CAPM, which arises whenr= 0. The
model explicitly captures the time variation in market risk premia that previous empirical studies
show is important, and whew),s # 0, the unconditional CAPM does not hold but a conditional
CAPM applies. Rather than using GARCH processes to model conditional betas (see, for ex-
ample, Bekaert and Wu, 2000), our model uses a log volatility model. In GARCH models, betas
are time-varying but the variations in the betas are strictly driven by past innovations in returns
and do not have independent random components. Danielsson (1994), among others, finds that
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the GARCH family of models does not remove all non-linear dependencies in stock return data,
while autoregressive stochastic volatility models provide better goodness-of-fit for stock return
dynamics.

While the model generates heteroskedasticity, one feature of the data that the model is not
designed to capture is time-varying idiosyncratic volatility. In the return equation (13), we
assume that idiosyncratic volatility is constantzatCampbell et al. (2001) show that the id-
iosyncratic volatility has noticeably trended higher for individual stocks over the 1990s. In-
corporating time-varying idiosyncratic volatility would introduce a difficult identification prob-
lem between time-varying betas and idiosyncratic risk. We apply the model to stock portfolios,
where idiosyncratic risk is lower than at the firm level. Nevertheless, incorporating time-varying
idiosyncratic risk would only exacerbate the large variances in OLS alphas that we document,
and hence, by ignoring time-varying idiosyncratic risk, our analysis is conservative.

4.2 Estimation

We estimate the model over the full sample, from 1926-2001, to use all available data to pin
down the dynamics of the beta process. After estimating the data on the full sample, we ex-
amine the small sample distribution of OLS alphas or conditional alphas. In particular, we are
especially interested in small samples of the same length as the post-1963 sample, which is the
sample where the OLS alpha appears to be significant using conventional t-statistics. Estimating
the model only over the short post-1963 sample to infer the distribution of OLS or conditional
alphas over the post-1963 period is inefficient and ignores valuable information about the time
variation of betas over the long run.

We use a Markov Chain Monte Carlo (MCMC) and Gibbs sampling estimation method that
consistently estimates conditional alphas and betas, incorporates the effect of parameter uncer-
tainty, and measures the effect of small sample bias. Appendix B provides a full description of
the estimation methotl. There are three main reasons we use a Bayesian estimation strategy.

First, conditional on the time series of conditional betgs, ), time-varying market risk
premia {u.}), and time-varying systematic volatility{ ¢, }), the stock returny; ;, in equation
(13) is normally distributed. However, the likelihood function fgf andr,,, is difficult to

6 Other similar models are esimated by Liu and Hanssens (1981), Lamoureux and Zhou (1996), Johannes,
Polson and Stroud (2002), Johannes and Polson (2003), Jones (2003), Han (2004), and Jostova and Philipov
(2005) with Bayesian methods; Harvey, Solnik and Zhou (2002) with GMM; and Brandt and Kang (2004) with
simulated maximum likelihood.
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derive in closed form because the latent varialeg, {.:}, and{v;} must be integrated out.
This makes maximum likelihood estimation methods difficult to use. Other classical estima-
tion methods, like Generalized Method of Moments (GMM), also entail a potentially difficult
optimization problem. In contrast, the Gibbs sampler is fast because it involves drawing from
well-defined conditional distributions.

Second, while the asymptotic distribution of the OLS alphas can be derived in closed-form
for our simple IID model in Section 3, the asymptotic distribution of the OLS estimators in the
conditional CAPM is difficult to derive. MCMC provides posterior distributions whose means
can be interpreted as parameter estimates and the inferred estimates of the time series of betas,
market risk premia, and systematic volatility are generated as a by-product of the estimation.
The estimation method also allows us to extract the exact finite sample distributions of OLS
alphas from the posterior distributions of the parameters. We compute the posterior distributions
for the OLS alphaa 259, for the limiting case wheré' = oo, and over a finite sample whefe
corresponds to the post-1963 sample period. Then, we compare these estimates of asymptotic
distribution of 4% and small sample distribution @f$>° directly to the estimates of the
conditional alphag.

Finally, we can impose some prior information on some of the parameters, like the param-
eters that determine the speed of mean reversiom; @nd 3; that would otherwise lead to
identification problems (see the discussions in Brennan, 1998; Johannes, Polson and Stroud,
2002). In particular, the mean-reversion parameter of the betgaq difficult to pin down.

With non-informative priors, the estimate of is almost zero, and the estimates for the betas
become degenerate, makifng ~ r;;/r,.. This makes the likelihood function infinite. We

have strong prior beliefs from economic theory that the betas are persistefy,séould be

close to one, but they must also be bounded above by one to maintain stationarity. Lamoureux
and Zhou (1996), Johannes, Polson and Stroud (2002), and Johannes and Polson (2003) all im-
pose informative priors over mean-reversion parameters in related models. We now discuss our
choice of prior fora®, but detail the full specification of all the other priors in Appendix B.

4.3 Priors ona®

Inference regarding the conditional alphé;, is of critical importance to measuring the eco-
nomic and statistical significance of the book-to-market premium. We specify informative pri-
ors overa® that range from no prior belief about the valuedst to a dogmatic belief that an
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o must exist. Prior beliefs about” are represented by the distribution:
a®~ N (NZC; (Uic)Q) ’ (16)

wherey? . is the prior mean antb” . )? is the prior variance. Ifi” . = 0 ando” . is very small,

then the researcher believes dogmatically in the conditional CAPM, while a pogitivand

a very smallo” . represents a researcher with a strong prior that the book-to-market premium
is positive. In contrast, setting’. = oo or allowing o’ to be sufficient large, represents

an effectively diffuse prior that assumes no a priori knowledge about the strength of the value
premium.

An alternative specification of priors for the conditional alpha is given by Pastor and Stam-
baugh (1999) and Pastor (2000), who specify the prior to be directly proportional to idiosyn-
cratic volatility:

a“lg ~ N(ub,n5%), (17)

wheren is the prior degree of belief in the conditional CAPM. Wheg&: oo, mispricing relative

to the conditional CAPM is completely unrestricted, whijle- 0 corresponds to dogmatic faith

in the conditional CAPM. In the Pastor-Stambaugh prior in equation (17), the priaf'da

directly linked to the idiosyncratic volatility, which reduces the probability of drawing high
Sharpe ratios. Hence, using the Pastor-Stambaugh prior would make us less likely to reject the
null of a conditional CAPM. In contrast, our choice of prior af in equation (16) specifies

no mechanical link betweer” anda. With our prior in equation (16), draws of high posterior
Sharpe ratios are more likely than under the Pastor-Stambaugh prior and, thus, we bias our
results in favor of finding evidence against the conditional CAPM.

4.4 Priors on Time-Varying Betas

Using Figure 1, we can extract some prior information about the latent conditional beta process.
Just as the OLS betas are very persistent, we also expect the conditional betas to have slow
moving persistent components. We treat the standard deviation of the rolling OLS betas as a
sample statistic and compute a similar statistic from our conditional beta estimates to judge the
goodness-of-fit of the model. What rolling OLS betas cannot provide, however, are estimates
of the true variability of conditional betas, the correlation of conditional betas with market risk
premia, or precise estimates of the conditional beta at a particular point in time. Only direct
estimates of the conditional betas can accomplish this.
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In Table 2, we examine the autocorrelations and standard deviations of the rolling OLS be-
tas of the highest (lowest) book-to-market decile portfolio, which are the value (growth) stocks,
along with the book-to-market strategy. We report the 60th order autocorrelation since it is
the lowest order autocorrelation that does not use overlapping information. We then compute
the first-order autocorrelation implied by an AR(1) process. The implied monthly autocorre-
lations are highly persistent, with an estimate of 0.993 for the book-to-market strategy. This
is a conservative estimate as estimates of autocorrelations are biased downwards in small sam-
ples. We compute a tight standard error of 0.003 for the first-order autocorrelation using the
delta-method. Although the OLS betas are inconsistent estimates of the conditional betas, we
assume that the true conditional betas have a persistence of the same order of magnitude as the
persistence of the non-overlapping autocorrelations implied by the rolling OLS betas.

Table 2 also reports the unconditional standard deviations of the rolling 60-month OLS
betas. For the growth stock and the value stock portfolios, they are 0.11 and 0.38, respectively.
For the book-to-market strategy, the rolling OLS betas exhibit a large degree of time variation,
with a volatility of 0.47. Below, we show that rolling averages implied by our estimates of
conditional betas closely match this statistic. Armed with this knowledge about the rolling
averages of OLS betas, we now directly infer the true conditional bgtias, by estimating the
conditional CAPM in equations (13) to (15).

In our estimation, we are especially careful not to increase the variance of the conditional
betas in a manner that implies implausibly large stock return volatility. A model that implies
a large stock return variance can potentially produce very disperse posterior distributions with
little information. We impose the constraint on our parameter estimates that the total variance of
stock returns is kept constant at the level observed in the data. Thus, by construction, systematic
and idiosyncratic volatility sum to the observed total volatility of stock returns in data.

5 Empirical Results

We present our estimates of the conditional CAPM with time-varying betas in Section 5.1.
Section 5.2 characterizes the posterior distribution of the conditional alphas of the book-to-
market strategy and Section 5.3 reports the unconditional OLS alphas implied by our model. In
Section 5.4, we consider the additional effects induced by finite sample bias.
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5.1 Parameter Estimates of the Conditional CAPM

Table 3 reports the parameter estimates for the conditional CAPM described by equations (13)
to (15). We estimate these models using the value stock portfolio, the growth stock portfolio,
and the book-to-market strategy. To compute the estimates in Table 3, we use an effectively
diffuse prior with,” . = 0 ando”. = 1.00% per month in the prior fon.” in equation (16).
Changing.! . = 1.00% or using values of” .. larger than 1.00% per month produces virtually
identical results. Table 3 reports the mean and standard deviation of the posterior distribution of
each parameter. We first characterize the market return process and then investigate the effects
of time-varying conditional betas.

The Market Factor

Table 3 shows that the estimated market risk premium process is persistent, with a monthly
autocorrelation ofy, = 0.956. Shocks to the conditional mean are not small, with a volatility

of o, = 0.40% per month. These estimates translate to an unconditional volatility of monthly
market risk premium of 1.36% and unconditional volatility of annual market risk premium
of approximately 2.0% per annum. The log variankey;, is also a persistent process with

an autocorrelation op, = 0.941 and is slightly conditionally negatively correlated with the
conditional mean of the markeg,(, = —0.093). This is consistent with many studies that find

a leverage effect with negative correlations between market volatility and expected returns (see,
for example, Campbell and Hentschel, 1992).

In Figure 2, Panel A, we plot estimates of the implied market risk premia and conditional
systematic volatility. The estimates of the market risk premia are fairly smooth, but they have
moderately large standard error bounds. Pinning down the market risk premia is notoriously
difficult. Johannes and Polson (2003) report that for their estimates of NASDAQ expected
returns, even a one standard deviation bound often includes zero. Nevertheless, Panel A of
Figure 2 shows that market risk premia increase during the late 1930s and the early 1950s,
and decline during the 1960s. More recently, market expected returns increase steeply around
the time of the OPEC oil shocks in the 1970s. Over the late 1980s and early 1990s, market
expected returns are fairly stable but decrease dramatically during the bull market of the late
1990s. During the year 2000, market expected returns start to increase, coinciding with the
onset of the last recession. In most of these episodes, volatility moves in opposite directions to
expected returns, as shown in Panel B. Our estimate of market volatility reaches a high of close
to 17% per month in the early 1930s, and also increases during World War II, the mid-1970s,
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the 1987 crash, and around the end of the century from 1998-2001.
Time-Varying Beta Estimates

From the estimates of the latent beta process in Table 3, the implied unconditional beta of
the value (growth) stock portfolio is 1.21 (1.01). For the book-to-market strategy, the implied
unconditional beta is 0.11. Hence over the whole sample, value stocks do have slightly higher
betas than growth stocks, but the difference is small. Table 3 also reports that the latent betas,
while highly persistent, are fairly volatile. The conditional volatility of the latent betas for value
stocks is fairly large at 0.168 per month, compared to 0.132 per month for growth stocks. In
comparison, the conditional volatility of the betas for the book-to-market strategy is a modest
0.065 per month.

For the book-to-market portfolios, the correlation between shocks to the conditional betas
and shocks to the market risk premiupmy, is large and positive. For value (growth) stocks,
pup 1S 0.759 (0.882). For the book-to-market strategy, the posterior meayy @ 0.408 with
a posterior standard deviation of 0.127. Since the unconditional volatility of the market risk
premium is 1.36% per month and total market volatility is fixed at 5.5% per month, this implies
an unconditional correlation between betas and market returns of 0.1. The large vajye of
has several implications. First, from equation (5), an unconditional one-factor CAPM cannot
be the correct specification for risk singg; # 0. Second, equations (9) and (11) show that the
OLS estimates of betas and alphas are biased and inconsistent. Third, equation (12) shows that
the distribution ofa$>* is distorted from its regular OLS asymptotic distribution. We examine
thea® estimates and the implied OLS alpha distributions in detail below.

In Figures 3 and 4, we plot the posterior mean of the time-varying betas produced by the
Gibbs sampler. Figure 3 shows the estimates for the value and growth portfolios. The estimated
betas of the value stock portfolio exhibit greater variation than the betas of the growth stock
portfolio. The conditional betas of value stocks wander from over 3.0 during the late 1930s
to below 0.5 in 2001. In contrast, the conditional betas of growth stocks remain in a fairly
close neighborhood around 1.0. Figure 4 graphs the estimates for the book-to-market strategy.
The conditional betas of the book-to-market strategy reach a high of above 1.5 near-1940, and
decline to close to negative 0.5 at the end of 2001. Figure 4 also shows the one posterior
standard deviation bound, which is around 0.5 across the whole sample.

We can compare the conditional variability of the estimated latent betas to the standard
deviation of rolling 60-month OLS betas as a specification test of our model estimates. To
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confirm that the estimates of conditional volatility of the time-varying betas implied by the
model match the variability of rolling OLS betas found in the data, we compare the variability
of 60-month moving averages of the inferred betas of the book-to-market strategy in Figure 4
to the variability of the 60-month rolling OLS betas reported in Table 2. The match is almost
exact. For the book-to-market strategy, the implied rolling 60-month beta average volatility is
0.46, compared with 0.47 in data. Hence, our conditional beta estimates implies rolling betas
with a similar degree of variability as the rolling OLS betas from the data.

The large swings of our conditional betas are also consistent with the widely differing point
estimates of the OLS alphas across subsamples in Table 1. Taking the posterior mean of the time
series of the conditional beta{sﬁft}, we compute the differencg, — Btrmt across subsamples.

In the pre-1963 sample, the mean conditional beta is 0.47, the book-to-market strategy returns
0.43% per month, while the excess market return yields 0.85% per month. Thus, in the pre-
1963 sample, the mean valuergf — Btrmt is 0.03% per month, consistent with an OLS alpha

of close to zero. In contrast, over the post-1963 sample, the average conditional beta is -0.11,
the book-to-market strategy yields 0.53% per month, and the average market excess return is
0.47% per month. Thus, the mean valuergf— Btrmt over the post-1963 sample is 0.58%

per month, which is very close to the empirically observed OLS alpha of 0.60% per month
reported in Table 1. This suggests that although our model has a copstamtd constant©,

the model is capable of generating large differences in OLS alphas in specific sample periods.
In particular, the time series of the posterior mean of the conditional betas is consistent with
the low (high) OLS alpha in the pre-1963 (post-1963) sample period for the book-to-market
strategy.

5.2 Conditional Alphas of the Book-to-Market Strategy

Inference regarding the conditional alphké;, is crucial for judging the fit of the conditional
CAPM to explain the value premium. In Table 4, we report the posterior distributiof’ aff

the book-to-market strategy. To incorporate various prior views that investors may hold on the
strength of the book-to-market effect, we specify several prior distributions, rather than using
just one diffuse prior. The priors fer® in equation (16) range from an effectively uninformative
prior with /¥ . = 0 ando® . = 1.00% per month to a highly informative prior with® . = 0.60%

per month and”’ . = 0.10% per month. Since a mean of 0.60% per month corresponds to the
a@Ls estimate of the book-to-market strategy over the post-1963 sample (see Table 1), priors
with this mean and a low” . represent a dogmatic belief in the book-to-market effect. For each
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prior, we report the percentile breakpoints, the mean and the standard deviation of the posterior
distribution ofa“.’

When we use a prior on® with a mean of zero, the value of 0.00% per month lies well
above the 10%-tile breakpoint of the posterior, regardless of the standard deviation of the prior.
In particular, for the effectively diffuse prior with? . = 0 ando?. = 1.00% per month, the
value corresponding to the 10%-tile is -0.01% per month. Hence, an uninformed agent would
conclude that the conditional alpha of the book-to-market strategy is insignificantly different
from zero. To argue in favor of a strong book-to-market effect, an agent would need to have
a strong prior om“ that has a mean of 0.60% per month and a standard deviation of 0.30%
per month or tighter. Under this prior, the posterior distribution©fhas a lower left-hand tail
probability of less than 2.5% for observing a conditional alpha less than zero.

In summary, Table 4 shows that once we account for the time-variation in betas and mar-
ket risk premia, the evidence against a conditional CAPM is weak using the book-to-market
portfolios. In contrast, only the misspecified OLS inference that assumes constant betas based
strictly on the post-1963 sample would suggest strong evidence of a book-to-market effect: the
OLS alpha has a p-value of 0.006, corresponding to a Newey-West t-statistic of 2.51. However,
after accounting for time-varying, conditional betas, only an empiricist with a very strong prior
belief in a book-to-market premium would conclude that a conditional CAPM cannot account
for the average returns of stocks sorted by book-to-market ratios over the long run.

5.3 OLS Alphas of the Book-to-Market Strategy

We showed in Section 3 that in the simplest 11D environment with correlated time-varying betas
and market risk premia, the OLS estimate of alph@“, is inconsistent and the asymptotic
distribution of T (4255 — E[a2L5]) is significantly distorted from its standard OLS distribu-
tion with constant betas. We now show that the distortion betwéeand 432 are further
magnified when we allow for persistent, time-varying betas.

We compute the implied distribution of the OLS alph#,“ (denoted without a hat to
signify itis a random variable), for a sample sizé/ofirom the Gibbs sampler. We first compute
the limiting distribution of the OLS alpha 88 — oo, which we denote ag®“. For each
observation in the posterior distribution of the model parameievge compute the value of
25 that would result if the data are generated according to equations (13) to (15). We compute

" The posterior distributions af“ are largely unaffected by the estimation of the market process, even if we
parameterize the market return to be 11D and normally distributed.
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this by simulating a time series of, andr,, , of length 100,000 (to proxy fdf' = oo) at each
parameter draw and run an OLS regression on the simulated time series. Since we use a long
time series, the constant term from this regression is exactly what theftiewould be at

this particular set of model parameters. We repeat this exercise for every set of parameters in
the posterior distribution of thé, and thus produce the correct posterior distribution@f*
corresponding to the parameter estimates of the conditional CAPM. The statitids a well-

defined transformation of the parametérgxcept it is not available in closed form. We report

the posterior distribution af®~* corresponding to the different priors as¥ in Table 5.

Comparing the posterior distributions af’ in Table 4 and the posterior distributions of
LS in Table 5 confirms that estimates of alphas obtained by OLS are inconsistent. For an
effectively diffuse prior ona® with a mean of zero and a standard deviation of 1.00% per
month, the posterior mean af’“* is 0.45% per month. In comparison, the posterior mean of
a® is 0.20% per month. The upward bias@?>® relative toa® occurs because the estimated
correlation between shocks to the market risk premia and shocks to the conditional beta of the
book-to-market strategy is positive at 0.41 (see Table 3). For all the prias$ othis upward
bias is of the order of 20% to 23% per month. Interestingly, in the limit as oo, the posterior
standard deviation af“%* is only slightly larger than the posterior standard deviation‘of
which are 0.20% and 0.19% per month, respectively.

If we were to base our statistical inference of the book-to-market premium only’ 67,
rather than the correet® of the conditional CAPM, Table 5 shows that an investor would
conclude that the®~“ is greater than zero regardless of the choice of the prior distribution. In
all cases, the value of an alpha of 0.00% per month lies below the 2.5%-tile breakpoint of the
posterior distribution oh®>S. Thus, even though we would conclude that the OLS alpha is
positive, the true conditional alpha reported in Table 4 is reliably different from 0.00% only for
an investor with a very strong prior belief in the book-to-market effect. Hence, the inconsistency
of OLS may lead us to conclude that” is positive even itv“ is not.

5.4 Small-Sample Bayesian Analysis of OLS Alphas

A remarkable fact of the simple one-factor OLS regressions of the book-to-market trading strat-
egy in Table 1 is that the?. estimate is 0.60% per month with a Newey-West (1987) t-statistic
of 2.51 over the post-1963 sample, but not over the long run. Sine&theestimate is -0.16%

per month in the pre-1963 sample, the distributiodgf* may be very variable in short sam-
ples. In this section, we consider the possible distortions on the posterior distributiét-of
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induced by small samples of length® Specifically, we show that over small samples, a time-
varying beta model with persistent betas but a consténtan easily produce one sample in
which 4259 is large, but another sample in whiél~* is small or negative.

We construct the Bayesian finite sample posterior distribution?df in a manner similar
to the case of the posterior distribution @~, whereT = oo, in Table 5. To compute the
finite sample posterior distribution of2%, we simulate a sample of sizg for each draw);
from the posterior distribution of the parametérsSince the post-1963 sample corresponds to
a time series of length 462 observations, welset 462. Note thata$L%(9) is well defined in
a small sample as a function of the sample sizeand the parameters of the modelHence,
for a given sample size, the small sample variat§#é® is a valid statistic. To isolate the effect
of parameter uncertainty from the effect of small sample bias, we also simulate 10,000 small
samples ofl" = 462 holding fixed the parameters of the modePathe mean of the posterior
distribution of.

We also consider the effect of various parameters on the model on the small sample distribu-
tions of a2 by setting to zero certain parameters of the model in equations (13) to (15). First,
we seta® = 0 so that the small sample distribution @~ is driven only by the correlation
between shocks to the beta and shocks to the market risk premium. Secondpyye-sé\, so
that an unconditional CAPM holds and OLS alphas are consistent estimat€és Binally, we
set botha® = 0 andp,s = 0. In each case, we set only the particular parameter in question
to zero without re-estimating the model and without changing the other parameters to facilitate
comparisons across the specifications.

We report our results in Table 6. As expected, the difference between®heand o
posterior distributions in small samples is even greater than the differences for the limiting
case wheri’ = oo, which are reported in Tables 4 and 5. For comparison, the first column
in Table 6 lists the posterior distribution af’ from Table 4 corresponding to the prior af
with . = 0 ando”, = 1.00%. The columns under the line “OLS Alphe?“*" report the
small-sample posterior distribution af2X%. The column labelled “Full” reports the results
based on the full specification of the conditional CAPM, while the other columns set various
parameters equal to zero. In all cases, we use an effectively diffuse pridr with pre =0
ando’ . = 1.00% and estimate the full model over the full sample.

8 Most studies on small sample effects, or sample problems, or “Peso problems” usually focus on term structure
(Bekaert, Hodrick and Marshall, 2001) or foreign exchange markets (Evans, 1996), or the aggregate stock market
(Rietz, 1988). In contrast, we focus here on small sample inference in the cross-section for the book-to-market
trading strategy.
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Under the line “With Parameter Uncertainty,” we report the posterior distribution of the
small samplex?™® statistic taking into account parameter uncertainty. The mean of the small
sample posterior distribution of?-° at 0.43% per month is largely unchanged from the pos-
terior mean of the population®”® in Table 5 at 0.45%. However, the small sample posterior
distribution ofa$X° now has a much wider standard deviation of 0.50% per month, compared
to the population standard deviation of 0.20% per month in Table 5. The wide tails of the small
samplea?™S distribution are shown in the percentiles, which range from -0.35% at the 5%-tile
to 1.27% at the 95%-tile. The post-1963*° estimate of 0.60% per month corresponds to the
67%-tile. Clearly, a conditional CAPM can easily generatéidh® with a value of 0.60% per
month and the posterior 95% confidence bounds of the conditional alpha comfortably encom-
pass zero. In other words, a conditional CAPM can produce outcomes in wiifchappears
large in one small sample but equals zero in another small sample, particularly when these small
samples are only of approximately 40 years in length.

To show that the sampling variation of is not causing the bias and the large tails of the
small samplex?™° distribution, we next consider setting’ = 0 in the second column under
the line “With Parameter Uncertainty.” Setting’ = 0 produces a lower mean of the small-
sample posterior distribution ef?X“, but the variation around the mean is largely unchanged
at 0.47% per month. The value of 0.00% per month now falls at the 33%-tile and still makes a
small sample draw af?%% = 0.60% per month unsurprising.

In the next column, we set,s = 0. Under this assumptiomy?* in the unconditional
CAPM regression (1) provides a consistent estimate“ofwWhile an appropriate HAC standard
error may be valid asymptotically, HAC standard errors may vastly understate the tails of the
small sample distribution of$*° because the time-varying betas are very persistent. This is
indeed the case. The mean of the small-sample posterior distributigi¥dfis identical toa”
at 0.23% per month, but the posterior distributiom&f* has a much wider standard deviation
than the posterior distribution of° (at 0.49% and 0.19% per month, respectively). Finally, if
we set botm® = 0 andp,s = 0, the small-sample posterior distribution @ is centered
around zero, but still has a very wide posterior standard deviation of 0.46% per month.

Under the line “Without Parameter Uncertainty” in Table 6, we compute the small sample
a5 posterior distribution at the posterior meardpfather than using the entire distribution of
6. Not surprisingly, disregarding parameter uncertainty produces smaller variation of the small
samplea2L9 statistics, but the posterior standard deviations are only slightly smaller than the
standard deviations taking into account parameter uncertainty. Thus, disregarding parameter
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uncertainty does not quantitatively change our results. In all cases, a point estim&te’ of

0.60% per month does not lie anywhere near the upper 10% tail of the small sample posterior
distribution of «$*°. In summary, a time-varying one-factor model can easily produce what
appears to be an anomalous result using OLS alphas with standard asymptotic statistics in small
samples, but with correct statistical inference that takes into account time-varying betas, the
OLS alphas are statistically insignificant.

Comparing Small Sample and Standard Asymptotic OLS Alpha Distributions

In Figure 5, we compare the posterior small-samgfé® distributions of the book-to-market
strategy (in the solid lines) taking into account parameter uncertainty to the asymptotic distri-
bution under the null that®>® = 0 in the regression (1), using a Newey-West (1987) standard
error estimate (in the dashed lines). In Panel A, we plot the small-sarfipfedistribution for
the full parameter specification corresponding to the coluad¥® Full” in Table 6 under the
line “With Parameter Uncertainty.” Under this specification, we do not impose any parameter
constraints. Using the classical asymptotic distribution, we would reject the nulithét= 0,
since the area lying to the right 625 = 0.60% per month is 0.006. In contrast, the exact,
small-samplex?%9 distribution is biased and has much wider tails than the robust asymptotic
distribution that assumes constant betas. Under the posterior distributigffdf the point
estimate ofa2L% = 0.60% per month is no longer reliably different from zero, since 31% of
the posterior small-sample?>® distribution lies to the right of the 0.60% line.

In Panel B, we plot the small-sample posterior distributiongf* imposing the constraint
that the conditional alphay®, is zero. This panel clearly illustrates the difference between
our results and the conclusions of Lewellen and Nagel (2005). Lewellen and Nagel note that
allowing for a correlation between conditionals beta and conditional market risk premia shifts
the mean of the distribution @f2%* to the right about 10 basis points per month. They argue
that the magnitude of the mean shift cannot be large enough to shift the small-sample posterior
distribution of a2L% all the way to 0.60% per month. We find a slightly larger shift in the
posterior mean of 20 basis points per month. However, whereas Lewellen and Nagel (2005)
use uncorrected standard, asymptotic OLS theory that assumes constant betas to make their
inferences, we find a large posterior standard deviation in the distributiaf’of induced by
a conditional CAPM with time-varying betas. Our true, small-sample posterior distribution of
2% has thick tails, so that 15% of the distribution lies to the right of the point estimate of
a@Ls = 0.60% per month.
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In summary, although the OLS point estimated§f® appears to be large at 0.60% per
month over the post-1963 period, the small sample distribution?4f shows that it is not
unusual to observe OLS alphas of this magnitude in small samples of 462 observations. From
this point of view, it is not surprising that Cooper, Gutierrez and Marcum (2005) find that
book-to-market strategies have difficulty beating the market return in out-of-sample investment
strategies in the post-1963 period, despite the conventional OLS evidence of a strong in-sample
book-to-market effect over this period. Using statistical inference to take into account time-
varying conditional betas, we find little evidence of any book-to-market effect either over the
long run, or over the post-1963 sample. Hence, the book-to-market effect may be similar to the
size effect, which may be due to incorrect statistical inference (see Chan and Chen, 1988; Knez
and Ready, 1997).

6 Conclusion

The book-to-market effect appears to be a strong CAPM anomaly that many researchers con-
sider to be a significant risk factor (see for example, Fama and French, 1993). Over the post-
1963 sample, the book-to-market trading strategy generates an OLS alpha of 0.60% per month.
Using a Newey-West (1987) estimate of the asymptotic standard error, the post-1963 book-to-
market premium appears to be highly statistically significant with a p-value of less than 1%. In
contrast, over the pre-1963 sample, the book-to-market strategy generates an OLS alpha of neg-
ative 0.16% per month and is not statistically significant. The difference across the two samples
can be attributed to time-varying betas in which betas change slowly over time.

Inference of conditional alphas from a conditional CAPM model using unconditional OLS
regressions is highly misleading when factor loadings are vary over time. In particular, there
is strong evidence that the conditional betas for book-to-market portfolios are time-varying.
Conditional betas for the book-to-market strategy, which goes long the highest decile and short
the lowest decile of stocks sorted by their book-to-market ratios, range from over 3.0 during the
late 1930s to close to negative 0.5 at the end of 2001. When conditional betas are correlated
with market risk premia, OLS estimates of alphas are biased, inconsistent, and their asymptotic
distributions are severely distorted from standard OLS theory, which assumes constant betas.
There is no way to correct the degree of inconsistency or the degree of the distortion without a

9 Since the size effect was discovered by Banz (1981), the size effect has been negligble. From 1981 to 2001,
Fama and French’s (1993) SMB size factor has almost a zero premium (-2 basis points per month).
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direct knowledge of the time-variation of the conditional beta process.

We propose and directly estimate a conditional CAPM with latent time-varying conditional
betas, market risk premia, and stochastic systematic volatility. We find that only an investor with
a strong, dogmatic belief in the book-to-market effect would conclude that the conditional alpha
of the book-to-market strategy is positive both over the long run, from 1927-2001, and over the
post-1963 subsample. Using an effectively uninformative prior, there is little evidence to con-
clude that the conditional alpha of the book-to-market strategy is different from zero. Since the
estimates of betas of book-to-market portfolios are highly correlated with time-varying market
risk premia, the distribution of OLS alphas are very dissimilar to the distribution of conditional
alphas. In particular, the exact OLS alpha distributions are rather disperse in small samples.
Thus, observing a point estimate of an OLS alpha of 0.60% per month over the post-1963 sub-
sample is not at all surprising, even when the true conditional alpha is zero. Indeed, given
the time-variation in betas, it is not surprising to observe a high OLS alpha in one small sam-
ple, such as the post-1963 sample, but a zero OLS alpha in another small sample, such as the
pre-1963 subsample.

Furthermore, our work shows that in testing for CAPM anomalies, researchers should be
very careful using asymptotic normal distributions to conduct statistical inference if the be-
tas of their test portfolios vary over time. In environments with time-varying factor loadings,
asymptotic OLS distributions cannot be used for statistical inference because OLS is biased
and inconsistent. Furthermore, the distortions from the standard limiting OLS distributions that
do not take into account time-varying betas cannot be corrected without directly estimating the
conditional betas. Our results emphasize the importance of taking into account time-varying
factor loadings before declaring a cross-sectional return pattern anomalous relative to a condi-
tional CAPM.
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Appendix

A OLS Estimators Under Stochastic Coefficients

This appendix derives the asymptotic distribution of OLS estimators when the true model has stochastic coefficients
and stochastic regressors. Suppose that the true model is:

Ye = a+ By + &4, (A-1)

wheree, o N(0,52) is an independent shock. Moreover suppose that both the coeffigieahd the regressor,
x4, are stochastic witky, Iy N(B, o—%) andz; Iy N (pe, %), andg, andz, have correlatiom,. 5. Suppose that

the sample ha® observations. If we denot& = /3; — 3, the model in equation (A-1) can be rewritten in matrix
form as:

Y =XB+7Z+e, (A-2)
Y1 1 = Bz €1

whereY = CoLX= ,B:[%],Z: : ,ande =
YT 1 zp Bz er

Suppose that an econometrician obtains misspecified OLS estirﬁaﬁe@i, B]’ overT observations. Specif-
ically, we estimate: .
B=(X'X)"'X'Y. (A-3)

We can write the OLS estimatds, as .
B=B+ (X'X) 'X'¢", (A-4)

wheres* = Z + ¢ is the error term relative to the OLS estimation. Equation (A-4) suggests that the OLS estimator,
B, is subject to at least three distinct problems:

1. unlessp,5 = 0, B is subject to an omitted variable biasZi
2. ¢* is heteroskedastic iX,
3. and furthermore, unlesé is 1ID, OLS residuals are serially correlated.

Therefore, even ip,3 = 0, OLS standard errors understate the true variance because of heteroskedasticity and
have additional distortions i is not IID (say, for instance, i is positively autocorrelated). Whens = 0, one

can potentially use a HAC estimator of the residual variance. However, this correction is only valid asymptotically.
Much more serious problems that cannot be corrected by HAC estimators ariseyyhgr0.

A.1 The Inconsistency of3

The expectation of the OLS estimator is:
E[B] = B+ E[(X'X) " 1X'Z] 4+ E[(X'X) " 1X'e]. (A-5)
Sinces; andz, are jointly normally distributed with correlatign, g,

* 230
R[5 ] = P27 2 — ).

x

By taking the expectation of equation (A-5) conditionalX¥nwe can write:

—1
E[BX] = B+E GX’X) ;X’Z‘X +0,
-1
P2B03 1o LY (e — pa)a
= B+ | =X'X| = X|.
* O (T > T{Z(mt—uz)xf
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2 2y
Since, plin{1 X'X)~1 = 2, { (uﬁ%) pe ] Ele?] = (u2 + 02), andBz?] = (43 + 3p.0?), the

unconditional expectation b is given by:

N popos 1 [ (u2+02) —pia a;
E[B] = B Oz OT% |: —Haz 1 zﬂwai 7
2 9
_ g Pas%s [ or — } . (A-6)
Oy g

Therefore, unlesg,3 = 0, OLS is biased and inconsistent. We denote this inconsistency as:

o) = 4@k —Eaghs] M P of — u)
andg® = peLs — E[pgrs] B 2R, (A7)
A.2 Asymptotic Distribution of v/T'(B — E[B])
We begin by writing:
b
B-EB|=- [ gb } + (X'X)"IX'Z 4 (X'X) "X, (A-8)

wherea® and3? are the asymptotic bias terms in equation (A-7). By the independengevef have:
var(B — E[B]) = var{(X'X)"'X'Z] + 7*E[(X'X)"!]. (A-9)

The second term of equation (A-B?E[(X’X)~1], is the regular standard error obtained by OLS with stochastic
regressors. Notice that 85— oc:

2 =2

" lops + z o_ mL
SE(xx)- P | “2)3 He g2 ] (A-10)

,Uf:co.z oz

The additional variance term in equation (A-9) is caused by the stochastic coefficifiotanalyze this term,
we definez = 1 3"z, andS,, = (7 > 27) — 2. This allows us to write:

_ 1 [ A8, +2%2 -z S Bz
/ 1~/ — Tz t -t _
S TR L [ 2o )
If we also definer; = 2, — z and3* = £ 3 3;, we can simplify the expression as follows:
_ 1 [ Sy +2? -z P Bray + 1 BT
X/X 1X/Z - |: T " :| |: T tz t t L B ,
XX S.l -7 P Gt S a4 Y 5
1 ”Zﬁ?l’f szzr > Bfxy + 8 TZﬂtf:|
= — I e . (A-12)
Saca: |: TZﬁtxtz TZﬂtxt

By making this expression mean zero and usipg = % S™ 232, we have:

?

—z2 * ok ol * 2z *

IN\=1x/7 b ] 1 125:@& II Zﬁtxt_Tfo"‘ST*Z/B
(X X) X'Z ﬁb - S * *2 T %k ﬁb *2
T TZﬁtxt TZ@:”%‘TZ%

or equivalently we can write:

VI(B BIB]) = =

—3 Y B0 + (Saw — 72 X Bf 7t — ¥ L i’ + S 67 (A-13)
Zﬁ:x:Q"‘wZﬂt% 51)2@2 .
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Since the expression on the RHS of equation (A-13) has a mean of zero, we can apply a standard Central Limit

Theorem to derive the asymptotic distribution\@(ﬁ - E[B]). We compute the asymptotic variance of the RHS
of equation (A-13), using the following lemma:

Lemma:

Suppose: andy are two mean-zero normally distributed random variables with varlajicaado— and correlation
p. Consider the variableg' andZ? defined as:

7zl = clx2y + coxy + csz? + c4y
and 7% = diz’y+ doxy + d3z® + dyy. (A-14)

Moreover, suppose that; + c3 = 0 andbdy + d3 = 0, whereb = %’ Then, the covariance betwe&n and Z>2
is given by

cov[Z', 2% = c1dy (3 + 12p2)050§ + cada(1 — p2)0§0§ + (c1dy + cady) (1 + 2p? )U o2+ C4d40’ (A-15)
Proof: To compute means and variances0f and Z2, we first take conditional expectations given The

conditional distribution of; givenz is normal, with a mean dfz and a variance dfl — p*)o2, whereb = po,, /o,
Hence, we can derive:

E[Z!|z] berx® + (beg + c3)x? + beyr,
E[Z'] = (bcy+c3)o? =0. (A-16)

The expression foE[Z2] is similar.
To derive the covariance, we first expand:

E[Z'Z?] = E[cidiz*y? + (c1da + cody)x®y? + (c1ds + csdy)xty + (crdy + cady)z?yP cadoa®y?
+ (Cng + ngQ)l’3y + (62d4 + C4d2)13y2 + 63d3I4 + (63d4 + C4d3)l’2y + C4d4y2].
SinceE[y|x] = bz and vafy|lz] = (1 — p®)o;, we haveE[y?|z] = (1 — p*)o; + b*z*. We also note that

x|
E[z5] = 1508 andE[z*] = 3¢2. By first conditioning onz, and noting that the odd moments of a normal
distribution are equal to zero, we can compute the expectations of each term:

Blty?) = BI(1- )02 +12%)at) = (3 + 120)020%,
Elz%y% = 0,

E[lz'y] = 0,

By = BI(1- )02 + 1202 = (1+2%)0%02
E[z*y] = E[bz*] = 3po,0,.

Using these expressions, we can derive:

cov(z',Z?) = E[z'Z? - E[Z'E[Z?],
= adi(3+12p%)0,0, + (cada + c1dy + cady) (1 + 2p* )00
(ng3 + ngg)(ng'J ) + 3C3d30’ + C4d40’

— <Fm—y02 + 63) <yd2 + d3> O';l. (A-l?)
Oy Oy
By imposingbcs + ¢3 = 0 andbd, 4+ d3 = 0, we obtain equation (A-15), which completes the prdibf.

We can use the lemma, together With Slutsky’s Theorem, to derive the asymptotic variafit€idf- E[B]).
We use Slutsky to take the plims of i e and .Sy, plins o2. Then, we compute the asymptotic variance of
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VT (B — E[3]) by using the lemma and setting = dy = 1, ¢; = dy = pig, c3 = d3 = L2228 1, and
¢y = dy = 0to obtain:

ANar [VT(32LS —B[APE5))] = (3 +12p0%)0% + (1 = pug® 2 5 + 2. (A-18)

By settingc) = dy = — iz, 2 = do = 02 — p2, c3 = dz = ~£22%2 (52 — 42), andcy = dy = p,02, we obtain:

Oz

2 =2
A A o o
ANar [VT(a25 — E[a25])| = (10pss?)u203 + (1= pas®) ok + pid) =5 + (02 + 122) (A-19)

o2

Finally, by settinge; = — i,y c2 = 02 — p2, c3 = ‘ 02 —u2), ey = ppot,dy = 1,dy = g, ds =
%ﬁ“%w, andd, = 0, we can compute the asymptotic covariance betwgéii3 — E[3]) andvT (& — E[d]),
which is given by:

—PeB o
;[3 [3(

2 =2
- U,B o
(1+ llpmﬁz)ﬂmag +(1- pxﬁz),ufc; + ,Lt.ac? . (A-20)

B Estimating the Model

We estimate the model described by equations (13) to (15) by Gibbs sampling and MCMC. In particular, we
estimate the process for the betas and the market risk premium by using the forward-backward algorithm of Carter
and Kohn (1994). We estimate the latent stochastic volatility process of the market by adapting the single-state
updating algorithm of Jacquier, Polson and Rossi (1994, 2004) to accommodate correlation witedlation.

In general, the individual parameters of equations (13) to (15) can be updated using standard conjugate draws,
except we use informative priors for some of the auto-correlation and correlation parameters.

In each of our estimations, we use a burn-in period of 3000 draws and draw 10,000 observations to represent
the posterior distributions of parameters and latent variables. Our results are generated using Ox version 3.32 (see
Doornik, 2002). Since this model is highly complex, our estimation is probably not the most efficient, but we
are confident in its convergence. The autocorrelation of the posterior draws are low, and most importantly, the
estimation method works very well on simulated data.

We repeat the conditional CAPM here for ease of reference:

rig = o+ B+ 0e,
Tmgt = Mt + V€mt,
B = o+ dpBi-1+ opesy,
He = po + Qulti—1 + O,
and Inv; = vo+ ¢plnvi_q + 0yey s, (B-1)

where the correlations between all the shock terms are zero ék¢gpte, ) = pu» andE(e, +e5+) = pup. The
full set of parameters we draw (8, {u:}, {5t }, {v: }), where
0= (/~LO % Ou Vo v Oy Puv Bo ¢p oo a“ p,uﬁ)

is the set of parameters of the model (B<lj}; } is the vector of conditional betas, afid: } ({v:}) is the vector of
latent conditional means (variances) of the market. Denote the databy(r,, ., ;) and the full set of data as
Y = {y;}. We can break equation (B-1) into several conditional distributions:

1. p(Y0,{8:},{u:}, {v:}) is the distribution of the data given the conditional betas, conditional means and
conditional volatilities of the market,

2. p({ue}, {B: 116, {v:},Y) is the joint distribution of the conditional betas and conditional means of the mar-
ket, which is an VAR(1) process with correlation betweegrand3;,

3. p({ve}|0, {pe}, {0:},Y) is the distribution of the conditional market variances, which is a log-normal
AR(1) process, and finally,
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4. p(0) reflects the prior belief about the parameters of the process in (B-1).

The Gibbs sampler involves iterating over the following sets of parameters and states, conditional on other
parameters and states:

P1) Latent Conditional Beta and Market Premium State$:: }, {3:}

P2) Latent Conditional Market Variance States {vs}

P3) Market Premium Regression Parameters 1o, Du

P4) Conditional Beta Regression Parameters Bo, 3

P5) Conditional Variance Regression Parameters V0, o

P6) Conditional Alpha a’

P7) Volatility Parameters 0y 0v,08,0
P8) Correlation Parameters Puv, Pus

Drawing the Conditional Betas and Market Premium Process (P1)

We draw{u., 5} jointly using the multi-move Carter-Kohn (1994) forward-filtering backward-sampling algo-
rithm. This entails running a Kalman filter forward with the state equation:

pe—p\ _ (Pu O\ (-1 — [ i
(@B)‘(é @)(@45>+W’ (8-2)

2
whereu; is normally distributed bivariate shocks with the covariance maérix Tu Puppas ) andp =
Pupoudp 953

po/(1 — ¢,) and3 = By/(1 — ¢) are the unconditional means pf and 3;, respectively. We ensure that we
match the sample unconditional mearngfin each iteration. There are two observation equations in the Kalman
system. First, as Johannes and Polson (2003) note, the observation equation for the market is a heteroskedastic
observation equation:

T = G+ (e — B) + V0rEmt, (B-3)

whereu, is known. The second observation equation for the stock return is:
Tit = a® + Bring + Tma(Be — B) + iy, (B-4)

which is an observation equation with time-varying coefficients singg is known. The time-varying constant
termisa® + 0Brm, and the time-varying factor loadingsg, ;. Once the Kalman filter is run forward, we backward
sample through time following Carter and Kohn (1994).

Drawing the Conditional Market Volatility Process (P2)

Updating the volatility states requires single state updating (see Jacquier, Polson and Rossi, 1994, 2004). For a
single state update, the joint posterior for volatility is:

p(Ut‘Utfla Viy1, 0, {Mt}7 Y) o8 p(ytﬂ\,ut, Ut)P(Ut|Ut717 Ht—1, Nt)p(vt+1|vt7 Mt Mt+1)~ (B-5)

Note that we have set,3 = 0 (from Brandt and Kang, 2004), so the draw{et } is unaffected by{5;}.

Denoted}’ = p;—po—¢,pu—1 as the time residual of the:, process. To find the distributiqriv, [ve—1, g, pe—1) =
p(velvi—1, €l'), we use the fact that' andln v; are jointly normal. Hence, the distribution bfv; conditional on
e}’ is normally distributed:

Inv; ~ N (vo + ¢y Inve_y + %703(1 - wa)> :
o

This implies that we can write:

(In vy —vg — by Invy_y — L2272¢})?
- . (B-6)

p(velvg_1,€l’) ocexp | —
o 20—5(1 - piv)
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The other two expressions in equation (B-5) are:

R
P(Yer1lpe, ve) o Ufl/Q exp <—(yt+12vut)> (B-7)
t
and ( s g 2
1 Invipr —vo — ¢y Invy — =264
M "
Ploeralon, ) o ) exp (‘ 32— 72 (®-6)

Substituting equations (B-6) through (B-8) into the joint posterior (B-5), combining the log-normal terms, and
completing the square, allows us to write:

_ — 2 Inv, — )2
p(Ut"Ut_l, Vt+1, 03 {Nt}v Y) X Uy 5/2 exp 7M €xp 7% ) (B'g)
2’Ut 20
where -
. vo(l=dv) + du(Invey + Invpg) + 2272 (e — duefyy)
e = (1+02)
and

*2 _ 012)(1 - pfw)
1+ 2
If p.o = 0, then the posterior distribution in equation (B-9) reduces to Jacquier, Polson and Rossi (1994). Since

this distribution is not recognizable, we use a Metropolis draw. As suggested by Cogley and Sargent (2005), we
use a log-normal density as a proposal:

1 o ,%)\2
q(vy) oc vy texp _ (v = ) . (B-10)
20*2

The acceptance probability for tie + 1)th draw is:

bt 7 1 o 1 1
= - — -] B-11
7 exp { Q(yt+1 [it) (vtgﬂ Ufﬂ ( )

To draww, at the beginning and the end of the sample, we integrate out the initial and end valuéy dffawing
from the log-normal AR(1) process in (B-1), following Jacquier, Polson and Rossi (2004).

Drawing 1o and ¢,, (P3)

It is hard to pin downp,, without imposing prior information. In the predictability literature, excess market returns
are generally predicted by very persistent variables, such as dividend yields, short rates and term spreads. In
theoretical models, expected excess returns vary over business-cycle frequencies and, therefore, are very persistent.
Our procedure for drawing,, is to use a Random-Walk Metropolis algorithm with a random walk proposal,for
bounded fronp, to ¢;;. Because the random walk is bounded, this is equivalent to drawing from a uniform over
o1, to oy. We setpr, = 0.900 andgpy = 0.999.

The acceptance probability for tie + 1)th draw is:

(e~ )| 12

{ 1

exp | —
2072

whereey, is the vector of residuals of the, innovations{(u; — uf — ¢%u:—1)} from thegth draw. Oncep,, is

drawn, we computg, to match the unconditional market risk premium in dathy settinguy = (1 —¢,,). This

is to ensure that the spread of average returns induced by the time-varying betas of the book-to-market portfolios

is not being influenced by an implied average excess market return that is far from the data.
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Drawing (3, and ¢g (P4)

Given a normal prior, the posterior distribution fég is also normal (see Zellner, 1971). We set the normal prior
for 3y to have zero mean and a variance of 1000.

To draw ¢, we set up an Independence Metropolis draw to use prior information to help ideptifyVe
use a normally distributed prigi(¢z) and drawps from a uniform proposaj(¢s), bounded betweegi, and¢y.
Our approach to specifying a prior @ is as follows. We use our estimates about the mean reversion rate of the
60-month rolling betas in Table 2 to help formulate our priorggnFor each portfolio we estimate, we impose a
uniform distribution from four standard errors below the implied valueg;dd 0.9999 as our prior otis.

The acceptance probability for tiig+ 1)th draw is given byr(¢9*") /7 (¢5?), where the posteriat(¢s) =
p(Y|{B:},0)p(¢p) is conjugate normal. This is because the likelihgd® |{3;}, 6) is normally distributed from
the equation for; ; and; in equation (B-1) since the market,, ; is known:

it = o + Bermt + T€iy
and By = [o+ ¢pBi-1+0sess

Drawing vg and ¢,, (P5)

Conditional on volatility, the parameterg and¢,, are just regression parameters. These parameters can be updated
by a standard conjugate normal draw (see Zellner, 1971).

Drawing o (P6)

Given a normal prior, the posterior distribution fef is a straightforward regression draw (conjugate normal). The
choice of priors for“ varies as we change the prior mean and prior variance to reflect effective non-informative
priors or priors that represent dogmatic belief. For example, for the parameters reported in Table 3, we use a prior
normal with zero mean and standard deviation of 1.00% per month.

Drawing ¢, 0y, g, and & (P7)

We update the volatility parametess, and o, using standard Inverse Gamma (IG) conjugate draws, assuming
IG(vg, 1) priors (see Zellner, 1971). In all cases, we choose priorsmith 11 = 0.

Drawingog anda is more complicated because we want to constrain the variance of the stock return implied
from 6 to match the variance of the stock return in data. This ensures that the estimation does not cause the implied
variance of the stock return to be greater than that observed in data. The stock variance is given by:

var(ri) = 2var(ri,¢) +var(B,) (um, + op,) + 0%, (B-13)

where vats:) = o3(1 — p5)/(1 — ¢3), ptm = E(rm ), andoy, = var(r,, ;). We first draw a candidat from

the residuals; ; — a® — B¢+ Using an IG conjugate draw. Then, we solve equation (B-13)forwhere the
values for vafr; ;), E(rn ), and vafr,, ;) are set at their estimates from data. If there is no solutiowm fothis
indicates that the implied idiosyncratic volatility and the volatility of the conditional betas result in a higher total
stock variance than what is observed in the data, so we discard and do not update the candidatesdraw for

Drawing p,,, and p,,3 (P8)

To impose prior information on the correlation parameters, we use an accept/reject Metropolis algorithm with a
normal prior. The resulting posteriaf(p) is derived by Bernardo and Smith (2002, p363), which involves the
sample correlation estimate and hypogeometric functions. We draw from a uniform proposa}, oxer-1 to

pu = +1. The acceptance probability for tig + 1)th draw is given by:

m(p™h)
m(p9)

wherey is the prior mean and? is the prior variance.

exp (=g ll07 = 0)? = (77 = o)) B-14)
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For p,..,, we have strong prior belief that,, is negative through the leverage effect. Weget= —0.6 with
oo = 0.2. Sincep,s is a crucial parameter for inferring the OLS alpha, we choose the prior paramejgys tof
be effectively diffuse, withuy = 0 andog = 0.5.
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Table 2: Summary Statistics of the 60-month Rolling Betas
Book-to-Market

Value  Growth Strategy
60" Autocorrelation 0.629 0.509 0.652
(0.129) (0.153) (0.134)
Implied Monthly Autocorrelation  0.992 0.989 0.993
(0.003) (0.005) (0.003)
Std. Deviation 0.377 0.108 0.468

This table reports the monthly mean-reversion parameter of the OLS betas, which are estimated by rolling 60-
month OLS regressions. For each portfolio, we estimate the market beta over each 60-month subsample over
the period July 1926 to December 2001. We compute their 60th autocorrelations and take their 60th roots as
measures of the implied monthly mean-reversion parameters under the null of an AR(1) process. We also report
the unconditional standard deviation of the 60-month rolling OLS betas. The “value” stock portfolio is the highest
book-to-market (decile 10) portfolio, while the “growth” stock portfolio is the lowest book-to-market (decile 1)

portfolio. The “book-to-market strategy” represents returns on a strategy that goes long value stocks and goes short
growth stocks.

43



Table 3: Model Parameter Estimates

Market Parameters Stock Return and Beta Parameters

Value  Growth Bk-Mkt

Lo 0.001 B3, 0014 0021 0.001
(0.001) (0.007) (0.007) (0.002)
bu 0.956 ¢s 0988 0981  0.992
(0.005) (0.003) (0.005) (0.003)
o, 0.004 o3 0168 0.132  0.065
(0.001) (0.026) (0.029) (0.016)
vo -0.361 & 0063 0034 0.052
(0.638) (0.022) (0.007) (0.002)
bo 0.941 o 0.000 -0.002 0.002
(0.110) (0.002) (0.001) (0.002)
o 0.274 pus 0759  0.882  0.408
(0.177) (0.086) (0.015) (0.127)
puw  -0.093
(0.083)

We report posterior means and standard deviations of parameters for the model:

Tt = a® + Berm.t + 0€it,
Tmgt = M+ V€mt,
Bt = Bo+ ¢pbi-1+ 0pest,
e = po T+ Qupi—1 + OpEp
and Invy = vo+ ¢y lnvi_1 + oyepy,

wherer; , is an excess rate of return on a portfolio ang; is the excess rate of return on the market portfolio. The
return shockss; ; ande,,, ;, are independent standard normals. The conditional mom@nis,, andln v, follow

latent AR(1) processes, where the shoeks,, <,, ;, ande, ;, are standard normals. The correlation betwsgn

ande,, ; is p.3, the correlation between), ; ande, ; is p,..,, and the correlations between other error terms are zero.

We separately estimate each portfolio with the market as a pair, but the estimates of the market are almost identical
across all three portfolios. Value (growth) stocks refer to the highest (lowest) book-to-market decile portfolio. The
column labelled “Bk-Mkt” refers to the return on a strategy of going long the value stock portfolio and going short
the growth stock portfolio. All models are estimated over the full sample from July 1926 to December 2001, and
we use a normal prior on® with zero mean and a standard deviation of 1% per month. We list the priors of other
parameters in Appendix B.
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Table 4: Conditional Alphay©, of the Book-to-Market Strategy

Prior Distribution ofa®

/#;c 0.00 0.00 0.00 o0.00 0.60 0.60 0.60 0.60
ggc 0.10 0.30 0.50 1.00 0.10 0.30 0.50 1.00
Mean 0.06 0.22 0.20 0.23 050 0.33 030 0.24
Std Dev 0.09 0.17 0.18 0.19 0.112 0.17 0.18 0.19
Percentiles

0.010 -0.16 -0.20 -0.23 -0.23 0.20 -0.03 -0.13 -0.21
0.025 -0.12 -0.13 -0.15 -0.14 0.26 0.03 -0.05 -0.12
0.050 -0.09 -0.07 -0.09 -0.08 0.31 0.08 0.01 -0.06
0.100 -0.06 -0.01 -0.02 -0.01 0.37 0.13 0.06 0.01
0.250 0.00 0.10 0.09 0.11 0.44 0.22 0.17 0.2
0.500 0.06 0.23 0.20 0.23 051 032 029 0.24
0.750 0.11 038 0.32 0.35 058 044 043 0.36
0.900 0.17 038 0.43 047 0.63 055 053 049
0.950 0.20 041 050 054 0.67 062 058 0.56
0.975 0.24 047 056 0.61 0.70 0.68 0.64 0.63
0.990 0.27 053 0.64 0.70 0.74 075 072 0.72

This table reports the posterior distribution of the conditional alpta, from the conditional CAPM described

by equations (13) to (15) for the book-to-market strategy, which goes long the decile 10 book-to-market portfolio
(value stocks) and goes short the decile 1 book-to-market portfolio (growth stocks). The table reports the posterior
distribution of the conditional alpha,, in equation (13). We vary the meau, ., and standard deviation; .,
of the normal prior distribution on® as we move across the columns. We report various percentile points of the
posterior distribution, in addition to posterior means and standard deviations. The table entries are expressed in

terms of percentage returns per month. The models are estimated over July 1926 to December 2001.

45



Table 5: OLS Alphan©%®, of the Book-to-Market Strategy
Prior Distribution ofa”

wo 0.00 0.00 0.00 0.00 0.60 0.60 0.60 0.60

C
aic 0.10 0.30 0,50 1.00 0.10 0.30 050 1.00
Mean 0.29 043 043 045 0.70 055 052 047
StdDev 0.14 0.17 0.20 0.20 0.14 0.19 0.21 0.21
Percentiles

0.010 0.00 -0.01 -0.04 -0.04 0.35 0.14 0.06 -0.01
0.025 0.04 0.06 0.04 0.05 0.43 0.21 0.13 0.07
0.050 0.08 0.12 0.11 ©0.12 0.47 025 0.19 0.14
0.100 0.12 0.20 0.18 0.20 0.53 0.32 0.26 0.22
0.250 0.19 0.32 030 0.32 0.61 0.42 037 0.34
0500 0.28 0.46 043 0.44 0.71 054 051 0.46
0.750 037 056 055 057 0.80 0.67 0.66 0.60
0.900 045 061 0.67 0.70 0.88 0.78 0.77 0.73
0.950 051 067 076 0.79 0.94 0.87 0.83 0.82
0975 056 074 0.84 0.87 0.99 094 091 0.9
0.990 0.64 082 093 0.96 1.05 1.04 101 1.00

This table reports the posterior distribution of the OLS alpkfal®, corresponding to a sample sizeBf= oo

from the conditional CAPM described by equations (13) to (15) for the book-to-market strategy, which goes long
the decile 10 book-to-market portfolio (value stocks) and goes short the decile 1 book-to-market portfolio (growth
stocks). We compute the posterior distributionnétS by simulating a time-series of 100,000 observations for
each observation in the posterior distribution of the model paramétefsor each simulated time-series, we
estimate equation (1) and record the estimai€d®. We vary the meamg <, and standard deviation,ic, of

the normal prior distribution on“ as we move across the columns. We report various percentile points of the
posterior distribution, in addition to posterior means and standard deviations. The table entries are expressed in
terms of percentage returns per month. The models are estimated over July 1926 to December 2001.
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Table 6: Finite-Sample OLS Alphas

Conditional
Alphaa® OLS Alphaa@ts
With Parameter Uncertainty Without Parameter Uncertainty
a® =0 a® =0
Full Ful =0 p,p=0 p,p=0 Full =0 p,=0 pu=0
Mean 0.23 0.43 0.20 0.23 0.01 0.42 0.20 0.24 0.01
Std Dev 0.19 0.50 0.47 0.49 0.46 0.42 0.42 0.42 0.42
Percentiles
0.010 -0.23 -0.75 -0.88 -1.07 -1.19 -0.57 -0.79 -0.83 -1.06
0.025 -0.14 -0.53 -0.68 -0.77 -0.90 -0.39 -0.62 -0.62 -0.85
0.050 -0.08 -0.35 -0.51 -0.56 -0.73 -0.23 -0.46 -0.45 -0.68
0.100 -0.01 -0.16 -0.33 -0.36 -0.54 -0.07 -0.30 -0.27 -0.50
0.250 0.01 0.12 -0.09 -0.06 -0.26 0.16 -0.07 -0.02 -0.25
0.500 0.23 0.41 0.17 0.24 0.00 0.41 0.18 0.24 0.01
0.750 0.35 0.71 0.46 0.53 0.27 0.67 0.44 0.49 0.27
0.900 0.47 1.03 0.77 0.83 0.55 0.94 0.71 0.74 0.51
0.950 0.54 1.27 0.98 1.03 0.73 1.13 0.90 0.91 0.68
0.975 0.61 1.48 1.21 1.23 0.92 1.32 1.09 1.07 0.84
0.990 0.70 1.78 1.49 1.47 1.17 1.56 1.33 1.28 1.05

This table reports the small-sample posterior distribution®f* from the conditional CAPM described by equa-
tions (13) to (15) for the book-to-market strategy for a small sample of Iehgth 462, which corresponds to

the length of the post-1963 sample. In the columns under the line “With Parameter Uncertainty,” we obtain the
small-sample posterior distribution of?~* by simulating time-series of 462 observations for each observation in
the posterior distribution of the model parametgrs-or each simulated time-series, we estimate the OLS alpha.

In the columns under the line “Without Parameter Uncertainty,” we disregard the effect of parameter uncertainty
on the small-sample posterior distribution®@f° by simulating only from the posterior mean of the posterior
parameter distributions. The first column repeats the posterior distribution fsbm Table 4 for comparison. The
columns under the line “OLS Alpha2Z5” report the small-sample posterior distributioncdf°. The columns
labelled “Full” report the results based on the full specification of the conditional CAPM, while the other columns
set various parameters equal to zero. In all cases, we use a normal priér with zero mean and a standard
deviation of 1% per month and estimate the full model over July 1926 to December 2001. All table entries are
expressed in terms of percentage returns per month.
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Figure 1: Estimates of 60-month Rolling OLS Betas for Book-to-Market Portfolios
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This figure shows the 60-month rolling OLS betas of the book-to-market decile portfolios from July 1931 to
December 2001 for the decile 10 book-to-market portfolio (value stocks) and the decile 1 book-to-market portfolio
(growth stocks). For each portfolio in each month, we estimate OLS beta using the past 60 months of observations
using the regression in equation (1).
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Figure 2: Time-Varying Market Risk Premia and Market Volatility
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We plot the estimates of time-varying market risk premia (Panel A) and market volatility (Panel B) obtained by a
Gibbs sampling estimation of the conditional CAPM described by equations (13) to (15). The dotted lines show a
one posterior standard deviation bound.
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Figure 3: Estimates of Time-Varying Betas for Book-to-Market Portfolios
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These plots show the inferred estimates of time-varying betas obtained by the Gibbs sampling estimation of the
conditional CAPM described by equations (13) to (15) for the decile 10 book-to-market portfolio (value stocks)
and the decile 1 book-to-market portfolio (growth stocks).
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Figure 4: Estimates of Time-Varying Betas for the Book-to-Market Strategy
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This plot shows the inferred estimates of time-varying betas obtained by the Gibbs sampling estimation of the
conditional CAPM described by equations (13) to (15) for the strategy of going long the decile 10 book-to-market
portfolio and going short the decile 1 book-to-market portfolio (the book-to-market strategy). The dotted lines

show a one posterior standard deviation bound.
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Figure 5: The Small-Sample Posterior Distribution of the OLS Alpha
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The solid lines show the inferred small-sample posterior distributiondf* from the conditional CAPM de-
scribed by equations (13) to (15) for the book-to-market strategy for a sample dize @62, which corresponds

to the post-1963 sample. Panel A graphs the distribution for the full model specification (without any parame-
ter restrictions) and Panel B graphs the distribution where= 0. In both panels, we account for parameter
uncertainty by simulating a time-series of 462 months and computing the OLS alpha for each; fi@mnt the
posterior distribution (consisting of 10,000 points) of the model parameters. For each simulated time series, we run
an OLS regression and record its estimatéd. The plots show the probability density function of the posterior
small-samplex?Z* in solid lines. We also plot the probability density function of the asymptotic distribution of
a®LS assuming constant betas under the null 4@t = 0 with a robust Newey-West (1987) standard error
estimate over the post-1963 sample in dashed lines. The figures also indicate the location of the null hypothesis
of a®E5 = 0 as well as the location of the empirically observég“® of 0.60% per month with vertical dashed

lines. The numbers on theaxis in each panel are in percentage returns per month.
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