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A conditional one-factor model can account for the spread in the average returns of portfolios sorted

by book-to-market ratios over the long run from 1926-2001. In contrast, earlier studies document

strong evidence of a book-to-market effect using OLS regressions in the post-1963 sample. However,

the betas of portfolios sorted by book-to-market ratios vary over time and in the presence of time-

varying factor loadings, OLS inference produces inconsistent estimates of conditional alphas and

betas. We show that under a conditional CAPM with time-varying betas, predictable market risk

premia, and stochastic systematic volatility, there is little evidence that the conditional alpha for a

book-to-market trading strategy is statistically different from zero.
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1 Introduction

Beginning with Basu (1983), many researchers have found significant evidence over the post-

1963 period of a book-to-market effect, where stocks with high book-to-market ratios have

higher average returns than what the CAPM predicts. This inference is based on conventional

OLS with asymptotic standard errors, which relies on the assumptions that factor loadings are

constant and that the market risk premium is stable. However, both of these assumptions are

violated in data. In particular, betas of book-to-market portfolios vary substantially over time.

For example, betas of the highest decile of book-to-market stocks reach over 3.0 prior to 1940

and fall to -0.5 at the end of 2001 (see also Kothari, Shanken and Sloan, 1995; Campbell and

Vuolteenaho, 2004; Adrian and Franzoni, 2005).

After taking into account time-varying betas and market risk premia, we find that the con-

ditional alpha of a book-to-market strategy, which goes long the top decile of stocks sorted by

book-to-market ratios and shorts the bottom decile of stocks sorted by book-to-market ratios, is

statistically insignificant in the long run. Strong evidence of a book-to-market effect can only be

found in the post-1963 subsample based on standard OLS inference that assumes betas and mar-

ket risk premia are constant. Thus, OLS inference is potentially misleading in small samples.

Over the long run from 1926 to 2001, there is little evidence of a book-to-market premium and,

under a conditional CAPM with time-varying betas, the market factor alone is able to explain

the spread between the average returns of portfolios sorted on their book-to-market ratios.

When betas vary over time, standard OLS inference is misspecified and cannot be used to

assess the fit of a conditional CAPM. Moreover, when betas vary over time and are correlated

with time-varying market risk premia, OLS alphas and betas provide inconsistent estimates of

conditional alphas and conditional betas, respectively. We prove that the magnitude of the in-

consistency in the unconditional OLS alpha, relative to the true conditional alpha, cannot be

determined without direct estimates of the underlying time-varying conditional beta process.

This is true even if higher frequency data or short subsamples are used. Moreover, the com-

mon practice of employing rolling OLS estimates of betas understates the variance of the true

conditional betas. The limiting distribution of the OLS alpha is also distorted from the stan-

dard asymptotic distribution which assumes constant betas. This distortion is intensified when

shocks are very persistent in small samples. Consequently, a large unconditional OLS alpha

may not necessarily imply the rejection of a conditional CAPM.

We estimate a conditional CAPM with time-varying betas, time-varying market risk premia,

and stochastic systematic volatility. We directly take into account the time variation of condi-
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tional betas in estimating conditional alphas, rather than relying on incorrect OLS inference.

Since conditional betas are very persistent, it is not surprising that small samples can generate

significant OLS alphas that do not take into account time-varying betas. Thus, our model can

explain the appearance of a book-to-market effect inferred from OLS alphas in the post-1963

subsample but not in the pre-1963 subsample, even when the true conditional alpha is constant

and close to zero.

Our modelling approach has several advantages. First, Harvey (2001) shows that the esti-

mates of the betas obtained using instrumental variables are very sensitive to the choice of in-

struments used to proxy for time variation in the conditional betas. Instead of using instrumental

variables, we treat the time-varying betas as latent state variables and infer them directly from

stock returns. Second, previous estimates of time-varying betas by Campbell and Vuolteenaho

(2004), Fama and French (2005), and Lewellen and Nagel (2005), among others, assume dis-

crete changes in betas across subsamples but constant betas within subsamples. That is, they

consider the variation across averages of betas in each window, but ignore the variation of the

betas within each window. In contrast, we treat betas as endogenous variables that slowly vary

over time and directly estimate them.

Third, we capture predictable time variation in both the conditional mean and the condi-

tional volatility of the market excess return. We model time-varying market premia by using

a latent state variable for the conditional mean of the excess market return, similar to Merton

(1971), Johannes and Polson (2003), Brandt and Kang (2004), among others. We use a stochas-

tic volatility model that provides a better fit to the dynamics of stock returns compared to the

GARCH models commonly used in the literature to model time-varying covariances (see com-

ments by Danielsson, 1994, among others). An additional advantage of our framework is that

we can take into account prior views on the strength of the book-to-market effect on conditional

alphas. Furthermore, we also explicitly examine the finite-sample bias in unconditional OLS

alphas and show how their posterior distributions differ from the distributions of conditional

alphas.

Over the post-1963 sample, a book-to-market trading strategy that goes long the highest

decile portfolio of stocks sorted on book-to-market ratios (value stocks) and goes short the low-

est decile portfolio of book-to-market ratio stocks (growth stocks) has an OLS alpha of 0.60%

per month with a robust asymptotic p-value, ignoring time variation of betas, of less than 0.01.

However, under a one-factor conditional model with time-varying betas, OLS alphas of this

magnitude frequently arise in small samples of around forty years. The 0.60% per month point
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estimate of the OLS alpha lies at the 67%-tile and more than 10% of the left-hand tail lies

below zero. In contrast, there is little evidence that the conditional alpha is statistically signif-

icant. Using a diffuse prior, more than 10% of the lower-left tail of the posterior distribution

of the book-to-market strategy conditional alpha lies below zero. Only an empiricist with an

extremely strong prior belief in the existence of the book-to-market premium would conclude

that a book-to-market premium exists. Thus, standard OLS inference grossly overstates the

statistical significance of the book-to-market premium, even when robust asymptotic t-statistics

are employed because it does not take into account time-varying factor loadings.

Our research goals are related to two contemporaneous papers by Lewellen and Nagel

(2005) and Petkova and Zhang (2005), who also examine whether a conditional CAPM can

explain the book-to-market effect. Lewellen and Nagel (2005) contend that no reasonable de-

gree of covariation in conditional betas and market risk premia can generate the high average

returns associated with value stocks in the post-1963 sample. However, they do not address

the non-existence of the book-to-market effect in the pre-1963 sample and do not incorporate

the larger variation in betas found over the long run from 1921-2001. In addition, Lewellen

and Nagel’s method of inferring the dynamics of time-varying conditional betas with a series

of OLS regressions with constant betas produces inconsistent estimates of both conditional al-

phas and betas. Petkova and Zhang (2005) also argue that while there is a positive correlation

of shocks to the betas of value stocks and shocks to the market risk premium, this correlation

is not high enough to explain the book-to-market effect. This correlation is only estimated in-

directly, through instrumental proxies for conditional betas and market risk premia. Neither

Lewellen and Nagel (2005) nor Petkova and Zhang (2005) examine the distortions induced by

time-varying betas on the asymptotic distribution of the OLS alphas, which has as much impor-

tance for statistical inference as the size of the bias in the OLS alpha.

Our results question the conventional wisdom that there exists a strong evidence of a book-

to-market effect. In particular, we find that a single-factor model performs substantially better

than previously believed at explaining the book-to-market premium. Whereas Davis (1994)

and Davis, Fama and French (2000) argue for the existence of a book-to-market effect prior to

1963 and advocate the use of an unconditional three-factor model, they neither examine the fit

of an unconditional one-factor regression nor estimate a conditional CAPM. We demonstrate

that a single conditional one-factor model is sufficient to explain the average returns of book-

to-market portfolios both post-1963 and over the long run. We do not claim that a conditional

CAPM is the complete model for the cross-section of stock returns. In particular, more powerful
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tests like the stock characteristic approaches of Daniel and Titman (1997) may be able to reject

multi-factor models and their implied conditional CAPM counterparts. Nevertheless, our results

show that a simple conditional single-factor model can account for a substantial portion of the

book-to-market effect and that the evidence for the book-to-market effect is not as strong as

previously believed.

The remainder of the paper is organized as follows. Section 2 discusses various aspects

of the book-to-market portfolio returns over the long run from 1926 to 2001. In Section 3,

we show that estimating time-varying betas by standard OLS estimators produces biased and

inconsistent estimates with distorted asymptotic distributions. We show that the magnitude of

the inconsistency and the distortion cannot be corrected without directly estimating the condi-

tional betas. In Section 4, we develop a methodology for consistently estimating time-varying

betas in a conditional CAPM. Section 5 presents the estimation results and examines the book-

to-market effect under parameter uncertainty, time-varying factor loadings, and small sample

biases. Finally, Section 6 concludes.

2 The Book-to-Market Effect Over the Long Run

We focus on the set of decile portfolios sorted on book-to-market ratios constructed by Davis

(1994) and Davis, Fama and French (2000).1 We use the return on a value-weighted portfolio

of all stocks listed on the NYSE, AMEX, and NASDAQ as the market return. All returns are

calculated in excess of the one-month Treasury bill rate from Ibbotson Associates. Our data dif-

fers from other contemporaneous studies in that we focus on the overall book-to-market effect.

Loughran (1997) notes that the book-to-market effect is much stronger among smaller stocks. In

contrast to our approach that focuses purely on standard book-to-market sorted portfolios, Fama

and French (1993, 2005), Lewellen and Nagel (2005) and Petkova and Zhang (2005) enhance

the book-to-market effect by placing greater weight on small stocks. These authors construct

2 × 3 or 5 × 5 size and book-to-market sorted portfolios. Section 2.1 reexamines the evidence

for the book-to-market effect using OLS one-factor regressions. In Section 2.2, we take a first

glance at examining the time-varying nature of betas of the book-to-market portfolios.

1 We obtain data on book-to-market portfolios from Kenneth French’s data library, which is at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/DataLibrary/.
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2.1 Returns on Book-to-Market Portfolios

In Table 1, we report average monthly raw returns and volatilities together with OLS alphas and

betas estimated from standard OLS regressions over various samples:

ri,t = α̂OLS
T + β̂OLS

T rm,t + εOLS
i,t , (1)

whereri,t is the excess stock return,rm,t is the excess market return, andεOLS
i,t is an orthogonal

shock. In equation (1), we denote the estimated alpha of the OLS model asα̂OLS
T , with an

OLS superscript to emphasize that it is an alpha constructed under the assumptions of OLS.

Similarly, we also distinguish the OLS estimate of systematic market risk exposure,β̂OLS
T , with

anOLS superscript. We append̂αOLS
T andβ̂OLS

T with T subscripts to emphasize that the OLS

estimates are computed over a sample size ofT . While α̂OLS
T andβ̂OLS

T in equation (1) should

also carryi subscripts to denote that they differ across stocks, we omit them for clarity.

Panel A of Table 1 lists summary statistics for the full sample from July 1926 to December

2001, while Panels B and C cover the subsamples from July 1926 to June 1963 and from July

1963 to December 2001, respectively. For each of these subsamples, we report alphas and betas

estimated by OLS, assuming constant alphas and betas over each subsample. We also report

statistics on a book-to-market strategy (“BM” portfolio) which is a zero-cost portfolio that goes

long the decile 10 book-to-market portfolio (value stocks) and goes short the decile 1 book-to-

market portfolio (growth stocks). We compute t-statistics of the OLS alphas using Newey-West

(1987) standard errors.

The first surprising result in Table 1 is that the alphas from an unconditional one-factor

model are insignificant for book-to-market sorted portfolios over the long run, from 1926 to

2001. In Panel A, which uses the full 75 years of data, there is a weakly increasing relationship

between the mean returns and the book-to-market ratios. However, once we control for the

market beta, the individual OLS alphas become insignificant and we observe no pattern between

the OLS alphas across the book-to-market deciles.2 In particular, the Newey-West t-statistic

for the difference between the OLS alphas of the lowest and highest book-to-market decile

portfolios is only 0.97.3 Much of the lack of a pattern in the alphas can be attributed to the

weakly increasing pattern in the betas. Similarly, over the 1926-1963 subsample reported in

2 Neither Davis (1994) nor Davis, Fama and French (2000) run a simple unconditional CAPM regression, or

test for the significance of size or book-to-market factors relative to an unconditional one-factor model.
3 A Gibbons-Ross-Shaken (1989) (GRS) test for joint significance of theα’s across all portfolios fails to reject

at the 5% level over 1926-2001. Even from 1963-2001, the GRS test p-value is only borderline significant with a

p-value of 0.05.
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Panel B, we also fail to find any evidence of a book-to-market effect, as the difference in OLS

alphas between value stocks and growth stocks is slightly negative, at -0.16% per month.

In contrast, most prior empirical work examining the book-to-market effect has focused on

the period after July 1963, which we report in Panel C. In this post-1963 subsample, the uncon-

ditional one-factor model fails. This latter sample has received significantly more attention than

the earlier sample because data on firm book values are readily available on COMPUSTAT after

this date. The raw average monthly returns of the portfolios over this period exhibit an increas-

ing pattern across the book-to-market decile portfolios. The difference in returns between the

value stocks and the growth stocks is 0.53% per month, with a Newey-West t-statistic of 2.16.

Once we control for the market factor in an OLS regression, theα̂OLS
T estimates become strictly

increasing and the spread in the expected returns widens to 0.60% per month, with a Newey-

West t-statistic of 2.51. Unlike the pre-1963 subsample, there is no pattern in the betas across

the book-to-market portfolios. This is the familiar result of Fama and French (1992, 1993), who

report a strong book-to-market effect in the latter half of the century using OLS alphas.

The main difference across the two subsamples is the presence of a pattern in the OLS es-

timates of betas in the pre-1963 subsample, but not in the post-1963 subsample. This finding

indicates two important facts. First, betas of the book-to-market portfolios appear to vary sub-

stantially across time. In the pre-1963 subsample, the OLS beta of the book-to-market strategy

is positive at 0.69 and is large enough to explain the performance of the strategy. In the post-

1963 subsample, the OLS beta is negative at -0.16 and can no longer explain the performance

of the book-to-market strategy. The second fact is that the unconditional OLS regression of

equation (1) is misspecified. The OLS specification assumes that betas are constant, but they

clearly differ across the two subsamples. We now examine in greater detail the time-varying

nature of betas across the long run from 1926 to 2001 and examine the implications of making

inference using a misspecified OLS regression described by equation (1).

2.2 Rolling OLS Betas of Book-to-Market Portfolios

We use rolling OLS betas estimated over shorter 60-month windows to provide some evidence

which suggests that the true conditional betas vary over time. While the rolling 60-month OLS

regression is a common procedure for assessing time-varying betas (since as early as Fama and

MacBeth, 1973), we emphasize later in Section 3 that rolling OLS betas do not directly reveal

the true betas since OLS estimates of conditional betas are misspecified. Nevertheless, rolling

OLS betas can provide some rough characterizations of the true conditional beta process. In
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particular, the rolling OLS beta estimates provide a glimpse of what the autocorrelation and

standard deviation of the true conditional betas are, and can be used to form a prior for our

estimates of the true beta data-generating process.

Table 1 shows a remarkable drift in the OLS betas of the book-to-market portfolios over

time. For example, in Panel B, from July 1926 to June 1963, stocks with the highest book-to-

market ratios have the highest betas. The decile 10 value stock portfolio has a high average

return of 1.24% per month and a corresponding highβ̂OLS
T of 1.66. In contrast, Panel C shows

that in the post-1963 subsample, stocks with the highest book-to-market ratios have an OLS

beta ofβ̂OLS
T = 0.95, but a very high average return of 0.91% per month. To visually illustrate

the variation in the OLS betas that we observe in the data, we plot rolling estimates of the market

OLS betas over time in Figure 1, similar to Franzoni (2004), Campbell and Vuolteenaho (2004),

and Adrian and Franzoni (2005). We compute rolling estimates of the time-varying betas by

regressing portfolio returns on the market return using rolling samples of 60 months.

Figure 1 shows that the rolling OLS betas of value stocks are highly persistent, but broadly

reflect a downward trend. In particular, the value stock OLS betas reach a high of 2.2 during

the 1940s and fall to around 0.5 in December 2001. Figure 1 also shows that the variation in

the OLS betas of the growth stock portfolio is much smaller than the variation of the value

stock OLS betas. Nevertheless, there is still some evidence that the OLS betas of growth stocks

have a slow, mean-reverting component. However, these 60-month rolling OLS betas are, at

best, 60-month averages of variation in the true conditional betas. Hence, these plots of time-

varying OLS betas strongly suggest that the true conditional betas also vary over time. Since

the rolling OLS betas of value stocks in Figure 1 resemble a random walk, we also expect the

true conditional betas to be very persistent.

In summary, a one-factor unconditional regression can account for the book-to-market ef-

fect over the full sample (1927-2001) and over the pre-1963 sample, but fails over the post-1963

sample. A one-factor unconditional regression produces largeα̂OLS
T estimates for the book-to-

market strategy only over the post-1963 sample. Moreover, betas of portfolios are not constant

as assumed in standard OLS specifications, but vary significantly across time. These results

have several implications. First, while the one-factor CAPM regression fails to reject the null

thatα̂OLS
T = 0 in the long run, this does not mean that we can conduct correct inference regard-

ing the true conditional alpha from a data-generating process with time-varying betas since OLS

regressions are misspecified. Similarly, while the OLS alpha of the book-to-market strategy is a

largeα̂OLS
T = 0.60% per month post-1963, this also does not necessarily imply that there exists
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a positive conditional alpha in the true data-generating process. The fact that the parameters

in the OLS regressions change so dramatically across samples suggests that betas, and perhaps

other characteristics of the market, vary over time. Furthermore, the instability of the OLS esti-

mates also suggests that the effects of small sample bias and parameter uncertainty may play a

role in robust statistical inference. Since the OLS regressions are misspecified, we now develop

a framework for making robust inference in a setting with time-varying risk loadings.

3 Theory

The goal of this section is to emphasize the difference between a conditional CAPM and the un-

conditional one-factor regression estimated by OLS. We show that when conditional betas vary

over time, OLS cannot provide consistent estimates of either conditional betas or conditional

alphas. Section 3.1 illustrates the differences between a conditional CAPM and an uncondi-

tional CAPM. In Section 3.2, we use a highly stylized model to derive closed-form asymptotic

distributions for the OLS estimators (but we use a richer specification for our empirical work

in Section 4). Sections 3.3 and 3.4 characterize the limiting asymptotic distributions for OLS

betas and OLS alphas, respectively.

3.1 The Conditional and Unconditional CAPM

Our model is a reduced-form version of a conditional CAPM:

ri,t = αC + βtrm,t + σ̄εi,t, (2)

whereri,t is the excess stock return,rm,t is the excess market return,εi,t is an independent and

identically distributed (IID) standard normal shock that is orthogonal to all other shocks, andσ̄

represents the stock’s idiosyncratic volatility. We define the conditional beta of stocki in the

standard way as:

βt =
covt−1(ri,t, rm,t)

vart−1(rm,t)
(3)

and defineαC to be the conditional alpha which is the proportion of the conditional expected

return that is left unexplained by the stock’s systematic exposure. We append the conditional

alpha,αC , with a C superscript to distinguish it from the estimate of alpha obtained from the

misspecified OLS,αOLS, from equation (1). WhileαC , βt andσ̄ should also carryi subscripts

to denote that they differ across assets, we omit them for ease of notation.
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To complete the model, we specify the dynamics of the market excess return as:

rm,t = µt +
√

vtεm,t, (4)

whereµt = Et−1[rm,t] denotes the conditional mean of the market andvt = vart−1[rm,t] denotes

the conditional market volatility. Under the null of the conditional CAPM, the conditional alpha

is zero,αC = 0, and the systematic risk represented byβt is solely responsible for determining

expected returns. If we reject the null hypothesis thatαC = 0, we would conclude that the

conditional CAPM cannot price the average excess returns of asseti.

The unconditional CAPM used by Black, Jensen and Scholes (1972), Fama and MacBeth

(1973), Fama and French (1992, 1993) and others differs from the conditional CAPM in equa-

tion (2) by specifying a constant beta over the entire sample period. Many authors, including

Fama and French (1993), estimate the regression (1) on portfolios of stocks sorted by book-

to-market ratios and reject that the OLS alpha,α̂OLS
T , is equal to zero. However, using the

unconditional factor model in equation (1) estimated by OLS to make inference regarding the

conditional CAPM in equation (2) is treacherous for several reasons.

First, Jagannathan and Wang (1996) show that if time-varying conditional betas are cor-

related with time-varying market risk premia, then the conditional CAPM in equation (2) is

observationally equivalent to an unconditional multifactor model:

E[ri,t] = αC + cov(βt, µt) + β̄µ̄m, (5)

whereβ̄ = E(βt) and µ̄m = E(rm,t) are the unconditional means of the beta and the market

premium process, respectively. Under the null of a conditional CAPM, we would expect that

the estimate of the unconditional OLS alpha,α̂OLS
T , captures both the conditional alpha,αC ,

and the interaction of time-varying factor loadings and market risk premia.

Second, Jagannathan and Wang (1996) show that we need multiple unconditional factors in

the OLS regression in equation (1) to capture the same effects as the single-factor conditional

model in equation (2), due to the cov(βt, µt) term in equation (5). Hence, any statement made

about the failure of an unconditional CAPM to capture the spread of average returns in the cross-

section does not imply that a conditional CAPM cannot explain the cross-sectional spread of

average returns. Our main focus is on the ability of the conditional CAPM in equation (2) to

explain the cross-section of average returns of stocks sorted by book-to-market ratios, rather

than on the unconditional OLS CAPM regression in equation (1).

Third, a conditional CAPM implies an unconditional one-factor model only in the case

whenβt is uncorrelated withµt. In this special case, equation (5) reduces toE[ri,t] = αC +

9



β̄µ̄m. However, when conditional betas and market risk premia are correlated, OLS fails to

provide consistent estimates of both the conditional alpha and the conditional betas in equation

(2). Moreover, the degree of the inconsistency depends on unknown parameters driving the

conditional beta process that are not directly observed. Hence, any inference on the conditional

CAPM in equation (2) cannot be made on the basis of OLS estimates of the unconditional

one-factor model in equation (1). Finally, the limiting distributions of the OLS alphas and

betas (̂αOLS
T andβ̂OLS

T in equation (1)) are significantly distorted from their conventional OLS

asymptotic distributions that assume constant factor loadings. We now illustrate each of these

points in the context of a very simple model for which we can analytically derive the limiting

distributions ofα̂OLS
T andβ̂OLS

T .

3.2 A Simple Model

We first consider the simplest possible setting where stocki’s excess return,ri,t, is driven by

a time-varying beta process. Suppose that in the true conditional model (2),βt andrm,t are

stochastic and correlated with an unconditional correlation ofρmβ. In this simplest possible

setting, we specify that:

βt
IID∼ N(β̄, σ̄2

β)

and rm,t
IID∼ N(µ̄m, σ̄2

m), (6)

whereβ̄ is the unconditional beta,̄σ2
β is the unconditional variance of beta,µ̄m is the uncon-

ditional mean of the excess market return,σ̄2
m is the variance of the excess market return, and

corr(rm,t, βt) = ρmβ. In the statistics literature, this is a standard random coefficient model (see,

for example, Cooley and Prescott, 1976).

Our goal is to characterize the asymptotic distribution of the OLS estimators:

α̂OLS
T =

1

T

T∑
t=1

ri,t − β̂OLS
T

1

T

T∑
t=1

rm,t

and β̂OLS
T =

(
1

T

T∑
t=1

(rm,t − r̄m)2

)−1 (
1

T

T∑
t=1

(rm,t − r̄m)ri,t

)
, (7)

wherer̄m = (1/T )
∑

rm,t represents the sample average of the excess market return, under

the data generating process of equation (6). We relegate the full derivation of the asymptotic

distribution of
√

T (α̂OLS
T − E[α̂OLS

T ]) and
√

T (β̂OLS
T − E[β̂OLS

T ]) to Appendix A.4

4 Standard statistics textbooks recognize that in applying OLS to the model of equations (2) and (6), OLS is
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We note that the OLS alpha and beta estimates in equation (7) are not pivotal statistics, as

their distribution depends explicitly on the parameters of the data-generating process in equation

(6). But, the OLS alpha is precisely the statistic most often used by researchers to judge the

significance of any CAPM anomaly. Our focus is not to develop a pivotal statistic to estimate

time-varying betas, but rather to show how the OLS alpha and beta distributions are affected by

time-varying betas. Thus, we point out that inference based on OLS alpha and beta estimates

are unreliable in the presence of time-varying factor loadings.

3.3 Asymptotic Distribution of
√

T (β̂OLS
T − E[β̂OLS

T ])

To understand the distortions that OLS induces on a system with time-varying betas relative to

the standard case, it is helpful to write the residual term,εOLS
i,t , of the regression (1) in the form

of an omitted variable(βt − β̄)rm,t:

εOLS
i,t = (βt − β̄)rm,t + σ̄εi,t. (8)

Unlike the usual case of a constant beta, this omitted variable is a product of two normal distri-

butions and can cause at least three distinct problems in the OLS estimates. First, the residuals

are heteroskedastic. Second, in practice,βt is likely to be very persistent (but is assumed to

be IID in this simple setting for tractability), which leads to serial correlations in the residuals.

Both the problem of heteroskedasticity and serial correlation inεOLS
i,t can, in principle, be cor-

rected by a heteroskedasticity and autocorrelation consistent (HAC) estimator like Newey and

West (1987). Note that this is only an asymptotic correction, so a HAC estimator still ignores

the effect of any small sample distortion and bias. The major problem that cannot be corrected

by using a HAC estimator is that the OLS residuals,εOLS
i,t , are correlated with the regressor,

rm,t, which leads to biased and inconsistent OLS estimates:

E[β̂OLS
T ] = β̄ +

ρmβσ̄β

σ̄m

µ̄m. (9)

inconsistent (see, for example, Greene, 2002), but they do not derive the limiting distribution of the OLS estimators.

As we show, this derivation is non-trivial as it involves quadratic functions of normals, but this exercise is necessary

to interpret both the bias and the sampling dispersion of the OLS estimates. Foster and Nelson (1996) develop

a series of rolling weighted OLS regressions, where the optimal weights are a function of the underlying data

generating process, that can provide efficient estimates of conditional betas. This case is different to the standard

OLS regressions run over the whole sample that are common in the literature. Foster and Nelson also do not

consider asymptotic distributions of OLS alphas with time-varying conditional betas.
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The magnitude of the inconsistency ofβ̂OLS
T in equation (9) depends on the unknown pa-

rametersβ̄, ρmβ, σ̄β, andµ̄m. Lewellen and Nagel (2005) make inferences on the properties

the conditional alphas and the conditional betas by estimating a series of high frequency OLS

regressions in subsamples. However, note that the inconsistency term in equation (9) depends

on the ratio of̄σβ to σ̄m which is invariant to the sampling frequency and can be potentially very

large. Moreover, even if subsample regressions are used to estimate OLS betas, this does not

remove the inconsistency since the conditional betas continue to vary within windows. Hence,

there is no way to correct for the inconsistency without knowingβ̄, ρmβ, andσ̄β, and these pa-

rameters can only be obtained by directly estimating the conditional beta series. In data, since

the market risk premia and the variance of the market change over time (see Schwert, 1989),

the magnitude of the inconsistency of the OLS estimate,β̂OLS
T , is also time-varying. The OLS

beta provides a consistent estimate of the mean of the true beta process only in the case when

the betas are uncorrelated with the market return,ρmβ = 0.

There is also a distortion of the standard limiting distribution induced by the presence of

time-varying betas. The asymptotic distribution of
√

T (β̂OLS
T − E[β̂OLS

T ]) is given by:

√
T (β̂OLS

T − E[β̂OLS
T ])

d→ N

(
0, (3 + 12ρ2

mβ)σ̄2
β + (1− ρ2

mβ)µ̄2
m

σ̄2
β

σ̄2
m

+
σ̄2

σ̄2
m

)
. (10)

The last term for the asymptotic variance isσ̄2/σ̄2
m, which is the asymptotic variance for the

standard OLS case without any time variation in the betas (σ̄β = 0). The other two terms reflect

the contribution of the endogenous regressorβt that increases the variance of theβ̂OLS
T estimator

relative to the constant beta case.

This increase is not small, even if the betas are uncorrelated with the market return. For

example, suppose thatρmβ = 0, µ̄m = 0.0066, and σ̄m = 0.055, where the excess market

parameters are calibrated from the sample mean and sample standard deviation of the monthly

excess market returns over 1927-2001. We set the stock idiosyncratic volatility atσ̄ = 0.06

and set thēσβ parameter of the book-to-market portfolios to be 0.468. The last parameter

represents the monthly unconditional standard deviation of the betas, which we discuss below

in Section 5.1. Then, the ratio of the true asymptotic variance in equation (10) to the standard

OLS asymptotic variance is approximately two. This is a conservative estimate becauseρmβ

is unlikely to be zero. Hence, the true limiting variance ofβ̂OLS
T is likely to be larger than the

variance implied by standard OLS theory. Therefore, even if we know the correct adjustment

for the inconsistency of thêβOLS
T estimator, we cannot at all be confident about the precision of

the estimate of the conditional beta.
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3.4 Asymptotic Distribution of
√

T (α̂OLS
T − E[α̂OLS

T ])

Jaganathan and Wang (1996) and Lewellen and Nagel (2005), among others, note that the OLS

estimate of alpha,̂αOLS
T , is a biased estimate of the conditional alpha,αC , in the conditional

CAPM specified in equation (2). In our simple model,E[α̂OLS
T ] is given by:

E[α̂OLS
T ] = αC +

ρmβσ̄β

σ̄m

(σ̄2
m − µ̄2

m). (11)

Note thatα̂OLS
T provides a consistent estimate ofαC only when the market return process and

the conditional betas are uncorrelated. Ifρmβ 6= 0, then direct knowledge of the conditional

beta process is required to correct for the inconsistency ofα̂OLS. As a rough estimate, if we

assume thatρmβ = 0.1 (see below),̄σβ = 0.468, µ̄m = 0.0066, andσ̄m = 0.055, then equation

(11) indicates that̂αOLS
T overstates the true value ofαC by over 0.26% per month.5

In our simple model, the asymptotic distribution of the OLS estimate,α̂OLS
T , is given by:

√
T (α̂OLS

T − E[α̂OLS
T ])

d→ N

(
0, 10ρ2

mβµ̄2
mσ̄2

β + (1− ρ2
mβ)(σ̄4

m + µ̄4
m)

σ̄2
β

σ̄2
m

+ (σ̄2
m + µ̄2

m)
σ̄2

σ̄2
m

)
. (12)

The asymptotic variance of̂αOLS
T in equation (12) has three terms. The third term,(σ̄2

m +

µ̄2
m)σ̄2/σ̄2

m, is the regular asymptotic variance for the OLS estimate for the intercept term in

an environment with non-stochastic betas. In cases whereσ̄β is large, the asymptotic variance

of α̂OLS
T increases substantially when̄σβ is not zero, relative to the standard OLS asymptotic

variance. Again, we cannot compute the degree of distortion relative to the regular OLS stan-

dard error case without knowinḡσβ andρmβ. Moreover, these parameters cannot be estimated

without knowing the conditional, latent beta series. Using asymptotic theory, we can estimate

the increase in the asymptotic variance ofα̂OLS
T induced by the time-varying regressors by using

a HAC estimate of the variance only in the special case whenρβm = 0. Whenρβm 6= 0, HAC

estimators are invalid.

In summary, we cannot obtain consistent estimates of conditional betas or alphas by OLS.

Neither the adjustments for the magnitude of the inconsistency nor the corrections for the dis-

tortions in the asymptotic variances of the OLS estimators can be accomplished without direct

5 The term we analyze here is not fully present in the empirical analysis of conditional alphas of Lewellen and

Nagel (2005) because they (counter-factually) assume that OLS is consistent within each subsample. Our method

consistently accounts for the time variation in conditional betas within a given window where Lewellen and Nagel

have assumed the OLS betas are consistent.
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knowledge of the dynamics of the conditional beta process. We now propose a richer model with

time-varying conditional betas, time-varying market risk premia, and time-varying systematic

volatility and explain how such a model can be estimated.

4 A Conditional CAPM with Time-Varying Betas

The asymptotic distributions of
√

T (β̂OLS
T − E[β̂OLS]) and

√
T (α̂OLS

T − E[α̂OLS]) in equations

(10) and (12) are likely to understate the true variation ofβ̂OLS
T and α̂OLS

T in small samples

for two reasons. First, we expect that rather than the conditional betas being drawn from an

IID process, conditional betas are more likely to incorporate predictable, slow, mean-reverting

components. While we derived the asymptotic distributions using a Central Limit Theorem that

can be generalized to incorporate persistence inβt, a high autocorrelation of theβt process will

cause the asymptotic variance to significantly understate the true variance in small samples.

Second, the market process is also empirically not a normal IID process. A more realistic em-

pirical description of the market return is that it also incorporates persistent components both in

its conditional mean and conditional volatility. The addition of time-varying components in the

market return process further distorts the asymptotic inference of the OLS estimators. For our

empirical application, we enrich the simple model of the previous section to incorporate persis-

tent conditional betas, time-varying market risk premia, and stochastic systematic volatility.

4.1 The Model

In our fully specified conditional CAPM, we assume that the latent conditional betas in equation

(2) follow an AR(1) process:

ri,t = αC + βtrm,t + σ̄εi,t

and βt = β0 + φββt−1 + σβεβ,t, (13)

whereβt refers to the conditional beta of stocki defined in equation (3). Again, in equation (13),

αC , βt, σ̄, β0, φβ, andσβ should all havei subscripts, but we omit them for simplicity. We are

interested inri,t representing the returns on the book-to-market strategy. Following the standard

set-up of a conditional factor model where the idiosyncratic volatility shocks are uncorrelated

with systematic components, we specifyεi,t to be drawn from an IID normal distribution that is

independent of the shocks to the systematic components.
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We expect that the conditional betas in equation (13) vary slowly over time withφβ close to

one. This view is suggested both from economic theory and from prior empirical studies. For

example, Gomes, Kogan and Zhang (2003), suggest that betas are a function of productivity

shocks, which are often calibrated with an autocorrelation of 0.95 at the quarterly horizon.

This translates into a monthly autocorrelation of conditional betas above 0.98. In Santos and

Veronesi (2004), stock betas change as the ratio of labor income to total consumption changes,

which is also a highly persistent variable. Since the firms in the book-to-market portfolios

change over time, portfolio reconstitution could also cause time variation in the portfolio betas.

Since the OLS rolling betas in Figure 1 have a wide range, we expect that the conditional shocks

to the true betas of the book-to-market portfolios can be quite variable, orσβ could be large. In

data, Fama and French (1997) also report substantial variation in factor loadings for industry

portfolios, while Ferson and Harvey (1999) show that there is a large variation in the market

betas of portfolios sorted by size and book-to-market ratios. Hence, our prior is thatβt should

be highly persistent and conditional shocks toβt can potentially be large.

We further specify that the excess market return,rm,t, in equation (4) has a conditional

market risk premium,µt, and exhibits stochastic systematic volatility,vt:

rm,t = µt +
√

vtεm,t, (14)

where

µt = µ0 + φµµt−1 + σµεµ,t

and ln vt = v0 + φv ln vt−1 + σvεv,t. (15)

The shocks,εm,t, εµ,t andεv,t, are normally distributed zero mean, unit standard deviation, nor-

mally distributed shocks that are potentially correlated. In equation (15), we allow the market

risk premium to be a slowly mean-reverting latent process. This is the same specification used

in the portfolio allocation literature, beginning with Merton (1971). We model log volatility as

a latent AR(1) process, following Jacquier, Polson and Rossi (1994). The log process restricts

volatility to be positive and induces fat tails in the distribution for the market return. Since

Brandt and Kang (2004) find that the correlation betweenεm,t andεµ,t is insignificant, we set

this correlation to be zero. We also specifyεm,t andεv,t to be orthogonal. However, we letεµ,t

andεv,t have a correlation ofρµv. This captures a leverage effect, and allows market conditional

expected returns and stochastic volatility to move together. To allow the market risk premia to

be correlated with conditional betas, we letεµ,t andεβ,t in equations (13) to (15) have a non-zero

correlation ofρµβ.
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The OLS alpha,̂αOLS
T , estimated from the regression (1) is an implied function of the pa-

rametersθ = (µ0 φµ σµ v0 φv σv ρµv β0 φβ σβ σ̄ αC ρµβ) of the model and the sample

sizeT . Similar to the setting of our simple model in Section 3.2, the limiting distribution of

αOLS
T depends on the beta process and the market return process. However, the asymptotic dis-

tribution of the OLS alpha in our richer empirical specification (equations (13) to (15)) cannot

easily be derived in closed form. In our estimation method, we directly estimate the conditional

betas,{βt}, and the conditional alpha,αC , and we construct the implied distribution ofα̂OLS
T

numerically. We stress that our implied distributions of the OLS estimatesα̂OLS
T andβ̂OLS

T are

based on the null of the model in equations (13) to (15). However, we show that the model

matches the evidence in data on rolling OLS betas and expect that inference under alternative

models which allow similar time variation in betas and the market risk premium to also induce

large distortions in the distributions of the OLS statistics relative to their standard distributions.

The reduced-form conditional CAPM in equations (13) to (15) falls within the class of

conditional CAPM models developed by Harvey (1989), Shanken (1990), Ferson and Harvey

(1991, 1993, 1999), Cochrane (1996), and Jagannathan and Wang (1996). Most of these stud-

ies use instrumental variables to model the time variation of betas as a linear function of the

instruments. Our betas are also time-varying, but instead of relying on instrumental variables,

we parameterize the beta itself as an endogenous latent process. This has the advantage of not

relying on exogenous predictor variables to capture time-varying betas and avoids any poten-

tial omitted variable bias from mis-specifying the set of predictor variables (see Harvey, 2001;

Brandt and Kang, 2004). Instead, we infer the betas directly from portfolio returns. Second,

we directly model the variation in the betas across time. Campbell and Vuolteenaho (2004),

Adrian and Franzoni (2004), Franzoni (2004), and Lewellen and Nagel (2005) document that

the betas of book-to-market portfolios change over time, but they do so by estimating constant

beta models over different subsamples of data. Section 3.3 shows that this procedure leads to

biased and inconsistent estimates with distorted asymptotic distributions.

A special case of our model is an unconditional CAPM, which arises whenρµβ = 0. The

model explicitly captures the time variation in market risk premia that previous empirical studies

show is important, and whenρµβ 6= 0, the unconditional CAPM does not hold but a conditional

CAPM applies. Rather than using GARCH processes to model conditional betas (see, for ex-

ample, Bekaert and Wu, 2000), our model uses a log volatility model. In GARCH models, betas

are time-varying but the variations in the betas are strictly driven by past innovations in returns

and do not have independent random components. Danielsson (1994), among others, finds that
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the GARCH family of models does not remove all non-linear dependencies in stock return data,

while autoregressive stochastic volatility models provide better goodness-of-fit for stock return

dynamics.

While the model generates heteroskedasticity, one feature of the data that the model is not

designed to capture is time-varying idiosyncratic volatility. In the return equation (13), we

assume that idiosyncratic volatility is constant atσ̄. Campbell et al. (2001) show that the id-

iosyncratic volatility has noticeably trended higher for individual stocks over the 1990s. In-

corporating time-varying idiosyncratic volatility would introduce a difficult identification prob-

lem between time-varying betas and idiosyncratic risk. We apply the model to stock portfolios,

where idiosyncratic risk is lower than at the firm level. Nevertheless, incorporating time-varying

idiosyncratic risk would only exacerbate the large variances in OLS alphas that we document,

and hence, by ignoring time-varying idiosyncratic risk, our analysis is conservative.

4.2 Estimation

We estimate the model over the full sample, from 1926-2001, to use all available data to pin

down the dynamics of the beta process. After estimating the data on the full sample, we ex-

amine the small sample distribution of OLS alphas or conditional alphas. In particular, we are

especially interested in small samples of the same length as the post-1963 sample, which is the

sample where the OLS alpha appears to be significant using conventional t-statistics. Estimating

the model only over the short post-1963 sample to infer the distribution of OLS or conditional

alphas over the post-1963 period is inefficient and ignores valuable information about the time

variation of betas over the long run.

We use a Markov Chain Monte Carlo (MCMC) and Gibbs sampling estimation method that

consistently estimates conditional alphas and betas, incorporates the effect of parameter uncer-

tainty, and measures the effect of small sample bias. Appendix B provides a full description of

the estimation method.6 There are three main reasons we use a Bayesian estimation strategy.

First, conditional on the time series of conditional betas ({βt}), time-varying market risk

premia ({µt}), and time-varying systematic volatility ({vt}), the stock return,ri,t, in equation

(13) is normally distributed. However, the likelihood function forri,t andrm,t is difficult to

6 Other similar models are esimated by Liu and Hanssens (1981), Lamoureux and Zhou (1996), Johannes,

Polson and Stroud (2002), Johannes and Polson (2003), Jones (2003), Han (2004), and Jostova and Philipov

(2005) with Bayesian methods; Harvey, Solnik and Zhou (2002) with GMM; and Brandt and Kang (2004) with

simulated maximum likelihood.
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derive in closed form because the latent variables{βt}, {µt}, and{vt} must be integrated out.

This makes maximum likelihood estimation methods difficult to use. Other classical estima-

tion methods, like Generalized Method of Moments (GMM), also entail a potentially difficult

optimization problem. In contrast, the Gibbs sampler is fast because it involves drawing from

well-defined conditional distributions.

Second, while the asymptotic distribution of the OLS alphas can be derived in closed-form

for our simple IID model in Section 3, the asymptotic distribution of the OLS estimators in the

conditional CAPM is difficult to derive. MCMC provides posterior distributions whose means

can be interpreted as parameter estimates and the inferred estimates of the time series of betas,

market risk premia, and systematic volatility are generated as a by-product of the estimation.

The estimation method also allows us to extract the exact finite sample distributions of OLS

alphas from the posterior distributions of the parameters. We compute the posterior distributions

for the OLS alpha,̂αOLS
T , for the limiting case whereT = ∞, and over a finite sample whereT

corresponds to the post-1963 sample period. Then, we compare these estimates of asymptotic

distribution of α̂OLS
T and small sample distribution of̂αOLS

T directly to the estimates of the

conditional alpha,αC .

Finally, we can impose some prior information on some of the parameters, like the param-

eters that determine the speed of mean reversion ofµt and βt that would otherwise lead to

identification problems (see the discussions in Brennan, 1998; Johannes, Polson and Stroud,

2002). In particular, the mean-reversion parameter of the betas (φβ) is difficult to pin down.

With non-informative priors, the estimate ofφβ is almost zero, and the estimates for the betas

become degenerate, makingβt ≈ ri,t/rm,t. This makes the likelihood function infinite. We

have strong prior beliefs from economic theory that the betas are persistent, soφβ should be

close to one, but they must also be bounded above by one to maintain stationarity. Lamoureux

and Zhou (1996), Johannes, Polson and Stroud (2002), and Johannes and Polson (2003) all im-

pose informative priors over mean-reversion parameters in related models. We now discuss our

choice of prior forαC , but detail the full specification of all the other priors in Appendix B.

4.3 Priors onαC

Inference regarding the conditional alpha,αC , is of critical importance to measuring the eco-

nomic and statistical significance of the book-to-market premium. We specify informative pri-

ors overαC that range from no prior belief about the value ofαC to a dogmatic belief that an
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αC must exist. Prior beliefs aboutαC are represented by the distribution:

αC ∼ N
(
µp

αC , (σp
αC )2

)
, (16)

whereµp
αC is the prior mean and(σp

αC )2 is the prior variance. Ifµp
αC = 0 andσp

αC is very small,

then the researcher believes dogmatically in the conditional CAPM, while a positiveµp
αC and

a very smallσp
αC represents a researcher with a strong prior that the book-to-market premium

is positive. In contrast, settingσp
αC = ∞ or allowing σp

αC to be sufficient large, represents

an effectively diffuse prior that assumes no a priori knowledge about the strength of the value

premium.

An alternative specification of priors for the conditional alpha is given by Pastor and Stam-

baugh (1999) and Pastor (2000), who specify the prior to be directly proportional to idiosyn-

cratic volatility:

αC |σ̄ ∼ N(µp
α, ησ̄2), (17)

whereη is the prior degree of belief in the conditional CAPM. Whenη = ∞, mispricing relative

to the conditional CAPM is completely unrestricted, whileη = 0 corresponds to dogmatic faith

in the conditional CAPM. In the Pastor-Stambaugh prior in equation (17), the prior onαC is

directly linked to the idiosyncratic volatility, which reduces the probability of drawing high

Sharpe ratios. Hence, using the Pastor-Stambaugh prior would make us less likely to reject the

null of a conditional CAPM. In contrast, our choice of prior onαC in equation (16) specifies

no mechanical link betweenαC andσ̄. With our prior in equation (16), draws of high posterior

Sharpe ratios are more likely than under the Pastor-Stambaugh prior and, thus, we bias our

results in favor of finding evidence against the conditional CAPM.

4.4 Priors on Time-Varying Betas

Using Figure 1, we can extract some prior information about the latent conditional beta process.

Just as the OLS betas are very persistent, we also expect the conditional betas to have slow

moving persistent components. We treat the standard deviation of the rolling OLS betas as a

sample statistic and compute a similar statistic from our conditional beta estimates to judge the

goodness-of-fit of the model. What rolling OLS betas cannot provide, however, are estimates

of the true variability of conditional betas, the correlation of conditional betas with market risk

premia, or precise estimates of the conditional beta at a particular point in time. Only direct

estimates of the conditional betas can accomplish this.
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In Table 2, we examine the autocorrelations and standard deviations of the rolling OLS be-

tas of the highest (lowest) book-to-market decile portfolio, which are the value (growth) stocks,

along with the book-to-market strategy. We report the 60th order autocorrelation since it is

the lowest order autocorrelation that does not use overlapping information. We then compute

the first-order autocorrelation implied by an AR(1) process. The implied monthly autocorre-

lations are highly persistent, with an estimate of 0.993 for the book-to-market strategy. This

is a conservative estimate as estimates of autocorrelations are biased downwards in small sam-

ples. We compute a tight standard error of 0.003 for the first-order autocorrelation using the

delta-method. Although the OLS betas are inconsistent estimates of the conditional betas, we

assume that the true conditional betas have a persistence of the same order of magnitude as the

persistence of the non-overlapping autocorrelations implied by the rolling OLS betas.

Table 2 also reports the unconditional standard deviations of the rolling 60-month OLS

betas. For the growth stock and the value stock portfolios, they are 0.11 and 0.38, respectively.

For the book-to-market strategy, the rolling OLS betas exhibit a large degree of time variation,

with a volatility of 0.47. Below, we show that rolling averages implied by our estimates of

conditional betas closely match this statistic. Armed with this knowledge about the rolling

averages of OLS betas, we now directly infer the true conditional betas,{βt}, by estimating the

conditional CAPM in equations (13) to (15).

In our estimation, we are especially careful not to increase the variance of the conditional

betas in a manner that implies implausibly large stock return volatility. A model that implies

a large stock return variance can potentially produce very disperse posterior distributions with

little information. We impose the constraint on our parameter estimates that the total variance of

stock returns is kept constant at the level observed in the data. Thus, by construction, systematic

and idiosyncratic volatility sum to the observed total volatility of stock returns in data.

5 Empirical Results

We present our estimates of the conditional CAPM with time-varying betas in Section 5.1.

Section 5.2 characterizes the posterior distribution of the conditional alphas of the book-to-

market strategy and Section 5.3 reports the unconditional OLS alphas implied by our model. In

Section 5.4, we consider the additional effects induced by finite sample bias.
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5.1 Parameter Estimates of the Conditional CAPM

Table 3 reports the parameter estimates for the conditional CAPM described by equations (13)

to (15). We estimate these models using the value stock portfolio, the growth stock portfolio,

and the book-to-market strategy. To compute the estimates in Table 3, we use an effectively

diffuse prior withµp
αC = 0 andσp

αC = 1.00% per month in the prior forαC in equation (16).

Changingµp
αC = 1.00% or using values ofσp

αC larger than 1.00% per month produces virtually

identical results. Table 3 reports the mean and standard deviation of the posterior distribution of

each parameter. We first characterize the market return process and then investigate the effects

of time-varying conditional betas.

The Market Factor

Table 3 shows that the estimated market risk premium process is persistent, with a monthly

autocorrelation ofφµ = 0.956. Shocks to the conditional mean are not small, with a volatility

of σµ = 0.40% per month. These estimates translate to an unconditional volatility of monthly

market risk premium of 1.36% and unconditional volatility of annual market risk premium

of approximately 2.0% per annum. The log variance,ln vt, is also a persistent process with

an autocorrelation ofφv = 0.941 and is slightly conditionally negatively correlated with the

conditional mean of the market (ρµv = −0.093). This is consistent with many studies that find

a leverage effect with negative correlations between market volatility and expected returns (see,

for example, Campbell and Hentschel, 1992).

In Figure 2, Panel A, we plot estimates of the implied market risk premia and conditional

systematic volatility. The estimates of the market risk premia are fairly smooth, but they have

moderately large standard error bounds. Pinning down the market risk premia is notoriously

difficult. Johannes and Polson (2003) report that for their estimates of NASDAQ expected

returns, even a one standard deviation bound often includes zero. Nevertheless, Panel A of

Figure 2 shows that market risk premia increase during the late 1930s and the early 1950s,

and decline during the 1960s. More recently, market expected returns increase steeply around

the time of the OPEC oil shocks in the 1970s. Over the late 1980s and early 1990s, market

expected returns are fairly stable but decrease dramatically during the bull market of the late

1990s. During the year 2000, market expected returns start to increase, coinciding with the

onset of the last recession. In most of these episodes, volatility moves in opposite directions to

expected returns, as shown in Panel B. Our estimate of market volatility reaches a high of close

to 17% per month in the early 1930s, and also increases during World War II, the mid-1970s,
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the 1987 crash, and around the end of the century from 1998-2001.

Time-Varying Beta Estimates

From the estimates of the latent beta process in Table 3, the implied unconditional beta of

the value (growth) stock portfolio is 1.21 (1.01). For the book-to-market strategy, the implied

unconditional beta is 0.11. Hence over the whole sample, value stocks do have slightly higher

betas than growth stocks, but the difference is small. Table 3 also reports that the latent betas,

while highly persistent, are fairly volatile. The conditional volatility of the latent betas for value

stocks is fairly large at 0.168 per month, compared to 0.132 per month for growth stocks. In

comparison, the conditional volatility of the betas for the book-to-market strategy is a modest

0.065 per month.

For the book-to-market portfolios, the correlation between shocks to the conditional betas

and shocks to the market risk premium,ρµβ, is large and positive. For value (growth) stocks,

ρµβ is 0.759 (0.882). For the book-to-market strategy, the posterior mean ofρµβ is 0.408 with

a posterior standard deviation of 0.127. Since the unconditional volatility of the market risk

premium is 1.36% per month and total market volatility is fixed at 5.5% per month, this implies

an unconditional correlation between betas and market returns of 0.1. The large value ofρµβ

has several implications. First, from equation (5), an unconditional one-factor CAPM cannot

be the correct specification for risk sinceρµβ 6= 0. Second, equations (9) and (11) show that the

OLS estimates of betas and alphas are biased and inconsistent. Third, equation (12) shows that

the distribution ofα̂OLS
T is distorted from its regular OLS asymptotic distribution. We examine

theαC estimates and the implied OLS alpha distributions in detail below.

In Figures 3 and 4, we plot the posterior mean of the time-varying betas produced by the

Gibbs sampler. Figure 3 shows the estimates for the value and growth portfolios. The estimated

betas of the value stock portfolio exhibit greater variation than the betas of the growth stock

portfolio. The conditional betas of value stocks wander from over 3.0 during the late 1930s

to below 0.5 in 2001. In contrast, the conditional betas of growth stocks remain in a fairly

close neighborhood around 1.0. Figure 4 graphs the estimates for the book-to-market strategy.

The conditional betas of the book-to-market strategy reach a high of above 1.5 near-1940, and

decline to close to negative 0.5 at the end of 2001. Figure 4 also shows the one posterior

standard deviation bound, which is around 0.5 across the whole sample.

We can compare the conditional variability of the estimated latent betas to the standard

deviation of rolling 60-month OLS betas as a specification test of our model estimates. To
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confirm that the estimates of conditional volatility of the time-varying betas implied by the

model match the variability of rolling OLS betas found in the data, we compare the variability

of 60-month moving averages of the inferred betas of the book-to-market strategy in Figure 4

to the variability of the 60-month rolling OLS betas reported in Table 2. The match is almost

exact. For the book-to-market strategy, the implied rolling 60-month beta average volatility is

0.46, compared with 0.47 in data. Hence, our conditional beta estimates implies rolling betas

with a similar degree of variability as the rolling OLS betas from the data.

The large swings of our conditional betas are also consistent with the widely differing point

estimates of the OLS alphas across subsamples in Table 1. Taking the posterior mean of the time

series of the conditional betas,{β̂t}, we compute the differencerit − β̂trmt across subsamples.

In the pre-1963 sample, the mean conditional beta is 0.47, the book-to-market strategy returns

0.43% per month, while the excess market return yields 0.85% per month. Thus, in the pre-

1963 sample, the mean value ofrit − β̂trmt is 0.03% per month, consistent with an OLS alpha

of close to zero. In contrast, over the post-1963 sample, the average conditional beta is -0.11,

the book-to-market strategy yields 0.53% per month, and the average market excess return is

0.47% per month. Thus, the mean value ofrit − β̂trmt over the post-1963 sample is 0.58%

per month, which is very close to the empirically observed OLS alpha of 0.60% per month

reported in Table 1. This suggests that although our model has a constantρµβ and constantαC ,

the model is capable of generating large differences in OLS alphas in specific sample periods.

In particular, the time series of the posterior mean of the conditional betas is consistent with

the low (high) OLS alpha in the pre-1963 (post-1963) sample period for the book-to-market

strategy.

5.2 Conditional Alphas of the Book-to-Market Strategy

Inference regarding the conditional alpha,αC , is crucial for judging the fit of the conditional

CAPM to explain the value premium. In Table 4, we report the posterior distribution ofαC of

the book-to-market strategy. To incorporate various prior views that investors may hold on the

strength of the book-to-market effect, we specify several prior distributions, rather than using

just one diffuse prior. The priors forαC in equation (16) range from an effectively uninformative

prior withµp
αC = 0 andσp

αC = 1.00% per month to a highly informative prior withµp
αC = 0.60%

per month andσp
αC = 0.10% per month. Since a mean of 0.60% per month corresponds to the

α̂OLS
T estimate of the book-to-market strategy over the post-1963 sample (see Table 1), priors

with this mean and a lowσp
αC represent a dogmatic belief in the book-to-market effect. For each
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prior, we report the percentile breakpoints, the mean and the standard deviation of the posterior

distribution ofαC .7

When we use a prior onαC with a mean of zero, the value of 0.00% per month lies well

above the 10%-tile breakpoint of the posterior, regardless of the standard deviation of the prior.

In particular, for the effectively diffuse prior withµp
αC = 0 andσp

αC = 1.00% per month, the

value corresponding to the 10%-tile is -0.01% per month. Hence, an uninformed agent would

conclude that the conditional alpha of the book-to-market strategy is insignificantly different

from zero. To argue in favor of a strong book-to-market effect, an agent would need to have

a strong prior onαC that has a mean of 0.60% per month and a standard deviation of 0.30%

per month or tighter. Under this prior, the posterior distribution ofαC has a lower left-hand tail

probability of less than 2.5% for observing a conditional alpha less than zero.

In summary, Table 4 shows that once we account for the time-variation in betas and mar-

ket risk premia, the evidence against a conditional CAPM is weak using the book-to-market

portfolios. In contrast, only the misspecified OLS inference that assumes constant betas based

strictly on the post-1963 sample would suggest strong evidence of a book-to-market effect: the

OLS alpha has a p-value of 0.006, corresponding to a Newey-West t-statistic of 2.51. However,

after accounting for time-varying, conditional betas, only an empiricist with a very strong prior

belief in a book-to-market premium would conclude that a conditional CAPM cannot account

for the average returns of stocks sorted by book-to-market ratios over the long run.

5.3 OLS Alphas of the Book-to-Market Strategy

We showed in Section 3 that in the simplest IID environment with correlated time-varying betas

and market risk premia, the OLS estimate of alpha,α̂OLS
T , is inconsistent and the asymptotic

distribution of
√

T (α̂OLS
T − E[α̂OLS

T ]) is significantly distorted from its standard OLS distribu-

tion with constant betas. We now show that the distortion betweenαC and α̂OLS
T are further

magnified when we allow for persistent, time-varying betas.

We compute the implied distribution of the OLS alpha,αOLS
T (denoted without a hat to

signify it is a random variable), for a sample size ofT from the Gibbs sampler. We first compute

the limiting distribution of the OLS alpha asT → ∞, which we denote asαOLS. For each

observation in the posterior distribution of the model parametersθ, we compute the value of

αOLS
T that would result if the data are generated according to equations (13) to (15). We compute

7 The posterior distributions ofαC are largely unaffected by the estimation of the market process, even if we

parameterize the market return to be IID and normally distributed.
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this by simulating a time series ofri,t andrm,t of length 100,000 (to proxy forT = ∞) at each

parameter draw and run an OLS regression on the simulated time series. Since we use a long

time series, the constant term from this regression is exactly what the trueαOLS
T would be at

this particular set of model parameters. We repeat this exercise for every set of parameters in

the posterior distribution of theθ, and thus produce the correct posterior distribution ofαOLS

corresponding to the parameter estimates of the conditional CAPM. The statisticαOLS is a well-

defined transformation of the parametersθ, except it is not available in closed form. We report

the posterior distribution ofαOLS corresponding to the different priors onαC in Table 5.

Comparing the posterior distributions ofαC in Table 4 and the posterior distributions of

αOLS in Table 5 confirms that estimates of alphas obtained by OLS are inconsistent. For an

effectively diffuse prior onαC with a mean of zero and a standard deviation of 1.00% per

month, the posterior mean ofαOLS is 0.45% per month. In comparison, the posterior mean of

αC is 0.20% per month. The upward bias ofαOLS relative toαC occurs because the estimated

correlation between shocks to the market risk premia and shocks to the conditional beta of the

book-to-market strategy is positive at 0.41 (see Table 3). For all the priors onαC , this upward

bias is of the order of 20% to 23% per month. Interestingly, in the limit asT →∞, the posterior

standard deviation ofαOLS is only slightly larger than the posterior standard deviation ofαC ,

which are 0.20% and 0.19% per month, respectively.

If we were to base our statistical inference of the book-to-market premium only onαOLS,

rather than the correctαC of the conditional CAPM, Table 5 shows that an investor would

conclude that theαOLS is greater than zero regardless of the choice of the prior distribution. In

all cases, the value of an alpha of 0.00% per month lies below the 2.5%-tile breakpoint of the

posterior distribution ofαOLS. Thus, even though we would conclude that the OLS alpha is

positive, the true conditional alpha reported in Table 4 is reliably different from 0.00% only for

an investor with a very strong prior belief in the book-to-market effect. Hence, the inconsistency

of OLS may lead us to conclude thatαOLS is positive even ifαC is not.

5.4 Small-Sample Bayesian Analysis of OLS Alphas

A remarkable fact of the simple one-factor OLS regressions of the book-to-market trading strat-

egy in Table 1 is that thêαOLS
T estimate is 0.60% per month with a Newey-West (1987) t-statistic

of 2.51 over the post-1963 sample, but not over the long run. Since theα̂OLS
T estimate is -0.16%

per month in the pre-1963 sample, the distribution ofα̂OLS
T may be very variable in short sam-

ples. In this section, we consider the possible distortions on the posterior distribution ofαOLS
T
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induced by small samples of lengthT .8 Specifically, we show that over small samples, a time-

varying beta model with persistent betas but a constantαC can easily produce one sample in

which α̂OLS
T is large, but another sample in whichα̂OLS

T is small or negative.

We construct the Bayesian finite sample posterior distribution ofαOLS
T in a manner similar

to the case of the posterior distribution ofαOLS, whereT = ∞, in Table 5. To compute the

finite sample posterior distribution ofαOLS
T , we simulate a sample of sizeT , for each drawθi

from the posterior distribution of the parametersθ. Since the post-1963 sample corresponds to

a time series of length 462 observations, we setT = 462. Note thatαOLS
T (θ) is well defined in

a small sample as a function of the sample size,T , and the parameters of the model,θ. Hence,

for a given sample size, the small sample variableαOLS
T is a valid statistic. To isolate the effect

of parameter uncertainty from the effect of small sample bias, we also simulate 10,000 small

samples ofT = 462 holding fixed the parameters of the model atθ̄, the mean of the posterior

distribution ofθ.

We also consider the effect of various parameters on the model on the small sample distribu-

tions ofαOLS
T by setting to zero certain parameters of the model in equations (13) to (15). First,

we setαC = 0 so that the small sample distribution ofαOLS
T is driven only by the correlation

between shocks to the beta and shocks to the market risk premium. Second, we setρµβ = 0, so

that an unconditional CAPM holds and OLS alphas are consistent estimates ofαC . Finally, we

set bothαC = 0 andρµβ = 0. In each case, we set only the particular parameter in question

to zero without re-estimating the model and without changing the other parameters to facilitate

comparisons across the specifications.

We report our results in Table 6. As expected, the difference between theαOLS
T andαC

posterior distributions in small samples is even greater than the differences for the limiting

case whenT = ∞, which are reported in Tables 4 and 5. For comparison, the first column

in Table 6 lists the posterior distribution ofαC from Table 4 corresponding to the prior ofαC

with µp
αC = 0 andσp

αC = 1.00%. The columns under the line “OLS AlphaαOLS
T ” report the

small-sample posterior distribution ofαOLS
T . The column labelled “Full” reports the results

based on the full specification of the conditional CAPM, while the other columns set various

parameters equal to zero. In all cases, we use an effectively diffuse prior onαC with µp
αC = 0

andσp
αC = 1.00% and estimate the full model over the full sample.

8 Most studies on small sample effects, or sample problems, or “Peso problems” usually focus on term structure

(Bekaert, Hodrick and Marshall, 2001) or foreign exchange markets (Evans, 1996), or the aggregate stock market

(Rietz, 1988). In contrast, we focus here on small sample inference in the cross-section for the book-to-market

trading strategy.
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Under the line “With Parameter Uncertainty,” we report the posterior distribution of the

small sampleαOLS
T statistic taking into account parameter uncertainty. The mean of the small

sample posterior distribution ofαOLS
T at 0.43% per month is largely unchanged from the pos-

terior mean of the populationαOLS in Table 5 at 0.45%. However, the small sample posterior

distribution ofαOLS
T now has a much wider standard deviation of 0.50% per month, compared

to the population standard deviation of 0.20% per month in Table 5. The wide tails of the small

sampleαOLS
T distribution are shown in the percentiles, which range from -0.35% at the 5%-tile

to 1.27% at the 95%-tile. The post-1963α̂OLS
T estimate of 0.60% per month corresponds to the

67%-tile. Clearly, a conditional CAPM can easily generate anα̂OLS
T with a value of 0.60% per

month and the posterior 95% confidence bounds of the conditional alpha comfortably encom-

pass zero. In other words, a conditional CAPM can produce outcomes in whichα̂OLS
T appears

large in one small sample but equals zero in another small sample, particularly when these small

samples are only of approximately 40 years in length.

To show that the sampling variation ofαC is not causing the bias and the large tails of the

small sampleαOLS
T distribution, we next consider settingαC = 0 in the second column under

the line “With Parameter Uncertainty.” SettingαC = 0 produces a lower mean of the small-

sample posterior distribution ofαOLS
T , but the variation around the mean is largely unchanged

at 0.47% per month. The value of 0.00% per month now falls at the 33%-tile and still makes a

small sample draw of̂αOLS
T = 0.60% per month unsurprising.

In the next column, we setρµβ = 0. Under this assumption,̂αOLS
T in the unconditional

CAPM regression (1) provides a consistent estimate ofαC . While an appropriate HAC standard

error may be valid asymptotically, HAC standard errors may vastly understate the tails of the

small sample distribution ofαOLS
T because the time-varying betas are very persistent. This is

indeed the case. The mean of the small-sample posterior distribution ofαOLS
T is identical toαC

at 0.23% per month, but the posterior distribution ofαOLS
T has a much wider standard deviation

than the posterior distribution ofαC (at 0.49% and 0.19% per month, respectively). Finally, if

we set bothαC = 0 andρµβ = 0, the small-sample posterior distribution ofαOLS
T is centered

around zero, but still has a very wide posterior standard deviation of 0.46% per month.

Under the line “Without Parameter Uncertainty” in Table 6, we compute the small sample

αOLS
T posterior distribution at the posterior mean ofθ, rather than using the entire distribution of

θ. Not surprisingly, disregarding parameter uncertainty produces smaller variation of the small

sampleαOLS
T statistics, but the posterior standard deviations are only slightly smaller than the

standard deviations taking into account parameter uncertainty. Thus, disregarding parameter
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uncertainty does not quantitatively change our results. In all cases, a point estimate ofα̂OLS
T =

0.60% per month does not lie anywhere near the upper 10% tail of the small sample posterior

distribution ofαOLS
T . In summary, a time-varying one-factor model can easily produce what

appears to be an anomalous result using OLS alphas with standard asymptotic statistics in small

samples, but with correct statistical inference that takes into account time-varying betas, the

OLS alphas are statistically insignificant.

Comparing Small Sample and Standard Asymptotic OLS Alpha Distributions

In Figure 5, we compare the posterior small-sampleαOLS
T distributions of the book-to-market

strategy (in the solid lines) taking into account parameter uncertainty to the asymptotic distri-

bution under the null thatαOLS = 0 in the regression (1), using a Newey-West (1987) standard

error estimate (in the dashed lines). In Panel A, we plot the small-sampleαOLS distribution for

the full parameter specification corresponding to the column “αOLS
T Full” in Table 6 under the

line “With Parameter Uncertainty.” Under this specification, we do not impose any parameter

constraints. Using the classical asymptotic distribution, we would reject the null thatαOLS = 0,

since the area lying to the right of̂αOLS
T = 0.60% per month is 0.006. In contrast, the exact,

small-sampleαOLS
T distribution is biased and has much wider tails than the robust asymptotic

distribution that assumes constant betas. Under the posterior distribution ofαOLS
T , the point

estimate ofα̂OLS
T = 0.60% per month is no longer reliably different from zero, since 31% of

the posterior small-sampleαOLS
T distribution lies to the right of the 0.60% line.

In Panel B, we plot the small-sample posterior distribution ofαOLS
T imposing the constraint

that the conditional alpha,αC , is zero. This panel clearly illustrates the difference between

our results and the conclusions of Lewellen and Nagel (2005). Lewellen and Nagel note that

allowing for a correlation between conditionals beta and conditional market risk premia shifts

the mean of the distribution ofαOLS
T to the right about 10 basis points per month. They argue

that the magnitude of the mean shift cannot be large enough to shift the small-sample posterior

distribution ofαOLS
T all the way to 0.60% per month. We find a slightly larger shift in the

posterior mean of 20 basis points per month. However, whereas Lewellen and Nagel (2005)

use uncorrected standard, asymptotic OLS theory that assumes constant betas to make their

inferences, we find a large posterior standard deviation in the distribution ofαOLS
T induced by

a conditional CAPM with time-varying betas. Our true, small-sample posterior distribution of

αOLS
T has thick tails, so that 15% of the distribution lies to the right of the point estimate of

α̂OLS
T = 0.60% per month.
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In summary, although the OLS point estimate ofα̂OLS
T appears to be large at 0.60% per

month over the post-1963 period, the small sample distribution ofαOLS
T shows that it is not

unusual to observe OLS alphas of this magnitude in small samples of 462 observations. From

this point of view, it is not surprising that Cooper, Gutierrez and Marcum (2005) find that

book-to-market strategies have difficulty beating the market return in out-of-sample investment

strategies in the post-1963 period, despite the conventional OLS evidence of a strong in-sample

book-to-market effect over this period. Using statistical inference to take into account time-

varying conditional betas, we find little evidence of any book-to-market effect either over the

long run, or over the post-1963 sample. Hence, the book-to-market effect may be similar to the

size effect, which may be due to incorrect statistical inference (see Chan and Chen, 1988; Knez

and Ready, 1997).9

6 Conclusion

The book-to-market effect appears to be a strong CAPM anomaly that many researchers con-

sider to be a significant risk factor (see for example, Fama and French, 1993). Over the post-

1963 sample, the book-to-market trading strategy generates an OLS alpha of 0.60% per month.

Using a Newey-West (1987) estimate of the asymptotic standard error, the post-1963 book-to-

market premium appears to be highly statistically significant with a p-value of less than 1%. In

contrast, over the pre-1963 sample, the book-to-market strategy generates an OLS alpha of neg-

ative 0.16% per month and is not statistically significant. The difference across the two samples

can be attributed to time-varying betas in which betas change slowly over time.

Inference of conditional alphas from a conditional CAPM model using unconditional OLS

regressions is highly misleading when factor loadings are vary over time. In particular, there

is strong evidence that the conditional betas for book-to-market portfolios are time-varying.

Conditional betas for the book-to-market strategy, which goes long the highest decile and short

the lowest decile of stocks sorted by their book-to-market ratios, range from over 3.0 during the

late 1930s to close to negative 0.5 at the end of 2001. When conditional betas are correlated

with market risk premia, OLS estimates of alphas are biased, inconsistent, and their asymptotic

distributions are severely distorted from standard OLS theory, which assumes constant betas.

There is no way to correct the degree of inconsistency or the degree of the distortion without a

9 Since the size effect was discovered by Banz (1981), the size effect has been negligble. From 1981 to 2001,

Fama and French’s (1993) SMB size factor has almost a zero premium (-2 basis points per month).
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direct knowledge of the time-variation of the conditional beta process.

We propose and directly estimate a conditional CAPM with latent time-varying conditional

betas, market risk premia, and stochastic systematic volatility. We find that only an investor with

a strong, dogmatic belief in the book-to-market effect would conclude that the conditional alpha

of the book-to-market strategy is positive both over the long run, from 1927-2001, and over the

post-1963 subsample. Using an effectively uninformative prior, there is little evidence to con-

clude that the conditional alpha of the book-to-market strategy is different from zero. Since the

estimates of betas of book-to-market portfolios are highly correlated with time-varying market

risk premia, the distribution of OLS alphas are very dissimilar to the distribution of conditional

alphas. In particular, the exact OLS alpha distributions are rather disperse in small samples.

Thus, observing a point estimate of an OLS alpha of 0.60% per month over the post-1963 sub-

sample is not at all surprising, even when the true conditional alpha is zero. Indeed, given

the time-variation in betas, it is not surprising to observe a high OLS alpha in one small sam-

ple, such as the post-1963 sample, but a zero OLS alpha in another small sample, such as the

pre-1963 subsample.

Furthermore, our work shows that in testing for CAPM anomalies, researchers should be

very careful using asymptotic normal distributions to conduct statistical inference if the be-

tas of their test portfolios vary over time. In environments with time-varying factor loadings,

asymptotic OLS distributions cannot be used for statistical inference because OLS is biased

and inconsistent. Furthermore, the distortions from the standard limiting OLS distributions that

do not take into account time-varying betas cannot be corrected without directly estimating the

conditional betas. Our results emphasize the importance of taking into account time-varying

factor loadings before declaring a cross-sectional return pattern anomalous relative to a condi-

tional CAPM.
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Appendix

A OLS Estimators Under Stochastic Coefficients
This appendix derives the asymptotic distribution of OLS estimators when the true model has stochastic coefficients
and stochastic regressors. Suppose that the true model is:

yt = α + βtxt + εt, (A-1)

whereεt
IID∼ N(0, σ̄2) is an independent shock. Moreover suppose that both the coefficient,βt, and the regressor,

xt, are stochastic withβt
IID∼ N(β̄, σ2

β) andxt
IID∼ N(µx, σ2

x), andβt andxt have correlationρxβ . Suppose that
the sample hasT observations. If we denoteβ∗t = βt − β̄, the model in equation (A-1) can be rewritten in matrix
form as:

Y = XB + Z + ε, (A-2)

whereY =




y1

...
yT


, X =




1 x1

...
...

1 xT


, B =

[
α
β̄

]
, Z =




β∗1x1

...
β∗T xT


, andε =




ε1

...
εT


.

Suppose that an econometrician obtains misspecified OLS estimates,B̂ = [α̂, β̂]′ overT observations. Specif-
ically, we estimate:

B̂ = (X′X)−1X′Y. (A-3)

We can write the OLS estimator,̂B, as
B̂ = B + (X′X)−1X′ε∗, (A-4)

whereε∗ = Z + ε is the error term relative to the OLS estimation. Equation (A-4) suggests that the OLS estimator,
B̂, is subject to at least three distinct problems:

1. unlessρxβ = 0, B̂ is subject to an omitted variable bias inZ,

2. ε∗ is heteroskedastic inX,

3. and furthermore, unlessZ is IID, OLS residuals are serially correlated.

Therefore, even ifρxβ = 0, OLS standard errors understate the true variance because of heteroskedasticity and
have additional distortions ifZ is not IID (say, for instance, ifZ is positively autocorrelated). Whenρxβ = 0, one
can potentially use a HAC estimator of the residual variance. However, this correction is only valid asymptotically.
Much more serious problems that cannot be corrected by HAC estimators arise whenρxβ 6= 0.

A.1 The Inconsistency ofB̂
The expectation of the OLS estimator is:

E[B̂] = B + E[(X′X)−1X′Z] + E[(X′X)−1X′ε]. (A-5)

Sinceβ∗t andxt are jointly normally distributed with correlationρxβ ,

E[β∗t |xt] =
ρxβσβ

σx
(xt − µx).

By taking the expectation of equation (A-5) conditional onX, we can write:

E[B̂|X] = B + E

[(
1
T

X′X
)−1 1

T
X′Z

∣∣∣∣X
]

+ 0,

= B +
ρxβσβ

σx
E

[(
1
T

X′X
)−1 1

T

[ ∑
(xt − µx)xt∑
(xt − µx)x2

t

] ∣∣∣∣X
]

.
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Since, plim( 1
T X′X)−1 = 1

σ2
x

[
(µ2

x + σ2
x) −µx

−µx 1

]
, E[x2

t ] = (µ2
x + σ2

x), andE[x3
t ] = (µ3

x + 3µxσ2
x), the

unconditional expectation of̂B is given by:

E[B̂] = B +
ρxβσβ

σx

1
σ2

x

[
(µ2

x + σ2
x) −µx

−µx 1

] [
σ2

x

2µxσ2
x

]
,

= B +
ρxβσβ

σx

[
σ2

x − µ2
x

µx

]
. (A-6)

Therefore, unlessρxβ = 0, OLS is biased and inconsistent. We denote this inconsistency as:

αb = α̂OLS
T − E[α̂OLS

T ]
plim→ ρxβσβ

σx
(σ2

x − µ2
x)

andβb = β̂OLS
T − E[β̂OLS

T ]
plim→ ρxβσβ

σx
µx. (A-7)

A.2 Asymptotic Distribution of
√

T (B̂− E[B̂])

We begin by writing:

B̂− E[B̂] = −
[

αb

βb

]
+ (X′X)−1X′Z + (X′X)−1X′ε, (A-8)

whereαb andβb are the asymptotic bias terms in equation (A-7). By the independence ofε, we have:

var(B̂− E[B̂]) = var[(X′X)−1X′Z] + σ̄2E[(X′X)−1]. (A-9)

The second term of equation (A-9),σ̄2E[(X′X)−1], is the regular standard error obtained by OLS with stochastic
regressors. Notice that asT →∞:

σ̄2E[(X′X)−1]
plim→

[
(σ2

x + µ2
x) σ̄2

σ2
x

µx
σ̄2

σ2
x

µx
σ̄2

σ2
x

σ̄2

σ2
x

]
. (A-10)

The additional variance term in equation (A-9) is caused by the stochastic coefficientβt. To analyze this term,
we definex̄ = 1

T

∑
xt andSxx = ( 1

T

∑
x2

t )− x̄2. This allows us to write:

(X′X)−1X′Z =
1

Sxx

[
1
T Sxx + x̄2 −x̄

−x̄ 1

] [
1
T

∑
β∗t xt

1
T

∑
β∗t x2

t

]
. (A-11)

If we also definex∗t = xt − x̄ andβ̄∗ = 1
T

∑
β∗t , we can simplify the expression as follows:

(X′X)−1X′Z =
1

Sxx

[
Sxx + x̄2 −x̄
−x̄ 1

] [
1
T

∑
β∗t x∗t + 1

T

∑
β∗t x̄

1
T

∑
β∗t x∗t

2 + 2x̄
T

∑
β∗t x∗t + 1

T

∑
β∗t x̄2

]
,

=
1

Sxx

[ −x̄
T

∑
β∗t x∗t

2 + Sxx−x̄2

T

∑
β∗t x∗t + Sxx

1
T

∑
β∗t x̄

1
T

∑
β∗t x∗t

2 + x̄
T

∑
β∗t x∗t

]
. (A-12)

By making this expression mean zero and usingSxx = 1
T

∑
x∗t

2, we have:

(X′X)−1X′Z−
[

αb

βb

]
=

1
Sxx

[
−x̄
T

∑
β∗t x∗t

2 + Sxx−x̄2

T

∑
β∗t x∗t − αb

T

∑
x∗t

2 + Sxxx̄
T

∑
β∗

1
T

∑
β∗t x∗t

2 + x̄
T

∑
β∗t x∗t − βb

T

∑
x∗t

2

]
,

or equivalently we can write:

√
T (B̂− E[B̂]) =

1√
T

1
Sxx

[ −x̄
∑

β∗t x∗t
2 + (Sxx − x̄2)

∑
β∗t x∗t − αb

∑
x∗t

2 + Sxxx̄
∑

β∗∑
β∗t x∗t

2 + x̄
∑

β∗t x∗t − βb
∑

x∗t
2

]
. (A-13)
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Since the expression on the RHS of equation (A-13) has a mean of zero, we can apply a standard Central Limit
Theorem to derive the asymptotic distribution of

√
T (B̂−E[B̂]). We compute the asymptotic variance of the RHS

of equation (A-13), using the following lemma:

Lemma:

Supposex andy are two mean-zero normally distributed random variables with variancesσ2
x andσ2

y and correlation
ρ. Consider the variablesZ1 andZ2 defined as:

Z1 = c1x
2y + c2xy + c3x

2 + c4y

and Z2 = d1x
2y + d2xy + d3x

2 + d4y. (A-14)

Moreover, suppose thatbc2 + c3 = 0 andbd2 + d3 = 0, whereb = ρσy

σx
. Then, the covariance betweenZ1 andZ2

is given by

cov [Z1, Z2] = c1d1(3 + 12ρ2)σ2
yσ4

x + c2d2(1− ρ2)σ2
yσ2

x + (c1d4 + c4d1)(1 + 2ρ2)σ2
yσ2

x + c4d4σ
2
y. (A-15)

Proof: To compute means and variances ofZ1 and Z2, we first take conditional expectations givenx. The
conditional distribution ofy givenx is normal, with a mean ofbx and a variance of(1−ρ2)σ2

y, whereb = ρσy/σx.
Hence, we can derive:

E[Z1|x] = bc1x
3 + (bc2 + c3)x2 + bc4x,

E[Z1] = (bc2 + c3)σ2
x = 0. (A-16)

The expression forE[Z2] is similar.
To derive the covariance, we first expand:

E[Z1Z2] = E[c1d1x
4y2 + (c1d2 + c2d1)x3y2 + (c1d3 + c3d1)x4y + (c1d4 + c4d1)x2y2c2d2x

2y2

+ (c2d3 + c3d2)x3y + (c2d4 + c4d2)xy2 + c3d3x
4 + (c3d4 + c4d3)x2y + c4d4y

2].

SinceE[y|x] = bx and var[y|x] = (1 − ρ2)σ2
y, we haveE[y2|x] = (1 − ρ2)σ2

y + b2x2. We also note that
E[x6] = 15σ6

x and E[x4] = 3σ4
x. By first conditioning onx, and noting that the odd moments of a normal

distribution are equal to zero, we can compute the expectations of each term:

E[x4y2] = E[((1− ρ2)σ2
y + b2x2)x4] = (3 + 12ρ2)σ2

yσ2
x,

E[x3y2] = 0,

E[x4y] = 0,

E[x2y2] = E[((1− ρ2)σ2
y + b2x2)x2] = (1 + 2ρ2)σ2

yσ2
x,

E[x3y] = E[bx4] = 3ρσyσx.

Using these expressions, we can derive:

cov(Z1, Z2) = E[Z1Z2]− E[Z1]E[Z2],
= c1d1(3 + 12ρ2)σ2

yσ4
x + (c2d2 + c1d4 + c4d1)(1 + 2ρ2)σ2

yσ2
x

+(c2d3 + c3d2)(3ρσyσ3
x) + 3c3d3σ

4
x + c4d4σ

2
y

−
(

ρσy

σx
c2 + c3

)(
ρσy

σx
d2 + d3

)
σ4

x. (A-17)

By imposingbc2 + c3 = 0 andbd2 + d3 = 0, we obtain equation (A-15), which completes the proof.¥

We can use the lemma, together with Slutsky’s Theorem, to derive the asymptotic variance of
√

T (B̂−E[B̂]).

We use Slutsky to take the plims ofx̄
plim→ µx andSxx

plim→ σ2
x. Then, we compute the asymptotic variance of
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√
T (β̂ − E[β̂]) by using the lemma and settingc1 = d1 = 1, c2 = d2 = µx, c3 = d3 = −ρxβσβ

σx
µx, and

c4 = d4 = 0 to obtain:

A.Var
[√

T (β̂OLS
T − E[β̂OLS

T ])
]

= (3 + 12ρxβ
2)σ2

β + (1− ρxβ
2)µ2

x

σ2
β

σ2
x

+
σ̄2

σ2
x

. (A-18)

By settingc1 = d1 = −µx, c2 = d2 = σ2
x − µ2

x, c3 = d3 = −ρxβσβ

σx
(σ2

x − µ2
x), andc4 = d4 = µxσ2

x, we obtain:

A.Var
[√

T (α̂OLS
T − E[α̂OLS

T ])
]

= (10ρxβ
2)µ2

xσ2
β + (1− ρxβ

2)(σ4
x + µ4

x)
σ2

β

σ2
x

+ (σ2
x + µ2

x)
σ̄2

σ2
x

. (A-19)

Finally, by settingc1 = −µx, c2 = σ2
x − µ2

x, c3 = −ρxβσβ

σx
(σ2

x − µ2
x), c4 = µxσ2

x, d1 = 1, d2 = µx, d3 =
−ρxβσβ

σx
µx, andd4 = 0, we can compute the asymptotic covariance between

√
T (β̂ − E[β̂]) and

√
T (α̂ − E[α̂]),

which is given by:

−
[
(1 + 11ρxβ

2)µxσ2
β + (1− ρxβ

2)µ3
x

σ2
β

σ2
x

+ µx
σ̄2

σ2
x

]
. (A-20)

B Estimating the Model
We estimate the model described by equations (13) to (15) by Gibbs sampling and MCMC. In particular, we
estimate the process for the betas and the market risk premium by using the forward-backward algorithm of Carter
and Kohn (1994). We estimate the latent stochastic volatility process of the market by adapting the single-state
updating algorithm of Jacquier, Polson and Rossi (1994, 2004) to accommodate correlation with theµt equation.
In general, the individual parameters of equations (13) to (15) can be updated using standard conjugate draws,
except we use informative priors for some of the auto-correlation and correlation parameters.

In each of our estimations, we use a burn-in period of 3000 draws and draw 10,000 observations to represent
the posterior distributions of parameters and latent variables. Our results are generated using Ox version 3.32 (see
Doornik, 2002). Since this model is highly complex, our estimation is probably not the most efficient, but we
are confident in its convergence. The autocorrelation of the posterior draws are low, and most importantly, the
estimation method works very well on simulated data.

We repeat the conditional CAPM here for ease of reference:

ri,t = αC + βtrm,t + σ̄εi,t,

rm,t = µt +
√

vtεm,t,

βt = β0 + φββt−1 + σβεβ,t,

µt = µ0 + φµµt−1 + σµεµ,t,

and ln vt = v0 + φv ln vt−1 + σvεv,t, (B-1)

where the correlations between all the shock terms are zero exceptE(εµ,tεv,t) = ρµv andE(εµ,tεβ,t) = ρµβ . The
full set of parameters we draw is(θ, {µt}, {βt}, {vt}), where

θ = (µ0 φµ σµ v0 φv σv ρµv β0 φβ σβ σ̄ αC ρµβ)

is the set of parameters of the model (B-1),{βt} is the vector of conditional betas, and{µt} ({vt}) is the vector of
latent conditional means (variances) of the market. Denote the data byyt = (rm,t, ri,t) and the full set of data as
Y = {yt}. We can break equation (B-1) into several conditional distributions:

1. p(Y |θ, {βt}, {µt}, {vt}) is the distribution of the data given the conditional betas, conditional means and
conditional volatilities of the market,

2. p({µt}, {βt}|θ, {vt}, Y ) is the joint distribution of the conditional betas and conditional means of the mar-
ket, which is an VAR(1) process with correlation betweenµt andβt,

3. p({vt}|θ, {µt}, {βt}, Y ) is the distribution of the conditional market variances, which is a log-normal
AR(1) process, and finally,
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4. p(θ) reflects the prior belief about the parameters of the process in (B-1).

The Gibbs sampler involves iterating over the following sets of parameters and states, conditional on other
parameters and states:

P1) Latent Conditional Beta and Market Premium States{µt}, {βt}
P2) Latent Conditional Market Variance States {vt}
P3) Market Premium Regression Parameters µ0, φµ

P4) Conditional Beta Regression Parameters β0, φβ

P5) Conditional Variance Regression Parameters v0, φv

P6) Conditional Alpha αC

P7) Volatility Parameters σµ, σv, σβ , σ̄
P8) Correlation Parameters ρµv, ρµβ

Drawing the Conditional Betas and Market Premium Process (P1)

We draw{µt, βt} jointly using the multi-move Carter-Kohn (1994) forward-filtering backward-sampling algo-
rithm. This entails running a Kalman filter forward with the state equation:

(
µt − µ̄
βt − β̄

)
=

(
φµ 0
0 φβ

)(
µt−1 − µ̄
βt−1 − β̄

)
+ ut, (B-2)

whereut is normally distributed bivariate shocks with the covariance matrix

(
σ2

µ ρµβσµσβ

ρµβσµσβ σ2
β

)
, andµ̄ =

µ0/(1 − φµ) and β̄ = β0/(1 − φβ) are the unconditional means ofµt andβt, respectively. We ensure that we
match the sample unconditional mean ofµt in each iteration. There are two observation equations in the Kalman
system. First, as Johannes and Polson (2003) note, the observation equation for the market is a heteroskedastic
observation equation:

rm,t = µ̄ + (µt − µ̄) +
√

vtεm,t, (B-3)

wherevt is known. The second observation equation for the stock return is:

ri,t = αC + β̄rm,t + rm,t(βt − β̄) + σ̄εi,t, (B-4)

which is an observation equation with time-varying coefficients sincerm,t is known. The time-varying constant
term isαC +β̄rm,t and the time-varying factor loading isrm,t. Once the Kalman filter is run forward, we backward
sample through time following Carter and Kohn (1994).

Drawing the Conditional Market Volatility Process (P2)

Updating the volatility states requires single state updating (see Jacquier, Polson and Rossi, 1994, 2004). For a
single state update, the joint posterior for volatility is:

p(vt|vt−1, vt+1, θ, {µt}, Y ) ∝ p(yt+1|µt, vt)p(vt|vt−1, µt−1, µt)p(vt+1|vt, µt, µt+1). (B-5)

Note that we have setρvβ = 0 (from Brandt and Kang, 2004), so the draw of{vt} is unaffected by{βt}.
Denoteεµ

t = µt−µ0−φµµt−1 as the timet residual of theµt process. To find the distributionp(vt|vt−1, µt, µt−1) ≡
p(vt|vt−1, ε

µ
t ), we use the fact thatεµ

t andln vt are jointly normal. Hence, the distribution ofln vt conditional on
εµ
t is normally distributed:

ln vt ∼ N

(
v0 + φv ln vt−1 +

ρµvσv

σµ
, σ2

v(1− ρ2
µv)

)
.

This implies that we can write:

p(vt|vt−1, ε
µ
t ) ∝ exp

(
−

(ln vt − v0 − φv ln vt−1 − ρµvσv

σµ
εµ
t )2

2σ2
v(1− ρ2

µv)

)
. (B-6)
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The other two expressions in equation (B-5) are:

p(yt+1|µt, vt) ∝ v
−1/2
t exp

(
− (yt+1 − µt)2

2vt

)
(B-7)

and

p(vt+1|vt, ε
µ
t+1) ∝

1
vt

exp

(
−

(ln vt+1 − v0 − φv ln vt − ρµvσv

σµ
εµ
t+1)

2

2σ2
v(1− ρ2

µv)

)
. (B-8)

Substituting equations (B-6) through (B-8) into the joint posterior (B-5), combining the log-normal terms, and
completing the square, allows us to write:

p(vt|vt−1, vt+1, θ, {µt}, Y ) ∝ v
−3/2
t exp

(
− (yt+1 − µt)2

2vt

)
exp

(
− (ln vt − µ∗t )2

2σ∗2

)
, (B-9)

where

µ∗t =
v0(1− φv) + φv(ln vt−1 + ln vt+1) + ρµvσv

σµ
(εµ

t − φvεµ
t+1)

(1 + φ2
v)

and

σ∗2 =
σ2

v(1− ρ2
µv)

1 + φ2
v

.

If ρµv = 0, then the posterior distribution in equation (B-9) reduces to Jacquier, Polson and Rossi (1994). Since
this distribution is not recognizable, we use a Metropolis draw. As suggested by Cogley and Sargent (2005), we
use a log-normal density as a proposal:

q(vt) ∝ v−1
t exp

(
− (ln vt − µ∗t )

2

2σ∗2

)
. (B-10)

The acceptance probability for the(g + 1)th draw is:

(
vg+1

t

vg
t

)−1/2

exp
[
−1

2
(yt+1 − µt)2

(
1

vg+1
t

− 1
vg

t

)]
. (B-11)

To drawvt at the beginning and the end of the sample, we integrate out the initial and end values ofvt by drawing
from the log-normal AR(1) process in (B-1), following Jacquier, Polson and Rossi (2004).

Drawing µ0 and φµ (P3)

It is hard to pin downφµ without imposing prior information. In the predictability literature, excess market returns
are generally predicted by very persistent variables, such as dividend yields, short rates and term spreads. In
theoretical models, expected excess returns vary over business-cycle frequencies and, therefore, are very persistent.
Our procedure for drawingφµ is to use a Random-Walk Metropolis algorithm with a random walk proposal forφµ

bounded fromφL to φU . Because the random walk is bounded, this is equivalent to drawing from a uniform over
φL to φU . We setφL = 0.900 andφU = 0.999.

The acceptance probability for the(g + 1)th draw is:

exp
[
− 1

2σ2
µ

(
εg+1′
µ εg+1

µ − εg′
µ εg

µ

)]
, (B-12)

whereεg
µ is the vector of residuals of theµt innovations{(µt − µg

0 − φg
µµt−1)} from thegth draw. Onceφµ is

drawn, we computeµ0 to match the unconditional market risk premium in dataµ̄, by settingµ0 = µ̄(1−φµ). This
is to ensure that the spread of average returns induced by the time-varying betas of the book-to-market portfolios
is not being influenced by an implied average excess market return that is far from the data.
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Drawing β0 and φβ (P4)

Given a normal prior, the posterior distribution forβ0 is also normal (see Zellner, 1971). We set the normal prior
for β0 to have zero mean and a variance of 1000.

To drawφβ , we set up an Independence Metropolis draw to use prior information to help identifyφβ . We
use a normally distributed priorp(φβ) and drawφβ from a uniform proposalq(φβ), bounded betweenφL andφU .
Our approach to specifying a prior onφβ is as follows. We use our estimates about the mean reversion rate of the
60-month rolling betas in Table 2 to help formulate our prior onφi. For each portfolio we estimate, we impose a
uniform distribution from four standard errors below the implied values ofφi to 0.9999 as our prior onφβ .

The acceptance probability for the(g+1)th draw is given byπ(φβ
g+1)/π(φβ

g), where the posteriorπ(φβ) =
p(Y |{βt}, θ)p(φβ) is conjugate normal. This is because the likelihoodp(Y |{βt}, θ) is normally distributed from
the equation forri,t andβt in equation (B-1) since the market,rm,t is known:

ri,t = αC + βtrm,t + σ̄εi,t

and βt = β0 + φββt−1 + σβεβ,t.

Drawing v0 and φv (P5)

Conditional on volatility, the parametersv0 andφv are just regression parameters. These parameters can be updated
by a standard conjugate normal draw (see Zellner, 1971).

Drawing αC (P6)

Given a normal prior, the posterior distribution forαC is a straightforward regression draw (conjugate normal). The
choice of priors forαC varies as we change the prior mean and prior variance to reflect effective non-informative
priors or priors that represent dogmatic belief. For example, for the parameters reported in Table 3, we use a prior
normal with zero mean and standard deviation of 1.00% per month.

Drawing σµ, σv, σβ , and σ̄ (P7)

We update the volatility parametersσµ andσv using standard Inverse Gamma (IG) conjugate draws, assuming
IG(ν0, ν1) priors (see Zellner, 1971). In all cases, we choose priors withν0 = ν1 = 0.

Drawingσβ andσ̄ is more complicated because we want to constrain the variance of the stock return implied
from θ to match the variance of the stock return in data. This ensures that the estimation does not cause the implied
variance of the stock return to be greater than that observed in data. The stock variance is given by:

var(ri,t) = β̄2var(rm,t) + var(βt)(µ2
m + σ2

m) + σ̄2, (B-13)

where var(βt) = σ2
β(1 − ρ2

µβ)/(1 − φ2
β), µm = E(rm,t), andσ2

m = var(rm,t). We first draw a candidatēσ from
the residualsri,t − αC − βtrm,t using an IG conjugate draw. Then, we solve equation (B-13) forσβ , where the
values for var(ri,t), E(rm,t), and var(rm,t) are set at their estimates from data. If there is no solution forσβ , this
indicates that the implied idiosyncratic volatility and the volatility of the conditional betas result in a higher total
stock variance than what is observed in the data, so we discard and do not update the candidate draw forσ̄.

Drawing ρµv and ρµβ (P8)

To impose prior information on the correlation parameters, we use an accept/reject Metropolis algorithm with a
normal prior. The resulting posteriorπ(ρ) is derived by Bernardo and Smith (2002, p363), which involves the
sample correlation estimate and hypogeometric functions. We draw from a uniform proposal overρL = −1 to
ρU = +1. The acceptance probability for the(g + 1)th draw is given by:

π(ρg+1)
π(ρg)

exp
(
− 1

2σ2
0

[(ρg − µ0)2 − (ρg+1 − µ0)2]
)

(B-14)

whereµ0 is the prior mean andσ2
0 is the prior variance.
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For ρµv, we have strong prior belief thatρµv is negative through the leverage effect. We setµ0 = −0.6 with
σ0 = 0.2. Sinceρµβ is a crucial parameter for inferring the OLS alpha, we choose the prior parameters ofρµβ to
be effectively diffuse, withµ0 = 0 andσ0 = 0.5.
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Table 2: Summary Statistics of the 60-month Rolling Betas

Book-to-Market
Value Growth Strategy

60th Autocorrelation 0.629 0.509 0.652
(0.129) (0.153) (0.134)

Implied Monthly Autocorrelation 0.992 0.989 0.993
(0.003) (0.005) (0.003)

Std. Deviation 0.377 0.108 0.468

This table reports the monthly mean-reversion parameter of the OLS betas, which are estimated by rolling 60-
month OLS regressions. For each portfolio, we estimate the market beta over each 60-month subsample over
the period July 1926 to December 2001. We compute their 60th autocorrelations and take their 60th roots as
measures of the implied monthly mean-reversion parameters under the null of an AR(1) process. We also report
the unconditional standard deviation of the 60-month rolling OLS betas. The “value” stock portfolio is the highest
book-to-market (decile 10) portfolio, while the “growth” stock portfolio is the lowest book-to-market (decile 1)
portfolio. The “book-to-market strategy” represents returns on a strategy that goes long value stocks and goes short
growth stocks.
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Table 3: Model Parameter Estimates

Market Parameters Stock Return and Beta Parameters

Value Growth Bk-Mkt

µ0 0.001 β0 0.014 0.021 0.001
(0.001) (0.007) (0.007) (0.002)

φµ 0.956 φβ 0.988 0.981 0.992
(0.005) (0.003) (0.005) (0.003)

σµ 0.004 σβ 0.168 0.132 0.065
(0.001) (0.026) (0.029) (0.016)

v0 -0.361 σ̄ 0.063 0.034 0.052
(0.638) (0.022) (0.007) (0.002)

φv 0.941 αC 0.000 -0.002 0.002
(0.110) (0.002) (0.001) (0.002)

σv 0.274 ρµβ 0.759 0.882 0.408
(0.177) (0.086) (0.015) (0.127)

ρµv -0.093
(0.083)

We report posterior means and standard deviations of parameters for the model:

ri,t = αC + βtrm,t + σ̄εi,t,

rm,t = µt +
√

vtεm,t,

βt = β0 + φββt−1 + σβεβ,t,

µt = µ0 + φµµt−1 + σµεµ,t

and ln vt = v0 + φv ln vt−1 + σvεv,t,

whereri,t is an excess rate of return on a portfolio andrm,t is the excess rate of return on the market portfolio. The
return shocks,εi,t andεm,t, are independent standard normals. The conditional moments,βt, µt, andln vt, follow
latent AR(1) processes, where the shocks,εm,t, εµ,t, andεv,t, are standard normals. The correlation betweenεm,t

andεµ,t is ρµβ , the correlation betweenεµ,t andεv,t is ρµv, and the correlations between other error terms are zero.
We separately estimate each portfolio with the market as a pair, but the estimates of the market are almost identical
across all three portfolios. Value (growth) stocks refer to the highest (lowest) book-to-market decile portfolio. The
column labelled “Bk-Mkt” refers to the return on a strategy of going long the value stock portfolio and going short
the growth stock portfolio. All models are estimated over the full sample from July 1926 to December 2001, and
we use a normal prior onαC with zero mean and a standard deviation of 1% per month. We list the priors of other
parameters in Appendix B.
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Table 4: Conditional Alpha,αC , of the Book-to-Market Strategy

Prior Distribution ofαC

µp
αC 0.00 0.00 0.00 0.00 0.60 0.60 0.60 0.60

σp
αC 0.10 0.30 0.50 1.00 0.10 0.30 0.50 1.00

Mean 0.06 0.22 0.20 0.23 0.50 0.33 0.30 0.24
Std Dev 0.09 0.17 0.18 0.19 0.11 0.17 0.18 0.19

Percentiles
0.010 -0.16 -0.20 -0.23 -0.23 0.20 -0.03 -0.13 -0.21
0.025 -0.12 -0.13 -0.15 -0.14 0.26 0.03 -0.05 -0.12
0.050 -0.09 -0.07 -0.09 -0.08 0.31 0.08 0.01 -0.06
0.100 -0.06 -0.01 -0.02 -0.01 0.37 0.13 0.06 0.01
0.250 0.00 0.10 0.09 0.11 0.44 0.22 0.17 0.12
0.500 0.06 0.23 0.20 0.23 0.51 0.32 0.29 0.24
0.750 0.11 0.38 0.32 0.35 0.58 0.44 0.43 0.36
0.900 0.17 0.38 0.43 0.47 0.63 0.55 0.53 0.49
0.950 0.20 0.41 0.50 0.54 0.67 0.62 0.58 0.56
0.975 0.24 0.47 0.56 0.61 0.70 0.68 0.64 0.63
0.990 0.27 0.53 0.64 0.70 0.74 0.75 0.72 0.72

This table reports the posterior distribution of the conditional alpha,αC , from the conditional CAPM described
by equations (13) to (15) for the book-to-market strategy, which goes long the decile 10 book-to-market portfolio
(value stocks) and goes short the decile 1 book-to-market portfolio (growth stocks). The table reports the posterior
distribution of the conditional alpha,αC , in equation (13). We vary the mean,µp

αC , and standard deviation,σp
αC ,

of the normal prior distribution onαC as we move across the columns. We report various percentile points of the
posterior distribution, in addition to posterior means and standard deviations. The table entries are expressed in
terms of percentage returns per month. The models are estimated over July 1926 to December 2001.
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Table 5: OLS Alpha,αOLS, of the Book-to-Market Strategy

Prior Distribution ofαC

µp
αC 0.00 0.00 0.00 0.00 0.60 0.60 0.60 0.60

σp
αC 0.10 0.30 0.50 1.00 0.10 0.30 0.50 1.00

Mean 0.29 0.43 0.43 0.45 0.70 0.55 0.52 0.47
Std Dev 0.14 0.17 0.20 0.20 0.14 0.19 0.21 0.21

Percentiles
0.010 0.00 -0.01 -0.04 -0.04 0.35 0.14 0.06 -0.01
0.025 0.04 0.06 0.04 0.05 0.43 0.21 0.13 0.07
0.050 0.08 0.12 0.11 0.12 0.47 0.25 0.19 0.14
0.100 0.12 0.20 0.18 0.20 0.53 0.32 0.26 0.22
0.250 0.19 0.32 0.30 0.32 0.61 0.42 0.37 0.34
0.500 0.28 0.46 0.43 0.44 0.71 0.54 0.51 0.46
0.750 0.37 0.56 0.55 0.57 0.80 0.67 0.66 0.60
0.900 0.45 0.61 0.67 0.70 0.88 0.78 0.77 0.73
0.950 0.51 0.67 0.76 0.79 0.94 0.87 0.83 0.82
0.975 0.56 0.74 0.84 0.87 0.99 0.94 0.91 0.90
0.990 0.64 0.82 0.93 0.96 1.05 1.04 1.01 1.00

This table reports the posterior distribution of the OLS alpha,αOLS , corresponding to a sample size ofT = ∞
from the conditional CAPM described by equations (13) to (15) for the book-to-market strategy, which goes long
the decile 10 book-to-market portfolio (value stocks) and goes short the decile 1 book-to-market portfolio (growth
stocks). We compute the posterior distribution ofαOLS by simulating a time-series of 100,000 observations for
each observation in the posterior distribution of the model parametersθ. For each simulated time-series, we
estimate equation (1) and record the estimatedαOLS . We vary the mean,µp

αC , and standard deviation,σp
αC , of

the normal prior distribution onαC as we move across the columns. We report various percentile points of the
posterior distribution, in addition to posterior means and standard deviations. The table entries are expressed in
terms of percentage returns per month. The models are estimated over July 1926 to December 2001.
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Table 6: Finite-Sample OLS Alphas

Conditional
AlphaαC OLS AlphaαOLS

T

With Parameter Uncertainty Without Parameter Uncertainty

αC = 0 αC = 0
Full Full αC = 0 ρµβ = 0 ρµβ = 0 Full αC = 0 ρµβ = 0 ρµβ = 0

Mean 0.23 0.43 0.20 0.23 0.01 0.42 0.20 0.24 0.01
Std Dev 0.19 0.50 0.47 0.49 0.46 0.42 0.42 0.42 0.42

Percentiles
0.010 -0.23 -0.75 -0.88 -1.07 -1.19 -0.57 -0.79 -0.83 -1.06
0.025 -0.14 -0.53 -0.68 -0.77 -0.90 -0.39 -0.62 -0.62 -0.85
0.050 -0.08 -0.35 -0.51 -0.56 -0.73 -0.23 -0.46 -0.45 -0.68
0.100 -0.01 -0.16 -0.33 -0.36 -0.54 -0.07 -0.30 -0.27 -0.50
0.250 0.01 0.12 -0.09 -0.06 -0.26 0.16 -0.07 -0.02 -0.25
0.500 0.23 0.41 0.17 0.24 0.00 0.41 0.18 0.24 0.01
0.750 0.35 0.71 0.46 0.53 0.27 0.67 0.44 0.49 0.27
0.900 0.47 1.03 0.77 0.83 0.55 0.94 0.71 0.74 0.51
0.950 0.54 1.27 0.98 1.03 0.73 1.13 0.90 0.91 0.68
0.975 0.61 1.48 1.21 1.23 0.92 1.32 1.09 1.07 0.84
0.990 0.70 1.78 1.49 1.47 1.17 1.56 1.33 1.28 1.05

This table reports the small-sample posterior distribution ofαOLS
T from the conditional CAPM described by equa-

tions (13) to (15) for the book-to-market strategy for a small sample of lengthT = 462, which corresponds to
the length of the post-1963 sample. In the columns under the line “With Parameter Uncertainty,” we obtain the
small-sample posterior distribution ofαOLS

T by simulating time-series of 462 observations for each observation in
the posterior distribution of the model parametersθ. For each simulated time-series, we estimate the OLS alpha.
In the columns under the line “Without Parameter Uncertainty,” we disregard the effect of parameter uncertainty
on the small-sample posterior distribution ofαOLS

T by simulating only from the posterior mean of the posterior
parameter distributions. The first column repeats the posterior distribution ofαC from Table 4 for comparison. The
columns under the line “OLS AlphaαOLS

T ” report the small-sample posterior distribution ofαOLS
T . The columns

labelled “Full” report the results based on the full specification of the conditional CAPM, while the other columns
set various parameters equal to zero. In all cases, we use a normal prior onαC with zero mean and a standard
deviation of 1% per month and estimate the full model over July 1926 to December 2001. All table entries are
expressed in terms of percentage returns per month.
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Figure 1: Estimates of 60-month Rolling OLS Betas for Book-to-Market Portfolios
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This figure shows the 60-month rolling OLS betas of the book-to-market decile portfolios from July 1931 to
December 2001 for the decile 10 book-to-market portfolio (value stocks) and the decile 1 book-to-market portfolio
(growth stocks). For each portfolio in each month, we estimate OLS beta using the past 60 months of observations
using the regression in equation (1).
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Figure 2: Time-Varying Market Risk Premia and Market Volatility
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We plot the estimates of time-varying market risk premia (Panel A) and market volatility (Panel B) obtained by a
Gibbs sampling estimation of the conditional CAPM described by equations (13) to (15). The dotted lines show a
one posterior standard deviation bound.
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Figure 3: Estimates of Time-Varying Betas for Book-to-Market Portfolios
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These plots show the inferred estimates of time-varying betas obtained by the Gibbs sampling estimation of the
conditional CAPM described by equations (13) to (15) for the decile 10 book-to-market portfolio (value stocks)
and the decile 1 book-to-market portfolio (growth stocks).
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Figure 4: Estimates of Time-Varying Betas for the Book-to-Market Strategy
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This plot shows the inferred estimates of time-varying betas obtained by the Gibbs sampling estimation of the
conditional CAPM described by equations (13) to (15) for the strategy of going long the decile 10 book-to-market
portfolio and going short the decile 1 book-to-market portfolio (the book-to-market strategy). The dotted lines
show a one posterior standard deviation bound.
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Figure 5: The Small-Sample Posterior Distribution of the OLS Alpha
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The solid lines show the inferred small-sample posterior distribution ofαOLS
T from the conditional CAPM de-

scribed by equations (13) to (15) for the book-to-market strategy for a sample size ofT = 462, which corresponds
to the post-1963 sample. Panel A graphs the distribution for the full model specification (without any parame-
ter restrictions) and Panel B graphs the distribution whereαC = 0. In both panels, we account for parameter
uncertainty by simulating a time-series of 462 months and computing the OLS alpha for each pointθi from the
posterior distribution (consisting of 10,000 points) of the model parameters. For each simulated time series, we run
an OLS regression and record its estimatedαOLS

T . The plots show the probability density function of the posterior
small-sampleαOLS

T in solid lines. We also plot the probability density function of the asymptotic distribution of
αOLS assuming constant betas under the null thatαOLS = 0 with a robust Newey-West (1987) standard error
estimate over the post-1963 sample in dashed lines. The figures also indicate the location of the null hypothesis
of αOLS = 0 as well as the location of the empirically observedα̂OLS

T of 0.60% per month with vertical dashed
lines. The numbers on thex-axis in each panel are in percentage returns per month.
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