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technology adoption and the direction of technological change, and to understand the distributional
implications of new technologies. In this paper, I analyze the equilibrium bias of technology. I
distinguish between the relative bias of technology, which concerns how the marginal product of a
factor changes relative to that of another following the introduction of new technology, and the
absolute bias, which looks only at the effect of new technology on the marginal product of a factor.
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only allows for factor-augmenting technologies, the increase in the supply of a factor always induces
technological change (or technology adoption) relatively biased towards that factor. This force can
be strong enough to make the relative marginal product of a factor increasing in response to an
increase in its supply, thus leading to an upward-sloping relative demand curve. However, I also
show that the results about relative bias do not generalize when more general menus of technological
possibilities are considered. In the second part of the paper, I show that there are much more general
results about absolute bias. I prove that under fairly mild assumptions, an increase in the supply of
a factor always induces changes in technology that are absolutely biased towards that factor, and
these results hold both for small changes and large changes in supplies. Most importantly, I also
determine the conditions under which the induced-technology response will be strong enough so that
the price (marginal product) of a factor increases in response to an increase in its supply. These
conditions correspond to a form of failure of joint concavity of the aggregate production function
of the economy in factors and technology. This type of failure of joint concavity is quite possible in
economies where equilibrium factor demands and technologies are decided by different agents.
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1 Introduction

Despite the generally-agreed importance of technological progress for economic growth and a

large and influential literature on technological progress,1 the determinants of the direction

and bias of technological change are not well understood. An analysis of the direction and

bias of technical change is important for a number of reasons. First, in most situations, tech-

nical change is not neutral: it benefits some factors of production, while directly or indirectly

reducing the compensation of others. This possibility is illustrated both by the distributional

impact of the major technologies introduced during the Industrial Revolution and the effects

of technological change on the structure of wages during the past half century or so.2 The bias

of technological change determines its distributional implications (i.e., which groups are the

winners and which will be the losers from technological progress) and thus the willingness of

different groups to embrace new technologies. Second, an understanding of the determinants

of innovation requires an analysis of the bias and direction of new technologies, for example,

for evaluating whether lines of previous innovations or technologies will be exploited in the

future and the potential compatibility between old and new technologies.3 Finally, the bias

of technology is important for understanding the macroeconomic implications of technological

progress.

These and related questions have spurred a relatively large literature investigating various

dimensions of the bias of technology. The pioneering study was Hicks’ seminal book, The

Theory of Wages (1932), which first discussed the issue of induced innovation.4 The topic

later attracted attention from the leading economists of the 1960s, notably Kennedy (1964),

Samuelson (1965), Drandakis and Phelps (1965), Ahmad (1966), Nordhaus (1973), David

(1975), and Binswanger and Ruttan (1978), who studied the link between factor prices and

technical change. The focus of this literature was on the macroeconomic consequences of

induced innovation and was shaped by a critical passage in Hicks’s book where he argued:

1See, among others, Dasgupta and Stiglitz (1980), Reinganum (1981, 1985), Spence (1984), and Grossman
and Shapiro (1987) in the industrial organization literature and Romer (1990), Segerstrom, Anant and Dinopou-
los (1990), Grossman and Helpman (1991), Aghion and Howitt (1992), Stokey (1991, 1995), and Young (1993)
in the economic growth literature.

2On the biases and distributional effects of the technologies introduced during the Industrial Revolution, see
Mantoux (1961) or Mokyr (1990), and on recent developments, see footnote 6 below.

3See, for example, Farrell and Saloner (1985) and Katz and Shapiro (1985).
4There is an implicit reference to this issue in Marx, when he discusses how labor scarcity–the exhaustion

of the reserve army of labor–may induce the capitalist to substitute machinery for labor (see Rosenberg, 1982),
and also in Habakkuk’s (1962) well-known contrast of faster technological progress in the United States than in
Britain because of labor scarcity in the former country (see, in particular, p. 44).
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“A change in the relative prices of the factors of production is itself a spur to

invention, and to invention of a particular kind–directed to economizing the use

of a factor which has become relatively expensive.” (pp. 124-5)

Although not explicitly stated, the implicit message in this sentence (and the way it was

interpreted) was that factor prices were the crucial element shaping the bias and direction

of technological progress (or technological adoption), and somehow as a factor becomes more

abundant, thus less expensive, technical change should become less biased towards that factor.5

The topic of biased technological change received renewed interest over the past decade, as

a result of a number of macro phenomena, particularly, the evidence that overall technological

change over the past 60 years has been biased towards skilled workers (e.g., Autor, Katz and

Krueger, 1998). This led a number of authors to formulate extensions of endogenous growth

models (Acemoglu, 1998, 2002, 2003a,b, Acemoglu and Zilibotti, 2000, Kiley, 1999, Caselli and

Coleman, 2004, Xu, 2001, Gancia, 2003, Thoenig and Verdier, 2003, Ragot, 2003, Duranton,

2004, Benabou, 2005, and Jones, 2005), whereby technical change could be directed to one of

multiple (typically two) sectors or factors.6

These models were descendents of the endogenous growth models of Romer, Grossman and

Helpman, and Aghion and Howitt. As a result, they incorporated a number of specific features.

These included a quasi-linear structure to obtain long-run growth, the constant elasticity of

demand borrowed from the Dixit-Stiglitz-Spence model, different types of technologies that

were of factor-augmenting type, and the market size effect, inherent in Romer’s original article

and present in the second generation of endogenous technical change models (see, e.g., Aghion

and Howitt, 1998).
5Nevertheless, parts of Hicks’s reasoning did not go uncriticized. For example, Salter (1966) and Samuelson

(1965) pointed out that firms should strive to economize on total costs not only on the factor that has become
relatively more expensive, thus questioning Hicks’s reasoning (see also Nordhaus, 1973). But the essential ideas
encapsulated in the quote remained influential in the literature. I will clarify below that this quote is never
correct for factor bias, but would be true for factor-augmenting changes as long as the relevant (local) elasticity
of substitution is less than one.
Another implication of this quote relates to the effect of the price of a factor, say labor, on the overall amount

of technology adoption or innovation, which is also an interesting area for study, but not part of the focus of
this paper. See Acemoglu and Finkelstein (2005) for a theoretical and empirical investigation of this point.

6The focus of the first papers in this literature, Acemoglu (1998) and Kiley (1999), was to investigate when
and why technology could be biased towards skilled workers. This was partly motivated by the evidence that
in the 19th and early 20th centuries, new technologies were often replacing skilled workers, which contrasted to
the later skill-biased nature of technological change (see James and Skinner, 1985, Goldin and Katz, 1995, on
the earlier era, and Goldin and Katz, 1998 or Autor, Katz and Krueger, 1998, on the more recent trends). Later
Acemoglu (2003b) and Jones (2005) used similar ideas to investigate whether there are any compelling reasons
for technical change to be purely labor augmenting as required for the existence of a balanced growth path in
standard growth models. Acemoglu (2003a), Xu (2001), Gancia (2003), and Thoenig and Verdier (2003) used
versions of this framework to investigate the effect of international trade on the bias of technology.
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This structure led to some very sharp results about the relative equilibrium bias of technol-

ogy, which, in many ways, stood in contrast to the implicit message of Hicks’s quote mentioned

above. Using an endogenous growth model with two sectors and a constant elasticity of sub-

stitution between factors, Acemoglu (2002) showed that these models implied essentially the

opposite conclusion to that of Hicks’s quote. To describe these results, let relative bias, in a

two-factor world, be the impact of new technology on the marginal product of a factor relative

to that of the other.7 The main result in this class of models is that when a factor becomes

more abundant, technology becomes endogenously more (relatively) biased towards that factor.

The question that arises naturally is whether these results are an artifact of special as-

sumptions imposed in this class of models. Understanding the source of existing results is not

only important for deriving general theorems about equilibrium bias, but also because without

such an understanding, the forces determining the nature of technology adoption and techno-

logical progress remain unclear. The purpose of this paper is to provide an in-depth analysis

of equilibrium bias and provide general theorems in the most natural setting that allows an

analysis of these questions.

To motivate the analysis, we may return to the results from Acemoglu (2002) mentioned

above, and wonder whether those results hold in more general settings. In particular, we may

start with the following conjecture:

Conjecture (Relative Endogenous Bias): When the supply of a factor Z increases,

technology becomes relatively more biased towards factor Z.

The first theorem in this paper shows that this conjecture is correct in a world with two

factors and two factor-augmenting technologies, thus generalizing existing results. Moreover,

it will provide precise conditions for this relative bias to be strong, i.e., for the increase in

the relative supply of a factor to increase its relative price once technology has adjusted to

the change in factor supplies. The second result, however, is that once we depart from an

environment in which all technologies are of the factor-augmenting kind, this conjecture is no

longer true. It is possible to construct relatively simple examples where it fails.

Despite this negative result, the main results in the paper, presented in the second part, are

a series of positive and fairly general results about equilibrium bias. In contrast to the focus

in Acemoglu (1998, 2002) and the conjecture above, these results concern the “absolute”, not

relative, bias. A technology is said to be absolutely biased towards a factor if it increases its

7Equivalently, bias can be described as referring to cost-minimizing relative factor demands at a given factor
price ratio. The two definitions of relative bias are equivalent for the purposes in this paper.
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marginal product.8 While understanding relative bias is essential for a certain class of questions

(for example, those concerning inequality), an analysis of absolute bias is equally important,

for example, for understanding the implications of technological change for the level of wages

or the level of rewards to other factors.

One of the main results of the paper is the following theorem which is stated loosely and

without the necessary assumptions here (which are explained subsequently):

Theorem (Weak Endogenous Bias): When the supply of a factor Z increases, tech-

nology becomes absolutely biased towards factor Z.

Stated differently, this theorem shows that under a set of relatively mild assumptions on

the underlying environment, there is a strong result about equilibrium bias; technology will

progressively favor factors that are becoming abundant. I will show that this theorem applies

under two alternative sets of sufficient conditions. The first set of conditions requires the

measure (vector) of technology to belong to a convex subset of RK for some K ≥ 1, which will
lead to a local theorem (i.e., a result that applies in response to small changes in the supply of a

factor Z). The second possibility is a global theorem. The conditions necessary for this version

of the theorem can be best understood by using the tools of monotone comparative statics as

developed by Topkis (1978, 1979, 1998), Milgrom and Roberts (1990a,b, 1994), Vives (1990),

and Milgrom and Shannon (1994). In fact, the sufficient condition for the global theorem is

a form of supermodularity (or increasing differences) between factor Z (or a set of factors,

Z1, ..., ZN ) and a vector θ denoting technology choices.

These results are not only interesting because of their generality, but also because they shed

light on a variety of real-world phenomena. For example, they suggest why recent technical

change may have increased the demand for skilled workers (since there has been a significant

increase in the number of more educated workers), and why technological progress may have

been biased towards unskilled workers in the past (since there was a large increase in the supply

of unskilled workers in British cities during the 19th century, see, for example, Habakkuk 1962,

or Williamson, 1990).

The above theorem is referred to as the “weak endogenous bias” theorem, because it only

specifies the direction of the bias. Perhaps more important and certainly more surprising is

the following theorem:

Theorem (Strong Endogenous Bias): When the aggregate production possibilities set

of the economy is nonconvex, an increase in the supply of a factor Z induces technology to

8Thus the difference is that this marginal product is not compared to the marginal product of other factors.

4



become sufficiently biased towards factor Z so as to increase its equilibrium price.

In other words, when the production possibilities set is nonconvex, equilibrium bias will be

strong enough that endogenous-technology demand curves for factors will be upward-sloping

rather than downward-sloping as in the standard neoclassical theory. This result will be stated

in Theorem 8 below. Puts differently, there will be strong (absolute) equilibrium bias if and

only if the aggregate output of the economy (or a transformation of it) fails to be jointly

concave in technology (say θ) and Z (which is the essence of the nonconvexity mentioned

above). In equilibrium output (profits) will be maximized in the choice of Z by firms, while

the choice of technology θ by some other agents (a technology monopolist or research firm) will

also maximize output (or some transform thereof). Nevertheless, these two conditions together

do not guarantee that the equilibrium, say (Z∗, θ∗), is a maximum of the aggregate output (or

its transform). Instead, (Z∗, θ∗) could be a saddle point, meaning that there exists a direction

in the (Z, θ) plane in which aggregate output increases. Essentially, Theorem 8 will show

that there will be strong equilibrium bias whenever this is the case, and strong bias will never

exist when (Z∗, θ∗) is in fact a maximum. This implies that the equilibrium structure, where

technology and factor demands are chosen by different agents in the economy is essential for

this result, since otherwise, (Z∗, θ∗) would be a maximum, thus ruling out strong bias. Equally

important, however, is the observation that once we have an economy in which factor demands

and technology are chosen by different agents, such strong bias is quite easy to obtain, because

there is nothing that rules out nonconvexities or guarantees that (Z∗, θ∗) should be a maximum

in all directions.

In addition to the earlier work on induced innovation literature and the recent directed

technical change literature that have already been discussed above, this paper is closely re-

lated to work on the LeChatelier principle. Recall that the LeChatelier principle concerns the

demand for factors of a profit-maximizing firm, and states that long-run demand curves (which

allow adjustment in all factors) are more elastic than short-run demand curves (which hold

the employment level of other factors constant). In other words, in response to an increase in

the price of a factor, the employment of this factor declines more in the short-run than in the

long-run. This principle was first stated and proved by Samuelson (1947) for small changes in

factor prices, but was known not to be true for large changes (see, for example, Samuelson,

1960, Roberts, 1999). It was later generalized by Milgrom and Roberts (1996) to a global

LeChatelier principle under the assumption that production functions are supermodular (see

also Silberberg, 1974). The intuition underlying the LeChatelier principle is that the firm can
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adjust other factors to increase the marginal product of the factor whose price has increased. At

some level, results about the endogenous bias of technology correspond to equilibrium versions

of the LeChatelier principle. The main difference is that the focus here is the effect of changes

in factor supplies on equilibrium outcomes, rather than the partial equilibrium/optimization

focus of the LeChatelier principle. The above discussion illustrates that this equilibrium struc-

ture is responsible for the possibility of strong equilibrium bias (since a firm’s demand curve

for a factor can never be upward sloping, even in the long run, see, e.g., Mas-Colell, Whinston

and Green, 1995, Proposition 5.C.2). Equivalently, as discussed above, strong equilibrium bias

requires technology and factor demands to be chosen by different agents.

The rest of the paper is organized as follows. In Section 2, I describe three alternative

environments, with different market structures and assumptions on technology choice, and

show that the determination of equilibrium bias in these three different economies boils down

to the same problem, with the major difference that two of the economies allow for more natural

nonconvexities in the aggregate production possibilities set. Section 3 provides a generalization

of existing relative bias results, but also shows why the conjecture regarding relative bias above

is not correct unless we restrict the technology possibilities menu to only factor-augmenting

technologies. The main results of the paper are contained in Section 4 and 5. Section 4 presents

a number of versions of the theorems on weak equilibrium (absolute) bias and also clarifies the

limits of these theorems. Section 5 contains the results on strong equilibrium bias. Section 6

concludes, while Appendices A and B contain some additional technical material.

2 The Basic Environments

Consider a static economy consisting of a unique final good and two sets of factors of produc-

tion, a total of N +M , Z =(Z1, ..., ZN ) and L =(L1, ..., LM). Throughout, I assume that all

agents’ preferences are defined over the consumption of the final good. Moreover, all factors

are supplied inelastically and denote their supplies by Z̄ ∈ RN
+ and L̄ ∈ RM

+ . The reason for

distinguishing between these two sets of factors is to carry out comparative static exercises

varying the supply of factors Z, while holding the supply of other factors, L, constant. The

economy consists of a continuum of firms (final good producers) denoted by the set F , each
with an identical production function. Without loss of any generality let us normalize the

measure of F , |F|, to 1. The price of the final good is also normalized to 1.9

9Since all agents’ preferences are defined over the final good, ownership of firms is not important for the
equilibrium allocations. In particular, firms will always maximize profits independent of their exact ownership
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I will consider three different environments to highlight the importance of convexity of

the aggregate production set. All three environments will lead to a similar structure for the

determination of equilibrium bias. In particular, they will all generate the weak equilibrium

bias under the set of conditions already discussed in the Introduction, but two of them can

generate the strong equilibrium bias more naturally (see below for formal definitions).

The first, Economy D (for decentralized), is a completely decentralized economy in which

technologies are chosen by firms themselves. In some ways, in this economy, technology choice

can be interpreted as choice of just another set of factors. This economy also has some simi-

larity to the models recently analyzed by Boldrin and Levine (2001, 2004) and Quah (2003),

which emphasize the possibility of endogenous technological change without monopolistic com-

petition. But from the point of view of this paper, the most important aspect of Economy D

is that the whole discussion can be in terms of technology adoption, and we can work with a

convex decentralized economy familiar from basic general equilibrium analysis.

The second, Economy C (for centralized), features a benevolent social planner choosing

the technology. The third is, in many ways, the most standard environment, and features a

monopolist choosing and selling technologies. This environment, Economy M (for monopoly),

will lead to identical results to Economy C. A tradition dating back to Schumpeter (1934) and

Arrow (1962), and more recently used by Romer (1990), Grossman and Helpman (1991), and

Aghion and Howitt (1992), emphasizes both the non-rivalrous nature of new technologies and

the monopoly power necessary to recoup the investments made for R&D, and these features

are captured in Economy M in a simple manner.

2.1 Economy D–Decentralized Equilibrium

In the first environment, Economy D, all markets are competitive and technology is decided

by each firm separately. In this case, each firm i ∈ F has access to a production function

Y i = F (Zi,Li, θi) (1)

where Zi ∈ Z ⊂RN
+ ,L

i ∈ L ⊂RM
+ and θi ∈ Θ is the measure of technology. F is a real-valued

production function, which, for simplicity, I take to be twice continuously differentiable in

(Zi,Li).10 For now I impose no structure on the set Θ, but for concreteness, one might think

structure. For this reason, I do not specify the ownership structure of firms in what follows.
10Whenever F is assumed to be differentiable in

¡
Zi,Li

¢
[
¡
Zi,Li, θ

¢
], this means that it is differentiable over

some open set containing Z ×L [Z ×L×Θ].
The differentiability assumptions are not necessary for the main results, and only facilitate the exposition

by allowing a clear definition of marginal products and factor prices. Without differentiability, factor prices
(marginal products) can take values in the set of generalized Clarke derivatives as defined in Clarke (1990).
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of Θ ⊂ RK for some K ∈ N. For many instances of technology choice, Θ may consist of

discrete elements (corresponding to separate technologies), so it may not be a convex set. For

the global results, we will need that both Θ and Z are lattices according to some order.11

Each final good producer (firm) maximizes profits, i.e., it solves the problem:

max
Zi∈Z,Li∈L,θi∈Θ

π(Zi,Li, θi) = F (Zi,Li, θi)−
NX
j=1

wZjZ
i
j −

MX
j=1

wLjL
i
j , (2)

where wZj is the price of factor Zj for j = 1, ...,N , and wLj is the price of factor Lj for

j = 1, ...,M , all taken as given by the firm. Similar to the notation for L and Z, I will use

wZ and wL to denote the vector of factor prices. Since there is a total supply Z̄j of factor Zj

and a total supply L̄j of factor Lj , and both factors are supplied inelastically, market clearing

requires Z
i∈F

Zi
jdi ≤ Z̄j for j = 1, ..., N and

Z
i∈F

Li
jdi ≤ L̄j for j = 1, ...,M . (3)

Definition 1 A competitive equilibrium in Economy D is a set of decisions
©
Zi,Li, θi

ª
i∈F

and factor prices (wZ ,wL) such that
©
Zi,Li, θi

ª
i∈F solve (2) given prices (wZ ,wL) and (3)

holds.

I refer to any θi that is part of the set of equilibrium allocations,
©
Zi,Li, θi

ª
i∈F , as “equi-

librium technology”.

Assumption 1 Θ ⊂ RK for some K ≥ 1, F (Zi,Li, θi) is jointly strictly concave in (Zi,Li, θi)
and increasing in (Zi,Li), and Z, L and Θ are convex.

Then by standard arguments we have:

Lemma 1 (Symmetry) Suppose Assumption 1 holds. Then in any competitive equilibrium,

(Zi,Li, θi) = (Z̄, L̄, θ) for all i ∈ F .

Proof. This lemma follows immediately by the strict concavity of F (Zi,Li, θi), which

implies strict concavity of π(Zi,Li, θi). To obtain a contradiction, suppose that two firms, i

and i0, choose (Zi,Li, θi) and (Zi
0
,Li

0
, θi

0
), such that (Zi,Li, θi) 6= (Zi0 ,Li0 , θi0). This is only

11Since Z is a subset of RN+ , an easy way to guarantee that it is a lattice is to assume it to be a “box-
constrained” region (or a cube) with a minimum and maximum value for each Zi

j . Although the lattice structure
can be restrictive under some circumstances, for example when there are budget-type relationships between
subcomponents of the vector, it is not very restrictive in this context, since the fact that a firm is hiring more
of one factor does not typically put constraints on its hiring more of others.
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possible if π(Zi,Li, θi) = π(Zi
0
,Li

0
, θi

0
). Now consider the vector (Z,L, θ) = λ(Zi,Li, θi) +

(1− λ) (Zi
0
,Li

0
, θi

0
) for some λ ∈ (0, 1), which is feasible by the convexity of L, Z and Θ. Strict

concavity implies that π(Z,L, θ) > λπ(Zi,Li, θi) + (1− λ)π(Zi
0
,Li

0
, θi

0
), hence π(Z,L, θ) >

π(Zi,Li, θi) = π(Zi
0
,Li

0
, θi

0
), delivering a contradiction. Therefore for all i ∈ F , we have

(Zi,Li, θi) = (Z,L, θ). Since F is increasing in (Zi,Li), market clearing, (3), and |F| = 1

imply that (Z,L) = (Z̄, L̄), completing the proof.

Assumption 1 may be restrictive, however, because it rules out constant returns to scale

in (Zi,Li, θi). Alternatively, we can modify this assumption to allow for constant returns to

scale:12

Assumption 1’ Θ ⊂ RK for some K ≥ 1, F (Zi,Li, θi) is increasing in (Zi,Li) and exhibits
constant returns to scale in (Zi,Li, θi), and we have (Z̄, L̄) ∈ Z × L.

Proposition 1 (Welfare Theorem D) Suppose Assumption 1 or Assumption 1’ holds.

Then any equilibrium technology θ is a solution to

max
θ0∈Θ

F (Z̄, L̄, θ0), (4)

and any solution to this problem is an equilibrium technology.

Proof. (=⇒) First suppose Assumption 1 holds. Suppose that
©
Zi,Li, θi

ª
i∈F is a com-

petitive equilibrium. By Lemma 1,
©
Zi,Li, θi

ª
i∈F is such that

¡
Zi,Li, θi

¢
=
¡
Z̄, L̄,θ

¢
for all

i ∈ F . Moreover, by the definition of a competitive equilibrium, there exist wZ and wL such

that ¡
Z̄, L̄, θ

¢
∈ arg max

Zi∈Z,Li∈L,θi∈Θ
F (Zi,Li, θi)−

NX
j=1

wZjZ
i
j −

MX
j=1

wLjL
i
j . (5)

This implies that any equilibrium technology θ satisfies θ ∈ argmaxθ0∈Θ F (Z̄, L̄, θ0). Next, sup-

pose that Assumption 1’ holds. In that case, without loss of any generality, we can consider

an equilibrium with only one (representative) firm active and employing (Z̄, L̄) ∈ Z × L. Con-
sequently, by the definition of a competitive equilibrium (5) holds. Thus the same conclusion

follows.

(⇐=) First suppose that Assumption 1 holds. Take θ ∈ argmaxθ0∈Θ F (Z̄, L̄, θ0). By the

strict concavity of F , the first-order conditions of (5) are necessary and sufficient. Consider the

12 It is also possible to allow for mixtures of constant returns to scale and strict convexity, but this introduces
additional notation, and since it is not essential for the focus here, I simplify the analysis by using either
Assumption 1 or Assumption 1’.
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factor price vectors wZ and wL such that wZj = ∂F (Z̄, L̄, θ)/∂Zj and wLj = ∂F (Z̄, L̄, θ)/∂Lj .

The hypothesis (4) implies that at these factor price vectors,
¡
Zi,Li, θi

¢
=
¡
Z̄, L̄,θ

¢
for all

i ∈ F satisfies the first-order conditions of (5), so it is a competitive equilibrium, thus θ is

an equilibrium technology. Next, suppose that Assumption 1’ holds. Once again, we can

consider an equilibrium with only one firm active employing (Z̄, L̄) ∈ Z × L, so any θ ∈
argmaxθ0∈Θ F (Z̄, L̄, θ0) is an equilibrium technology, completing the proof.

Proposition 1 is useful since it enables us to focus on a simple maximization problem

rather than an equilibrium problem. An important implication of this proposition is also

that the equilibrium corresponds to a maximum of F in the entire vector
¡
Zi,Li, θi

¢
. It is

also straightforward to see that equilibrium factor prices in this economy are equal to the

marginal products of the F function, and are given by wZj = ∂F (Z̄, L̄, θ)/∂Zj and wLj =

∂F (Z̄, L̄, θ)/∂Lj where θ is the equilibrium technology choice.

We next derive a similar maximization problem for Economies C and M, which relax

the strong (joint) convexity assumptions inherent in Economy D, and show that a similar

equilibrium characterization can be obtained for these economies, but without the implication

that the equilibrium corresponds to a maximum of F in the entire vector
¡
Zi,Li, θi

¢
.

2.2 Economy C–Centralized Equilibrium

In this economy, there is still a unique final good and each firm has access to the production

function

Y i = G(Zi,Li, θi). (6)

In particular, we again have Zi ∈ Z ⊂RN
+ ,L

i ∈ L ⊂RM
+ and θi ∈ Θ is the measure of technology,

and G is again a real-valued production function that is twice continuously differentiable in

(Zi,Li).

Each firm has free access to the technology θ provided by the centralized (socially-run)

research firm. This research firm can create any technology θ at cost C (θ) from the available

technology menu Θ. Once created, this technology is non-excludable and available to any

firm (as well as non-rival, see Arrow, 1962, Romer, 1990). In addition, to further simplify the

analysis, I assume that the research firm can only choose one technology, which might be, for

example, because of the necessity of standardization across firms.13

13 In general, a social planner may want to create two different technologies, say θ1 and θ2, and provide one
technology to a subset of firms and the other to the rest. This strategy may be optimal if C (θ) were sufficiently
small (so that duplication costs are not too large).
In the environment outlined here, this option will not typically work because of non-excludability. In partic-

10



All factor markets are again competitive. Consequently, given the technology offer of θ of

the research firm, the maximization problem of each final good producer is

max
Zi∈Z,Li∈L

π(Zi,Li, θ) = G(Zi,Li, θ)−
NX
j=1

wZjZ
i
j −

MX
j=1

wLjL
i
j . (7)

Notice the important difference in this maximization problem relative to that in Economy

D: firms are only maximizing with respect to
¡
Zi,Li

¢
, not with respect to θi, which will be

determined by the research firm.

The objective of the research firm is to maximize total surplus, or total output. Since

θi = θ for all i ∈ F , this is equivalent to

max
θi∈Θ

Π (θ) =

Z 1

0
G(Zi,Li, θ)di−C (θ) . (8)

This leads to a natural definition of equilibrium:

Definition 2 An equilibrium in Economy C is a set of firm decisions
©
Zi,Li

ª
i∈F , technology

choice θ and factor prices (wZ ,wL) such that
©
Zi,Li

ª
i∈F solve (7) given (wZ ,wL) and θ, (3)

holds, and the technology choice for the research firm, θ, maximizes (8).

We now impose weaker versions of Assumptions 1 and 1’ on G:

Assumption 2 G(Zi,Li, θi) is jointly strictly concave and increasing in (Zi,Li) and Z and

L are convex.

Assumption 2’ G(Zi,Li, θi) is increasing and exhibits constant returns to scale in (Zi,Li),

and we have (Z̄, L̄) ∈ Z × L.

The important difference between Assumptions 1 and 1’ versus Assumptions 2 and 2’ is

that with the latter, G(Zi,Li, θi) does not need to be jointly concave in
¡
Zi, θ

¢
, which will play

an important role in the results below (nor does Θ need to be a subset of RK).

ular, all firms would want to use the technology that is superior. Nevertheless, there can be some situations
in which the research firm may prefer to create two distinct technologies, θ1 and θ2, from the menu. For this,
it needs to be the case that first, neither of the two technologies is superior to the other (i.e., which one leads
to higher output depends on factor proportions); second, F has to be jointly non-concave in θ and (Z,L), so
that some firms may choose θ1 and the corresponding factor demand, while others choose θ2 and other levels
of factor demands, and all firms make the same level of profits; and third, C (θ) should be low enough that the
costs of creating two different technologies, θ1 and θ2, is not prohibitive. Such situations are relatively rare and
are not central to the focus here, so rather than deriving the conditions on C (θ) and the production function
G to rule out this possibility, I simply assume that choosing two separate technologies from the menu is not
possible.

11



Proposition 2 (Equilibrium Theorem C) Suppose Assumption 2 or Assumption 2’ holds.

Then any equilibrium technology is a solution to

max
θ∈Θ

G(Z̄, L̄, θ)− C (θ) (9)

and any solution to this problem is an equilibrium technology.

Proof. The proof is similar to that of Proposition 1, and follows again by noting that

under Assumption 2, the equilibrium will be symmetric, so (Zi,Li, θ) = (Z,L,θ). In addition,

because G is increasing in (Zi,Li), market clearing, (3), yields that (Z,L) = (Z̄, L̄), which

implies that (8) is identical to (9). When Assumption 2’ holds, there are constant returns to

scale in (Z,L), and (Z̄, L̄) ∈ Z × L, so we can once again work with a single firm employing

(Z̄, L̄), and the conclusion follows.

Defining F (Z̄, L̄, θ) = G(Z̄, L̄, θ) − C (θ), we obtain that technology choice in Economy

C can be characterized as maximizing some function F (Z̄, L̄, θ) with respect to θ ∈ Θ as in

Economy D. However, I refer to this as an “equilibrium theorem” not as a welfare theorem as

for Proposition 1, since despite the fact that the objective of the research firm is to maximize

social surplus, the equilibrium may not be the social optimum. This results from the fact that

once created, technologies are non-excludable, so all firms use it, whereas the social planner

may have preferred to exclude some firms to enable remaining firms to hire more of the factors

of production (recall footnote 13). The equilibrium structure, as captured by Definition 2,

does not allow for this possibility given the non-excludable nature of the technology.

For our purposes, the more important difference is that while in Economy D F (Z̄, L̄, θ)

is by assumption jointly concave in (Z, θ), the same is not true in Economy C. In particular,

in this latter economy, F (Z̄, L̄, θ) does not need to be concave in (Z, θ) (nor is it necessarily

globally concave in θ).

It is also useful to note that equilibrium factor prices are now given by wZj = ∂G(Z̄, L̄, θ)/∂Zj

and wLj = ∂G(Z̄, L̄, θ)/∂Lj , but since F (Z̄, L̄, θ) = G(Z̄, L̄, θ) − C (θ), this is equivalent to

wZj = ∂F (Z̄, L̄, θ)/∂Zj and wLj = ∂F (Z̄, L̄, θ)/∂Lj as in Economy D.

2.3 Economy M–Monopoly Equilibrium

Now I briefly discuss an economy that is similar to Economy C, but features a monopolist sup-

plying technologies to final good producer firms. I take the simplest structure to deliver results

similar to Propositions 1 and 2, while Appendix A analyzes exactly the setup of Economy C

with a monopolist provider of technologies.
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In the environment here, there is still a unique final good and each firm has access to the

production function

Y i = α−α (1− α)−1
£
G(Zi,Li, θi)

¤α
q
¡
θi
¢1−α

(10)

which is similar to (6), except that G(Zi,Li, θi) is now a subcomponent of the production

function, which depends on θi, the technology being used by the firm. This subcomponent

needs to be combined with an intermediate good embodying technology θi, denoted by q
¡
θi
¢
–

conditioned on θi to emphasize that it embodies technology θi. This intermediate good is

supplied by the monopolist. The term α−α (1− α)−1 in the front is a convenient normalization.

This structure is a generalization of the setup common in equilibrium models of endogenous

technology (e.g., Romer, 1990, Grossman and Helpman, 1991, or Aghion and Howitt, 1992,

1998). As before, I assume that Zi ∈ Z ⊂RN
+ ,L

i ∈ L ⊂RM
+ and G is a real-valued production

function that is twice continuously differentiable in (Zi,Li).

The technology monopolist can create technology θ at cost C (θ) from the technology menu,

and again I assume that it can only choose one technology. Once created, the technology

monopolist can produce as many units of the intermediate good of type θ (that is, of the

intermediate goods embodying technology θ) at per unit cost normalized to 1− α unit of the

final good (this is also a convenient normalization, without any substantive implications). It

can then set a (linear) price per unit of the intermediate good of type θ, denoted by χ.

All factor markets are again competitive. Consequently, each firm takes the type of available

technology, θ, and the price of the intermediate good embodying this technology, χ, as given

and maximizes

max
Zi∈Z,Li∈L,

q(θ)≥0

π(Zi,Li, q (θ) | θ, χ) = α−α (1− α)−1
£
G(Zi,Li, θ)

¤α
q (θ)1−α−

NX
j=1

wZjZ
i
j−

MX
j=1

wLjL
i
j−χq (θ) ,

(11)

which gives the following simple inverse demand for intermediates of type θ as a function of

its price, χ, and the factor employment levels of the firm as

qi
¡
θ, χ,Zi,Li

¢
= α−1G(Zi,Li, θ)χ−1/α. (12)

The problem of the monopolist is to maximize its profits (which are equal to price minus

marginal cost of production times total sales of the intermediates, minus the cost of creating

the technology). Thus the problem of the monopolist is:

max
θ,χ,[qi(θ,χ,Zi,Li)]i∈F

Π = (χ− (1− α))

Z
i∈F

qi
¡
θ, χ,Zi,Li

¢
di− C (θ) (13)
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subject to (12). Therefore, an equilibrium in this economy can be defined as:

Definition 3 An equilibrium in EconomyM is a set of firm decisions
©
Zi,Li, qi

¡
θ, χ,Zi,Li

¢ª
i∈F ,

technology choice θ, and factor prices (wZ ,wL, χ) such that
©
Zi,Li, qi

¡
θ, χ,Zi,Li

¢ª
i∈F solve

(11) given (wZ ,wL, χ) and technology θ, (3) holds, and the technology choice and pricing

decision for the monopolist, (θ, χ), maximize (13) subject to (12).

Once again the important distinction between this definition and Definition 1 is that now

factor demands and technology are being decided by different agents (the former by the final

good producers, the latter by the technology monopolist).

The equilibrium in this economy is straightforward to characterize because (12) defines a

constant elasticity demand curve, so the optimal price of the monopolist that maximizes (13)

is simply the standard monopoly markup, i.e., 1/ (1− α) times the marginal cost of production

of the intermediate, 1− α. This leads to an equilibrium monopoly price of χ = 1. Moreover,

I continue to impose Assumption 2 or 2’ (which now apply to G, the subcomponent of the

production function (10)). Under these assumptions, the equilibrium will again be symmetric,

so qi (θ, χ) = α−1G(Z̄, L̄, θ)χ−1/α for all i ∈ F , and given the monopoly price χ = 1, we have
qi (θ) = qi

¡
θ, χ = 1, Z̄, L̄

¢
= α−1G(Z̄, L̄, θ) for all i ∈ F . The profits and the maximization

problem of the monopolist can then be expressed as

max
θ∈Θ

Π (θ) = G(Z̄, L̄, θ)− C (θ) . (14)

Thus we have established (proof in the text):

Proposition 3 (Equilibrium Theorem M) Suppose Assumption 2 or Assumption 2’ holds.

Then an equilibrium in Economy M is a solution to

max
θ∈Θ

G(Z̄, L̄, θ)− C (θ)

and any solution to this problem is an equilibrium.

Relative to Economies D and C, the presence of the monopoly markup implies the presence

of greater distortions in this economy.14 More important for our purposes here, however, is

that again defining F (Z̄, L̄, θ) = G(Z̄, L̄, θ)−C (θ), equilibrium technology in Economy M is a

solution to a problem identical to that in Economy C, and quite similar to the one in Economy

14For example, it can be verified that taking the behavior of the final good producers as given, the socially
optimal allocation in this case would maximize (1− α)−1/α

£
G(Z̄, L̄, θi)

¤
−C (θ) rather than

£
G(Z̄, L̄, θi)

¤
−C (θ).
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D. As in Economy C, F (Z̄, L̄, θ) need not be globally concave in θ nor even locally concave in

(Z, θ) in the neighborhood of the equilibrium.

This result therefore shows that for the analysis of equilibrium bias, it is not important

whether technology choices are at the firm level or at the centralized level (resulting from some

R&D or other research process), and also whether they are made to maximize social surplus

or monopoly profits. But we will see that whether F (Z̄, L̄, θ) is jointly concave in (Z, θ) will

play an important role in the results.

Finally, it can be verified that in this economy equilibrium factor prices are given by wZj =

(1− α)−1 ∂G(Z̄, L̄, θ)/∂Zj and wLj = (1− α)−1 ∂G(Z̄, L̄, θ)/∂Lj , which are proportional to

the derivatives of the F function defined as F (Z̄, L̄, θ) = G(Z̄, L̄, θ) − C (θ). So to facilitate

comparison with Economies D and C, with a slight abuse of terminology I will refer to the

derivatives of the F function as the “equilibrium factor prices” even in Economy M.

3 Relative Equilibrium Bias

The previous section established that in three different environments, with different market

structures and conceptions of technology choice, the characterization of equilibrium technol-

ogy boils down to an identical maximization problem–the maximization of some function

F (Z̄, L̄, θ) where Z̄ and L̄ are the factor supplies in the economy. In this and the next two

sections, I make use of this characterization to derive a number of results about equilibrium

bias of technology choice.

This section analyzes relative equilibrium bias, and for that reason, throughout I focus on

a more specialized economy with only two factors, L and Z (i.e., M = 1 and N = 1), and

θ ∈ Θ ⊂ RK for some K ≥ 1, so that F : R+×R+×RK → R+. Moreover, suppose that

Z ∈ Z ⊂ R+ , L ∈ L ⊂ R+, and that Θ is a convex compact subset of RK with the jth

component denoted by θj . Finally, I assume that F is twice continuously differentiable in

(Z,L, θ).

Recall that, in a two-factor economy, relative equilibrium bias is defined as the effect of

technology on the marginal product (price) of a factor relative to the marginal product (price)

of the other factor. Denote the marginal product/price of the two factors by

wZ (Z,L, θ) =
∂F (Z,L, θ)

∂Z
and wL (Z,L, θ) =

∂F (Z,L, θ)

∂L
,

when employment levels (factor proportions) are given by (Z,L) and the technology is θ.15

15Recall that F (L̄, Z̄, θ) either corresponds to the production function of the firms (Economy D) or we have
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From the twice differentiability of F , these marginal products are also differentiable functions

of Z and L. Then we have the following definitions:16

Definition 4 An increase in technology θj for some j = 1, ...,K is relatively biased towards

factor Z at
¡
Z̄, L̄, θ

¢
∈ Z × L×Θ if

∂wZ

¡
Z̄, L̄, θ

¢
/wL

¡
Z̄, L̄, θ

¢
∂θj

≥ 0.

This definition simply expresses what it means for a technology to be relatively biased

towards a factor (similarly a decrease in θj is relatively biased towards factor Z, if the derivative

in Definition 4 is non-positive). From this definition, it is clear that (weak) relative equilibrium

bias should correspond to a change in technology θ in a direction biased towards Z in response

to an increase in Z̄ (or Z̄/L̄); this is stated in the next definition.17

Definition 5 Denote the equilibrium technology at factor supplies
¡
Z̄, L̄

¢
∈ Z × L by θ

¡
Z̄, L̄

¢
,

and assume that ∂θj
¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
for all for all j = 1, ...,K. Then there is relative

equilibrium bias at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
if

KX
j=1

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θj

∂θj
¡
Z̄, L̄

¢
∂Z

≥ 0. (15)

Notice that the definition of relative equilibrium bias requires the (overall) change in tech-

nology in response to an increase in Z̄ to be biased towards Z at the point
¡
Z̄, L̄

¢
∈ Z × L for

which ∂θj
¡
Z̄, L̄

¢
/∂Z exists for all j. The statement is not qualified with “towards Z” since

relative equilibrium bias is also equivalent to a decline in Z inducing a change in technology

relatively biased against Z. Finally, the requirement that ∂θj
¡
Z̄, L̄

¢
/∂Z exists for all j used in

this definition will be further discussed below (in particular, see the discussion after Theorem

3 in the next section).

F (L̄, Z̄, θ) = G(L̄, Z̄, θ) − C (θ), where G(L̄, Z̄, θ) is the production function of the firms (Economy C) or a
subcomponent of the production function (Economy M). In both cases, the derivatives of F with respect to Z
and L define the marginal products of these factors. With a slight abuse of terminology, I will refer to F (L̄, Z̄, θ)
as “the production function”.
16For this section, all definitions are “local” in the sense that, I will only look at the effect of small changes

in factor supplies. This is why they are expressed in terms of derivatives. I do not add this qualification to
simplify terminology.
17Throughout this section, I focus on changes in the supply of factor Z, which is also equivalent to a change

in relative supplies Z/L (with L kept constant). Moreover, I denote the change in equilibrium technology by
∂θj

¡
Z̄, L̄

¢
/∂Z rather than dθj

¡
Z̄, L̄

¢
/dZ since θ is not generally only a function of Z. I reserve the notation

d (wZ/wL) /dZ to denote the total change in relative (or absolute) wages, which includes the technological
adjustment, and contrast this with the partial change ∂ (wZ/wL) /∂Z, which holds technology constant (see,
for example, (16)).
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The next definition introduces the more stringent concept of strong relative bias, which

requires that in response to an increase in Z̄, technology changes so much that the overall

effect (after the induced change in technology) is to increase the relative price of factor Z.

Definition 6 Denote the equilibrium technology at factor supplies
¡
Z̄, L̄

¢
∈ Z × L by θ

¡
Z̄, L̄

¢
,

and assume that ∂θj
¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
for all j = 1, ...,K. Then there is strong rela-

tive equilibrium bias at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
if

dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
dZ

=
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂Z

+ (16)

KX
j=1

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θj

∂θj
¡
Z̄, L̄

¢
∂Z

> 0.

By comparing the latter two definitions, it is clear that there will be strong relative equi-

librium bias if the sum of the expressions in (15) over j = 1, ...,K is large enough to dominate

the direct (negative) effect of the increase in relative supplies on relative wages (which is the

first term in (16)).

The main result in this section is that the conjecture about relative equilibrium bias applies

in a world with only factor-augmenting technologies, but not more generally. Before deriving

these results, it is useful to clarify the notions introduced so far using an example, which

captures the main findings in Acemoglu (1998, 2002), but in the context of Economy C or M

studied above rather than in the models of the original papers. In particular, the next example

considers an environment equivalent to Economy C or M above, with constant returns to scale

in L and Z. This example will also clarify one possible meaning of the Hicks’s quote discussed

above (see in particular footnote 20).

Example 1 (Relative Equilibrium Bias) Suppose that

G(Z,L, θ) =
h
γ (AZZ)

σ−1
σ + (1− γ) (ALL)

σ−1
σ

i σ
σ−1

, (17)

where θ = (AZ ,AL). In particular, AZ and AL are two separate factor-augmenting technology

terms, γ ∈ (0, 1) is a distribution parameter which determines how important the two factors
are, and σ ∈ (0,∞) is the elasticity of substitution between the two factors. When σ = ∞,
the two factors are perfect substitutes, and the production function is linear. When σ = 1, the

production function is Cobb-Douglas, and when σ = 0, there is no substitution between the

two factors, and the production function is Leontieff. Since there are two technology terms, I

take θ = (AZ ,AL) ∈ Θ = R2+.
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Suppose that factor supplies are given by
¡
Z̄, L̄

¢
. Then the relative marginal product of

the two factors is:
wZ

wL
=

γ

1− γ

µ
AZ

AL

¶σ−1
σ
µ
Z̄

L̄

¶− 1
σ

. (18)

The relative marginal product of Z is decreasing in the relative abundance of Z, Z̄/L̄. This

is the usual substitution effect, leading to a downward-sloping relative demand curve. This

expression also makes it clear that the measure of relative bias towards Z will correspond to

θ̄ = (AZ/AL)
(σ−1)/σ,18 since higher levels of θ̄ increase the marginal product of Z relative to

labor for all values of σ (recall Definition 4). To derive the results similar to those in Acemoglu

(1998, 2002) in the context of Economy C or M, suppose that the costs of producing new

technologies are ηZA
1+δ
Z and ηLA

1+δ
L , where δ > 0. Despite the fact that δ > 0 introduces

diminishing returns in the choice of technology, the production possibilities set of this economy

is nonconvex, since there is choice both over the factors of production, Z and L, and the

technologies, AZ and AL (so that the function (17) exhibits increasing returns in L, Z, AZ

and AL). From Proposition 2 or 3, the problem of choosing equilibrium technology is the

following strictly concave maximization problem:

max
AZ ,AL

h
γ
¡
AZZ̄

¢σ−1
σ + (1− γ)

¡
ALL̄

¢σ−1
σ

i σ
σ−1 − ηZA

1+δ
Z − ηLA

1+δ
L .

Taking the ratio of the first-order necessary and sufficient conditions with respect to AZ and

AL, and denoting the equilibrium values by *’s, the solution to this problem yields

A∗Z
A∗L

=

µ
ηZ
ηL

¶− σ
1+σδ

µ
γ

1− γ

¶ σ
1+σδ

µ
Z̄

L̄

¶ σ−1
1+σδ

. (19)

This equation can also be expressed in an alternative form, both useful for the discussion here

and for Theorem 1 below:
∂ ln (A∗Z/A

∗
L)

∂ ln (Z/L)
=

σ − 1
1 + σδ

. (20)

Recall that there will be weak equilibrium bias, if the expression in Definition 4 is nonnegative.

Using equation (18), wZ

¡
Z̄, L̄, A∗Z , A

∗
L

¢
/wL

¡
Z̄, L̄, A∗Z , A

∗
L

¢
is a function of A∗Z/A

∗
L rather than

A∗Z and A
∗
Z separately. Using this (and preparing for Theorem 1), we can express the condition

18Alternatively, we could define A(σ−1)/σ
Z and A

−(σ−1)/σ
L as two separate technology terms, both relatively

biased towards Z, but clearly focusing on θ̄ is more economical.
It is important that the bias towards factor Z is θ̄ = (AZ/AL)

(σ−1)/σ, not AZ/AL, as is sometimes confusingly
and incorrectly stated in the applied literature. AZ/AL is the ratio of Z-augmenting to L-augmenting technology.
When σ > 1, an increase in AZ/ AL increases the relative marginal product of Z, while when σ < 1, an increase
in AZ/AL reduces the relative marginal product of Z.
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for weak relative equilibrium bias as:19

∆ (wZ/wL) ≡
∂ ln

¡
wZ

¡
Z̄, L̄, A∗Z , A

∗
L

¢
/wL

¡
Z̄, L̄, A∗Z , A

∗
L

¢¢
∂ ln (AZ/AL)

∂ ln (A∗Z/A
∗
L)

∂ ln (Z/L)
≥ 0. (21)

Using (18) and (20),

∆ (wZ/wL) =
σ − 1
σ

× σ − 1
1 + σδ

=
(σ − 1)2

(1 + σδ)σ
≥ 0,

which is always nonnegative, thus establishing that there is always weak relative equilib-

rium bias (as claimed by the conjecture in the Introduction). Alternatively, the same re-

sult follows by looking directly at the measure of relative bias towards Z introduced above,

θ̄ = (AZ/AL)
(σ−1)/σ. In particular, substituting for (19), we have

θ̄ =

µ
ηZ
ηL

¶− σ−1
1+σδ

µ
γ

1− γ

¶ σ−1
1+σδ

µ
Z̄

L̄

¶ (σ−1)2
(1+σδ)σ

,

which is always increasing in Z̄/L̄.20

Next to investigate the conditions under which there is strong relative equilibrium bias, we

can use Definition 6 and check the conditions for (again using log derivatives for simplicity):

∂ ln
¡
wZ

¡
Z̄, L̄, A∗Z , A

∗
L

¢
/wL

¡
Z̄, L̄, A∗Z , A

∗
L

¢¢
∂ ln (Z/L)

+
∂ ln

¡
wZ

¡
Z̄, L̄, A∗Z , A

∗
L

¢
/wL

¡
Z̄, L̄, A∗Z , A

∗
L

¢¢
∂ ln

¡
A∗Z/A

∗
L

¢ ∂ ln (A∗Z/A
∗
L)

∂ ln (Z/L)
> 0.

From (18) and (21), this condition is equivalent to

− 1
σ
+

(σ − 1)2

(1 + σδ)σ
=

σ − 2− δ

1 + σδ
> 0. (22)

19Expressing everything in terms of log changes rather than absolute changes is simply for convenience
(and also useful for Theorem 1). In particular, note that as long as x > 0 and a > 0, ∂x/∂a T 0 if

and only if ∂ lnx/∂ ln a T 0. Moreover, since L is kept constant, ∂x/∂(Z/L) = (∂x/∂Z)L, so whenever
the expression here is nonnegative so is the expression in Definition 4; i.e., ∆ (wZ/wL) ≥ 0 if and only if
KP
j=1

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θj × ∂θj

¡
Z̄, L̄

¢
/∂Z ≥ 0.

20More explicitly, returning to the discussion in footnote 18, when σ > 1, an increase in Z̄/L̄ increases AZ/AL,
which in turn raises wZ/wL at given factor proportions. In contrast when σ < 1, an increase in Z̄/L̄ reduces
AZ/AL, but in this case, AZ/AL is relatively biased against factor Z (it is biased towards factor L), so a decrease
in AZ/AL again raises wZ/wL.
At this point, we can also return to Hicks’ quote. This example (and the theorem that follows) show that the

claim in Hicks’ quote is not true for relative bias of technical change; an increase in the abundance of a factor that
reduces its price will make technology relatively biased towards that factor. However, if we interpret the quote
in terms of relative factor-augmenting changes, equation (20) shows that it is true when σ < 1. Therefore, one
interpretation of Hicks’ claim is that the increase in the abundance of a factor will cause technology relatively
augmenting the other factor as long as the elasticity of substitution between the two factors is less than one.
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so that when σ > 2 + δ, the relative demand curve for factors is upward-sloping and there is

strong relative equilibrium bias. In this example, this result can be obtained more transparently

by substituting for A∗Z/A
∗
L from (19) into (18) to obtain:

wZ

wL
=

µ
ηZ
ηL

¶− σ−1
1+σδ

µ
γ

1− γ

¶σ+σδ
1+σδ

µ
Z̄

L̄

¶σ−2−δ
1+σδ

, (23)

and thus
d ln

¡
wZ

¡
Z̄, L̄, A∗Z , A

∗
L

¢
/wL

¡
Z̄, L̄, A∗Z , A

∗
L

¢¢
d ln (Z/L)

=
σ − 2− δ

1 + σδ
,

which confirms the result of strong relative equilibrium bias when σ > 2 + δ shown in (22).21

This example therefore illustrates the possibility of both weak and strong relative bias

results in an economy with a nonconvex aggregate production possibilities set. In particular,

technological change induced in response to an increase in Z is always (weakly) relatively

biased towards Z, and moreover, if the condition σ > 2 + δ is satisfied, there is also strong

relative bias. This example also corresponds to the most general result that exists in the

literature (see Acemoglu, 2002). Nevertheless, the structure of the economy is quite special,

in particular, it incorporates a specific aggregate production function and cost functions for

undertaking research. I next establish that with a more general setup, but still with two-factors

and factor-augmenting technologies, the same results hold. Before stating this theorem, recall

that a function f (x, y) is homothetic in x and y, if (∂f (x, y) /∂x)/(∂f (x, y) /∂y) is only a

function of x/y for all x and y.

Theorem 1 (Relative Equilibrium Bias with Factor-Augmenting Technologies) Con-

sider Economy C or M with two-factors, (Z,L) ∈ Z × L ⊂R2+, and two factor-augmenting
technologies, (AZ , AL) ∈ R2+, such that the production function is F (AZZ,ALL). Assume

that F is twice continuously differentiable, concave and homothetic in its two arguments, and

that the costs of producing technologies AZ and AL, C (AZ , AL), is also twice continuously

differentiable, strictly convex and homothetic in AZ and AL. Denote the first derivatives of

C (AZ , AL) by CZ and CL. Let σ be the (local) elasticity of substitution between Z and L

defined by σ = − ∂ ln(Z/L)
∂ ln(wZ/wL)

¯̄̄
AZ
AL

, and let δ =
∂ ln(CZ(AZ ,AL)/CL(AZ,AL))

∂ ln(AZ/AL)
. Finally, suppose that

21 In Acemoglu (2002), the condition for upward-sloping relative demand curves was σ > 2− δ0 for some other
parameter δ0 > 0, which essentially corresponds to −δ here. The reason is that in that context, as in many
endogenous growth models, the technology allowed for knowledge-spillovers, and the parameter δ0 measured how
much a particular type of technology benefits from past innovations in the same line, adding another degree of
non-convexity. Here a higher value of the parameter δ makes the aggregate technology of the economy more
“convex” and thus upward-sloping relative demand curves less likely. See also Theorem 8 below.
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factor supplies are given by
¡
Z̄, L̄

¢
and denote equilibrium technologies by (A∗Z , A

∗
L), and equi-

librium factor prices by wZ

¡
Z̄, L̄, A∗Z , A

∗
L

¢
and wL

¡
Z̄, L̄, A∗Z , A

∗
L

¢
. Then we have that for all¡

Z̄, L̄
¢
∈ Z × L:

∂ ln (A∗Z/A
∗
L)

∂ ln (Z/L)
=

σ − 1
1 + σδ

(24)

and
∂ ln

¡
wZ

¡
Z̄, L̄, A∗Z , A

∗
L

¢
/wL

¡
Z̄, L̄, A∗Z , A

∗
L

¢¢
∂ ln (AZ/AL)

∂ ln (A∗Z/A
∗
L)

∂ ln (Z/L)
≥ 0 (25)

so that there is always weak relative equilibrium bias. Moreover,

d ln
¡
wZ

¡
Z̄, L̄, A∗Z , A

∗
L

¢
/wL

¡
Z̄, L̄, A∗Z , A

∗
L

¢¢
d ln (Z/L)

=
σ − 2− δ

1 + σδ
, (26)

so that there is strong relative equilibrium bias if σ − 2− δ > 0.

Proof. By Proposition 2 or 3, we need to look at the following strictly concave maximiza-

tion problem:

max
AL,AZ

F
¡
AZZ̄, ALL̄

¢
−C (AZ , AL) .

Taking the ratio of the first-order necessary and sufficient conditions gives

Z̄

L̄

FZ
¡
A∗ZZ̄, A

∗
LL̄
¢

FL
¡
A∗ZZ̄, A

∗
LL̄
¢ = CZ (A

∗
Z , A

∗
L)

CL

¡
A∗Z , A

∗
L

¢
where FZ denotes the derivative of F with respect to its first argument and FL denotes the

derivative with respect to the second, and CZ and CL are defined as in the theorem. Recalling

the definition of marginal products, this gives

Z̄

L̄

wZ

¡
Z̄, L̄, A∗Z , A

∗
L

¢
wL

¡
Z̄, L̄, A∗Z , A

∗
L

¢ = Z̄

L̄

A∗Z
A∗L

FZ
¡
A∗ZZ̄, A

∗
LL̄
¢

FL
¡
A∗ZZ̄, A

∗
LL̄
¢ = A∗Z

A∗L

CZ (A
∗
Z , A

∗
L)

CL

¡
A∗Z , A

∗
L

¢ . (27)

Now since F is homothetic, FZ/FL is only a function of Z/L and AZ/AL. Moreover, since C

is homothetic, CZ/CL is also only a function of AZ/AL and δ in the theorem is well defined.

Using these facts, taking logs in (27) and differentiating totally with respect to ln (Z/L) gives:µ
1 +

∂ ln (CZ (A
∗
Z , A

∗
L) /CL (A

∗
Z , A

∗
L))

∂ ln (AZ/AL)

¶
∂ ln (A∗Z/A

∗
L)

∂ ln (Z/L)
=

∂ ln (wZ/wL)

∂ ln (Z/L)

¯̄̄̄
A∗
Z

A∗
L

+ 1 (28)

+
∂ ln (wZ/wL)

∂ ln (AZ/AL)

¯̄̄̄
Z̄
L̄

∂ ln (A∗Z/A
∗
L)

∂ ln (Z/L)
.

Equation (27) and the definition of σ yield:

∂ ln (wZ/wL)

∂ ln (AZ/AL)
=

σ − 1
σ

. (29)
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Substituting (29) into (28), rearranging and recalling the definitions of δ and σ, we obtain

∂ ln (A∗Z/A
∗
L)

∂ ln (Z/L)
=

σ − 1
1 + σδ

as in (24). Then (25) immediately follows by combining this with (29), and by the same

argument as in Example 1 (in particular footnote 19), this establishes weak equilibrium bias.

Finally, (26) and strong equilibrium bias (under the condition that σ > 2 + δ) follow from

(24) by noting that

d ln
¡
wZ

¡
Z̄, L̄, A∗Z , A

∗
L

¢
/wL

¡
Z̄, L̄, A∗Z , A

∗
L

¢¢
d ln (Z/L)

= − 1
σ
+

σ − 1
σ

∂ ln (A∗Z/A
∗
L)

∂ ln (Z/L)

=
σ − 2− δ

1 + σδ
.

The major result of this theorem is that the insights from Example 1 generalize in a fairly

natural way as long as the potential menu of technological possibilities only consists of two

technologies, one augmenting Z and the other L.22 The only difference is that the parameter

δ and the elasticity of substitution σ are no longer constants, but are functions of AL, AZ ,

L̄ and Z̄, so changes in factor supplies will have effects that depend on the local elasticity of

substitution and the local value of δ. Nevertheless, the change in AZ/AL (or in (AZ/AL)
(σ−1)/σ

as in Example 1) induced by an increase in Z̄ is always relatively biased towards Z, and there

is strong equilibrium relative bias if σ > 2 + δ. Therefore, this theorem establishes that

an environment with a menu of technological possibilities featuring only factor-augmenting

technologies is sufficient to obtain both a general weak relative bias theorem, and the possibility

of strong relative bias (when the local elasticity of substitution between factors, σ, is sufficiently

high and the parameter δ is relatively low).

However, once we depart from the world of Theorem 1 with the production function

F (AZZ,ALL), it is possible for the supply of factor Z to increase, and in response, tech-

nology to change in a direction relatively biased against this factor (i.e., towards factor L),

thus disproving the conjecture in the Introduction. This is stated in the next theorem and

proved by providing two counterexamples.

Theorem 2 With a general menu of technologies, there is not necessarily relative equilibrium

bias. That is, suppose that ∂θj
¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
for all j = 1, ...,K, then

KX
j=1

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θj

∂θj
¡
Z̄, L̄

¢
∂Z

< 0

22The additional assumptions are that F and C are homothetic.
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is possible.

I will present two counterexamples highlighting different reasons for why there is no such

general relative bias theorem. For simplicity, both of the examples focus on economies with

a single dimension of technology. The first one shows that a choice over the elasticity of

substitution may lead to endogenous technological change biased against the factor that is

becoming more abundant.23 The second one shows that the form of the production function

in Theorem 1, F (AZZ,ALL), is important for the result.

Example 2 (Counterexample I) Consider an example of Economy C or M with the family

of production functions satisfying Assumption 2’:

G (Z,L, θ) =
h
Zθ + Lθ

i1/θ
(30)

and cost of technology creation, C (θ), defined over Θ = [a, b] where b > a, that is convex and

twice continuously differentiable over the entire Θ, with C 0 denoting its first derivative. From

Proposition 2 or 3, the choice of θ will maximize F (Z,L, θ) = G (Z,L, θ) − C (θ). Therefore,

at given factor supplies
¡
Z̄, L̄

¢
, the equilibrium technology choice θ satisfies

∂F
³
Z̄, L̄, θ̃

´
∂θ

= − 1
θ̃
2

h
Z̄ θ̃ + L̄θ̃

i1/θ̃
ln
h
Z̄ θ̃ + L̄θ̃

i
+
1

θ̃

³
Z̄ θ̃ ln Z̄ + L̄θ̃ ln L̄

´ h
Z̄ θ̃ + L̄θ̃

i(1−θ̃)/θ̃
−C 0

³
θ̃
´
= 0,

(31)

with ∂2F
³
Z̄, L̄, θ̃

´
/∂θ2 < 0. From Definition 4, a counterexample would correspond to

∆ (wZ/wL) ≡
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θ

∂θ
¡
Z̄, L̄

¢
∂Z

< 0.

From the Implicit Function Theorem,24 this is equivalent to

∆ (wZ/wL) ≡ −
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θ

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ∂Z

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

< 0,

(32)

or since ∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 < 0, to

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θ

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θ∂Z

< 0. (33)

23See Benabou (2005) for a model of endogenous choice of the elasticity of substitution as a function of the
inequality of human capital among workers in the economy.
24See, for example, Rudin (1964), Theorem 9.18, or Simon and Blume (1994), Theorem 15.2.
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Now differentiate the expression in (31) with respect to Z̄ and to simplify notation denote

θ
¡
Z̄, L̄

¢
by θ̃:

∂2F
³
Z̄, L̄, θ̃

´
∂θ∂Z

= − 1
θ̃
2 Z̄

θ̃−1
h
Z̄ θ̃ + L̄θ̃

i 1−θ̃
θ̃ ln

h
Z̄ θ̃ + L̄θ̃

i
− 1

θ̃
Z̄ θ̃−1

h
Z̄ θ̃ + L̄θ̃

i 1−θ̃
θ̃

+
1− θ̃

θ̃
Z̄ θ̃−1

³
Z̄ θ̃ ln Z̄ + L̄θ̃ ln L̄

´ h
Z̄ θ̃ + L̄θ̃

i 1−2θ̃
θ̃ +

1

θ̃
Z̄ θ̃−1

³
θ̃ ln Z̄ + 1

´ h
Z̄ θ̃ + L̄θ̃

i 1−θ̃
θ̃

∝ −1
θ̃
ln
h
Z̄ θ̃ + L̄θ̃

i
− 1 +

³
1− θ̃

´³
Z̄ θ̃ ln Z̄ + L̄θ̃ ln L̄

´ h
Z̄ θ̃ + L̄θ̃

i−1
+
³
θ̃ ln Z̄ + 1

´
If this expression is negative, then in response to an increase in Z̄, θ̃ = θ

¡
Z̄, L̄

¢
will decline.

Moreover, from (30), we have

wZ

³
Z,L, θ̃

´
wL

³
Z,L, θ̃

´ = µZ
L

¶θ̃−1
,

which is increasing in θ̃ as long as Z > L. Now suppose that we start with L̄ = 1 and Z̄ = 2,

and choose the function C (θ) such that θ̃ = 0.1. Then

∂2F
³
Z̄ = 2, L̄ = 1, θ̃ = 0.1

´
∂θ∂Z

∝ − 1

0.1
ln
£
1 + 20.1

¤
− 1 + 0.9

¡
20.1 ln 2

¢ £
1 + 20.1

¤−1
+ (0.1 ln 2 + 1)

∝ −7.28− 1 + 0.32 + 1.07 < 0,

which is clearly negative, so

∂wZ

³
Z̄ = 2, L̄ = 1, θ̃ = 0.1

´
/wL

³
Z̄ = 2, L̄ = 1, θ̃ = 0.1

´
∂θ

×
∂2F

³
Z̄ = 2, L̄ = 1, θ̃ = 0.1

´
∂θ∂Z

< 0,

and (33) is satisfied, providing a counterexample to the conjecture. Put differently, in this

case the increase in Z̄ induces a decline in θ̃, which is a change in technology relatively biased

against Z.

Example 3 (Counterexample II)25 Consider again an example of Economy C or M with

a family of production functions satisfying Assumption 2’:

G (Z,L, θ) = Zθ + Lθ2,

and cost of creating new technologies given by C0θ
2/2 with C0 > 0 for all θ ∈ Θ = R and

L ∈ L ⊂ (0, C0/2). This production function exhibits constant returns to scale in Z and L,

25 I thank Rabah Amir for suggesting an example along these lines.
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and F (Z,L, θ) = G (Z,L, θ)− C (θ) is strictly concave in θ for L ∈ L. The optimal choice of
θ satisfies

θ
¡
Z̄, L̄

¢
=

Z̄

C0 − 2L̄
,

and is thus increasing in Z̄ for L̄ ∈ L. Relative price of the two factors is given by: wZ (θ) /wL (θ) =

θ−1, which is clearly decreasing in θ. Therefore, an increase in Z̄ will induce technological

change (or technology adoption) relatively biased against Z. Theorem 1 does not apply in this

case since the production function does not take the form F (AZZ,ALL), even though it is

homothetic in Z and L.

Theorem 1 explains the reason for the negative result in Theorem 2. The conjecture about

relative bias does not apply in these examples because the menu of technologies does not take

this simple form with one technology augmenting factor Z and the other factor L. Although

this type of factor-augmenting technology may be an interesting and empirically important

special case, one may be interested in a more general theorem that applies without imposing a

specific structure on the interaction between technologies and the factors of production. This

is especially the case when we consider technology choices that correspond to shifts from one

type of organizational form or organization of production to another, such as those experienced

during recent decades, during the emergence of the American System of Manufacturing, or

during the Industrial Revolution. These shifts not only change the productivity of different

factors, but the way the whole production process is organized and thus naturally also the

elasticity of substitution between factors.

Examples 2 and 3 show that a general theorem is not possible for relative bias. Nevertheless,

it is also important to emphasize that these examples and Theorem 2 do not imply that with

the general menu of technologies, changes in relative supplies will cause technical change that

it is relatively biased against the more abundant factor. In many cases, weak equilibrium bias

will still apply, but without imposing more structure, we do not have a general theorem.

In the next section, we will see that such a theorem can be derived for absolute bias. In

fact, Examples 2 and 3 already hint at this possibility. The reason why induced technology (in

response to an increase in Z̄) is not relatively biased towards Z in both examples is that the

induced change in technology increases wZ (at given factor proportions), but it has an even

larger (positive) effect on the marginal product of the other factor, wL.26

26To see this more explicitly, note that ∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ∂Z = ∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ and rewrite
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4 Equilibrium Absolute Bias

Examples 2 and 3 show that there is no general theorem about relative equilibrium bias unless

we restrict ourselves to factor-augmenting technologies. The obvious question is whether there

is a general result for absolute bias. The answer is yes and is the focus of this section. Recall

that absolute bias refers to whether new technology increases the marginal product of a factor.

The main results in this section will therefore show that in response to increases in the supply

of a factor (or a set of factors), technology will change endogenously in a direction absolutely

biased towards this factor (or this set of factors).

As stated in the Introduction, this section focuses on weak (absolute) bias results and

presents both local and global theorems. I begin with the local theorem, which applies to the

case with N = 1, i.e., to changes in the supply of a single factor, Z.

Given the results in Section 2, the problem of equilibrium technology choice is again equiv-

alent to

max
θ∈Θ

F
¡
Z̄, L̄, θ

¢
(34)

where L̄ denotes the supply of these other inputs and Z̄ denotes the supply of Z. Let us

denote the marginal product (or price) of this factor by wZ

¡
Z̄, L̄, θ

¢
= ∂F

¡
Z̄, L̄, θ

¢
/∂Z when

the employment levels of factors are given by
¡
Z̄, L̄

¢
and the technology is θ. For the local

result I will also take Θ to be a convex compact subset of RK for some K ≥ 1 and assume that
F is also twice differentiable in (Z, θ), which implies that wZ

¡
Z̄, L̄, θ

¢
is differentiable in θ.

Definition 7 Let θ ∈ Θ ⊂ RK . An increase in technology θj for some j = 1, ...,K is locally

absolutely biased towards factor Z at
¡
Z̄, L̄

¢
∈ Z ×L if

∂wZ

¡
Z̄, L̄, θ

¢
∂θj

≥ 0.

Conversely we could define a decrease in technology θ as locally absolutely biased towards

factor Z if the same derivative is nonpositive. Notice also that the local bias definition requires

the bias for only small changes in technology and only at the current factor proportions
¡
Z̄, L̄

¢
.

equation (32) as

∆ (wZ/wL) ≡ −
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θ

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

.

When wL

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
is constant, this is equivalent to equation (40) in the proof of Theorem 3 in the next

section and is always nonnegative. However, as Example 2 and 3 show, a large effect of θ on wL can reverse
this result.
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The global definition below will require a similar directional change but for all magnitudes of

changes in supplies and at all factor proportions. Next we define (local) equilibrium absolute

bias analogously to relative equilibrium bias.

Definition 8 Let θ ∈ Θ ⊂ RK. Denote the equilibrium technology at factor supplies
¡
Z̄, L̄

¢
∈

Z ×L by θ
¡
Z̄, L̄

¢
and assume that ∂θj

¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
for all j = 1, ...,K. Then

there is local absolute equilibrium bias at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
if

KX
j=1

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θj

∂θj
¡
Z̄, L̄

¢
∂Z

≥ 0. (35)

In words, this definition requires the induced combined change in the components of tech-

nology resulting from an increase in Z̄ to be towards increasing the marginal product of factor

Z. As in Definition 5 for relative equilibrium bias, this definition also requires ∂θj
¡
Z̄, L̄

¢
/∂Z

to exist for all j. The next theorem will also be stated under this assumption, which can

alternatively be replaced by Assumption A1 below.

Theorem 3 (Local Absolute Bias) Consider Economy D, C or M. Suppose that Θ is a

convex subset of RK and F (Z,L, θ) is twice continuously differentiable in (Z, θ). Let the

equilibrium technology at factor supplies
¡
Z̄, L̄

¢
be θ

¡
Z̄, L̄

¢
, and assume that θ

¡
Z̄, L̄

¢
is in

the interior of Θ and that ∂θj
¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
for all j = 1, ...,K. Then, there is

local absolute equilibrium bias at all
¡
Z̄, L̄

¢
∈ Z × L, i.e.,

KX
j=1

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θj

∂θj
¡
Z̄, L̄

¢
∂Z

≥ 0 for all
¡
Z̄, L̄

¢
∈ Z × L. (36)

Moreover, if ∂θj
¡
Z̄, L̄

¢
/∂Z 6= 0 for some j = 1, ...,K, then

KX
j=1

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θj

∂θj
¡
Z̄, L̄

¢
∂Z

> 0. (37)

Proof. The proof follows from the Implicit Function Theorem. For expositional clarity, I

first present the case where θ ∈ Θ ⊂ R. Since Θ ⊂ R and by hypothesis, the equilibrium choice
of θ is in the interior of Θ, we have

∂F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θ

= 0, (38)

and ∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 ≤ 0. Since ∂θ

¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
by hypothesis, from

the Implicit Function Theorem it must be equal to

∂θ
¡
Z̄, L̄

¢
∂Z

= −
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ∂Z

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

= −
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

, (39)
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so we must have ∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 6= 0, i.e., ∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 < 0. This in

turn implies:

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θ

∂θ
¡
Z̄, L̄

¢
∂Z

= −
£
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ

¤2
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

≥ 0, (40)

establishing (36). Moreover, if ∂θ
¡
Z̄, L̄

¢
/∂Z 6= 0, then from (39), ∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ 6=

0, so (40) holds with strict inequality, establishing (37).

Next, let us look at the general case where θ ∈ Θ ⊂ RK with K > 1. Let ∆wZ be the

change in wZ resulting from the induced change in θ (at given factor proportions) as in equation

(35):

∆wZ =
KX
j=1

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θj

∂θj
¡
Z̄, L̄

¢
∂Z

.

Then, we have that

∆wZ =
£
∇θwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤0 £∇Zθ
¡
Z̄, L̄

¢¤
=

£
∇2θZF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤0 £∇Zθ
¡
Z̄, L̄

¢¤
, (41)

where
£
∇θwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤
is aK×1 vector of changes in wZ in response to each component

of θ ∈ Θ ⊂ RK ,
£
∇Zθ

¡
Z̄, L̄

¢¤
is the Jacobian of θ with respect to Z, i.e., a K × 1 vector of

changes in each component of θ in response to the change in Z̄, and for a matrix (vector) v, v0

denotes its transpose. The second line in (41) uses the fact that wZ is the derivative of the F

function, so
£
∇2θZF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤
is also the K × 1 vector of changes in wZ in response to

each component of θ. Since ∂θj
¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
for all j, the gradient ∇Zθ

¡
Z̄, L̄

¢
also exists and from the Implicit Function Theorem, it satisfies

∇Zθ
¡
Z̄, L̄

¢0
= −

£
∇2θZF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤0 £∇2θθF ¡Z̄, L̄, θ ¡Z̄, L̄¢¢¤−1 ,
where ∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
is the K × K Hessian of F with respect to θ. The fact that

θ
¡
Z̄, L̄

¢
is a solution to the maximization problem (34) implies that ∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
is

negative semi-definite. That ∇Zθ
¡
Z̄, L̄

¢
exists then implies that ∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
is non-

singular, so it must be negative definite. Since it is a Hessian, it is also symmetric. Therefore,

its inverse
£
∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤−1
is also symmetric and negative definite. Substituting in

(41), we obtain

∆wZ = −
£
∇2θZF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤0 £∇2θθF ¡Z̄, L̄, θ ¡Z̄, L̄¢¢¤−1 £∇2θZF ¡Z̄, L̄, θ ¡Z̄, L̄¢¢¤ ≥ 0,
which establishes (36) for the case in which Θ ⊂ RK .
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By the definition of a negative definite matrix B, x0Bx < 0 for all x 6= 0, so to establish
the strict inequality in (37) in this case, it suffices that one element of ∇Zθ

¡
Z̄, L̄

¢
be non-zero,

i.e., ∂θj
¡
Z̄, L̄

¢
/∂Z 6= 0 for one j = 1, ...K, completing the proof.

This theorem therefore shows that once we shift our focus to absolute bias, there is a fairly

general result. Under minimal assumptions (further discussed below), technological change

induced by a change in factor supplies will be biased towards the factor that has become

more abundant. There is a clear parallel here with the LeChatelier principle of Samuelson

(1947), but also a number of important differences. First, this theorem concerns how marginal

products (or prices) change as a result of induced technological changes resulting from changes

in factor supplies rather than the elasticity of short-run and long-run demand curves. Second,

it applies to the equilibrium of an economy not to the maximization problem of a single firm.

Nevertheless, the parallel is also important, since we can think of the change in technology

as happening in the “long run”, in which case Theorem 3 states that long-run changes in

marginal products (factor prices) will be less than those in the short run because of induced

technological change or technology adoption.

Theorem 3 was stated and proved under the assumption that ∂θj
¡
Z̄, L̄

¢
/∂Z exists at¡

Z̄, L̄
¢
for all j = 1, ...,K. This assumption entails two restrictions. The first is the usual

non-singularity requirement to enable an application of the Implicit Function Theorem, i.e.,

that the Hessian of F with respect to θ, ∇2θθF
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
, is non-singular at the point

θ
¡
Z̄, L̄

¢
(see, for example, Rudin, 1964, Theorem 9.18, or Simon and Blume, 1994, Theorem

15.2; recall also the argument in the proof of Theorem 3). The second is more subtle; since

we have not made global concavity assumptions (except in Economy D), a small change in Z

may shift the technology choice from one local optimum to another, thus essentially making

∂θj
¡
Z̄, L̄

¢
/∂Z infinite (or undefined). This possibility is also ruled out by this assumption.

In fact, the assumption that ∂θj
¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
can be replaced by the following:

Assumption A1: ∇2θθF
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
is non-singular, and there exists ξ > 0 such that for

all θ0 ∈ Θ with ∂F
¡
Z̄, L̄, θ0

¢
/∂θ = 0 and θ0 6= θ

¡
Z̄, L̄

¢
, we have F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
−

F
¡
Z̄, L̄, θ0

¢
> ξ.

The second part of the assumption ensures that the peaks of the function F
¡
Z̄, L̄, θ

¢
in

θ are “well separated”, in the sense that in response to a small change in factor supplies,

there will not be a shift in the global optimum of θ from one local optimum to another.27

27Put differently, suppose that the equilibrium maximization problem (34) has multiple local maxima, and

29



Consequently, Assumption A1 is equivalent to assuming that ∂θj
¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
for all j. A straightforward condition to ensure that Assumption A1 is satisfied is to assume

that F is strictly quasi-concave in θ, though this is considerably stronger than Assumption A1.

Since it is more intuitive to directly assume that the derivatives ∂θj
¡
Z̄, L̄

¢
/∂Z’s exist rather

than imposing Assumption A1, I state the relevant theorems under this direct assumption.

But depending on taste, Assumption A1 can be substituted in Theorem 3 and some of the

subsequent theorems.

Three shortcomings of Theorem 3 are apparent. First, it applies to changes in the supply

of a single factor. Second, it applies only to local (small) changes. Third, and perhaps most

importantly, as Definition 8 makes it clear, equilibrium bias is a local phenomenon. For

example, an increase in Z̄ may change θ
¡
Z̄, L̄

¢
in a direction biased towards Z at factor

proportions
¡
Z̄, L̄

¢
, but this change may in fact be biased against Z at some different factor

proportions, say
¡
Z̄ 0, L̄0

¢
. Similar to Milgrom and Roberts’ (1996) generalization of LeChatelier

principle, there is a global version of Theorem 3, which will strengthen and generalize it to deal

with all of these problems.28 Like the results in Milgrom and Roberts (1996), this theorem also

uses tools from the theory of monotone comparative statics. I start with changes in a single

factor, and then generalize it to multiple factors.

Definition 9 Let θ
¡
Z̄, L̄

¢
be the equilibrium technology choice in an economy with factor

supplies
¡
Z̄, L̄

¢
. We say that there is global absolute equilibrium bias if for any Z̄ 0, Z̄ ∈ Z,

Z̄ 0 ≥ Z̄ =⇒ wZ

³
Z̃, L̄, θ

¡
Z̄ 0, L̄

¢´
≥ wZ

³
Z̃, L̄, θ

¡
Z̄, L̄

¢´
for all Z̃ ∈ Z and L̄ ∈L.

Note that there are two notions of “globality” in this definition. First, the increase from

Z̄ to Z̄ 0 is not limited to small changes. Second, the change in technology induced by this

increase is required to increase the price of factor Z for all Z̃ ∈ Z. Once again, this definition
can be made stronger by requiring strict inequality.

denote the set of these maxima at factor proportions
¡
Z̄, L̄

¢
by Θs

¡
Z̄, L̄

¢
. All of these solutions satisfy the

first-order necessary conditions of the equilibrium maximization problem (34). Suppose θ̂
¡
Z̄, L̄

¢
is a vector

that satisfies these first-order necessary conditions. Given the non-singularity assumption (first part of Assump-
tion A1), the Implicit Function Theorem can be applied to θ̂

¡
Z̄, L̄

¢
. However, this does not guarantee that

∂θ
¡
Z̄, L̄

¢
/∂Z exists, since θ

¡
Z̄, L̄

¢
corresponds to the global maximum of (34), and the change in Z may shift

the global maximum from θ̂
¡
Z̄, L̄

¢
to some other θ̃

¡
Z̄, L̄

¢
∈ Θs

¡
Z̄, L̄

¢
. The second part of Assumption A1 rules

this possibility out by imposing that one of the solutions to the first-order necessary conditions gives uniformly
higher value, so that a small (infinitesimal) change in Z cannot induce a shift from one element of Θs

¡
Z̄, L̄

¢
to

another.
28A fourth potential shortcoming is that Theorem 3 is stated assuming that θ

¡
Z̄, L̄

¢
is in the interior of Θ.

This is straightforward to relax. Nevertheless, since the global theorem, Theorem 4, naturally covers the case
in which θ

¡
Z̄, L̄

¢
may be at the boundary of Θ, I do not introduce the additional notation to deal with this

case in Theorem 3 (see also the proof of Theorem 6).
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To state the main results, we need a number of technical definitions. Appendix B defines

lattices, supermodular functions and (strictly) increasing differences. Both supermodularity

and increasing differences loosely correspond to the notion of complementarities, i.e., the re-

quirement that a change in a function resulting from an increase in one argument is itself

increasing in the other arguments. In the case of continuously differentiable functions, we have

a particularly simple definition of supermodularity (see, e.g., Topkis, 1998):

Definition 10 Let x = (x 1, ..., xn) be a vector in X ⊂ Rn, and suppose that the real-valued

function f (x) is twice continuously differentiable in x. Then f (x) is supermodular on X if

and only if ∂2f (x) /∂xi∂xi0 ≥ 0 for all x ∈ X and for all i 6= i0.

Increasing differences is a slightly weaker concept again related to complementarities:

Definition 11 Let X and T be partially ordered sets. Then a function f (x, t) defined on

a subset S of X × T has increasing differences in (x, t), if for all t00 > t, f (x, t00) − f (x, t)

is nondecreasing in x. Moreover, f (x, t) has strictly increasing differences in (x, t), if for all

t00 > t, f (x, t00)− f (x, t) is strictly increasing in x.

Lemma 2 in Appendix B shows that (strict) supermodularity in (x, t) implies (strict) in-

creasing differences in (x, t). With these definitions, we can use Topkis’ Monotonicity Theorem,

given as Theorem 10 in Appendix B. Using this approach, we now have:

Theorem 4 (Global Equilibrium Bias) Consider Economy D, C or M. Suppose that Θ

is a lattice, let Z̄ be the convex hull of Z, let θ
¡
Z̄, L̄

¢
be the equilibrium technology at

factor proportions
¡
Z̄, L̄

¢
, and suppose that F (Z,L, θ) is continuously differentiable in Z,

supermodular in θ on Θ for all Z ∈ Z̄ and L ∈L, and exhibits strictly increasing differences
in (Z, θ) on Z̄×Θ for all L ∈L, then there is global absolute equilibrium bias, i.e., for any

Z̄ 0, Z̄ ∈ Z, Z̄ 0 ≥ Z̄ implies

θ
¡
Z̄ 0, L̄

¢
≥ θ

¡
Z̄, L̄

¢
for all L̄ ∈L

and

wZ

³
Z̃, L̄, θ

¡
Z̄ 0, L̄

¢´
≥ wZ

³
Z̃, L̄, θ

¡
Z̄, L̄

¢´
for all Z̃ ∈ Z and L̄ ∈L.

Proof. The proof follows from the application of Theorem 10 in Appendix B. Given the

continuity and the supermodularity of F (Z,L, θ) on Z̄×Θ and the fact that Θ is a lattice

and Z is a subset of R therefore also a lattice, Theorem 10 in Appendix B implies that
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the set of equilibrium technologies is a non-empty, compact and complete sublattice of Θ.

Moreover, supermodularity of F in θ and strict increasing differences in (Z, θ) implies that

Z̄ 0 ≥ Z̄ =⇒ θ
¡
Z̄ 0, L̄

¢
≥ θ

¡
Z̄, L̄

¢
for all L̄ ∈L. Next (strict) increasing differences of F (Z,L, θ)

in (Z, θ) on Z̄×Θ implies that ∂F
³
Z̃, L̄, θ

´
/∂Z is increasing in θ for all Z̃ ∈

£
Z̄, Z̄ 0

¤
⊂ Z̄.

Since wZ

³
Z̃, L̄, θ

¡
Z̄ 0, L̄

¢´
= ∂F

³
Z̃, L̄, θ

¡
Z̄ 0, L̄

¢´
/∂Z, the conclusion follows.

An important feature of this theorem, as opposed to the local theorem, Theorem 3, is

that consistent with Definition 9, the induced change in technology does not only increase the

marginal product of factor Z (which is becoming more abundant) at the current supply, Z̄,

but does so at all points in the set Z. In this sense, Theorem 4 is indeed a global theorem,

applying both for large magnitudes of changes and applying to all admissible levels of factor

supplies.29

Also in this theorem, the fact that θ
¡
Z̄ 0, L̄

¢
≥ θ

¡
Z̄, L̄

¢
(say rather than θ

¡
Z̄ 0, L̄

¢
≤

θ
¡
Z̄, L̄

¢
) is not particularly important, since the order over the set Θ is not specified. It

could be that as Z̄ increases some measure of technology t declines. But in this case, this mea-

sure would correspond to a type of technology biased against factor Z. If so, we can simply

change the order over this parameter, e.g., we can consider changes in t̃ = −t rather than t.

Remark 1 Inspection of Theorem 10 in Appendix B will show that Theorem 4 also applies,

when the assumption that F is supermodular in θ is replaced with the weaker assumption that

F is quasi-supermodular in θ, which is an ordinal property introduced by Milgrom and Shannon

(1994). But Example 4 below shows that (strict) increasing differences cannot be replaced

with the (strict) single crossing property of Milgrom and Shannon (1994). Thus, interestingly,

Theorem 4 requires a mixture of ordinal and cardinal conditions. Nevertheless, I stated the

result under the stronger assumption of supermodularity since quasi-supermodularity is only

defined in Appendix B.

Remark 2 Theorem 4 can also be stated assuming only increasing differences in (Z, θ) rather

than strict increasing differences. But in this case, the conclusion that θ
¡
Z̄ 0, L̄

¢
≥ θ

¡
Z̄, L̄

¢
would only apply to the greatest and the least elements of the set of equilibrium technologies

(see Theorem 2.8.1 in Topkis, 1998). The greatest and the least elements of the maximizer set

always exist since, given the assumptions of Theorem 4, Theorem 10 ensures that the maximizer

29 It is also useful to note that Theorem 3 could be derived from Theorem 4 by restricting the set Θ to an
arbitrarily small ball around θ

¡
Z̄, L̄

¢
and then taking a second-order Taylor approximation to F as in Corollary

to Theorem 2 of Milgrom and Roberts (1996, p. 176).
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set is a complete lattice. Given this result, in the discussion I will simplify the terminology by

often referring to increasing differences rather than strict increasing differences.

Two immediate related corollaries of this theorem are also useful to note. Both of those

strengthen the results of the theorem to obtain strict inequalities. The first states that this

is the case whenever θ
¡
Z̄ 0, L̄

¢
> θ

¡
Z̄, L̄

¢
(thus is similar to the result on strict inequalities in

Theorem 3), while the second imposes additional conditions to ensure θ
¡
Z̄ 0, L̄

¢
> θ

¡
Z̄, L̄

¢
.

Corollary 1 Suppose that the hypotheses in Theorem 4 hold. If in addition θ
¡
Z̄ 0, L̄

¢
6=

θ
¡
Z̄, L̄

¢
, we have wZ

³
Z̃, L̄, θ

¡
Z̄ 0, L̄

¢´
> wZ

³
Z̃, L̄, θ

¡
Z̄, L̄

¢´
for all Z̃ ∈ Z and L̄ ∈ L.

Proof. Since wZ

³
Z̃, L̄, θ

¡
Z̄ 0, L̄

¢´
= ∂F

³
Z̃, L̄, θ

¡
Z̄ 0, L̄

¢´
/∂Z, θ

¡
Z̄ 0, L̄

¢
≥ θ

¡
Z̄, L̄

¢
and

θ
¡
Z̄ 0, L̄

¢
6= θ

¡
Z̄, L̄

¢
combined with the fact that F exhibits strict increasing differences in

(Z, θ) establish this result.

Corollary 2 Suppose that the hypotheses in Theorem 4 hold. Suppose in addition that Θ is

a convex compact subset of RK and that F is twice continuously differentiable (Z, θ,L) and

∂F
³
Z̃, L̄, θ

´
/∂Z is strictly increasing in θ for all Z̃ ∈ Z. Consider any Z̄ 0, Z̄ ∈ Z, such that

Z̄ 0 > Z̄ and L̄ ∈ L, and suppose that θ
¡
Z̄ 0, L̄

¢
and θ

¡
Z̄, L̄

¢
are in the interior of Θ. Then, we

have that θ
¡
Z̄ 0, L̄

¢
> θ

¡
Z̄, L̄

¢
and wZ

³
Z̃, L̄, θ

¡
Z̄ 0, L̄

¢´
> wZ

³
Z̃, L̄, θ

¡
Z̄, L̄

¢´
.

Proof. This corollary follows immediately from the Strong Monotonicity Theorem, Theo-

rem 11, in Appendix B.

An important implication of Theorem 4 and the subsequent corollaries is that we now have

a global version of Theorem 3, but at the expense of introducing more structure. In particular,

in addition to the relatively weak assumptions (in this context) that Z and Θ are lattices, we

need F to be (quasi-)supermodular in θ and to exhibit (strict) increasing differences in (Z, θ).

More importantly, there are limits to how much Theorems 3 and 4 can be generalized.

First, Theorem 3 does not apply for large changes in Z. In fact, quite interestingly, we cannot

take a series of small changes and turn them into a biased response for a large change in Z

(without the additional supermodularity and increasing differences assumption). Second, the

requirement of (strict) increasing differences in (Z, θ) in Theorem 4 cannot be dispensed with,

nor could it be replaced by the weaker conditions of single-crossing or quasi-supermodularity in

(Z, θ) of Milgrom and Shannon (1994)–see Appendix B for definitions. Third, the assumption

that F should exhibit increasing differences on the convex hull of Z rather than Z itself cannot
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be dispensed with either. The following example illustrates all these features by constructing

a simple economy which satisfies the local theorem, Theorem 3, at all points, but fails to

yield a global version of (absolute) bias because the production function does not exhibit

increasing differences in (Z, θ) on Z̄ × Θ (though it satisfies single crossing in (Z, θ) and in

(θ, Z), and quasi-supermodularity in (Z, θ) and exhibits increasing differences on Z ×Θ where
Z is nonconvex).

Example 4 (No Global Bias Without Increasing Differences) Suppose that F (Z,L, θ) =

Z +
¡
Z − Z2/8

¢
θ + A (θ) + B (L) and Z ∈ Z = [0, 6] and Θ = [0, 2] so that F is everywhere

increasing in Z (with the cost of creating technologies, C (θ), incorporated into the function

A (θ)). Suppose also that A (θ) is a strictly concave and continuously differentiable real-valued

function with the following boundary conditions to ensure interior solutions to the choice

of technology: A0 (0) > 0 and A0 (2) = −∞ (where A0 denotes A’s derivative), and B (L)

is an increasing function. F (Z,L, θ) satisfies all the conditions of Theorem 3 at all points

Z ∈ Z = [0, 6] (since F is strictly concave in θ everywhere on Z × Θ = [0, 6] × [0, 2]), so we
have local absolute equilibrium bias at all points in Z ×Θ.

However, F (Z,L, θ) is not supermodular nor does it satisfy increasing differences in (Z, θ),

since the cross-partial between Z and θ changes sign depending on whether Z is greater than

or less than 4. Consequently, it can be verified that there will not be global equilibrium bias

in this example.

To illustrate this, consider Z̄ = 1 and Z̄ 0 = 5 as two potential supply levels of factor Z

and some L̄ ∈ L. It can be verified easily that F
¡
1, L̄, θ

¢
= 1 + 7θ/8 +A (θ) +B

¡
L̄
¢
, so that

θ (1) satisfies A0 (θ (1)) = −7/8, whereas F
¡
5, L̄, θ

¢
= 5 + 15θ/8 +A (θ) +B

¡
L̄
¢
so that θ (5)

satisfies A0 (θ (5)) = −15/8. The strict concavity of A (θ) implies that θ (5) > θ (1). Moreover,

wZ (Z, θ) = 1+(1− Z/4) θ, so wZ (5, θ (5)) = 1−θ (5) /4 < wZ (5, θ (1)) = 1−θ (1) /4, contrary
to the claim in Theorem 4.

So why does the global theorem not work, while the local theorem does? The answer is

that the local theorem, Theorem 3, only refers to changes in technology that are absolutely

biased at the corresponding factor proportions. Consequently, when we change Z̄ locally, say

from 1 to 1.1, this increases θ, which is absolutely biased towards Z around 1. But this change

is biased against Z when we look at Z̄ = 5. This is the fundamental reason why applying

the local theorem, Theorem 3, successively will not give a global theorem and we need the

additional increasing differences (supermodularity) conditions (see also footnote 33 below for

further discussion on this point).
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This example can also be used to illustrate that increasing differences cannot be replaced by

the weaker single-crossing property, since F (Z,L, θ) may satisfy single crossing both in (Z, θ)

and (θ, Z). To illustrate this, let us take Θ = {θ (1) , θ (5)} and suppose that θ (1) = 0 and

θ (5) = 1. Let us continue to take Z = [0, 6]. First to check single crossing in (Z, θ), note that
since θ (1) = 0, F

¡
Z̄ 0, L̄, θ (1)

¢
> F

¡
Z̄, L̄, θ (1)

¢
whenever Z̄ 0 > Z̄. Therefore, we only have to

check that F
¡
Z̄ 0, L̄, θ (5)

¢
> F

¡
Z̄, L̄, θ (5)

¢
whenever Z̄ 0 > Z̄. This immediately follows from

the fact that θ (5) = 1, so that for all Z̄ 0, Z̄ ∈ Z = [0, 6] and Z̄ 0 > Z̄, Z̄ 0 +
³
Z̄ 0 −

¡
Z̄ 0
¢2
/8
´
>

Z̄ +
¡
Z̄ − Z̄2/8

¢
. To establish single crossing in (θ, Z), let us take θ (1) = 0 and θ (5) = 1 and

also suppose that A (1) ≥ A (0). In that case, single crossing in (θ, Z) requires that whenever

Z̄ 0, Z̄ ∈ Z = [0, 6] and Z̄ 0 > Z̄, and

Z̄ +
¡
Z̄ − Z̄2/8

¢
+A (1) +B

¡
L̄
¢
> Z̄ +A (0) +B

¡
L̄
¢

it must also be the case that

Z̄ 0 +
³
Z̄ 0 −

¡
Z̄ 0
¢2
/8
´
+A (1) +B

¡
L̄
¢
> Z̄ 0 +A (0) +B

¡
L̄
¢
.

It is straightforward to verify that the first inequality will hold for all Z̄ ∈ (0, 6] since, in this
case,

¡
Z̄ − Z̄2/8

¢
> 0 ≥ A (0)−A (1). This implies that for all Z̄ 0, Z̄ ∈ Z = [0, 6] and Z̄ 0 > Z̄,

we have
³
Z̄ 0 −

¡
Z̄ 0
¢2
/8
´
> 0 ≥ A (0) − A (1), establishing single crossing in (θ, Z). Since by

Lemma 3 in Appendix B, when Z and Θ are chains, single crossing in (Z, θ) and (θ, Z) implies
quasi-supermodularity in (Z, θ), this result also implies that increasing differences in (Z, θ)

cannot be replaced with quasi-supermodularity in (Z, θ).

Finally, this example also shows that the assumption that the function needs to exhibit

increasing differences in (Z, θ) on the convex hull of Z, Z̄, cannot be dispensed with. In
particular, if we take Z = {1, 5} and Θ = {θ (1) , θ (5)}, it can be verified that the function
F here satisfies supermodularity on Z ×Θ, and hence exhibits increasing differences in (Z, θ)
on Z × Θ (see Lemma 2 in Appendix B). However, it fails to satisfy supermodularity and

increasing differences on Z̄ ×Θ, where Z̄ =[1, 5].30

30To see why it is necessary for F to be supermodular or exhibit increasing differences in (Z, θ) over the
convex hull of Z, note that the supermodularity of F implies that for Z00 > Z0 and θ00 > θ0, we have

F
¡
Z00,L, θ00

¢
+ F

¡
Z0,L, θ0

¢
≥ F

¡
Z00,L, θ0

¢
+ F

¡
Z0,L, θ00

¢
.

Now, assuming differentiability and applying the Fundamental Theorem of Calculus (e.g., Rudin, 1964, Theorem
6.16) twice and using the definition of wZ , we haveZ Z00

Z0

Z θ00

θ0

∂wZ (Z,L, θ)

∂θ
dθdZ ≥ 0.
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There is a natural and important generalization of Theorem 4 in which the supplies of a

set of factors change simultaneously, and the induced change in technology is biased towards

all of these factors. This is presented in the next theorem. Let the production function be

F (Z,L, θ), where Z = (Z1,..., ZN). Define the marginal products in the usual way as

wZj =
∂F (Z,L, θ)

∂Zj
for j = 1, ...,N.

The notion of equilibrium bias generalizes naturally.

Definition 12 Let Z̄ ∈Z ⊂RN
+ , L̄ ∈L and θ

¡
Z̄, L̄

¢
be the equilibrium technology choice in an

economy with factor supplies
¡
Z̄, L̄

¢
. We say that there is global absolute equilibrium bias if

for any Z̄0, Z̄ ∈ Z, Z̄0 ≥ Z̄ implies

wZj

³
Z̃, L̄, θ

¡
Z̄0, L̄

¢´
≥ wZj

³
Z̃, L̄, θ

¡
Z̄, L̄

¢´
for all

³
Z̃, L̄

´
∈ Z × L and for all j = 1, ..., N.

Once again, this definition can be strengthened by introducing strict inequalities.

Theorem 5 (Generalized Global Equilibrium Bias) Consider Economy D, C or M. Sup-

pose that Z and Θ are lattices, let Z̄ be the convex hull of Z, let θ
¡
Z̄, L̄

¢
be the equilibrium

technology at factor proportions
¡
Z̄, L̄

¢
, and suppose that F (Z,L, θ) is continuously differen-

tiable in Z, supermodular in θ on Θ for all Z ∈ Z̄ and L ∈L, and exhibits strictly increasing
differences in (Z, θ) on Z̄×Θ for all L ∈L, then there is global absolute equilibrium bias, i.e.,

for any Z̄0, Z̄ ∈ Z, Z̄0 ≥ Z̄ implies

θ
¡
Z̄0, L̄

¢
≥ θ

¡
Z̄, L̄

¢
for all L̄ ∈L

and

wZj

³
Z̃, L̄, θ

¡
Z̄0, L̄

¢´
≥ wZj

³
Z̃, L̄, θ

¡
Z̄, L̄

¢´
for all

³
Z̃, L̄

´
∈ Z × L and for all j = 1, ..., N.

Proof. The proof is analogous to that of Theorem 4 and follows from Theorem 10 in

Appendix B given the supermodularity of F (Z,L, θ) in θ and strict increasing differences in

(Z, θ) on Z̄ ×Θ.
It is clear that corollaries to this theorem similar to those to Theorem 4 can be stated

with slightly stronger conditions. I omit these to avoid repetition. Also, as in Theorem 4,

However, this does not guarantee that Z θ00

θ0

∂wZ (Z,L, θ)

∂θ
dθ ≥ 0

for all Z ∈ [Z0, Z00] unless F is supermodular over the convex hull of {Z0, Z00}.
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supermodularity in θ can be weakened to quasi-supermodularity in θ, or strict increasing

differences can be relaxed to increasing differences and the comparison of θ
¡
Z̄0, L̄

¢
to θ

¡
Z̄, L̄

¢
would apply for the greatest and the least elements of the equilibrium technology set.

5 Strong Absolute Equilibrium Bias

The results in Section 4 concern “weak” bias in the sense that they compare marginal products

at a given level of factor supplies (in response to a change in θ induced by a change in Z).

This section provides the conditions under which equilibrium bias will be “strong” in the sense

that once technology has adjusted, the increase in the supply of factor Z will increase its

marginal product (price). As noted in the Introduction, this is particularly important because

it emphasizes the central role of the equilibrium structure in the analysis here, since such a

result would not be possible in the neoclassical production theory.

Example 1 above illustrated the possibility of strong relative bias where technology might be

so responsive to factor supply changes that when a factor becomes more abundant, its relative

price and marginal product increase rather than decrease. Although somewhat counterintuitive

at first, this is also a possibility in the class of models studied here. But we will see that it

requires some type of nonconvexity either in the technology set, Θ, or in the production

possibilities set by allowing for a structure similar to that of Economy C or Economy M. First,

I define strong absolute bias, and to simplify the discussion, from now on, I focus on changes

in a single factor. Recall throughout that equilibrium technology is still a solution to the

maximization problem in (34).

Definition 13 Suppose that N = 1. Let θ (Z,L) ∈ Θ be the equilibrium technology choice in

an economy with factor proportions (Z,L). We say that there is strong absolute equilibrium

bias at
¡©
Z̄, Z̄ 0

ª
, L̄
¢
if for some L̄ ∈L and Z̄, Z̄ 0 ∈ Z with Z̄ 0 > Z̄, we have

wZ

¡
Z̄ 0, L̄, θ

¡
Z̄ 0, L̄

¢¢
> wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
.

Similarly, suppose that Θ ⊂ RK , wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
is differentiable in Z and ∂θj

¡
Z̄, L̄

¢
/∂Z

exists at
¡
Z̄, L̄

¢
for all j = 1, ...,K. Then we say that there is strong absolute equilibrium bias

at
¡
Z̄, L̄

¢
∈ Z × L if

dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
dZ

=
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂Z

+
KX
j=1

∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θj

∂θj
¡
Z̄, L̄

¢
∂Z

> 0.
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Note that in this definition I use dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/dZ to denote the total derivative,

while ∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂Z denotes the partial derivative holding θ = θ

¡
Z̄, L̄

¢
. The next

theorem shows that there cannot be strong absolute bias in Economy D if Θ is a convex subset

of RK .

Theorem 6 (No Strong Bias in Economy D) Suppose that Θ is a convex subset of RK,

F is twice continuously differentiable in (Z, θ), let the equilibrium technology at factor supplies¡
Z̄, L̄

¢
be θ

¡
Z̄, L̄

¢
, and assume that ∂θj

¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
for all j = 1, ...,K. Then

there cannot be strong absolute bias in Economy D.

Proof. Let us start with the local result and the case with θ ∈ R. Let factor supplies be¡
Z̄, L̄

¢
. Strong absolute bias corresponds to

dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
dZ

=
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂Z

+
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θ

∂θ
¡
Z̄, L̄

¢
∂Z

> 0.

This is equivalent to

dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
dZ

=
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂Z2

+
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θ

∂θ
¡
Z̄, L̄

¢
∂Z

> 0.

Recall from the proof of Theorem 3 that when θ
¡
Z̄, L̄

¢
is in the interior of Θ, the first-order

condition (38) holds, and we have:

∂θ
¡
Z̄, L̄

¢
∂Z

= −
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ∂Z

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

= −
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

.

so strong absolute bias would imply

dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
dZ

=
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂Z2

−
¡
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ∂Z

¢2
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

> 0. (42)

To see that this is impossible, first note that since ∂θ
¡
Z̄, L̄

¢
/∂Z exists, ∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 <

0 (from the non-singularity, ∂2F
¡
Z̄, L̄, θ

¢
/∂θ2j 6= 0 combined with the fact that θ

¡
Z̄, L̄

¢
is a

solution to (34), so that ∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 ≤ 0); and second that the joint concavity

of F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
in (Z, θ) implies that the Hessian of F in (Z, θ), ∇2(Z,θ)(Z,θ)F , is negative

semi-definite, thus every principle minor of ∇2(Z,θ)(Z,θ)F of even order has to be nonnegative

(see, e.g., Simon and Blume, 1994, Theorem 16.2). This implies

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 ×

¡
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂Z2

¢
≥
¡
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ∂Z

¢2
,

which combined with ∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 < 0 contradicts (42), proving the claim for

the case of θ ∈ R and in the interior of Θ. When θ is at the boundary of Θ, either (38)
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holds, in which case the same argument applies (since by hypothesis ∂θ
¡
Z̄, L̄

¢
/∂Z exists

even at this point). Alternatively, ∂F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ < 0. However, in this case since

F is twice continuously differentiable in (Z, θ) and ∂θ
¡
Z̄, L̄

¢
/∂Z exists, a sufficiently small

change in Z will leave ∂F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ < 0 and thus ∂θ

¡
Z̄, L̄

¢
/∂Z = 0. Consequently,

dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/dZ = ∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂Z ≤ 0.

Next, to prove this result with multiple dimensions of technology, i.e., with θ ∈ RK for

K > 1, note that when θ
¡
Z̄, L̄

¢
is in the interior of Θ, we have

dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
dZ

=
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂Z2

(43)

−
£
∇2θZF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤0 £∇2θθF ¡Z̄, L̄, θ ¡Z̄, L̄¢¢¤−1 £∇2θZF ¡Z̄, L̄, θ ¡Z̄, L̄¢¢¤ .
Since θ

¡
Z̄, L̄

¢
is a solution to (34), ∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
is negative semi-definite and symmet-

ric (since it is a Hessian). Moreover, since∇Zθ
¡
Z̄, L̄

¢
exists by hypothesis,∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
is non-singular, so it is negative definite and symmetric. This implies that its inverse

£
∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤−1
is also negative definite and symmetric, and moreover ∂2F

¡
Z̄, L̄, θ

¢
/∂Z2 ≤ 0 by the concavity

of F in Z (from Assumption 1, 1’, 2 or 2’).

Lemma 4 in Appendix B shows that an n× n matrix

B =

µ
C v
v0 b

¶
,

where C is an (n− 1)×(n− 1) symmetric negative definite, b is a scalar, and v is an (n− 1)×1
column vector, is negative semi-definite if and only if b−v0C−1v ≤ 0 where C−1 is the inverse of
C. Let us now apply this lemma with b = ∂2F

¡
Z̄, L̄, θ

¢
/∂Z2 ≤ 0, C =

£
∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤
,

and v =
£
∇2θZF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤
, which implies that the expression in (43) is equal to b −

v0C−1v. The fact that F is jointly concave in (Z, θ) implies that the Hessian of F with respect

to (Z, θ), ∇2(Z,θ)(Z,θ)F is negative semi-definite. Therefore, from Lemma 4, b− v0C−1v ≤ 0 and
(43) cannot be positive, completing the proof of the local result. The proof for the case where

θ
¡
Z̄, L̄

¢
is at the boundary of Θ is analogous to the one above for Θ ⊂ R.

Finally, to prove the global result, i.e., that strong bias is impossible in this economy for

any change in factor supplies, note that from the Fundamental Theorem of Calculus, for any

Z̄ 0 > Z̄, we have

wZ

¡
Z̄ 0, L̄, θ

¡
Z̄ 0, L̄

¢¢
− wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
=

Z Z̄0

Z̃

dwZ

¡
Z, L̄, θ

¡
Z, L̄

¢¢
dZ

dZ.

Since dwZ

¡
Z, L̄, θ

¡
Z̄, L̄

¢¢
/dZ ≤ 0 for all Z ∈

£
Z̄, Z̄ 0

¤
, the integral is nonpositive, establishing

the global result.
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The result in this theorem is not surprising. In Economy D, the production possibilities

set is convex, so the marginal product of each factor is decreasing in its supply even after

technology adjusts. In contrast, once we allow for nonconvexities (and factor demands and

technology to be chosen by different agents), the results are very different. To illustrate the

importance of nonconvexities, I now look at Economy D with a nonconvex technology set Θ,31

and at Economies C or M, which allow for natural nonconvexities. I establish that in both

cases strong absolute bias is possible.

Theorem 7 (Strong Absolute Bias) Strong absolute equilibrium bias is possible either in

Economy D with a nonconvex technology set, Θ, or in Economy C or M.

This theorem will be proved by providing two examples with strong absolute equilibrium

bias.

Example 5 (Strong Absolute Bias in Economy D) Take Economy D and suppose that

F (Z,L, θ) = Z1/2θ1/2 − θ + B (L) and Θ = {1, 4}. Imagine an increase in Z̄ from 4 to 9 + ε

where ε > 0. It is straightforward to check that for any L̄ ∈ L, F
¡
4, L̄, 1

¢
= 2− 1 +B

¡
L̄
¢
>

F
¡
4, L̄, 4

¢
= 4−4+B

¡
L̄
¢
, so θ (4) = 1. In contrast, F

¡
9 + ε, L̄, 4

¢
= (9 + ε)1/2 2−4+B

¡
L̄
¢
>

F
¡
9 + ε, L̄, 1

¢
= (9 + ε)1/2 − 1 +B

¡
L̄
¢
, so that θ (9 + ε) = 4 (in particular, the two sides are

equal when ε = 0, and the left-hand side increases faster in ε). Therefore, an increase in

Z̄ from 4 to 9 + ε will induce a change in technology from θ (4) = 1 to θ (9 + ε) = 4. The

price (marginal product) of factor Z is given by wZ

¡
Z̄, L̄, θ

¢
=
¡
θ/Z̄

¢1/2
/2, so the change in

this price resulting from the increase in Z̄ (after technology adjusts) is wZ

¡
Z̄ = 9 + ε, L̄, 4

¢
−

wZ

¡
Z̄ = 4, L̄, 1

¢
= (4/ (9 + ε))1/2 /2 − (1/4)1/2 /2 ' 1/3 − 1/4 > 0 for ε sufficiently small,

establishing the possibility of strong absolute bias in Economy D with a nonconvex technology

set.

Example 6 (Strong Absolute Bias in Economy C or M) Next, consider Economy C or

M, and to illustrate that a nonconvex technology set is not necessary in these economies, take

Θ = R. Suppose F (Z,L, θ) = 4Z1/2 +Zθ− θ2/2+B (L) (again with the cost of creating new

technologies, C (θ), incorporated into this function). Clearly F is not jointly concave in Z and

θ (for Z > 1) but is strictly concave in Z and θ individually. As Theorem 8 below will show,

this is a crucial feature in generating strong (absolute) bias. Now consider a change from Z̄ = 1

31 In Economy D, when Assumption 1 applies the technology set Θ is also assumed to be convex. This
assumption can be relaxed. Recall also that convexity of Θ is not required by Assumption 1’, which only
requires L and Z to be convex.
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to Z̄ = 4. Clearly, the first-order necessary and sufficient condition for technology choice gives

θ
¡
Z̄, L̄

¢
= θ

¡
Z̄
¢
= Z̄. Therefore, θ

¡
Z̄ = 1

¢
= 1 while θ

¡
Z̄ = 4

¢
= 4. Moreover, for any L̄ ∈ L,

wZ

¡
Z̄, L̄, θ

¢
= 2Z−1/2 + θ. Therefore, wZ

¡
Z̄ = 1, L̄, θ (1)

¢
= 3 < wZ

¡
Z̄ = 4, L̄, θ (4)

¢
= 5,

establishing strong (absolute) equilibrium bias between Z̄ = 1 to Z̄ = 4. In fact, Theorem

8 implies that there will be local strong equilibrium bias in this example for all Z̄ ≥ 1, and
Theorem 9 then implies that there will be global strong equilibrium bias between any Z̄ 0 and

Z̄ with Z̄ 0 > Z̄ ≥ 1.

The importance of Theorem 7 is that, contrary to the predictions of the standard production

theory, where the increase in the supply of a factor always reduces its price (and marginal

product), with endogenous technology choice or technological change, the price of a factor which

has become more abundant can increase. Examples 5 and 6 show that it is straightforward to

construct economies in which there is such strong bias.

This theorem also distinguishes the approach in this paper from the literature on the

LeChatelier principle, which looks at the decision problem of a single firm. As is well-known, the

firm’s demand curve for a factor is always downward sloping in its own price (e.g., Mas-Colell,

Whinston and Green, 1995, Proposition 5.C.2), so the equilibrium structure (in particular, the

equilibrium with aggregate nonconvexities) is important for the results in this paper, especially

for the possibility of strong equilibrium bias.

The fact that strong equilibrium bias is possible in Economy D when the technology set

Θ is nonconvex is also interesting. Although many existing approaches to technology, such as

the models of endogenous technological progress (e.g., Romer, 1990, Grossman and Helpman,

1991, Aghion and Howitt, 1992), view technology as a scalar in a convex set, as already

discussed in the Introduction, for many important technological choices, switching between

discrete technologies may be quite important. If this is the case, allowing Θ to be nonconvex

is important and realistic (recall that Theorems 4 and 5 above do not require Θ to be convex).

Finally, as stated in the Introduction and already hinted in the discussion, “greater non-

convexity” makes it more likely that the economy will feature strong absolute bias. This is for-

malized in the next theorem. Recall that in Economy C or M, F (Z,L, θ) = G (Z,L, θ)−C (θ),
so marginal product of Z is equivalently given by the derivative of function F or G. Recall

also that F (Z,L,θ) is always concave in (Z,L) (from Assumption 1, 1’, 2 or 2’) and has to

be locally concave in θ for θ
¡
Z̄, L̄

¢
to be an equilibrium technology (i.e., a solution to the

maximization problem in (34)). Recall that if F is jointly concave in (Z, θ) at
¡
Z, θ

¡
Z̄, L̄

¢¢
,

its Hessian with respect to (Z, θ), ∇2F(Z,θ)(Z,θ), is negative semi-definite at this point (though
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negative semi-definiteness is not sufficient for local joint concavity).

Theorem 8 (Nonconvexity and Strong Bias) Consider Economy C or M. Suppose that

Θ is a convex subset of RK , F is twice continuously differentiable in (Z, θ), let θ
¡
Z̄, L̄

¢
be the

equilibrium technology at factor supplies
¡
Z̄, L̄

¢
and assume that θ

¡
Z̄, L̄

¢
is in the interior of

Θ and that ∂θj
¡
Z̄, L̄

¢
/∂Z exists at

¡
Z̄, L̄

¢
for all j = 1, ...,K. Then there is strong absolute

bias at
¡
Z̄, L̄

¢
if and only if F (Z,L,θ)’s Hessian in (Z, θ), ∇2F(Z,θ)(Z,θ), is not negative semi-

definite at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
.

Proof. Let us start with the case where Θ ⊂ R. Since, by hypothesis, θ is in the interior
of Θ, the first-order condition, equation (38) from the proof of Theorem 3, holds. Then recall

the proof of Theorem 6 and in particular, equation (42), where it was established that for the

case of θ ∈ R:
dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
dZ

=
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂Z2

−
¡
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ∂Z

¢2
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

.

Again from Assumption 1, 1’, 2 or 2’, F is concave in Z, so ∂2F
¡
Z̄, L̄, θ

¢
/∂Z2 ≤ 0, and

from the fact that θ
¡
Z̄, L̄

¢
is a solution to (34) and ∂θ

¡
Z̄, L̄

¢
/∂Z exists, we also have

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 < 0. Then the fact that F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
’s Hessian, ∇2F(Z,θ)(Z,θ),

is not negative semi-definite at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
implies that¡

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

¢
×
¡
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂Z2

¢
<
¡
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ∂Z

¢2
.

Since at the optimal technology choice, ∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 < 0, this immediately yields

dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
dZ

> 0,

establishing strong absolute bias at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
as claimed in the theorem.

Conversely, if ∇2F(Z,θ)(Z,θ) is negative semi-definite at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
, then¡

∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2

¢
×
¡
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂Z2

¢
≥
¡
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ∂Z

¢2
,

which, together with ∂2F
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/∂θ2 < 0, implies that dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/dZ ≤ 0,

establishing that for strong bias at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
we need ∇2F(Z,θ)(Z,θ) not to be negative

semi-definite at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
.

Now for the general case where Θ ⊂ RK and θ
¡
Z̄, L̄

¢
is in the interior of Θ, the overall

change in the price of factor Z is given by (43) in the proof of Theorem 6, i.e.,

dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
dZ

=
∂2F

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂Z2

(44)

−
£
∇2θZF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤0 £∇2θθF ¡Z̄, L̄, θ ¡Z̄, L̄¢¢¤−1 £∇2θZF ¡Z̄, L̄, θ ¡Z̄, L̄¢¢¤ .
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Again by the same arguments, ∂2F
¡
Z̄, L̄, θ

¢
/∂Z2 ≤ 0 and ∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
is negative

definite and symmetric (which implies that its inverse
£
∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤−1
is also neg-

ative definite and symmetric). Suppose that ∇2F(Z,θ)(Z,θ) is not negative semi-definite at¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
. Then from Lemma 4 in Appendix B and using the same notation as in the

proof of Theorem 6, letB = ∇2F(Z,θ)(Z,θ), b = ∂2F
¡
Z̄, L̄, θ

¢
/∂Z2, C =

£
∇2θθF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤
,

and v =
£
∇2θZF

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢¤
, so that (44) is equal to b−v0C−1v evaluated at

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
.

Lemma 4 immediately implies that if∇2F(Z,θ)(Z,θ) is not negative semi-definite at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
,

then b − v0C−1v > 0, so that dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/dZ > 0 and there is strong bias at¡

Z̄, L̄, θ
¡
Z̄, L̄

¢¢
.

Conversely, again from Lemma 4, if∇2F(Z,θ)(Z,θ) is negative semi-definite at
¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
,

then b − v0C−1v ≤ 0 and dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
/dZ ≤ 0, so that there is no strong bias at¡

Z̄, L̄, θ
¡
Z̄, L̄

¢¢
, completing the proof.

This theorem therefore shows that in Economy C or M strong absolute bias will obtain

if and only if the Hessian of the function F (Z,L,θ) fails to be negative semi-definite, which

loosely corresponds to F failing to be jointly concave in (Z, θ). It therefore highlights the

importance of nonconvexities in generating strong equilibrium bias of technology.32

More specifically, recall that for Economies C and M, we have Z and θ chosen by different

agents. For example, in Economy M, final good producers choose their input demands, while

the technology monopolist chooses technology. This implies that we are at the maximum of F

when we change only Z or only θ. But this does not guarantee that we are at the maximum

in the entire (Z, θ) plane. In other words, the equilibrium may be a saddle point rather than

a maximum of the function F . When this is the case, a change in Z will induce θ to change in

the direction of further increasing F , and consequently, the marginal product of factor Z will

increase. Contrasting this result with Theorem 6, we see the importance of the equilibrium

structure and nonconvexity. As shown in Theorem 6, in Economy D with a convex technology

set Θ, equilibrium ensures that we are at a maximum, so strong equilibrium bias is not possible.

Strong equilibrium bias is only possible when equilibrium results from the interaction of choices

by different agents (e.g., final good producers and the technology monopolist), or when the

technology set Θ is itself nonconvex.

Note also that Theorem 8 not only specifies the conditions for strong equilibrium bias,

but also highlights that these are not very restrictive. In fact, inspection of Example 6 shows

32The assumption that θ
¡
Z̄, L̄

¢
is in the interior of Θ is adopted to obtain an “if and only if” theorem. When

θ
¡
Z̄, L̄

¢
is at the boundary of Θ, strong equilibrium bias is again possible, but failure of negative semi-definiteness

is no longer sufficient.
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that it is very straightforward to construct cases in which equilibria in Economies C and M

correspond to saddle points, and thus satisfy the conditions of Theorem 8.

Finally, it is also possible to provide a generalization of Theorem 8 for large changes in

supplies (corresponding to strong bias between factor supplies
©
Z̄, Z̄ 0

ª
as in the first part of

Definition 13). In particular, we have:33

Theorem 9 (Nonconvexity and Global Strong Bias) Consider Economy C or M. Sup-

pose that Θ is a convex subset of RK , F is twice continuously differentiable in (Z, θ), let Z̄, Z̄ 0 ∈
Z, with Z̄ 0 > Z̄, L̄ ∈L, and let θ

³
Z̃, L̄

´
be the equilibrium technology at factor supplies

³
Z̃, L̄

´
and assume that θ

³
Z̃, L̄

´
is in the interior of Θ and that ∂θj

³
Z̃, L̄

´
/∂Z exists at

³
Z̃, L̄

´
for

all j = 1, ...,K for all Z̃ ∈
£
Z̄, Z̄ 0

¤
. Then there is strong absolute bias at

¡©
Z̄, Z̄ 0

ª
, L̄
¢
if

F (Z,L,θ)’s Hessian, ∇2F(Z,θ)(Z,θ), fails to be negative semi-definite at
³
Z̃, L̄, θ

³
Z̃, L̄

´´
for all

Z̃ ∈
£
Z̄, Z̄ 0

¤
.

Proof. The proof follows from the Fundamental Theorem of Calculus and the proof of

Theorem 8. Take Z̄ and Z̄ 0 > Z̄ in Z and fix L̄ ∈L. Then

wZ

¡
Z̄ 0, L̄, θ

¡
Z̄ 0, L̄

¢¢
− wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
=

Z Z̄0

Z̄

dwZ

¡
Z, L̄, θ

¡
Z, L̄

¢¢
dZ

dZ. (45)

The hypotheses of the theorem, combined with the proof of Theorem 8, imply that

dwZ

¡
Z, L̄, θ

¡
Z, L̄

¢¢
/dZ > 0 for all Z ∈

£
Z̄, Z̄ 0

¤
, so (45) is positive, establishing the result.

The conditions of Theorem 9 are more demanding than Theorem 8, since they require that

the Hessian of F with respect to (Z, θ) should fail to be negative semi-definite at all points

Z̃ ∈
£
Z̄, Z̄ 0

¤
. Moreover, this theorem is weaker than Theorem 8, since it states that failure of

negative semi-definiteness of the Hessian of F between Z̄ and Z̄ 0 is sufficient to ensure strong

absolute bias between Z̄ and Z̄ 0, but does not state that it is necessary (and it is straightforward

to check that it is not). This motivated my focus on Theorem 8 for most of the discussion.

33At this point, we can also return to a further discussion of why the local weak bias result did not translate
into a global weak bias result (without imposing further conditions), whereas the strong bias result does (recall
the discussion in Example 3). In particular, one might have conjectured that an argument using the Fundamental
Theorem of Calculus similar to that in the proof of Theorem 9, in particular, equation (45), may work for weak
bias as well. To illustrate why this is not the case, let us suppose that Θ ⊂ R. Then:

dwZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
dZ

=
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂Z

+
∂wZ

¡
Z̄, L̄, θ

¡
Z̄, L̄

¢¢
∂θ

∂θ

∂Z
.

Equation (45) and Theorem 9 apply to this entire term, while weak bias concerns the second part of this term.
It is not possible to apply the Fundamental Theorem of Calculus just to this term, and intuitively, this is the
notion discussed in Example 3, whereby an induced change in θ at some Z̄ that is biased towards Z may be
biased against Z at some different factor supply, Z̄0.
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6 Conclusion

An investigation of the determinants of equilibrium (endogenous) bias is important both for a

better understanding of nature of technology adoption and technological change, and to study

the distributional implications of new technologies.

In this paper, I analyzed the implications of changes in factor supplies on relative and

absolute bias of technology. First, I generalized a number of existing results in the literature

about relative bias in two-factor economies. These results are about how the relative marginal

product of a factor responds to technological progress or technology adoption induced by

changes in factor supplies. In particular, I established that when the economy has access

to two technologies, one augmenting factor Z and the other L, equilibrium technology will

always be relatively biased towards the factor that has become more abundant. Moreover, this

induced-bias can be strong enough to increase the relative price of the factor that becomes

more abundant. These results are interesting both because they apply to many macro models

of economic growth, and also because they are essentially the opposite of the presumption in

the literature following Hicks’ (1932) seminal work. Nevertheless, the analysis also showed

that these results about relative bias do not generalize once we depart from a world with

only factor-augmenting technologies. The reason is that induced changes in technology may

increase the marginal product of the other factor more than the marginal product of the factor

becoming more abundant. This suggests that more general theorems may apply to absolute

rather than relative bias.

The second part of the paper shows that this is indeed the case and provides general

theorems about absolute bias, i.e., how the marginal product of a factor (rather than its relative

marginal product) changes in response to technology. I proved that under mild assumptions,

changes in technology induced by small changes in factor supplies are always (absolutely) biased

towards the factor that has become more abundant. I also showed that under supermodularity-

type assumptions, the same result can be generalized to any magnitude of change in factor

supplies, and can be applied to simultaneous changes in the supplies of a set of factors.

Finally, the last section contains the most important results of the paper. It illustrated the

possibility of strong (absolute) equilibrium bias. In particular, with strong equilibrium bias,

an increase in the supply of a factor induces a sufficiently large change in technology so that

the marginal product (price) of the factor that has become more abundant increases; in other

words, demand curves for factors become upward sloping. The analysis demonstrated that

such strong equilibrium bias is impossible without nonconvexities, but is easy to obtain once
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nonconvexities are present. Moreover, Theorem 8 provided precise conditions for such strong

bias to exist, related to the failure of joint concavity of the F function in factor demands and

technology, which is possible (and in fact quite typical) in equilibrium environments.

To keep the exposition simple, I have made differentiability assumptions throughout the

paper, but the global results can be easily generalized by relaxing differentiability since they

were derived using tools from the theory of monotone comparative statics. Another possible

generalization is to introduce multiple goods rather than a single final good. This complicates

the analysis, but the general insights do not appear to depend on the single good assumption.

Yet another interesting generalization might be to integrate some of these results into growth

models where there can be long-run growth due to technological change (see Acemoglu, 1998,

2002, 2003b or Jones, 2005, for various growth models with relative equilibrium bias). More

important directions for future research include an investigation of the bias of technology in

alternative settings where the problem of determining equilibrium technology is not equiva-

lent to a maximization problem. The most important example of this is a strategic setting

where there is (oligopolistic) competition between various firms that are also choosing their

technologies. Finally, the most important area for future research is an empirical investigation

of whether the implications of these strong theorems actually hold in the data.
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7 Appendix A: Technology Choice with Monopoly in Economy
C

In this appendix, I briefly discuss the results in the environment of Economy C if the research

is undertaken by a profit-maximizing monopolist. The main result is that if we allow the

monopolist to charge price schedules rather than a linear price, the result is once again an

equilibrium that corresponds to the maximization of some function F (Z̄, L̄, θ).

Recall that the production function is given by (6), with the same assumptions on the

function G. Suppose that without buying the rights to use some technology, each firm would

produce zero output. They can buy these rights from the monopolist technology producer,

at some price χ (I will specify what this price is a function of below). The major difference

is that the technology monopolist will choose the technology θ to maximize its profits rather

than social surplus or total output. Since without the technology, a firm produces zero output,

the technology monopolist can charge each firm up to a price of π(Zi,Li, θi). Therefore, its

profits are

Π (θ) =

Z
i∈F

t (i)π(Zi,Li, θi)di−C (θ) ,

where t (i) is an indicator for whether firm i is buying the new technology. Under the same

assumption as in Economy C that the monopolist can only choose one technology from the

menu, it will simply maximize Π (θ). The problem here is that as the monopolist provides

better technologies to all firms, they compete more fiercely for the factors of production, so

factor prices increase, and as a result, the profits that the technology monopolist can extract

decline. For example, if G exhibits constant returns to scale in (Z,L), the monopolist can never

extract any positive profits by charging any price schedule χ (θ) and selling its new technology

to all firms. In fact, in this case, it would clearly be beneficial for the monopolist to charge a

price that is not only a function of the technology, but also of the employment levels of the

firms, so as to manipulate their factor demand. In particular, suppose that the monopolist

can charge firm i a price χ
¡
Zi,Li, θ

¢
, which is the fee to use technology θ conditional on firm

i employing
¡
Zi,Li

¢
. Now consider the following price function for the monopolist

χ
¡
Zi,Li, θ

¢
=

½
π(Z̄, L̄, θi)− ξ if

¡
Zi,Li

¢
=
¡
Z̄, L̄

¢
∞ if

¡
Zi,Li

¢
6=
¡
Z̄, L̄

¢
for some ξ > 0, and the strategy of selling to a total of 1 − ε firms, where ε > 0. The price

schedule makes it profitable for all firms that are offered the technology to take it, since they

will make additional profits equal to ξ by doing so. Since ε > 0, there will be excess labor
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supply, so all factor prices will be equal to 0. Consequently,

sup
ξ,ε,θ
Π (θ) = G(Z̄, L̄, θ)− C (θ) .

This is written as “sup” not as “max”, since the supremum is never reached and the monopolist

approaches it as ξ ↓ 0 and ε ↓ 0. The important result for the analysis is that technology choice
is again the solution to the maximization of some function F (Z̄, L̄, θ) (though the supremum

is never reached). Even though in this case factor prices are equal to zero, all the results in

the text apply to the marginal products of the factors (which are never zero).
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8 Appendix B: Some Technical Definitions and Results

In this section, I define some of the terms used in the analysis of global equilibrium bias.

The reader is referred to the much more detail discussion in Topkis (1978, 1998), and also to

Milgrom and Roberts (1990) and Milgrom and Shannon (1994). At the end of the section, I

also prove a lemma on negative semi-definite matrices, which is used in the proofs of Theorems

6 and 8.

Let X be a partially ordered set, with an order (reflexive, anti-symmetric and transitive

binary relation) denoted by ≥ (or >). For example, X = R2 with the order such that (x01, x02) ≥
(>) (x1, x2) only if x01 ≥ (>)x1 and x02 ≥ (>)x2 is a partially ordered set. In contrast, X = R

with the natural order ≥ (>) is an ordered set or a chain. Let x0 ∨ x denote the join, or the
least upper bound of two elements of a partially ordered set X. For example, when X = R2,

(x01, x
0
2) ∨ (x1, x2) = (max {x1, x01} ,max {x2, x02}). Similarly, the meet, or the greatest lower

bound of two elements of a partially ordered set is denoted by x0 ∧ x, and for the case where
X = R2, (x01, x02) ∧ (x1, x2) = (min {x1, x01} ,min {x2, x02}). X or a subset S of X is a lattice if

it contains the join and the meet of each pair of its elements. A subset X 0 of X is a sublattice

of X (i.e., a lattice according to the same order over X) if X 0 contains the joint and the meet

of each pair of its own elements.

Let f : X → R be a real-valued function and X be a lattice. Then we have a more general

definition of supermodularity than the one in the text:

Definition 14 A real-valued function f (x) defined on a (sub)lattice X is supermodular if

f
¡
x0
¢
+ f

¡
x00
¢
≤ f

¡
x0 ∨ x00

¢
+ f

¡
x0 ∧ x00

¢
(46)

for all x0,x00 ∈ X. Moreover, f (x) is strictly supermodular if it satisfies (46) with strict

inequality for all unordered x0,x00 ∈ X.

When f (x) is twice continuously differentiable over X, the definition for supermodularity

is equivalent to the one in the text.

Another useful definition is that of increasing differences, which weakens the supermodu-

larity requirements.34

Definition 15 Let X and T be partially ordered sets. Then a function f (x, t) defined on

a subset S of X × T has increasing differences in (x, t), if for all t00 > t, f (x, t00) − f (x, t)

34The notion of “increasing differences” was originally called isotone in Topkis (1968, 1978), and is sometimes
referred to as non-decreasing differences (e.g., Amir, 1996).
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is nondecreasing in x. Moreover, f (x, t) has strictly increasing differences in (x, t), if for all

t00 > t, f (x, t00)− f (x, t) is strictly increasing in x.

Clearly, (strictly) increasing differences in in (x, t) and in (t, x) are identical.

In the text, I also made use of the concepts of single crossing property and quasi-supermodularity.

These are defined as follows:

Definition 16 A real-valued function f (x) defined on a (sub)lattice X is quasi-supermodular

if for all x0,x00 ∈ X,

f
¡
x0
¢
≤ f

¡
x0 ∨ x00

¢
=⇒ f

¡
x00
¢
≤ f

¡
x0 ∧ x00

¢
, and (47)

f
¡
x0
¢

< f
¡
x0 ∨ x00

¢
=⇒ f

¡
x00
¢
< f

¡
x0 ∧ x00

¢
.

Definition 17 Let f (x, t) be a real-valued function defined on X × T where X and T are

partially ordered sets. Then f (x, t) satisfies the single crossing property in (x, t) if x00 > x0,

t00 > t0 and f (x00, t0) ≥ f (x0, t0) implies that f (x00, t00) ≥ f (x0, t00) and f (x00, t0) > f (x0, t0)

implies that f (x00, t00) > f (x0, t00).

We have the following result linking supermodularity to increasing differences.

Lemma 2 Suppose that X is a lattice. If f (x) is (strictly) supermodular on X, then f (x)

exhibits (strictly) increasing differences on X. Moreover, suppose in addition that X ⊂ RK .

Then if f (x) exhibits (strictly) increasing differences on X, f (x) is (strictly) supermodular on

X.

Proof. The first part follows from Theorem 2.6.1 of Topkis (1998), while the second part

is an implication of Corollary 2.6.1 of Topkis (1998).

Next, it is useful to state some of the relationships between these concepts invoked in

Example 3, and some additional results linking increasing differences to the single crossing

property:

Lemma 3 Let f be a real valued function. Then:

1. If X is a lattice and f (x) is supermodular on X, then f (x) is quasi-supermodular on X.

2. If X1 andX2 are lattices andX is a sublattice ofX1×X2 and f (x) is quasi-supermodular
on X, then f (x) has the single crossing property in (x1, x2) and (x2, x1) on X.
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3. If X1 and X2 are chains and X is a sublattice of X1×X2 and f (x) has the single crossing

property in (x1, x2) and (x2, x1) on X, then f (x) is quasi-supermodular on X.

4. If X1 and X2 are partially ordered sets, X is a subset of X1×X2 and f (x1, x2) exhibits

increasing differences in (x1, x2) on X, then f (x1, x2) has the single crossing property in

(x1, x2) and (x2, x1) on X.

Proof. See Lemma 2.6.5 of Topkis (1998).

The key theorem for the analysis is the Monotonicity Theorem of Topkis. Here I state

a version, which combines elements from Topkis’ (1998) Theorems 2.7.1, 2.8.1, 2.8.4, 2.8.6

and Corollary 2.7.1 (see also Topkis, 1978, Theorems 6.1, 6.2 and 6.3). Instead of striving

for ultimate generality, I state a version that applies in the context of the problem in the

text (e.g., instead of upper semi-continuity, which is necessary for the existence of solutions, I

impose continuity etc.).

Theorem 10 (Monotonicity Theorem) Suppose that X and T are lattices and f (x, t) is

quasi-supermodular in x and exhibits increasing differences in (x, t) on a compact and complete

sublattice S of X × T and continuous in x on S, then A (t) ≡ argmaxx∈S f (x, t) is a non-
empty, compact and complete sublattice of X and is increasing in t. Moreover, if f (x, t) is

quasi-supermodular in x and exhibits strictly increasing differences in (x, t), then for any t0 > t,

x (t) ∈ A (t) and x (t0) ∈ A (t0), x (t0) ≥ x (t).

Proof. See Topkis (1998).

In the text, I make use of the second part of this theorem which requires f (x, t) to exhibit

strictly increasing differences in (x, t), which is only a slightly stronger requirement than in-

creasing differences. With increasing differences, all the results in the text continue to apply

except that we only know that the set A (t) is increasing (ascending) in t, so all the comparisons

have to be for the greatest or the least element of the set A (t). Strict increasing differences

ensures that any element of A (t0) is greater than any element of A (t) for t0 > t.

Another useful theorem, first derived by Amir (1996) and generalized by Topkis (1998)

Theorem 2.8.5, is the following, which I refer to as the “Strong Monotonicity Theorem”. Here

again I state a slightly simplified version of the theorem:

Theorem 11 (Strong Monotonicity Theorem) Suppose that X is a convex sublattice of

Rn and T is a sublattice of Rm, and f (x, t) is quasi-supermodular in x, twice continuously

differentiable in (x, t) on a compact and complete sublattice S of X×T , continuous in x on S,
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and ∂f (x, t) /∂xi is strictly increasing in t for all i = 1, ..., n, then A (t) ≡ argmaxx∈S f (x, t)
is a non-empty, compact and complete sublattice of X. Moreover, if t0, t ∈ T with t0 > t, and

x (t) ∈ A (t) and x (t0) ∈ A (t0) are in the interior of X, then x (t0) > x (t).

Proof. See Topkis (1998) Theorem 2.8.5.

The important feature of this strong monotonicity theorem is that under some additional as-

sumptions, it establishes a strict ordering between x (t0) and x (t), while the original monotonic-

ity theorem only has a weak ordering.35

Finally, we have the following lemma, which is used in the proofs of Theorems 6 and 8.36

Recall that for a matrix (vector) v, v0 denotes its transpose.

Lemma 4 Consider the n× n matrix

B =

µ
C v
v0 b

¶
, (48)

where C is a (n− 1) × (n− 1) symmetric negative definite matrix, b is a scalar, and v is

a (n− 1) × 1 column vector. Then we have that B is negative semi-definite if and only if

b− v0C−1v ≤ 0.

Proof. (⇐=) B is negative semi-definite if and only if

(x; y)0B(x; y) ≤ 0,

where x is an arbitrary (n− 1) × 1 vector and y is a scalar, (x; y) is the n× 1 column vector
constructed by stacking x and y. Using the form of B in (48), we have

(x; y)0B(x; y) = x0Cx+ 2yx0v + by2. (49)

When y = 0, the above expression is always nonpositive since C is negative definite, so B is

negative semi-definite as claimed.

Next consider the case where y 6= 0. In this case, let z be the (n− 1)×1 vector constructed
as z = x/y, and let us further expand (49):

(x; y)0B(x; y) = y2(z0Cz + 2z0v + b)

= y2(z0Cz + 2z0v + v0C−1v) + y2(b− v0C−1v). (50)

35The assumption that ∂f (x, t) /∂xi is strictly increasing in t for all i = 1, ..., n, is slightly weaker than
∂2f (x, t) /∂xi∂tj > 0 for all i = 1, ..., n and j = 1, ...,m. Also, the condition that x (t0) and x (t) are in the
interior of X can be relaxed along the lines of Theorem 2.8.5 of Topkis (1998).
36 I thank Alp Simsek for help with the proof of this lemma.
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Since C is a real symmetric negative definite matrix, −C is a real symmetric and positive

definite matrix, so there exists a non-singular matrix M such that −C =M 0M . Moreover, we

also have that −C−1 =M−1 (M 0)−1 =M−1 ¡M−1¢0 [since (M 0)−1 = (M−1)0]. Now, rewriting

equation (50) in terms of M , we have

(x; y)0B(x; y) = −y2(z0 (−C) z − 2z0v − v0C−1v) + y2(b− v0C−1v)

= −y2(z0
¡
M 0M

¢
z − 2z0v + v0M−1 ¡M 0¢−1 v) + y2(b− v0C−1v). (51)

(51) implies that B is negative semi-definite if and only if

κ ≡ y2(z0
¡
M 0M

¢
z − 2z0v + v0M−1 ¡M 0¢−1 v)− y2(b− v0C−1v) ≥ 0.

Now, rearranging terms and with straightforward matrix manipulation, we have

κ ≡ y2((Mz)0Mz − 2z0
³
M 0 ¡M 0¢−1´ v + ³¡M−1¢0 v´0 ¡M−1¢0 v)− y2(b− v0C−1v),

≡ y2((Mz)0Mz − 2 (Mz)0
¡
M−1¢0 v + ³¡M−1¢0 v´0 ¡M−1¢0 v)− y2(b− v0C−1v)

≡ y2
∙³

Mz −
¡
M−1¢0 v´0 ³Mz −

¡
M−1¢0 v´¸− y2(b− v0C−1v).

Therefore, B is negative semi-definite if and only if

κ ≡ y2
∙³

Mz −
¡
M−1¢0 v´0 ³Mz −

¡
M−1¢0 v´¸− y2(b− v0C−1v) ≥ 0. (52)

Now suppose

b− v0C−1v ≤ 0,

then, from equation (52), the first term of κ takes the form y2a0a for a ≡
³
Mz −

¡
M−1¢0 v´0 ³Mz −

¡
M−1¢0 v´

and is always non-negative for any z, so κ ≥ 0, establishing that B is negative semi-definite.

(=⇒) Conversely, suppose thatB is negative semi-definite, which implies that (x; y)0B(x; y) ≤
0 for all (x; y). To obtain a contradiction, suppose that

b− v0C−1v > 0.

Then, take y 6= 0, and in terms of equation (52), set z = M−1(M 0)−1v, which yields κ =

−y2(b − v0C−1v) < 0 in equation (52), contradicting the hypothesis that B is negative semi-

definite (or that (x; y)0B(x; y) ≤ 0 for all (x; y)), thus yielding a contradiction.
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