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1.  Introduction

A number of previous papers documented that retail prices for many products tend to fall

during periods of peak demand.  Warner and Barsky (1995) show that the prices of several consumer

appliances fall in the period prior to Christmas. MacDonald (2000) documents that prices of many

food items decline in periods of seasonal demand peaks. Chevalier, Kashyap and Rossi (2003)

(CKR, hereafter) use a unique data set provided by a large retailer in the Chicago area, and find that

a price index for several products falls during periods of high demand. Examining these patterns

carefully they conclude that the decline in average prices is best explained by loss leader models of

advertising (Lal and Matutes, 1994).

It is somewhat counter-intuitive that prices do not rise during periods of high demand. As

documented by previous work, cited above, this seems to be the case in a wide range of industries.

Understanding what drives this is important for price theory and measurement. From the macro-

economic point of view, sales are a major source of nominal price variation in many retail markets.

Therefore, understanding what drives sales, and price rigidity during non-sale periods, has

implications for the macro-economy (Warner and Barsky, 1995, CKR, Bils and Klenow, 2004.)

In this paper, we build upon CKR, using their data to provide support for an alternative

explanation to the decline in the average price. Our explanation is based on a change in brand-level

demand. We focus on two changes. First, price sensitivity can be higher during periods of high

demand. If true this will lead to a lower equilibrium price. Demand might be more price elastic for

several reasons. The mix of consumers might be changing. For example, increased demand for tuna

during Lent comes mostly from a certain segment of the population that might have different price

sensitivity. Furthermore, a given consumer might be more price sensitive because the product is used

differently during a period of high demand. We provide examples below.

Second, the brand preferences within a product category might change. For example, eggs

used in an Easter egg hunt can be of lower quality than eggs eaten at breakfast. Beer bought for a

July 4th barbecue party can be of lower quality, either because of a public goods problem (you are

unlikely to consume most of what you bring to the party), or because after a few beers it is hard to
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distinguish different brands. Most of the analysis in CKR is performed using a variable weights price

index:2 the prices of individual items are averaged using weights proportional to quantity sold.

However, if preferences for brands shift towards cheaper products, then such an index could

potentially be misleading. Even with no changes in prices a variable weights price index might

change due to a composition effect. 

In order to provide support for our explanation we re-examine the CKR data. We start by

repeating their analysis using a fixed-weights price index. A fixed weights price index will not be

affected by a change in the composition of brands, and therefore if that is all that is happening, it will

show no decline. Indeed the results suggest that, for the product categories CKR identify as loss

leaders, a fixed-weights price index displays much smaller price declines (in some cases none at all).

Next, based on the initial analysis and for reasons we motivate below, we focus our attention on

tuna, which faces a high demand peak during Lent. We find that much of the increase in the quantity

sold is due to two products. These products, which are relatively cheap, nearly triple their market

share and interestingly do not reduce their prices. Some of the competitors indeed lower their prices,

in what seems to be a response to the decline in their market shares.

We also estimate weekly item-level demand for tuna. We find, as predicted by our

explanation, that consumers are more price sensitive during Lent and that the brand preferences

seem to change during Lent. Furthermore, we find no evidence that advertising is more effective

during Lent, which is a testable implication of the loss-leader theory. While we focus on tuna, our

results seem to be more general. We repeat the analysis for the other products studied by CKR and

find similar results: we find evidence consistent with a change in price sensitivity and brand

preferences, but less consistent with a theory of loss leaders.

There are two general lessons that can be learned from our analysis. First is the importance

of seriously considering product differentiation and its implications for the results. CKR advocate

the importance of incorporating retail behavior, but do so at the cost of treating the product as

(essentially) homogenous. We, on the other hand, place more emphasis on product differentiation
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and find different results. Second, our results show that one has to be careful in using prices paid by

consumers to make inferences about supply side behavior. The observed prices might be driven, at

least in part, by consumer behavior and not by pricing.

The explanation we provide here is similar to, yet distinct from, the one offered by Warner

and Barsky (1995). They suggest that scale economies in search make the demand for the product

more elastic during aggregate peak demand periods. We propose an explanation that is based on a

change in the demand for the product during idiosyncratic peak demand periods. Moreover, our

explanation is based on a change in the relative demand for different brands. These differences

imply an alternative interpretation of the data. Indeed, some of our results, which we claim as

support for our explanation, are similar to the results CKR use as evidence against the Warner and

Barsky theory.

The rest of the paper is organized as follows. In Section 2 we summarize the basic patterns

found by previous work and the models proposed to explain these patterns. In Section 3 we discuss

our explanation in some detail. In Section 4 we present the data used in the analysis and a first cut

at various price indices for different product categories. In Section 5 we focus on a single category,

tuna. We estimate a brand level demand system and use it to show that: (i) price sensitivity increases

during Lent; (ii) there seems to be a change in brand preferences for tuna brands during Lent; and

(iii) there does not seem to be an increase in the efficiency of advertising during Lent. The first two

findings support our explanation, while the third seems to cast doubt on the loss-leader story. We

also show, in Section 5.3, that the results found for tuna are also mostly present in other product

categories. 

2. Previous Findings and Explanations

Temporary price reductions are common in many industries. Yet, it is only fairly recently

that the economics literature has tried to empirically document and study patterns in these sales.

Pashigian (1988) and Pashigian and Bowen (1991) study “clearance sales” in the fashion industry.

In this industry prices tend to fall over the life cycle of the product. They find that markdowns
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increased over time, as variety increased, and are more common in some types of clothes, where

variety and fashion are more important.  They relate these findings to the predictions of a model of

store uncertainty about the future popularity of colors, patterns and fabrics. 

Warner and Barsky (1995) continue where Pashigian (1988) and Pashigian and Bowen

(1991) left off. They collect four months of daily prices for eight items in several stores. The items

they study include an action figure toy, bathroom towels, a bicycle and several small appliances.

They find that prices tend to be marked down during weekends and before Christmas. Both are

periods of (exogenously) high demand. They interpret these patterns as support for a theory based

on increasing returns in the shopping technology. During periods of high demand consumers have

a higher incentive to be informed about prices, thus, the demand faced by a retailer is more elastic,

and therefore optimal prices are lower.

MacDonald (2000) documents a decrease in the price of food products at seasonal demand

peaks. He uses the observed quantity data in order to select periods of high demand, i.e., a peak

demand period is one in which the quantity sold is unusually high.  He documents a decrease in the

national average monthly price of narrowly defined items during periods of high demand. The

analysis uses the largest selling item of the largest selling brand in each category. There are two

potential problems with this analysis. First, the demand peaks are defined using the quantity data.

In principle, the low prices might be causing the seemingly high demand. For some of the products

he examines this might seem unlikely, yet for a large number of the products this might be the case.

Second, a large number of products he examines have a peak in December, leaving the reader to

wonder if this is just a seasonal effect that is not category specific.

CKR re-examine the issue, but through the quality of the data and the careful design of the

study can address some of the potential problems in the MacDonald study. They use weekly item-

level scanner data from a single retailer in Chicago. In addition to prices and quantities, they have

a measure of wholesale price. We describe these data further below. Using this data set they examine

prices during peak and off peak demand periods. One of the major differences in the analysis is that

they define peak demand on a priori grounds, not using the observed quantity data. This allows them
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to deal with the potential endogeneity of the definition of peak demand. Furthermore, they focus on

a smaller number of categories, carefully selected so that the peak demand periods do not fully

overlap. 

The first step in their empirical analysis is to document the decline in prices during the peak

demand periods. Instead of focusing on a single item in each category they generate a varying-

weights price index of the top items in each category.3 The weights are proportional to the quantities

sold of each item. They find that the log of the price index declines during peak demand periods. 

Next they examine different theories that potentially explain the price declines. The first

class of theories they consider are those that suggest that demand might be more elastic than usual

during peak demand periods. Bils (1989) and Warner and Barsky (1995) are examples of such

theories. The Warner and Barsky model suggests that, with fixed costs of search and travel between

stores, consumers will search more during high demand periods. Thus, the demand facing a retailer

will be more price elastic and the optimal price is lower.

A second class of models are those that focus on dynamic interactions between firms. In the

spirit of Rotemberg and Saloner (1986), tacit collusion is sustained when the gains from defection

(i.e., charging a price below the collusive level) in the current period are lower than the expected

losses in future periods due to punishment. The incentive to cheat is highest during periods of peak

demand since the current gains from cheating are higher. Therefore, the price level that can be

sustained during high demand periods is lower. In examining the implications of this model CKR

focus on retailer competition, mainly because their results seem to suggest that retail prices decline

more than wholesale prices. Furthermore, they focus on competition across retailers for a basket of

products and not on a product-by-product level.

The third and final class of models are loss leader advertising models. CKR focus on the

formalization of Lal and Matutes (1994). In this model consumers do not know the prices of the

goods until they arrive at the store. They pay a transportation cost to get to the store and to go from

one store to another. If this cost is high enough the retailers will charge consumers their reservation
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price (which is assumed identical for all consumers) once they arrive at the store, and their

transportation cost is sunk. Consumers foresee this strategy and therefore do not shop. The retailer’s

solution is to commit to a particular price by advertising it. If advertising was costless they would

advertise all products. Lal and Matutes assume that retailers pay an advertising cost per item

advertised. For items not advertised consumers assume that they will be charged their reservation.

In this model prices are not pinned down: any of the goods could be discounted enough to attract

consumers. As CKR show (in a two good case) if prices have to be non-negative then the retailer

will prefer to discount the good with the higher demand. The intuition is simple. The discount

needed for the lower demand product (given that the higher demand product will not be advertised

and priced at the reservation price) makes its price negative. CKR interpret high demand as high

demand relative to the typical demand for the product.4

CKR’s main strategy to separate these models is based on separating periods of overall high

demand (such as Christmas and Thanksgiving) and periods of product specific peak demand (such

as tuna during Lent). The first two models have a prediction for why prices are low during the

aggregate high demand periods but not during idiosyncratic peak demand periods . CKR  show that

prices decline even during periods of product specific peak demand (e.g., tuna during Lent). They

provide two additional pieces of information. First, by estimating category-level demand regressions

they show that the overall demand does not seem to be more elastic, providing direct evidence

against the Warner and Barsky theory. Second, they show that products that are in peak demand are

more likely to  be advertised.

There are a couple of reasons to be somewhat suspicious of the loss leader theory. First,

which product goes on sale is determined by the non-negativity constraint: a retailer puts the product

on sale that allows a large enough discount. While this effect is clear in a simple model, it seems

somewhat unlikely that in a real world market, with many additional complexities, this constraint

will bind. Second, and somewhat related, many of the products CKR examine are a small part of the
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overall expenditure of a household in any given shopping trip. For example, a can of tuna costs

roughly 80 cents. Even if a household buys five cans during a high demand period and the discount

is 20 cents, or 25 percent (a much larger discount than what we see in the data), then the savings are

one dollar. Surely there are other ways to offer such, or much larger, savings.

3. Our Explanation

In this section we offer an alternative explanation as to why the average price declines during

peak demand periods. This explanation is consistent with prior findings, surveyed in the previous

section. In addition, we discuss the empirical implications that allow us to separate our explanation

from the loss leader model proposed by CKR. In the next sections we test these implications.

Our explanation relies on a change in brand-level demand. We focus on two changes in

particular: a change in demand elasticity and in relative demand for different brands during peak

demand for the category. The shift in the aggregate, or average, price sensitivity can occur for

several reasons. The demand of certain households might increase more than others (consider, for

example, the demand for tuna during Lent). If price sensitivity varies by households, then the

aggregate price sensitivity will differ between Lent and non-Lent periods. Alternatively, even for

a given household price sensitivity might vary if the use of the product changes. We provide some

examples below.

While overall demand for a product (e.g., tuna) might increase, we claim that the increase

might be different for different brands (e.g., StarKist). There are several reasons why this might

occur. First, there might be a shift in household-level demand for different brands. Consider the case

of canned tuna. It could be used for various dishes, including tuna salad or tuna casserole. These

different uses might require different quality. For example, tuna casserole might require a lower

quality brand. If during Lent tuna casserole is eaten more frequently than tuna salad, relative to non-

Lent periods, then the relative demand for different brands will change.

Second, if we think of brands as representing different quality, then there might be

decreasing marginal utility from quality. Consider the example of beer during July 4th. A consumer
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who might normally prefer a high quality beer might prefer a lower quality (and cheaper) brand

during July 4th. This might be either because after a few beers it is harder discern their quality, or

because of a public goods problem: if you bring beer to a party, for the most part it will be consumed

by others.

Third, just as is the case for price elasticity, even if brand preferences at the household level

remain constant there could be a change in the relative weights of different households. Not all

households increase their demand proportionally. Suppose there are two types of households. Type

A prefer brand 1 and type B prefer brand 2. If households of type A have a larger increase in demand

for the product than the overall relative increase in demand will be higher for brand 1.

There are several implications of our explanation that distinguish it from alternatives. First,

our explanation implies that the effect on a category-level price index will be different if one uses

a fixed-weights index versus a variable weight index. Since we claim there is a change in brand

preferences during some periods of high demand, then the change in weights is systematic, and we

expect the fixed weights index to give a different answer. In particular, if the shift is towards cheaper

brands, then we expect the fixed weights index to exhibit smaller drops during high demand periods.

Indeed, if all that is happening is a shift between brands, then this index should not drop at all.

Second, in order to test our explanation directly we look at brand-level data. We examine

prices of different brands to see which brands reduce their prices during periods of high demand.

We also examine quantities to see if all brands experience an increase in demand during periods of

category high demand. Finally, we estimate a brand-level demand system, allowing price sensitivity

and brand preferences to change between high demand periods and other periods.

Third, loss leader models imply that the effectiveness of advertising should be higher during

high demand periods. During non-peak demand periods advertising serves to induce brand switching

and also potentially bring consumers to the store. According to the loss-leader model, the aggregate

effect of bringing consumers to the store is much larger, during peak demand periods, since overall

demand is higher. Therefore, a brand’s increase in demand due to advertising, should be much larger

during peak demand periods. Our model does not imply a differential effect of advertising. So we
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can test this directly in a brand-level demand system.

4. Data and Preliminary Analysis 

4.1 Data

The data set used for the analysis is the same as the one used by CKR, and comes from the

Dominick’s Finer Foods (DFF) database at the University of Chicago Graduate School of Business.

DFF is the second largest supermarket chain in the Chicago metropolitan area, with a market share

of approximately 25 percent. The data are weekly store level data by universal product code (UPC)

and include units sales, retail price, profit margin (over the average acquisition price)5 and a deal

code. The deal code indicates what type of promotional activity, if any, took place. CKR report some

mistakes in the classification of the various activities. Thus, we will only use a binary variable which

equals one if any activity took place. The data cover approximately 400 weeks starting September

1989, in 29 different product categories. The data, including a detailed description of the variables

and the collection process, can be found at http://gsbwww.uchicago.edu/kilts/research/db/dominicks.

The key variables are defined, following CKR, as follows. Holiday dummy variables, which

capture high demand periods around holidays, equal 1 for the two weeks prior to the holiday, zero

otherwise. The Lent dummy variable equals 1 for the four weeks preceding the two week Easter

shopping period. The post Thanksgiving dummy variable equals 1 for the week following

Thanksgiving. The Christmas dummy variable equals one for the two weeks prior to Christmas as

well as the week after, in order to capture the New Years’s shopping period.

We supplement the DFF data with weather information from the Chicago Mercantile

Exchange daily data, creating weekly temperature corresponding to the DFF weeks. Using the mean

temperature (TEMP) we generated two variables: HOT = max(0, temp-49), COLD = max(0, 49-

temp). Forty nine degrees Fahrenheit is approximately the mean, and median, temperature in

Chicago.
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We focus on the categories that CKR identified and we follow their definitions of a-priori

high demand periods. One of the advantages of following the CKR classification is that it is pre-

determined from our point of view. The categories we study are tuna, beer, oatmeal, cheese and

snack crackers. CKR study two additional seasonal categories: eating soup and cooking soup. We

decided to not examine these categories, since we felt uncomfortable in our ability to classify

products into each category. We also do not study the non-seasonal categories identified by CKR

(analgesics, cookies, crackers and dish detergent), since they seem to have little relevance for our

explanation. Summary statistics for the main variables for each of the product categories we used

are displayed in Table 1.

The expected periods of peak demand for each category, identified by CKR, are as follows.

For beer, hot weather, Memorial Day, July 4th, Labor Day and Christmas. The logic is that the

summer holidays are peak picnic time and Christmas includes a run up to New Year’s Eve. We also

added Superbowl Sunday. For tuna, the expected peak demand is Lent, a period in which many

Christians abstain from eating meat and eat fish instead. The cheese category has an expected peak

during Thanksgiving and Christmas, when cheese would either be used for cooking or served at

parties. A similar logic applies to peak demand for snack crackers at Thanksgiving and Christmas.

Finally, consumption of oatmeal is expected to go up during cold weather.

For each category we include the top 30 UPC’s. These products account for a significant

share, as can be seen in the last row of Table 1.

4.2 Preliminary Analysis

Before we examine the behavior of prices we present in Table 2 the change in total quantity

sold aggregated across stores and products within a week.  The dependent variable is the quantity

sold, measured in thousands of pounds. Similar results can be found if we use either revenue or

quantity measured in units. 

Next we examine the behavior of category level price indices. The indices are computed in

the following way. The price data are collected by store, UPC and week. Let  be the price per



12

ounce of product (i.e., UPC) j at store s in week t. The price index in time t is

where  are weights. We report results using two price indices. The first is a variable weight price

index, in which  is the quantity share of product j sold in store s in week t of the total quantity sold

in t. The second is a fixed weight in which  is the quantity share of product j sold in store s in the

sample period of the total quantity sold in the sample period, normalized so the shares in each week

sum to one. The variable weight index is analogous to the one used by CKR (we discuss the

difference below). We also report results where we replace the retail price with the retail markup

(retail price minus the wholesale price). We also computed, but do not report, these indices using

revenue shares instead of quantity shares, and using the logarithm of price instead of price.

Table 3 reports results from OLS regressions where the dependent variable is the weekly price

index in each category. In columns titled Fixed and Variable, the price index is a fixed- and variable-

weight price index, respectively. As we described in the previous section we focus on the categories

identified by CKR as having potential for loss leader periods. Bold type indicates a period of

expected high demand peaks, following CKR’s classification.

Examining the results in the Variable columns we generally find results similar to CKR.  The

price index tends to go down during expected high demand periods. Our results tend to be less

significant than theirs, and we tend to find more unexpected price reductions (for example in the

cheese and snack crackers categories). The differences between our results and CKR’s finding could

be explained by differences in the construction of the data. The set of UPC’s we use do not match

exactly: we have a larger number of UPC’s. We created the index using price, instead of logarithm

of price, and quantity shares, instead of revenue shares. Finally, we report ordinary least square

results, with robust standard errors, instead of generalized least squares. Of all of these, the difference

that seems to matter the most is the functional form. Repeating our analysis using the logarithm of

price we re-produce almost exactly the CKR numbers.
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The results in the Fixed columns tend to present a somewhat different picture. Several of the

expected effects are no longer statistically significant. Furthermore, some of the effects are much

smaller in magnitude. For example, the coefficient on Lent in the tuna category using the fixed-

weights index is roughly a third of the same coefficient using a variable-weights index. This suggests

that much of the reduction in the average price of tuna during Lent is coming from a substitution

effect, as we suggested. 

The prices of tuna during Christmas and Thanksgiving provide us with another opportunity

to see how the two price indices differ. The results in the variable column suggest that the price of

tuna during Christmas and Thanksgiving is higher. One could think of this as evidence for the loss-

leader story: since the demand for tuna is low during these periods they are not used as loss-leaders

and are therefore less likely to be on sale. However, when we look at the results in the Fixed column

a different picture emerges. It is not that tuna is more expensive, but that there seems to be

substitution towards more expensive brands, a result that is both intuitive and consistent with our

explanation.

If all that was happening during peak demand periods was a substitution effect, then the fixed-

weights index would not change. The fact that it is decreasing suggests that at least some products

are reducing their price. That, in most cases, the reduction in the fixed weights index is substantially

smaller than the reduction in the variable weight index, suggests that a large part of the story is due

to a change in composition. The remaining drop is due to a reduction in prices that could be due to

several stories that we try to separate below. 

CKR motivate the use of a variable weights index by claiming that the products are close

substitutes and therefore from the consumer’s perspective this is the relevant measure. They claim

that a fixed weights index will not capture the effective price level. Whether or not these brands are

indeed close substitutes is an empirical matter. However, even taking their claim as given, this is not

the relevant argument. We are not asking if consumers are better or worse off. We are using the price

index to summarize an average price in order to learn about the supply side.

In Table 4 we present results from the same regressions as those reported above, using
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markups as the dependent variables. In order to construct the markup we subtracted the average

acquisition cost from the retail price. If a price reduction was completely driven by a change in the

retail price, then the coefficients in Table 4 should be identical to those in Table 3. On the other hand,

if the price reductions are only because the wholesale price drops and the reductions are passed-

through completely to consumers, then the coefficients in Table 4 should be insignificant. 

The results for the tuna and oatmeal categories suggest that much of the price reductions in

these categories during Lent and cold weeks, respectively, are driven to a large extent by changes in

the wholesale prices. On the other hand, the results in the beer, cheese and snack crackers categories

suggest that the reduction in these categories are driven by reduction at the retail level. As we

discussed in Section 2, the way CKR propose to separate between their model and some of the

alternatives, is by comparing overall high demand periods (like Christmas and Thanksgiving) to

category specific peak demand periods (like Lent for tuna and cold for oatmeal). These results

suggest that retailer behavior is driving the price reduction in categories that have expected peaks

during periods of overall high demand, while retail behavior is not significant in those cases where

the demand is category specific. This provides another piece of evidence that the loss-leader model

might not be as relevant as CKR propose.

5. Detailed Analysis of Tuna

In this section we take a closer look at the canned tuna category. Later, in Section 5.3, we

check if the results we find for tuna are also present in the other product categories. We focus on tuna

for several reasons. First, this category seems to have the most robust results in support of the CKR

loss leader model. It is the only category in Table 3 in which our results very closely reproduce the

patterns found in CKR, and for which the patterns are present not only for the variable price index

but also the fixed price index. Second, as CKR note, and as we discussed in Section 2, a key to

separating the loss leader model from alternatives is to focus on products that have their own seasonal

peak demand. The tuna category is probably the cleanest example of such an effect among the

categories we focus on. Beer also has well defined idiosyncratic peak demand periods that are not
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overall peak demand periods. However, the results in Table 3 do not seem to support the loss leader

story. Furthermore, the beer category in this data set is not representative of the US as a whole. In

the national market Budweiser is a clear market leader, while in our data Miller has a larger market

share. To the extent that the pricing decisions are impacted by other retailers and other markets, then

this data set is not a good place to study the beer category.

5.1 UPC-level price and quantity regressions

In Table 5 we present brand level statistics for the top 30 UPC’s in the tuna category. As we

saw in Table 1, the combined market share of these products is roughly 90 percent. Each row presents

results for a different UPC. In the fourth column we present the average price per ounce for each

product. The distribution of prices is roughly bi-modal. For Lite Tuna, the prices range from 12 cents

per ounce to 16 cents per ounce. White Tuna is more expensive, with prices ranging between 23 to

30 cents per ounce.

Columns (v)-(vii) present the UPC-level market shares during non-Lent periods, during Lent

and the ratio of the two, respectively. The total overall quantity of tuna sold increases during Lent.

So even some of the products that are losing market share are selling more during Lent. The products

with a ratio of more than 0.7 are selling more during Lent, even if their market share is decreasing.

The pattern is very clear: the quantity sold of light tuna increases during Lent, while there is no

increase, even a slight decrease, in the quantity sold of the higher quality white tuna. This suggests

that even within the tuna category there is a differential demand peak. Furthermore, it suggests that

indeed a variable weight price index will tend to find a decrease in the price during Lent, even

without any changes in prices. 

Probably the most amazing statistic in Table 5 is the change in the market share of two

products: Chicken of the Sea 6 ounce light tuna and 6 ounce light tuna in oil (rows 5 and 6). These

two products almost triple their market shares during Lent. At the same time all other light tuna,

including Star Kist 6.12 ounce cans of light tuna (rows 17 and 14) and Private Label 6.5 ounce cans

(rows 10 and 12), the number 1 and 3-5 top-selling UPCs during non-Lent periods, are losing market



6The price regressions are in levels and the dependent variables is measured in price per ounce. For brands 5
and 6 they suggest roughly a 2 cents decrease, for a 6 ounce can, which is normally priced around 80 cents.
Approximately a 2.5% decrease.
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shares. This difference could be driven by an exogenous increase in the demand for Chicken of the

Sea (i.e., a change in brand preference) or by an endogenous increase in demand due to pricing or

promotional activities.

The last columns in the table present results from separate UPC-level regressions. An

observation in this regression is at the UPC-week level.  In each regression retail price (or wholesale

price or deal) is regressed on a Lent dummy variable and other holiday dummy variables. These

regressions are identical to those used to produce the results in Table 3, but the dependent variable

is the price of the UPC rather than a category price index. The table reports only the Lent coefficient

and the robust standard error. A negative coefficient denotes a product that is systematically priced

lower during Lent.

There are several patterns in these coefficients. First, in the light tuna category the products

that have significant price decreases during Lent are products that are losing market shares (even

despite the price reductions). The main two products gaining market shares do not have significant

price decreases. Not only are the effects not statistically significant but the economic significance is

small.6 These results suggest that the increase in the market share we saw in columns (v)-(vii) is not

driven by pricing. 

Second, three out of the seven products with significant price reductions during Lent are white

tuna, which we saw does not exhibit a seasonal shock. 

Third, some of the wholesale prices seem to go down during Lent. However, there seems to

be low correlation between the prices that exhibit reductions in wholesale prices and those that

decrease the retail price. There are two ways to interpret these results. CKR claim that this is

evidence in support of the claim that retailers behavior is driving pricing. Alternatively, these results

could be driven by the poor quality of the wholesale prices. These prices are average acquisition cost,

and so might poorly approximate the true economic marginal cost. Furthermore, these prices do not

account for various agreements between the manufacturers and retailers, including promotional
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agreements and coupons, and therefore potentially underestimate the effect of manufacturers.

Fourth, many of the UPCs that have increased advertising, as measured by the deal code, are

those that are losing market share. Increased advertising is an application of the loss leader model.

Together, these patterns are not consistent with the loss-leader story. The products that are

reducing their prices and increasing their advertising during Lent are not those that are facing an

increase in demand, but rather those that are losing market share.

5.2 UPC-level demand

In this section we present results from a UPC-level demand model. The main purpose of

this model is to further examine the pattern we saw in the last section. Analyzing the change in the

quantity sold using a UPC-level demand system allows us to properly control for all of the changes

in the market, including changes in prices and advertising.

The indirect utility for individual i from UPC j in week t is

where  is a vector of observable characteristics,  is the price of UPC j in week t,  is an

unobserved product characteristic, and  is a mean zero stochastic term. The observable

characteristics include the deal variable , UPC-level dummy variables, holiday dummy variables and

interactions between the Lent dummy variable the UPC dummy variables, price and deal.

The individuals can also choose an “outside option” (i.e., none of the J products) that yields

utility . Assuming each individual chooses exactly one option and that  is independently

distributed with a Type 1 extreme value distribution, the market share of UPC j in week t is given by

and the model can be estimated using

The above model restricts the patterns of cross-price elasticities and therefore is inadequate
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for many purposes. However, our main focus are the interactions between the price and deal

variables, and the Lent dummy variable. We expect the interaction to be significant. There is no

reason to believe that the Logit model will yield qualitatively different results than alternative models

that allow for more flexible substitution patterns.

Table 6 presents estimates from the Logit model. All the results were obtained using ordinary

least squares. Different columns differ in the controls included in the regression. Column (i) presents

results from a regression including only price (per ounce) and Holiday dummy variables. The next

column presents the results from a regression that also includes UPC dummy variables. As expected,

the price coefficient increases in magnitude. Before we include the UPC dummy variables there is

a clear endogeneity problem: higher “quality” products might also be priced higher, therefore leading

to a downward bias in the estimation of the price coefficient. 

The results presented in column (iii) are from a regression that also includes an interaction

between the Lent dummy variable and UPC dummy variables. For our purposes, the most important

statistic from this regression is the p-value of the tests that all these interactions are equal to zero. In

other words, the p-value of the test that the UPC dummy variables are the same during Lent and non-

Lent periods. The hypothesis that the dummy variables are equal is rejected at the 2% significance

level. 

The hypothesis that the dummy variables are equal during Lent and non-Lent periods is

rejected, at least at the 3% significance level, even once we control for additional variables in

columns (iv)-(vii). This confirms the patterns we saw in Table 5. The relative demand for the

different brands is changing, even once we control for pricing and advertising activities. 

There are several other patterns in the table that are consistent with our story. In columns (iv),

(vi) and (vii), we allow the price sensitivity to vary between Lent and non-Lent periods. We find that

during Lent consumers are more price sensitive. This is consistent with our explanation. 

In columns (v)-(vii) we add the deal code (i.e., advertising) to the regression. We find, in

column (v) compared to column (iii), that the effect of advertising is positive and highly significant

and that price sensitivity goes down. Both results are as expected. The decrease in price sensitivity
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is expected since many price reductions are joint with increased advertising activity, so not

controlling for the direct effect of advertising would lead to over estimate the price sensitivity. 

In the last two columns we allow the effect of the deal code to vary between Lent and non-

Lent periods. We find that the interaction is not significant and we cannot reject the hypothesis that

the effect is equal during the different periods. The loss leader story suggests that products in high

demand are more likely to be advertised. Indeed CKR claim this as evidence in support of their

model. As we claimed above, according to the loss-leader model, during peak demand periods the

aggregate effect of bringing consumers to the store is much larger, since overall demand is higher.

Therefore, the effect of advertising on brand-level demand should be larger during peak demand

periods, which we do not observe in the results.

The above results were estimated using ordinary least squares. In principle, the estimates

might be biased and inconsistent if the right-hand side variables are correlated with the error term.

The regressions include UPC dummy variables, which control for any unobserved product

characteristics that do not vary over time. The regressions also include holiday dummy variables, and

in some cases the Lent dummy variable interacted with UPC-level dummy variables. Therefore, the

error term captures variation within a UPC within a holiday. Besides random noise, which is not a

problem, the error might also include the effect of unobserved promotional activity. The regressions

include the deal code variable, but one could imagine that this variable is either measured with error

or does not fully account for all the promotional activity. It is not hard to imagine that this

unobserved promotional activity is correlated with price, and maybe even with the holiday dummy

variables, Lent in particular. In this case the estimates will be biased. 

There are several ways to deal with this problem. First, one could claim (and hope) that while

the aforementioned correlation is theoretically possible, it is not a serious concern in the data. This

is the argument made by CKR. If correct, the above results are unbiased. Alternatively, one could use

instrumental variable methods to obtain consistent estimates.

We explore the second alternative. Table 7 presents estimates of the Logit model using the

average acquisition cost as an instrumental variable for the price, interacted with the Lent dummy
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variable whenever appropriate. Thought of as the wholesale price, there are clear reasons why the

average acquisition cost should be correlated with the retail price. Indeed, in the “first stage

regressions” the excluded instruments are significant at the 0.1% significance level. It is less obvious

why this variable will be uncorrelated with the error-term. If the unobserved promotional activity,

which is captured by the error term, is set (unexpectedly) after the wholesale price is set then the

average acquisition cost will be a valid instrument. However, if the unobserved promotion is set in

coordination with the wholesale price, or if the wholesale price is set with some expectation with

regards to the promotional activity, then wholesale price will not be a valid instrumental variable. We

note that the average acquisition cost is not the current wholesale price but a weighted average of the

current and past wholesale prices. Therefore, we might think that it is less likely to be correlated with

the current promotional activity.

The columns of Table 7 present results from the same equations as the equivalent columns

in Table 6, computed using two stage least squares. Comparing the two tables sheds some light on

the importance of controlling for potential correlation with the error-term. With the exception of

column (i), using two-stage least squares makes a difference. The fact that the results in column (i)

are essentially identical are encouraging: the instrument surely is not valid before we control for the

UPC-level dummy variables. In columns (ii)-(vii) the effects are almost identical. The price

coefficient drops, in absolute value, by roughly a third compared to Table 6. The coefficient on the

interaction of price and Lent doubles in magnitude. The coefficient on deal increases somewhat, but

not in an economically significant way. The interaction of deal and Lent is still negative, roughly four

times larger and statistically significant. This is consistent with our earlier descriptive analysis that

products that lose market share are the ones advertising during Lent. Overall, our conclusions from

Table 6 are supported and even made stronger.

In order to address some of the concerns we raised with our instruments, we also computed

similar regressions using the lags of the acquisition costs as instrumental variables. The results were

essentially the same. We do not address the potential correlation of deal with the error term, in any

of these cases. We do not feel like we had an appropriate instrumental variable. 
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5.3 Robustness and Additional Products 

While the previous two sections provided evidence that is consistent with our explanation,

the analysis focused on a single product. We tried to motivate why we chose this product,

nevertheless the generality of the results remains a question. In order to address this question we

repeated the demand analysis discussed in the previous section for all the products. The results of

OLS estimation of the Logit model are presented in Table 8. The results were computed by

aggregating across stores. 

At the bottom of the table, we present the p-value of the joint test that the interactions of  UPC

dummy variables and periods of expected high demand are equal to zero. As was the case for tuna

during Lent, we find, for three of the four products, that the interaction of UPC level dummy

variables and the periods of expected high demand are statistically significant. The exception is the

beer category that, as we show above, does not seem to exhibit price reductions during the periods

of high demand. Indeed, if we repeat the test only for those periods of expected high demand for

which we found price reductions, the interactions are significant at standard levels.

Next, we explore the interaction of price and dummy variables for each holiday. The results

are presented in the first column for each category of Table 8. Eight out of the eleven expected high

demand periods in the table are negative. A negative interaction implies that demand is becoming

more price sensitive and provides a rationale for price drops. However, many of these interactions

are not statically significant. Recall that many of the expected high demand periods did not exhibit

significant drops in the fixed weights price index. Therefore, the drop in the average price for these

periods is explained by substitution towards cheaper brands, a composition effect, and we do not need

a change in price sensitivity to explain the reduction in the average price paid by consumers. For that

reason we highlight in bold type the six periods that exhibit a significant decline in the fixed price

index during expected periods of high demand. All these interactions are negative and half of them

are statistically significant. Overall, this provides support for our explanation, although somewhat

weaker than the results for tuna presented in the last section.

Our demand results seem to be robust to functional form assumptions. CKR also present
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demand estimates. They study a constant elasticity demand at the category level, aggregating across

the different brands. Their results are similar to ours. Like us, they find that demand for many

products is more elastic during periods of high expected demand. They use these results to examine

the Warner-Barsky theory. Therefore, they focus on the interactions with the Thanksgiving and

Christmas dummy variables for all products, as these are periods of overall high demand. Our

explanation, on the other hand, suggests focusing only on the periods of idiosyncratic peak demand.

Hence, despite getting essentially the same results, we interpret them differently.

The second column for each category of Table 8 examines the interaction of the deal variable

and the expected periods of high demand. As we previously discussed, according to the loss leader

model, we expect demand to be more responsive to advertising during these periods. The results show

that except for three cases, the effect of advertising is not higher during the expected periods of high

demand, supporting the same result we found in the tuna category.

We repeat the analysis using Two Stage Least Squares instead of OLS. As we discussed

above, we use the average acquisition price as the instrumental variables. The results are presented

in Table 9. The results suggest that while controlling for endogeneity affects the coefficients, much

like it did for tuna, the qualitative conclusions do not change much from those obtained from OLS.

6. Conclusions

In this paper we re-examine an empirical puzzle: why do prices go down during peak demand

periods? We offer an explanation that is based on a change in the relative demand for different brands

and a change in price sensitivity. Our empirical analysis offers results in support of our explanation

and evidence that is not consistent with the alternative loss leader model.

In support of our explanation, we find that the reduction in a fixed weights price index is

much smaller than the reduction in the variable weight price index, which is consistent with a change

in the composition of brands and a substitution towards cheaper brands. We also find that in the tuna

category the brands that face the highest increase in demand are not the ones reducing their prices.

Instead, it is those brands that are losing market share that reduce their prices. Finally, estimates of
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brand-level demand for tuna  suggest that changes in brand preferences are statistically significant

and that the price sensitivity is higher (in absolute value) during Lent.

There are several ways in which our findings are inconsistent with the loss leader model. First,

we find that the effects on fixed price indices are less significant, both economically and statistically,

than the effects on variable price indices. For those categories (like tuna and oatmeal) that CKR claim

are the key to separating their model from alternatives we find that wholesale prices play an

important role in the price reductions. Second, examining the tuna category more carefully we find

that not all brands face the same increase in demand and that those brands that face the higher

increase are not the ones reducing their prices (or increasing advertising). Finally, we find that

advertising is not more effective in increasing demand during periods of peak demand, contrary to

the prediction of the loss-leader model.

The explanation we provide seems to be consistent with the data we examine. We do not

claim that our explanation is the only reason for price reductions, or even that it is the only reason

for price reduction during peak seasonal demand. More likely it is working jointly with some of the

other effects like those offered by the Rotemberg Saloner (1986) theory, the Warner Barsky (1995)

model, or the loss leader story. 
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Table 1: Summary Statistics

Tuna Beer Cheese Snack Crackers Oatmeal

Variable: mean s.d mean s.d mean s.d mean s.d mean s.d

Retail Price Index (¢/oz) 15.45 0.86 4.87 0.16 14.95 1.16 21.79 1.87 15.59 1.27

Wholesale Price Index (¢/oz) 11.20 0.54 4.11 0.12 10.19 0.43 16.11 0.96 11.96 0.92

Margin (%) 26.65 4.25 14.21 2.28 25.13 3.89 25.42 3.83 22.64 5.55

Quantity (000's lbs) 614.72 414.39 5354.33 1861.37 1132.34 437.07 466.98 158.16 557.12 312.99

Units (000's) 88.96 68.14 29.74 9.08 130.41 49.48 41.65 13.46 28.81 19.78

Deal (%) 22.74 12.12 27.43 9.07 19.24 10.00 25.65 16.28 10.75 14.88

Quantity Share (%) 94.76 2.37 75.02 6.23 44.74 7.53 54.79 5.44 86.08 3.50
The retail and whole price index are computed using fixed weights, and averaged across stores and products within a week. Quantity and units, both measured in
thousands, are summed over all stores and products within a week. The quantity share is the share of the UPCs used in the analysis out of the total quantity sold in the
category.



Table 2: Seasonal Demand Peaks

Tuna Beer Cheese Snack Crackers Oatmeal

Cold

Hot

Lent/Superbowl

Easter

Memorial Day

July 4th

Labor Day

Thanksgiving

Post Thanksgiving

Christmas

Constant

8.99**
(2.86)
3.90*
(1.79)

400.76*
(158.19)

-11.63
(52.19)

-99.95**
(30.06)
-63.82

(33.64)
-69.77*
(32.15)

-154.82**
(42.41)

-244.21**
(76.33)

-259.47**
(80.24)

650.53**
(58.42)

-12.95
(7.62)

89.25**
(10.93)

1582.82*
(619.68)
-195.13

(160.79)
2328.99**

(656.42)
3060.81**

(932.14)
992.10

(592.70)
292.09

(328.06)
1244.81*
(615.58)

1564.01**
(434.25)
1905.74
(998.97)

2.91
(2.33)
-0.93

(2.14)

290.56**
(99.29)

335.13*
(141.28)
300.51*
(118.38)
257.42*
(107.69)
456.85*
(176.89)

-73.80
(171.71)

705.91**
(166.09)

1087.32**
(57.06)

2.18**
(0.62)
-0.48

(0.68)

29.75
(26.79)

1.94
(32.53)

25.29
(21.05)
40.07*
(17.36)

186.10**
(65.56)
-15.05

(39.95)
349.00**

(41.63)
526.29**

(17.98)

11.60**
(3.99)

-6.55**
(1.94)

-101.20*
(47.59)

-66.78**
(23.39)
-28.82

(17.81)
242.94

(147.88)
48.51

(58.79)
-168.29**

(47.97)
37.02

(108.02)
458.69**
(118.73)

* Coefficient significantly different from zero at the 5% level.
** Coefficient significantly different from zero at the 1% level.
All columns report results from OLS regressions. The regressions also include a linear and quadratic time trend. The dependent variable in each column is the weekly
quantity, measured in thousands of pounds, sold each week in each category. Bold type indicates period of expected high demand peaks. Robust standard errors are
in parentheses. 



Table 3: Seasonal Retail Price Changes: Category Price Indices

Tuna Beer Cheese Snack Crackers Oatmeal

Fixed Variable Fixed Variable Fixed Variable Fixed Variable Fixed Variable

Cold

Hot

Lent/
Superbowl
Easter

Memorial Day
July 4th

Labor Day

Thanksgiving

Post Thanks

Christmas

Constant

-0.003
(0.004)
-0.007

(0.004)
-0.51**

(0.19)
-0.45**

(0.17)
0.07

(0.19)
0.08

(0.18)
-0.08

(0.16)
0.27

(0.14)
0.27

(0.17)
0.19

(0.13)
15.43**

(0.11)

-0.02
(0.01)
-0.009
(0.01)

-1.78**
(0.47)
-0.38

(0.28)
0.50

(0.31)
0.48

(0.32)
0.58

(0.31)
0.91*
(0.25)

0.67
(0.59)
0.86*
(0.41)

14.69**
(0.25)

-0.001
(0.001)

-0.004**
(0.001)

-0.01
(0.07)

0.05
(0.04)
-0.06

(0.03)
-0.07

(0.04)
0.03

(0.04)
-0.10

(0.06)
-0.13*
(0.06)

-0.15**
(0.05)

4.59**
(0.09)

0.00
(0.00)

-0.007**
(0.002)

-0.04
(0.08)

0.07
(0.07)

-0.15**
(0.05)

-0.27**
(0.08)
-0.19*
(0.08)
-0.04

(0.06)
-0.16

(0.12)
-0.12

(0.07)
4.89**
(0.14)

0.001
(0.005)
-0.006

(0.005)

-0.50*
(0.23)
-0.63*
(0.31)

-0.71**
(0.25)
-0.19

(0.30)
0.59

(0.83)
-0.64**

(0.13)
-0.64*
(0.27)

14.75**
(0.17)

0.003
(0.009)
-0.001

(0.009)

-0.37
(0.28)
-0.55

(0.38)
-0.61

(0.38)
-0.48

(0.36)
1.79

(2.21)
-0.85**

(0.28)
-1.14**

(0.39)
14.73*
(0.29)

-0.02**
(0.01)
0.001

(0.005)

0.01
(0.15)
-0.05

(0.04)
-1.16**

(0.31)
-0.76*
(0.24)

-1.22**
(0.37)

-1.33**
(0.38)

-1.68**
(0.25)

18.74**
(0.12)

-0.02*
(0.01)
0.03*
(0.01)

0.06
(0.31)
-0.09

(0.61)
-0.93*
(0.38)
-1.29*
(0.35)

-1.24**
(0.40)

-1.33**
(0.40)

-2.35**
(0.38)

18.41**
(0.19)

-0.02*
(0.01)
-0.01

(0.01)

0.25*
(0.12)
0.26*
(0.12)

0.05
(0.13)
-0.80

(0.56)
0.04

(0.35)
0.27

(0.18)
-0.08

(0.37)
13.55**

(0.41)

-0.03*
(0.01)
-0.01

(0.01)

-0.36
(0.50)

0.22
(0.16)
-0.22

(0.15)
-0.85

(0.71)
0.14

(0.33)
0.74**
(0.20)
-0.70

(0.53)
13.36**

(0.57)
* Coefficient significantly different from zero at the 5% level.
** Coefficient significantly different from zero at the 1% level.
All columns report results from OLS regressions. The regressions also include a linear and quadratic time trend. The dependent variable in each column is the weekly
price index for each category. Price is measured in cents per ounce. In columns titled Fixed and Variable, the price index is a fixed and variable-weight index,
respectively. Bold type indicates period of expected high demand peaks. Robust standard errors are in parentheses. 



Table 4: Seasonal Changes in Markups

Tuna Beer Cheese Snack Crackers Oatmeal

Fixed Variable Fixed Variable Fixed Variable Fixed Variable Fixed Variable

Cold

Hot

Lent/
Superbowl
Easter

Memorial Day
July 4th

Labor Day

Thanksgiving

Post Thanks

Christmas

Constant

-0.002
(0.004)

-0.012 **
(0.004)

-0.22
(0.12)
-0.44*
(0.18)
-0.19

(0.14)
0.19

(0.15)
-0.09

(0.09)
0.33

(0.18)
0.25

(0.22)
0.19

(0.16)
4.47**
(0.10)

-0.014
(0.007)
-0.014*
(0.006)
-0.69**

(0.22)
-0.48*
(0.23)
-0.01

(0.18)
0.35

(0.20)
0.10

(0.14)
0.46*
(0.21)

0.31
(0.31)
0.35*
(0.25)

3.88**
(0.14)

-0.001
(0.01)

-0.002*
(0.001)

-0.03
(0.08)
0.001
(0.03)

-0.10**
(0.03)
-0.05

(0.05)
0.03

(0.02)
-0.06

(0.05)
-0.09**

(0.05)
-0.10**

(0.04)
0.70**
(0.08)

-0.002
(0.001)

-0.004**
(0.001)
-0.13**

(0.09)
0.03

(0.05)
-0.22**

(0.03)
-0.14**

(0.06)
-0.09

(0.04)
-0.16

(0.09)
-0.16**

(0.09)
-0.15**

(0.05)
1.25**
(0.11)

0.004
(0.004)
-0.007

(0.005)

-0.10
(0.21)
-0.24

(0.28)
-0.32*
(0.18)
-0.16

(0.22)
0.52

(0.90)
-0.58**

(0.14)
-0.61**

(0.21)
4.68**
(0.15)

0.005
(0.008)
-0.006

(0.007)

-0.11
(0.32)
-0.63

(0.47)
-0.59

(0.32)
-0.48

(0.37)
1.79

(2.34)
-0.74*
(0.35)

-0.95**
(0.35)

4.45**
(0.28)

-0.01*
(0.005)
-0.009*
(0.004)

0.02
(0.17)
-0.08

(0.25)
-0.56*
(0.27)
-0.81*
(0.24)

-0.89**
(0.29)

-0.96**
(0.36)

-1.15**
(0.25)

4.48**
(0.12)

-0.01*
(0.006)

0.007
(0.007)

0.02
(0.23)

0.07
(0.30)
-0.30

(0.30)
-1.15**

(0.34)
-1.09**

(0.35)
-1.08**

(0.41)
-1.68**

(0.33)
4.40**
(0.15)

-0.01
(0.01)
0.004

(0.007)

0.20*
(0.12)
0.25*
(0.14)

0.01
(0.15)
-0.41

(0.47)
0.08

(0.16)
0.27

(0.31)
0.14

(0.26)
1.86**
(0.32)

-0.02
(0.02)
0.003

(0.009)

0.13
(0.18)

0.27
(0.15)
-0.08

(0.13)
-0.51

(0.58)
0.12

(0.35)
0.56

(0.36)
0.05

(0.29)
2.06**
(0.40)

* Coefficient significantly different from zero at the 5% level. ** Coefficient significantly different from zero at the 1% level.
All columns report results from OLS regressions. The regressions also include a linear and quadratic time trend. The dependent variable in each column is the weekly
markup index for each category. Markup is price minus average acquisition cost, both measured in cents per ounce. In columns titled Fixed and Variable, the index
is a fixed and variable-weight index, respectively. Bold type indicated period of expected high demand peaks. Robust standard errors are in parentheses. 



Table 5: UPC-Level Anaylsis

Description mkt share (%) price
regression

wholesale
regression

deal
regression

# bran
d

size
(oz)

price 
(¢/oz)

non -
Lent Lent ratio Lent s.e Lent s.e.  Lent s.e.  

Lite Tuna

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

BB
BB
BB 
COS
COS
COS
COS
COS
COS
PL 
PL 
PL 
SK 
SK 
SK 
SK 
SK 

6.12
6.12
12.5

6.5
6
6

12.5
12.5
9.25

6.5
12.5

6.5
12.5
6.12

9
3.25
6.12

13
13

13.5
15.4
13.3
13.4

14
13.9

14
11.7
12.7
11.6
14.9
13.2
15.4
16.1
13.2

3.7
13

0.8
1.3
3.2

11.5
0.9
2.4
1.4
3.6
1.7
6.5
2.1
5.6
1.5
1.7

18.3

3.2
10.2

0.4
0.6
9.2

31.9
0.4
1.1
0.8
2.1
0.7
4.3
1.0
4.3
0.9
1.0

16.1

0.86
0.78
0.48
0.44
2.88
2.79
0.47
0.47
0.58
0.58
0.41
0.66
0.51
0.77
0.57
0.59
0.88

-.22
-.29
-.19
.22

-.32
-.33
.11

-.05
-.63**

-.57
.11

-.47*
-.27

-.85*
-.31
-.48

-.97*

.47

.47

.16

.20

.46

.46

.20

.19

.32

.40

.18

.27

.20

.50

.33

.30

.50

-.32
-.15

-.22*
-.03
-.51

-.70*
.00
.11
.05
.00

.09*
-.04
-.11

-.29*
.01

-.27
-.30

.28

.21

.13

.10

.40

.42

.14

.14

.12

.23

.05

.20

.16

.16

.15

.47

.20

-.04
.11
.07
.15

-.05
-.11
.10
.13

.18*
.00

-.03
.15*
.14*

.16
.31***

.10

.13

.08

.09

.12

.10

.09

.08

.09

.09

.10

.11

.05

.09

.07

.09

.09

.07

.09

White Tuna

18
19
20
21
22
23
24
25
26
27
28
29
30

3- D
BB
BB
BB 
BB 
BB 
COS
GEIS
GEIS
PL 
SK 
SK 
SK 

6
6.12
6.12

9.2
6.12
12.2

6
6

13
6

9.75
6.12
6.12

24.8
29.6
27.9
28.9
22.5
27.5
27.1
24.2
22.4
24.2
25.9
28.3
25.8

2.5
0.7
2.5
0.5
1.9
1.3
1.8
3.5
1.3
0.9
0.6
2.4
1.1

1.6
0.3
1.5
0.2
1.1
0.7
1.0
2.0
0.7
0.4
0.3
1.5
0.6

0.65
0.51
0.59
0.42
0.59
0.58
0.56
0.57
0.54
0.43
0.55
0.61
0.50

-.28
.06

-.20
.37**

-1.46***
-.31

-.76**
-.22

-.33**
.04

-.09
-.26
-.16

.25

.16

.27

.19

.56

.20

.37

.18

.14

.14

.22

.22

.12

-.20
-.99**
-.63**

-.07
-.20
-.06
-.19
.21

-.10
-.11
-.00
.56*
-.06

.38

.52

.31

.15

.41

.14

.29

.19

.14

.10

.14

.29

.18

-.09
.09

.19**
-.10

.18**
.28***
.30***

.18*
.04
.07
.11
.08
.10

.06

.11

.09

.09

.09

.10

.10

.10

.09

.08

.08

.09

.08
* Coefficient significantly different from zero at the 10% level. ** Coefficient significantly different from zero at the 5%
level. *** Coefficient significantly different from zero at the 1% level.
BB = Bumble Bee; COS = Chicken of the Sea; PL = Private Label; SK = StarKist; 3-D = 3 Diamonds; GEIS = Geisha
Numbers in the columns labeled price regression, wholesale regression, and deal regression, are the coefficient of the
Lent dummy variable in separate regressions for each UPC where the dependent variables are retail price, average
acquisition cost and the deal variable. These regressions also include other holidays dummy variables and trend variables,
as in Tables 2 - 4. The columns labeled s.e. report the robust standard error from these regressions.



Table 6: Demand Estimates – OLS Results

(i) (ii) (iii) (iv) (v) (vi) (vii)

price -5.09
(0.18)

-22.07
(0.79)

-21.98
(0.78)

-21.23
(0.80)

-18.67
(0.88)

-17.82
(0.90)

-17.82
(0.90)

lent*price -7.08
(2.76)

-8.36
(3.06)

-8.36
(3.06)

deal 0.28
(0.03)

0.29
(0.03)

0.29
(0.03)

deal*lent -0.12
(0.09)

-0.12
(0.09)

UPC dummies T T T T T T

UPC dummies*lent T T T T T

p-value of all UPC
dummies *lent = 0

0.02 0.02 0.03 0.02 0.02

Holiday dummiesa T T T T T T

Estimates from OLS regressions. The dependent variable is . A market is defined as a week, by aggregating across all the stores. There are 340 markets with
9495 observations. In addition to the above variables all regressions include a linear and quadratic time trend and a Lent dummy variable. Robust standard errors are
given in parentheses.
a Dummy variables for Lent, Easter, Memorial Day, July 4th, Labor Day, Thanksgiving, Post Thanksgiving, Christmas, Hot and Cold.



Table 7: Demand Estimates – IV Results

(i) (ii) (iii) (iv) (v) (vi) (vii)

price -4.82
(0.19)

-15.38
(1.76)

-15.15
(1.72)

-12.80
(1.69)

-10.97
(2.07)

-7.86
(2.07)

-7.86
(2.07)

lent*price -20.55
(5.42)

-26.19
(6.13)

-26.19
(6.31)

deal 0.41
(0.04)

0.46
(0.04)

0.46
(0.04)

deal*lent -0.45
(0.15)

-0.45
(0.15)

UPC dummies T T T T T T

UPC dummies*lent T T T T T

p-value of all UPC
dummies *lent = 0

<0.01 <0.01 <0.01 <0.01 <0.01

Holiday dummiesa T T T T T T

Estimates from Two Stage Least Squares regressions, using wholesale price as an instrument (interacted with lent where appropriate). The dependent variable is
. A market is defined as a week, by aggregating across all the stores. There are 340 markets with 9495 observations. In addition to the above variables all

regressions include a linear and quadratic time trend and a Lent dummy variable. Robust standard errors are given in parentheses
a Dummy variables for Lent, Easter, Memorial Day, July 4th, Labor Day, Thanksgiving, Post Thanksgiving, Christmas, Hot and Cold.



Table 8: Demand Estimates – OLS Results 

Beer Cheese Snack Crackers Oatmeal

Price/Deal

Interaction with:

-57.82**
(2.58)

0.48**
(0.03)

-5.35**
(0.53)

0.43**
(0.02)

-5.10**
(0.48)

0.42**
(0.02)

-11.10**
(0.53)

0.46**
(0.03)

Cold

Hot

Superbowl

Memorial Day

July 4th

Labor Day

Thanksgiving

Christmas

-0.02
(0.20)

10.07**
(3.61)
-4.02

(10.26)
8.42

(12.62)
-0.40

(9.23)

-8.97
(9.27)

-0.001
(0.002)
0.17**
(0.08)

0.03
(0.11)

0.23
(0.16)

0.32**
(0.13)

0.18
(0.12)

0.71
(0.83)
-0.19

(0.27)

0.32*
(0.15)
-0.003
(0.06)

-3.18**
(0.76)

-2.75**
(0.48)

-0.09
(0.09)

-0.14**
(0.05)

-0.22**
(0.02)

-0.008**
(0.002)

p-value of all UPC
dummies *holiday = 0

0.40 <0.01 <0.01 <0.01

Estimates from OLS regressions. The dependent variable is . A market is defined as a week, by aggregating across all the stores. In addition to the above
variables all regressions include a linear and quadratic time trend, UPC dummy variables and holiday dummy variables. Bold type indicates period of expected high
demand that showed a reduction in the fixed weights price index. Robust standard errors are given in parentheses. 



Table 9: Demand Estimates – IV Results 

Beer Cheese Snack Crackers Oatmeal

Price/Deal

Interaction with:

-47.94**
(6.53)

0.56**
(0.06)

-3.27**
(0.61)

0.49**
(0.02)

-3.66**
(0.81)

0.47**
(0.03)

-9.33**
(0.53)

0.52**
(0.04)

Cold

Hot

Superbowl

Memorial Day

July 4th

Labor Day

Thanksgiving

Christmas

0.35
(0.45)

10.76**
(4.04)
-7.17

(19.71)
8.23

(20.91)
-19.04

(19.29)

9.23
(31.15)

0.002
(0.004)
0.18**
(0.08)
-0.03

(0.16)
0.23

(0.21)
0.16

(0.21)

0.88**
(0.28)

0.09
(0.31)

0.13
(0.40)

0.23**
(0.10)

0.03
(0.10)

-2.11*
(1.00)

-1.45**
(0.54)

-0.05
(0.09)

-0.20**
(0.06)

-0.28**
(0.05)

-0.011**
(0.003)

p-value of all UPC
dummies *holiday = 0

0.16 <0.01 <0.01 <0.01

Estimates from Two Stage Least Squares regressions, using wholesale price as an instrument (interacted with lent where appropriate). The dependent variable is
. A market is defined as a week, by aggregating across all the stores. In addition to the above variables all regressions include a linear and quadratic time

trend, UPC dummy variables and holiday dummy variables. Bold type indicates period of expected high demand that showed a reduction in the fixed weights price
index. Robust standard errors are given in parentheses. 




