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ABSTRACT

We analyze the impact of time series dependence in market microstructure noise on the properties

of estimators of the integrated volatility of an asset price based on data sampled at frequencies high

enough for that noise to be a dominant consideration. We show that combining two time scales for

that purpose will work even when the noise exhibits time series dependence, analyze in that context

a refinement of this approach based on multiple time scales, and compare empirically our different

estimators to the standard realized volatility.
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1 Introduction

When studying financial data, the notion that noise plays an essential role is an accepted fact of life, whether at

the high frequency typical of transactions data or at the lower frequencies more commonly used in asset pricing.

That this is a central issue is perhaps best demonstrated by the fact that two recent presidential addresses

to the American Finance Association have been entitled “noise” (Black (1986)) and “frictions” (Stoll (2000))

respectively. So we work under the assumption that the observed log-price Y (either transaction or quoted) in

high frequency financial data is the unobservable efficient log-price X plus some noise component � due to the

imperfections of the trading process,

Yt = Xt + �t. (1.1)

Since X is defined implicitly (as opposed to explicitly, such as the sum of expected discounted dividends for

instance) the maintained identifying assumption is that � is independent of the X process.

We are interested in the implications of such a data generating process for the estimation of the volatility

of the efficient log-price process

dXt = µtdt+ σtdWt (1.2)

using discretely sampled data on the transaction price process at time intervals of length ∆. By ultra high

frequency, we mean that we are in a situation where the data available are such that ∆ will be measured

in seconds rather than minutes or hours. Under these circumstances, the drift is of course irrelevant, both

economically and statistically, and so we shall focus on functionals of the σt process and set µt = 0. It is

the case that transactions and quotes data series in finance are often observed at random time intervals (see

Aït-Sahalia and Mykland (2003) for inference under these circumstances) but, throughout this paper, we will

assume for simplicity that ∆ is constant. We make essentially no assumptions on the σt process: its driving

process can of course be correlated with the Brownian motionWt in (1.2), and it need not even have continuous

sample paths.

The noise term � summarizes a diverse array of market microstructure effects, which can be roughly divided

into three groups. First, � represents the frictions inherent in the trading process: bid-ask bounces, discreteness

of price changes and rounding, trades occurring on different markets or networks, etc. Second, � captures

informational effects: differences in trade sizes or informational content of price changes, gradual response of

prices to a block trade, the strategic component of the order flow, inventory control effects, etc. Third, �

encompasses measurement or data recording errors such as prices entered as zero, misplaced decimal points,

etc., which are surprisingly prevalent in these types of data. As is clear from the laundry list of potential

sources of noise, the data generating process for � is likely to be quite involved. Therefore, robustness to

departures from any assumptions on � is desirable.

If σt is modelled parametrically, we showed in Aït-Sahalia, Mykland, and Zhang (2005) that incorporating

� explicitly in the likelihood of the observed log-returns Y provides consistent and asymptotically normal

estimators of the parameters. But what distributional assumption to use for �? Surprisingly, we found that
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misspecifying the marginal distribution of � has no adverse consequences.

In the nonparametric case where σt is an unrestricted stochastic process, the object of interest is the

integrated volatility or quadratic variation of the process, hX,XiT =
R T
0
σ2t dt, over a fixed interval T, typically

one day in empirical applications. This quantity can then be used to hedge a derivatives’ portfolio, forecast

the next day’s integrated volatility, etc. Without noise, the realized volatility (RV) estimator [Y,Y ]
(all)
T =Pn

i=1(Yti+1 − Yti)
2 provides an estimate of the quantity hX,XiT , and asymptotic theory would lead one to

sample as often as possible, or use all the data available, hence the “all” superscript. The sum [Y, Y ]
(all)
T

converges to the integral hX,XiT , with a known distribution, a result which dates back to Jacod (1994)
and Jacod and Protter (1998); see also e.g., Barndorff-Nielsen and Shephard (2002) and Mykland and Zhang

(2002).

In Aït-Sahalia, Mykland, and Zhang (2005) and Zhang, Mykland, and Aït-Sahalia (2002), we studied the

corresponding problem when a relatively simple type of market microstructure noise, iid, is present and we

refer to these two papers for a review of the literature to date. We showed there that the situation changes

radically in the presence of market microstructure noise. In particular, computing RV using all the data

available (say every second) leads to an estimate of the variance of the noise, not the quadratic variation that

one seeks to estimate: [Y, Y ]
(all)
T has bias 2nE[�2], which is an order of magnitude larger than the object we

seek to estimate, hX,XiT . The divergence of the RV estimator as the number of observations n increases is

illustrated in Figure 1, which shows the behavior of the RV estimator as a function of the sampling interval

∆ = T/n : as predicted by our theory, the plot shows divergence proportional to 1/n. The RV estimator in

the figure is computed for an average of the 30 Dow Jones Industrial Average stocks, averaged again over the

last ten trading days in April 2004; the objective of the double averaging is to reduce the variability of the

estimator in order to display its bias.

Equivalently, since our theory predicts that RV ≈ 2nE £�2¤ asymptotically in n, we expect that lnRV ≈
ln(2E

£
�2
¤
)+ lnn so that a regression of lnRV on lnn should have slope coefficient close to 1. Figure 2 shows

the result: the estimated slope coefficient is 1.02 and the null value of 1 is not rejected, with a t−statistic of
0.46. Note from the equation above that an estimate of E[�2] can be constructed using the intercept in that

regression (more on that later).

While a formal analysis of this phenomenon originated in our work cited above, the empirical message that

emerges from this has long been known: do not compute RV at too high a frequency. This in fact formed the

rationale for the recommendation in the literature to sample sparsely at some lower frequency. A sampling

interval ∆sparse is picked in the range from 5 to 30 minutes: see e.g., Andersen, Bollerslev, Diebold, and Labys

(2001), Barndorff-Nielsen and Shephard (2002) and Gençay, Ballocchi, Dacorogna, Olsen, and Pictet (2002).

We denote the RV estimator corresponding to ∆sparse = T/nsparse as [Y,Y ]
(sparse)
T .

If one insists upon sampling sparsely, we then showed in our earlier papers how to determine the optimal

sparse frequency, instead of selecting it arbitrarily. But even if sampling sparsely at our optimally-determined

frequency, one is still throwing away a large amount of data. For example, if T = 1 NYSE day and transactions

occur every∆ = 1 second, the original sample size is n = T/∆ = 23, 400. Sampling sparsely even at the highest

frequency used by empirical researchers (once every 5 minutes) entails throwing away 299 out of every 300
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observations: the sample size used is only nsparse = 78. This violates one of the most basic principles of

statistics, and our objective when starting this research project was to propose a solution which made use of

the full data sample, despite the fact that ultra high frequency data can be extremely noisy.

Our approach to estimating the volatility is to use Two Scales Realized Volatility (TSRV). By evaluating

the quadratic variation at two different frequencies, averaging the results over the entire sampling, and taking

a suitable linear combination of the result at the two frequencies, one obtains a consistent and asymptotically

unbiased estimator of hX,XiT . We start by briefly reviewing the rationale behind the TSRV estimator in

Section 2.

In our earlier paper, however, we made the assumption that the noise term was iid. In Section 3, we

document that dependence in the noise can be important in some empirical situations. So our main purpose

in the following will be to propose a version of the TSRV estimator which can deal with such serial dependence

in market microstructure noise.

Just like the marginal distribution of the noise is likely to be unknown, its degree of dependence is also

likely to be unknown and so our approach will be nonparametric in nature. We develop the theory for our new,

serial-dependence-robust, TSRV estimator in Section 4. In a nutshell, we will continue combining two different

time scales, but rather than starting with the fastest possible time scale as our starting point, one now needs

to be somewhat more subtle and adjust how fast the fast time scale is. Next, we analyze in Section 5 the

impact of serial dependence in the noise on the distribution of the RV estimators, [Y,Y ]
(all)
T and [Y, Y ]

(sparse)
T .

We then discuss in Section 6 a further refinement to this approach, called Multiple Scales Realized Volatility

(MSRV), which achieves further asymptotic efficiency gains over TSRV (see Zhang (2004)), and as we did for

TSRV and RV, we analyze the impact of serial dependence in the noise on that estimator. Finally, we provide

in Section 7 an empirical study of the TSRV and MSRV estimators, and compare them to RV. We examine

in particular the robustness of TSRV to the choice of the two time scales, contrast it with RV’s divergence as

sampling gets more frequent and with RV’s variability in empirical samples, and study the dependence of the

estimators on various ways of pre-processing the raw high frequency data. Section 8 concludes.

2 The TSRV Estimator with IID Noise

Before showing how to extend TSRV to account for serial dependence in market microstructure noise, we

first review the basic TSRV construction under iid noise. The TSRV estimator is based on subsampling,

averaging and bias-correction. The idea is to partition the original grid of observation times, G = {t0, ..., tn}
into subsamples, G(k), k = 1, ..., K where n/K → ∞ as n → ∞. For example, for G(1) start at the first
observation and take an observation every 5 minutes; for G(2), start at the second observation and take an
observation every 5 minutes, etc. Then we average the estimators obtained on the subsamples. The idea is

that the benefit of sampling sparsely, as in [Y,Y ]
(sparse)
T vs. [Y, Y ]

(all)
T , can now be retained, while the variation

of the estimator can be lessened by the averaging and the use of the full data sample.
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Subsampling and averaging together gives rise to the estimator

[Y,Y ]
(avg)
T =

1

K

KX
k=1

[Y,Y ]
(sparse,k)
T

constructed by averaging the estimators [Y,Y ]
(sparse,k)
T obtained by sampling sparsely on each of the K grids

of average size n̄.

Unfortunately, [Y, Y ]
(avg)
T remains a biased estimator of the quadratic variation hX,XiT of the true return

process, although its bias 2n̄E[�2] now increases with the average size n̄ of the subsamples, instead of the full

sample size n as in 2nE[�2]. But E[�2] can be consistently approximated by [Y, Y ]
(all)
T :

[E[�2] = 1

2n
[Y, Y ]

(all)
T . (2.1)

Thus a bias-adjusted estimator for hX,XiT can be constructed as

\hX,Xi(tsrv)T = [Y,Y ]
(avg)
T| {z }

slow time scale

− n̄

n
[Y, Y ]

(all)
T| {z }

fast time scale

(2.2)

and this is the TSRV estimator. Figure 3 summarizes this construction.

If the number of subsamples is optimally selected as K∗ = cn2/3, then TSRV has the following distribution:

\hX,Xi(tsrv)T

L≈ hX,XiT| {z }
ob ject of interest

+
1

n1/6
[
8

c2
E[�2]2| {z }

due to noise

+ c
4T

3

Z T

0

σ4t dt| {z }
due to discretization| {z }

]1/2

total variance

Ztotal (2.3)

and the constant c can be set to minimize the total asymptotic variance above.

Unlike all the previously considered ones, this estimator is now correctly centered, and to the best of our

knowledge is the first consistent estimator for hX,XiT in the presence of market microstructure noise. A small
sample refinement to \hX,XiT can be constructed as follows

\hX,Xi(tsrv,adj)T =
³
1− n̄

n

´−1
\hX,Xi(tsrv)T . (2.4)

The difference from the estimator in (2.2) is of order Op(n̄/n) = Op(K−1), and thus the two estimators behave

identically to the asymptotic order that we consider. The estimator (2.4), however, has the appeal of being

unbiased to higher order.

Following our work, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004) have shown that our TSRV

estimator can be viewed as a form of kernel based estimator. However, all kernel-based estimators are inconsis-

tent estimators of hX,XiT under the presence of market microstructure noise. When viewed as a kernel-based
estimator, TSRV owes its consistency to its automatic selection of end effects which must be added “manually”

to a kernel estimator to make it match TSRV. Optimizing over the kernel weights leads to an estimator with

the same properties as MSRV in Section 6 below, although the optimal kernel weights will have to be found

numerically, whereas the optimal weights for MSRV will be explicit (see Zhang (2004)). With optimal weights,
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the rate of convergence can be improved from n−1/6 for TSRV to n−1/4 for MSRV as the cost of the higher

complexity involved in combining O(n1/2) time scales instead of just two as in (2.2). In the fully parametric

case we studied in Aït-Sahalia, Mykland, and Zhang (2005), we showed that when σt = σ is constant, the MLE

for σ2 converges for T fixed and ∆→ 0 at rate ∆1/4/T 1/4 = n−1/4 (see equation (31) p. 369 in Aït-Sahalia,

Mykland, and Zhang (2005)). This establishes n−1/4 as the best possible asymptotic rate improvement over

(2.3).

3 Time Series Dependence in High Frequency Market Microstruc-

ture Noise

We now turn to examining empirically whether there is a need to relax the assumption that the market

microstructure noise � is iid. In other words, is it the case that every time a new price is observed, one

observes it with an error that is independent of the previous one, no matter how close together those two

successive prices might be?

3.1 The Data

Our data consist of transactions and quotes from the NYSE’s TAQ database for the 30 Dow Jones Industrials

Average (DJIA) stocks, over the last ten trading days of April 2004 (April 19-23 and 26-30). To save space,

we will focus on four of the thirty stocks: 3M Inc. (trading symbol: MMM), American International Group

(trading symbol: AIG), Intel (trading symbol: INTC) and Microsoft (trading symbol: MSFT). Of these, the

first two are traded on the NYSE while the latter two are traded on the Nasdaq. Table 1 reports the basic

summary statistics on these four stocks’ transactions.

In our earlier paper where we introduced the TSRV estimator, we assumed that microstructure noise � was

iid. In that case, log-returns

Yτi − Yτi−1 =

Z τi

τi−1
σtdWt + �τi − �τi−1 (3.1)

follow an MA(1) process since the increments
R τi
τi−1

σtdWt are uncorrelated, � ⊥W and therefore, in the simple

case where σt is nonrandom (but possibly time varying),

E
£¡
Yτj − Yτj−1

¢ ¡
Yτi − Yτi−1

¢¤
=

⎧⎪⎪⎨⎪⎪⎩
R τi
τi−1

σ2t dt+ 2E
£
�2
¤

if j = i

−E £�2¤ if j = i+ 1

0 if j > i+ 1

(3.2)

Under the simple iid noise assumption, log-returns are therefore (negatively) autocorrelated at the first order.

We will examine below whether this is compatible with what we observe in the data, but for now note that this

is consistent with the predictions of many simple reduced form market microstructure models. For instance,

in the Roll (1984) model, �t = (s/2)Qt where s is the bid/ask spread and Qt, the order flow indicator, is a

binomial variable that takes the values +1 and−1 with equal probability, generating first order autocorrelation
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in returns. French and Roll (1986) proposed to adjust variance estimates to control for such autocorrelation

and Harris (1990) studied the resulting estimators. Zhou (1996) proposed a bias correcting approach based

on the first order autocovariances; see also Hansen and Lunde (2004).

We now turn to confronting this model to the data. Figure 4 reports the autocorrelogram computed for

the 3M and AIG transactions, respectively. The plot show a good agreement with the prediction of the iid

noise model, namely the MA(1) structure in (3.2) for 3M and AIG.

However, Figure 5 shows the corresponding result for Intel and Microsoft. It is clear that the MA(1) model,

and consequently the iid noise model, does not fit those data well for these two stocks. Both stocks were added

to the DJIA on November 1, 1999, becoming the first two companies traded on the Nasdaq to be included in

the DJIA.

It is important to note however, that the difference between the two figures does not appear to be driven

by the different market structures on the NYSE (a specialist market structure) compared to the Nasdaq (a

dealers’ market). In fact, the autocorrelogram pattern for the other 26 DJIA stocks is closer to that of Intel

and Microsoft, not that of 3M and AIG. Table 2 reports the results of a cross-sectional OLS regressions of

the autocorrelation coefficients of order 2-5 on the average time between transactions used as a measure of

the liquidity of the stock, for the 30 DJIA stocks. These autocorrelation coefficients of order greater than 1

would be zero if the noise term were serially uncorrelated, as in (3.2). The table shows that the lower the time

between successive transactions, the higher the observed autocorrelation in absolute value (the coefficients

alternate signs because the autocorrelation coefficients do, as in Figure 5). In other words, based on these

data, the more liquid the stock, the more likely we are to face departures from the iid assumption.

3.2 Example: A Simple Model to Capture the Noise Dependence

A simple model to capture the higher order dependence that we just documented in INTC and MSFT trades

is

�ti = Uti + Vti (3.3)

where U is iid, V is AR(1) with first order coefficient ρ, |ρ| < 1, and U ⊥ V. Under this model, we have

E
£¡
Yτj − Yτj−1

¢ ¡
Yτi − Yτi−1

¢¤
=

⎧⎪⎪⎨⎪⎪⎩
R τi
τi−1

σ2t dt + 2E
£
U2
¤
+ 2(1− ρ)E

£
V 2
¤

if j = i

−E £U2
¤− (1− ρ)2E

£
V 2
¤

if j = i+ 1

−ρj−i−1 (1− ρ)
2
E
£
V 2
¤

if j > i+ 1

(3.4)

This model can easily be fitted to the data by the generalized method of moments. We use the first twenty

autocovariances of the log-returns as moment functions, in order to estimate the three parameters E[U2],

E[V 2] and ρ. Their estimated values are 4.2 10−8, 3.5 10−8 and −0.68 for INTC and 2.9 10−8, 4.3 10−8 and
−0.70 for MSFT. Figure 6 shows the sample autocorrelogram and the corresponding one fitted by the model

above.

Let us stress, however, that, while this simple model seems to capture fairly well the dependence in the

stock data that we have examined, our theory is not tied to this particular specification. of �. It applies to
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fairly general dependence structures, as can be seen from Assumption 1 below.

3.3 Transactions or Quotes?

The model (3.3) for the microstructure noise describes well a situation where the primary source of the noise

beyond order one consists of further bid-ask bounces. In such a situation, the fact that a transaction is on the

bid or ask side has little predictive power for the next transaction, or at least not enough to predict that two

successive transactions are on the same side with very high probability (although Choi, Salandro, and Shastri

(1988) have argued that serial correlation in the transaction type can be a component of the bid-ask spread,

and extended the model of Roll (1984) to allow for it).

Figure 5 and the estimates just reported (ρ = −0.7) are evidence of negative autocorrelation at horizons of
up to about 15 transactions. In trying to assess the source of the higher order dependence in the log-returns, a

natural hypothesis is that this is due to the trade reversals: in transactions data and an orderly liquid market,

one might expect that in most cases successive transactions of the same sign (buy or sell orders) will not move

the price. The next recorded price move is then, more likely than not, going to be caused by a transaction

that occurs on the other side of the bid-ask spread, and so we observed these reversals when the data consist

of the transactions that lead to a price change.

To examine this hypothesis, we turn to quotes data, also from the TAQ database. The results are reported

in Figure 7 and suggest that an important source for the AR(1) pattern with negative autocorrelation (the

term V in (3.3)) will be trade reversals. The remaining autocorrelation exhibited in the quotes data can also

be captured by model (3.3), but with a positive autocorrelation in the V term. This can capture effects such

as the gradual adjustment of prices in response to a shock such as a large trade.

4 Extending the TSRV Estimator for Dependent Noise

In the previous section, we found that there are empirical situations (such as Intel or Microsoft transactions)

where the assumption of iid market microstructure noise could be problematic. We now proceed to suitably

extending the TSRV estimator to make it robust to departures from the iid noise assumption. The idea is to

somewhat slow the fast time scale to reduce the degree of dependence that is induced by the noise.

4.1 The Setup

As above, we let Y be the logarithm of the transaction price, which is observed at times 0 = t0, t1, ... ,

tn = T . We assume that at these times, Y is related to a latent true price X (also in logarithmic scale)

through equation (1.1). The latent price X is given by (1.2).

Assumption 1. We assume that the noise process �ti is independent of the Xt process, and that it is (when

viewed as a process in index i) stationary and strong mixing with the mixing coefficients decaying exponentially.

We also suppose that for some κ > 0, E�4+κ <∞.
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Definitions of mixing concepts can be found e.g., in Hall and Heyde (1980), p. 132. Note that by Theorem

A.6 (p. 278) of Hall and Heyde (1980), there is a constant ρ < 1 so that, for all i,

¯̄
Cov(�ti , �ti+l)

¯̄ ≤ ρl Var(�) (4.1)

For the moment, we focus on determining the integrated volatility of X for one time period [0, T ]. This is

also known as the continuous quadratic variation hX,Xi of X. In other words,

hX,XiT =
Z T

0

σ2t dt. (4.2)

Our volatility estimators can be described by considering subsamples of the total set of observations. A

realized volatility based on every j’th observation, and starting with observation number r, is given as

[Y,Y ]
(j,r)
T =

X
0≤j(i−1)≤n−r−j

(Ytji+r − Ytj(i−1)+r )
2.

Under most assumptions, this estimator violates the sufficiency principle, whence we define the average lag j

realized volatility as

[Y,Y ]
(J)
T =

1

J

J−1X
r=0

[Y,Y ](J,r)T

=
1

J

n−JX
i=0

(Yti+J − Yti)
2 (4.3)

A generalization of TSRV can be defined for 1 ≤ J < K ≤ n as

\hX,Xi(tsrv)T = [Y, Y ]
(K)
T| {z }

slow time scale

− n̄K
n̄J

[Y, Y ]
(J)
T| {z }

fast time scale

, (4.4)

thereby combining the two time scales J and K. Here n̄K = (n−K + 1)/K and similarly for n̄J .

We will continue to call this estimator the TSRV estimator, noting that the estimator we proposed in

Zhang, Mykland, and Aït-Sahalia (2002) is the special case where J = 1 and K →∞ as n→∞. The original
TSRV produces a consistent estimator in the case where the �ti are iid. For the optimal choice K = O(n2/3),

\hX,Xi(tsrv)T − hX,XiT = Op(n
−1/6).

The problem with which we are concerned here is that these assumptions on the noise �ti may be too restrictive.

We shall see that in the case where J is allowed to be larger than 1, the problem of dependence of the �ti ’s

will be eliminated and the generalized TSRV estimator given in (4.4) will be consistent for suitable choices of

(J,K).

4.2 A Signal-Noise Decomposition

We have the following.
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Lemma 1. Under the assumptions above, let n→∞, and let j = jn be any sequence. Then

n−jX
i=0

(Xti+j −Xti)(�ti+j − �ti) = Op(j
1/2).

The lemma is important because it gives rise to the sum of squares decomposition

[Y, Y ]
(J)
T = [X,X]

(J)
T + [�, �]

(J)
T +Op(J

−1/2).

Thus, if we look at linear combinations of the form (4.4), one obtains

\hX,Xi(tsrv)T = [X,X]
(K)
T − n̄K

n̄J
[X,X]

(J)
T| {z }

signal term

+ [�, �]
(K)
T − n̄K

n̄J
[�, �]

(J)
T| {z }

noise term

+ Op(K
−1/2),

so long as

1 ≤ J ≤ K and K = o(n), (4.5)

both of which will be assumed throughout.

4.3 Analysis of the Noise Term

It can be seen that when the �’s are independent E[noise term] = 0, so that the linear combination used in

(4.4) is exactly what is needed to remove the bias due to noise. To analyze the more general case, and to

obtain approximate distribution of the noise term, note that

[�, �]
(J)
T =

1

J

nX
i=0

c
(J)
i �2ti −

2

J

n−JX
i=0

�ti�ti+J , (4.6)

where c
(J)
i = 2 for J ≤ i ≤ n− J , and = 1 for other i. By constructionX

i

c(J)i = 2Jn̄J , (4.7)

so that

E |noise term| ≤ 2E�2
µ
1

K
(n−K + 1)ρK +

n̄K
n̄J

1

J
(n− J + 1)ρJ

¶
= O

³ n

K
(ρK + ρJ)

´
(4.8)

and, in the regular case where Cov(�t0 , �tk) = o(Cov(�t0 , �tJ ))

E [noise term] = 2E�2
n

K
Cov(�t0 , �tJ )(1 + o(1)).

If J →∞ at even a quite slow rate when n →∞, the bias is negligible. Also, in the case of m-dependent �s,
the bias becomes zero for finite J . We obtain:
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Proposition 1. Under assumption (4.13) below,

K

n1/2
(noise term− E [noise term])

L−→ ξZnoise (4.9)

as n → ∞, where Znoise is standard normal. Further, in the case where both J and K go to infinity with n,

we have that ξ2 = ξ2∞, where

ξ2∞ = 16Var(�)
2 + 32

∞X
i=1

Cov(�t0 , �ti)
2. (4.10)

In the case where J does not go to infinity (the m-dependent case, say), then

ξ2 = ξ2∞ + 8
∞X

i=−∞
Cov(�ti−J , �ti+J )

2 + 8
∞X

i=−∞
Cum(�t0 , �ti , �tJ , �ti+J ), (4.11)

Note that even when J →∞, one may be better off using (4.11) than ξ2∞ since the former is closer to the

small sample variance, and since J →∞ quite slowly. (By contrast, K →∞ much more quickly, as we shall

see).

4.4 Analysis of the Signal Term

As for the “signal term”, we obtain that

[X,X]
(K)
T → hX,XiT (4.12)

in probability as n → ∞, provided K = o(n). Obviously, for the signal term in \hX,XiT − hX,XiT to be
scalable to be consistent (see equation (4.17) below), we need

lim sup
n→∞

J

K
< 1, (4.13)

which is easily satisfied. In fact, as we shall see, one would normally take

lim sup
n→∞

J

K
= 0. (4.14)

Specifically, we have in the case of dependent noise:

Proposition 2. Under (4.5),µ
K

n

µ
1 + 2

J3

K3

¶¶−1/2 µ
[X,X]

(K)
T − n̄K

n̄J
[X,X]

(J)
T − hX,XiT

¶
L−→ η
√
TZdiscrete , (4.15)

where, Zdiscrete is standard normal, and where in general, η
2 is given as the limit in Theorem 3 in Zhang,

Mykland, and Aït-Sahalia (2002) (i.e., the discretization variance η2 has the same expression as when the

noise is iid). In the special case where observations are equidistant,

η2 =
4

3

Z T

0

σ4t dt. (4.16)

10



The convergence in law is stable (see Chapter 3 of Hall and Heyde (1980)), the most important consequence

of which is that Zdiscrete is independent of η.

4.5 The Combined Estimator

Consider the adjusted estimator

\hX,Xi(tsrv,adj)T =

µ
1− n̄K

n̄J

¶−1
\hX,Xi(tsrv)T (4.17)

In the iid case of Zhang, Mykland, and Aït-Sahalia (2002), this adjustment was introduced from small sample

considerations (Section 4.2). Here, we also see that in the case where (4.13) is satisfied but (4.14) is not, this

adjustment is needed for consistency. In the following, we analyze this estimator, and for the case when (4.14)

holds, the same analysis applies to the original \hX,Xi(tsrv)T .

We obtain from equations (4.9) and (4.15) that

\hX,Xi(tsrv,adj)T =

Ã
2E�2

n

K
Cov(�t0 , �tJ ) +

n1/2

K
ξZnoise +

µ
K

n

µ
1 + 2

J3

K3

¶¶1/2
η
√
TZdiscrete

!

×
µ
1− n̄K

n̄J

¶−1
(1 + op(1)) , (4.18)

where Znoise and Zdiscrete are asymptotically standard normal, and asymptotically independent.

It is easy to see that the optimal trade-off between the two variance terms results in a choice ofK = O(n2/3).

The worst thing that can then happen to the bias term is then that this is of the order of (n/K)ρJ = n1/3ρJ .

Thus the bias is of small order relative to the variance provided one chooses n1/3ρJ = o(n−1/6), i.e., ρJ =

o(n−1/2). Thus, one can safely assume that J/K ∼ 0 (i.e., (4.14)), and it follows that

Proposition 3. The asymptotic behavior of the estimator \hX,Xi(tsrv,adj)T is given by

\hX,Xi(tsrv,adj)T =

Ã
2
¡
E�2

¢ n

K
Cov(�t0 , �tJ ) +

n1/2

K
ξZnoise +

µ
K

n

¶1/2
η
√
TZdiscrete

!
(1 + op(1)) . (4.19)

Thus the optimal K is as given above, and one chooses, ultimately, J so that

Cov(�t0 , �tJ ) = o(n−1/2). (4.20)

Obviously, when � is m-dependent, one can simply choose J =m+ 1.

4.6 A Further Adjustment to the TSRV Estimator

It should be noted that when K is large, [X,X]
(K)
T may be a slight underestimate of hX,XiT . To consider the

issue, if σ2t is constant, σ
2
t = σ2, one gets that hX,XiT = σ2T , whereas [X,X]

(K)
T ≈ σ2T (n−K + 1)/n (the

11



approximation here is loose, but, for example, it is an equality in expectation when σ2t is constant). Thus

[X,X](K)T − n̄K
n̄J
[X,X](J)T ≈ σ2T

µ
n−K + 1

n
− n̄K

n̄J

n− J + 1

n

¶
= σ2T

(K − J)n̄K
n

. (4.21)

A further modification of our estimator is thus the area adjusted quantity

\hX,Xi(tsrv,aa)T =
n

(K − J)n̄K
\hX,Xi(tsrv)T . (4.22)

Since, by (4.5),

n

(K − J)n̄K
∼
µ
1− n̄K

n̄J

¶−1
(4.23)

we have:

Proposition 4. The estimator \hX,Xi(tsrv,aa)T has the same asymptotics as \hX,Xi(tsrv,adj)T given in Proposition

3.

In conclusion, the TSRV estimator that is robust to serial dependence in the noise, behaves as follows:

\hX,Xi(tsrv,aa)T

L≈ hX,XiT +
1

n1/6
[

1

c2
ξ2|{z}

due to noise

+ c
4T

3

Z T

0

σ4t dt| {z }
due to discretization| {z }

]1/2

total variance

Ztotal (4.24)

whether it is taken in the form \hX,Xi(tsrv,aa)T or \hX,Xi(tsrv,adj)T . Here K ∼ cn2/3, and ξ is given by (4.10), or,

more generally, (4.11).

5 RV Under Serial Dependence in the Noise

We now turn to an analysis of the standard RV estimator when the noise is serially dependent. First, we

have than sparse sampling at a given nsparse results in the same asymptotic distribution as when the noise is

serially uncorrelated. Second, however, we find that dependence in the noise impacts the asymptotic variance

(but not the bias) of the RV estimator when all the data (all n) are used. Specifically:

Proposition 5. The traditional RV estimator, [Y,Y ]
(sparse)
T , computed at a sparse sampling frequency∆sparse =

T/nsparse , has the following behavior:

[Y,Y ]
(sparse)
T

L≈ hX,XiT + 2nsparseE�
2| {z }

bias due to noise

+ [4nsparseE�
4| {z }

due to noise

+
2T

nsparse

Z T

0

σ4t dt| {z }
due to discretization| {z }

]1/2

tota l variance

Ztotal . (5.1)

which is unaffected by serial dependence in the noise.
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The reason why this last expression is as in the iid case is as follows. Essentially, the asymptotic variance

of
P

i �ti�ti+J behaves as if the quantities were uncorrelated if J goes to infinity, and so when we have nsparse =

n/J go to infinity with n effectively the log-returns involved in [Y,Y ]
(sparse)
T are separated by enough time

interval for the dependence in � not not to matter. Then
P

i �ti
¡
�ti+J − E

£
�ti+J |Fi

¤¢
is a martingale, with

variance
P

i E
h
�2ti
¡
�ti+J − E

£
�ti+J |Fi

¤¢2i
, which is approximately nsparseE

£
�2
¤2
under exponential mixing,

while the remainder term
P

i �ti
¡
�ti+J −E

£
�ti+J |Fi

¤¢
becomes negligible under exponential mixing.

By contrast, when all the observations are used, as in [Y,Y ]
(all)
T , the asymptotic variance of RV is influenced

by the dependence of the noise. The asymptotics of [Y,Y ]
(all)
T are, to first order, like that of [�, �]. The mean

of the latter is 2nE�2. As for the asymptotic variance, from standard formulas for mixing sums, we have

Ω∞ = AVAR
∙√

n

µ
[�, �]

n
− 2E�2

¶¸
= Var((�1 − �0)

2) + 2
∞X
i=1

Cov((�1 − �0)
2, (�i+1 − �i)

2). (5.2)

This gives:

Proposition 6. By contrast, the RV estimator using all the data, [Y,Y ](al l)T , computed at the highest sampling

frequency ∆ = T/n, has the following behavior:

[Y,Y ]
(all)
T

L≈ hX,XiT + 2nE�2| {z }
bias due to noise

+ [ 4n Ω∞| {z }
due to noise

+
2T

n

Z T

0

σ4t dt| {z }
due to discretization| {z }

]1/2

tota l variance

Ztota l . (5.3)

where Ω∞ = E�4 when the noise is iid; otherwise, dependency in � gives rise to Ω∞ in (5.2).

An alternate expression for Ω∞ can be obtained by noting that

Cov((�1 − �0)
2, (�i+1 − �i)

2) = 2Cov(�1 − �0, �i+1 − �i)
2 +Cum(�1 − �0, �1 − �0, �i+1 − �i, �i+1 − �i)

(and similarly for the variance).

6 MSRV: Multiple Scales Realized Volatility

We have seen that TSRV provides the first consistent and asymptotic (mixed) normal estimator of the quadratic

variation hX,XiT , that it can be made to work even if market microstructure noise is serially dependent, and

that it has the rate of convergence n−1/6. At the cost of higher complexity, it is possible to generalize TSRV to

multiple time scales, by averaging not on two time scales but on multiple time scales. The resulting estimator,

multiple scale realized volatility (MSRV), has the form of

\hX,Xi(msrv)T =
XM

i=1
ai [Y, Y ]

(Ki)
T| {z }

weighted sum of M slow time scales

+ 2 dE�2|{z}
fast time scale

. (6.1)

where dE�2 is given as before in (2.1).
13



For suitably selected weights ai’s, \hX,Xi(msrv)T converges to the true hX,XiT at rate n−1/4. In what

follows, we recall the construction of the MSRV estimator in the iid case (see Zhang (2004)), before making

it robust to time series dependence in market microstructure noise of the same type we assumed in the above

analysis of TSRV (see Assumption 1).

6.1 A Signal-Noise Decomposition

To describe the selection of the weights ai’s, we start with a special case, where we restrict attention to weights

that satisfy the two conditions XM

i=1
ai = 1, (6.2)

XM

i=1

ai
Ki

= 0. (6.3)

Then under (6.3), we have the decomposition

\hX,Xi(msrv)T =
MX
i=1

ai[X,X]
(Ki)
T| {z }

signal

+
MX
i=1

aiUn,Ki| {z }
noise

+ 2
MX
i=1

ai[X, �]
(Ki)
T| {z }

signal-noise interaction

+
MX
i=1

aiEn,Ki
+ 2E�2| {z }

end points of noise

+ Op(n
−1/2), (6.4)

where

Un,K = − 2
K

nX
i=K

�ti�ti−K ,

and

En,K = − 1
K

K−1X
j=0

�2tj −
1

K

nX
j=n−K+1

�2tj .

Condition (6.2) ensures that the first term in (6.4) will be asymptotically unbiased for hX,XiT .

6.2 Analysis of the Noise Term

Consider the noise term in (6.4)

ζ =
MX
i=1

aiUn,Ki (6.5)

Since Un,Ki and Un,Kl
are uncorrelated zero-mean martingales, under conditions (6.2)-(6.3),

Var(ζ) ≈ γ2n(E�2)
2
, (6.6)
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for Ki << n, where

γ2 = 4
MX
i=1

µ
ai
Ki

¶2
.

Subject to conditions (6.2)-(6.3), one can find the optimal weights ai, i = 1, ...,M, so that (6.6) is minimized.

In the special case where Ki = i, the optimal weight a∗i is given by

a∗i = 12
i

M2

¡
i
M
− 1

2
− 1

2M

¢¡
1− 1

M2

¢ .

And the resulting variance of the noise term is minimized at

Var∗(ζ) =
48n

M(M2 − 1) (E�
2)
2

(6.7)

6.3 Analysis of the Signal Term

The signal term in (6.4) is

φ =
MX
i=1

ai[X,X](i)T . (6.8)

Let the lag J discretization error be [X,X]
(J)
T − hX,XiT . Unlike the noise term, the signals at different lags

are highly correlated. In particular, the covariance between the lag J and lag K discretization error is,

ΥJ,K =
T

n
(min(J,K)− 1) 2

3

µ
3− min(J,K) + 1

max(J,K)

¶
η2 (6.9)

where, when the ti are equidistant, and under regular allocation of points to subgrids,

η2 = 2

Z T

0

σ4t dt. (6.10)

It is straightforward from (6.9) that

φ− hX,XiT = Op((n/M)
−1/2

). (6.11)

The interaction term
PM

i=1 ai[X, �(Ki)]T and the end points of noise are of orderM−1/2. Hence, after balancing

the terms in (6.4), one obtains the optimal M is

M = O(n1/2). (6.12)

Therefore, the rate of convergence for the overall error for MSRV is

\hX,Xi(msrv)T − hX,XiT = Op(n
−1/4), (6.13)

which is an improvement over TSRV’s

\hX,Xi(tsrv)T − hX,XiT = Op(n
−1/6), (6.14)
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at the cost of course of the greater complexity of MSRV over TSRV. As discussed above, from our earlier

analysis of the parametric case, the rate n−1/4 is optimal.

6.4 Noise-Optimal Weights

Consider now the larger class of weights

ai =
i

M2
h

µ
i

M

¶
− 1

2M2

i

M
h0
µ

i

M

¶
, (6.15)

where h is a continuously differentiable real-value function with derivative h0, and satisfying the following two

conditions: Z 1

0

xh(x)dx = 1, (6.16)

Z 1

0

h(x)dx = 0. (6.17)

This class of weights encompassed the earlier class (6.2)-(6.3).

When the weights are chosen optimally, h takes the form

h∗(x) = 12
µ
x− 1

2

¶
(6.18)

and the general optimal weights are then

a∗i =
i

M2
h∗
µ

i

M

¶
− i

2M3
h∗0
µ

i

M

¶
. (6.19)

Using the optimal choice h∗, the asymptotic variance for \hX,Xi(msrv)T is

Υ|{z}
total variance

= 48c−3(E�2)
2| {z }

due to noise

+
52

35
cTη2| {z }

due to discretization

(6.20)

+
12

5
c−1Var(�2)| {z }

due to noise endpoints

+
48

5
c−1E�2 hX,XiT| {z }

due to interaction between X and �

where c is the proportionality constant in M = cn1/2.

To summarize, when computed the optimal weights (6.19), the MSRV estimator has the following distrib-

ution:

\hX,Xi(msrv)T

L≈ hX,XiT +
1

n1/4

h
Υ|{z}i1/2

total variance

Ztotal (6.21)

when using the optimal weights (6.18). We can then select the value of the constant c to minimize the

asymptotic variance in the expression (6.21). Note finally that this class of weights is optimal for the purpose

of minimizing the part of the asymptotic distribution that is due to the presence of the noise. There is room
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for achieving further small asymptotic gains by minimizing over the full asymptotic variance (only at the level

of the constant and not the rate, which is already optimal here) but at the cost of even greater complexity

resulting in the loss of the simple, explicit, selection rule (6.19) for the weights.

6.5 The AVAR of MSRV When the Noise is Serially Dependent

We now study the MSRV estimator under the (dependence) Assumption 1 from Section 4.1. The only extra

bias (due to dependency) in equation (6.4) comes from the Un,Ki . Under our mixing assumption,

|E[Un,Ki
]| ≤ 2

K
Var(�)

nX
j=Ki

ρi ≤ 2

K
Var(�)

ρKi

1− ρ

Thus, when the ai follow (6.15), the absolute value of the extra bias in (6.4) becomes¯̄̄̄
¯E
"

MX
i=1

aiUn,i

#¯̄̄̄
¯ ≤

MX
i=1

2

M2

¯̄̄̄
h(

i

M
)

¯̄̄̄
ρi

1− ρ
+ corresponding h0 term

= O(M−1) (6.22)

To the extent that the MSRV estimator converges at the rate Op(M−1/2), the bias induced by the dependence

of the �’s is therefore irrelevant asymptotically.

An inspection of the terms in (6.4) shows that the rate of convergence does, indeed, remain of order

Op(M−1/2) = Op(n−1/4) under Assumption 1. As in the TSRV case, however, the asymptotic (random) vari-

ance now changes due to the dependence of the �’s. To compute that variance when the market microstructure

noise is serially dependent, note first that the four terms in (6.4) are asymptotically independent. This is by

the same methods as we use in the following. Also, the behavior of the signal term is, obviously, unchanged.

We compute the covariances of the individual terms, and obtain:

Proposition 7. The overall (random) asymptotic variance of \hX,Xi(msrv)T −hX,XiT is given, in the presence
of (possibly) serially correlated noise with autocorrelation function γ(l) = Cov(�0, �tl), by:

M
4

3
Tη2

Z 1

0

dx

Z x

0

h(y)h(x)y2(3x− y)dy

+
1

M4

MX
J=1

MX
K=1

h(
J

M
)h(

K

M
) hX,XiT

KX
l=−J

(γ(l) + γ(l+ J −K)− γ(l−K)− γ(l+ J))(min(l + J,K)−max(0, l))

+
4

M4

MX
J=1

MX
K=1

h(
J

M
)h(

K

M
)

n−JX
l=−(n−K)

(min(n,n+ l)−max(J + l, K) + 1)+Cov(�t0�t−J , �tl�tl−K ) (6.23)

+
2

M4

MX
J=1

MX
K=1

h(
J

M
)h(

K

M
)

K−1X
l=−(J−1)

(min(J + l,K)−max(0, l) + 1)+Cov(�2t0 , �2tl).

Under our mixing assumptions, the expression (6.23) is of order Op(n
−1/2) as n→∞, when M = O(n1/2).
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For example, in the special case of model (3.3), we have

γ(l) =

⎧⎪⎪⎨⎪⎪⎩
2E
£
U2
¤
+ 2 (1− ρ)E

£
V 2
¤

if l = 0

−E £U2¤− (1− ρ)2 E
£
V 2
¤
if |l| = 1

−ρ|l|−1 (1− ρ)
2
E
£
V 2
¤

if |l| > 1
(6.24)

to be inserted in (6.23). It can also be noted that, if instead

γ(l) =

⎧⎪⎪⎨⎪⎪⎩
2E
£
U2
¤

if l = 0

−E £U2
¤
if |l| = 1

0 if |l| > 1
(6.25)

then the expression (6.23) reduces to the asymptotic variance of MSRV in the iid case, that is Υ in (6.20).

We conclude our analysis of MSRV with two remarks:

Remark 1. Recall that for TSRV we replaced (2.2) with (4.4), thereby “jumping” to frequencies (J,K) over

the very fastest one (1, K) at which the serial dependence in the noise manifests itself. By letting both J

and K go to infinity with n, we were effectively able to eliminate the serial dependence within each subgrid.

However, the asymptotic variance of TSRV is affected by the serial dependence across subgrids coming from

the averaging over RV from different subgrids in both [Y, Y ]
(K)
T and [Y,Y ](J)T in (4.4), hence the asymptotic

variance in Proposition 3, also in (4.24), which is different than in the iid noise case.

Remark 2. The asymptotic distribution of MSRV is also affected by the dependence of the noise. Unlike the

TSRV case, there is no benefit to adjusting the MSRV estimator in the presence of serial dependence in the

noise. This is because the weights a∗i in (6.19) already assign most of the mass on the interval [1,M ] with

M = O(n1/2) to subintervals of the form [cM,M] where c is a positive constant. Therefore, the very fastest

frequencies of observations (those close to m = 1) already play a small role in MSRV even under iid noise.

7 Empirical Analysis

With these theoretical results in hand, we now turn to a comparison of the empirical performance of the RV,

TSRV and MSRV estimators, study the impact of the selection of the fast and slow time scales on the TSRV

estimators and the improvement due to MSRV relative to TSRV in the context of transactions data for Intel

and Microsoft in the last ten days of April 2004.

7.1 Comparison of the RV and TSRV Estimators

In our empirical analysis of the different estimators, we start by comparing our TSRV estimator to the

traditional RV estimator. In particular, we establish that TSRV solves the two main problems associated with

RV, namely the divergence of RV as the sampling interval gets small and the variability of RV. The comparison

is reported for Intel in Figure 8 and for Microsoft in Figure 9, where we compare RV computed at different

sampling frequencies with TSRV.
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Besides the well-known divergence of RV as ∆→ 0, the two figures also demonstrate the large difference in

variability of both estimates. Without the benefits of the double averaging in Figure 1, what these two series

of plots show is that computing RV at, say, 4mn as opposed to 5mn or 6mn can result in substantially different

daily estimates. And the computation of day-by-day estimates is how RV is actually used. In existing empirical

applications, RV has typically been employed in the empirical literature at an arbitrary sparse frequency: in

light of the variability of RV as a function of the sparse sampling interval ∆sparse , whatever particular choice

is made can matter.

7.2 Robustness of TSRV to the Choice of Slow Time Scale

Both RV and TSRV require that the econometrician make a choice. In RV, one needs to select the sparse

sampling frequency at which to compute the estimator. In TSRV, one needs to select the number of subgrids

K over which to average the slow time scales sum of squares. In Zhang, Mykland, and Aït-Sahalia (2002),

we showed how to compute an optimal value K∗ for the slow time scale parameter K when the noise term

is assumed to be iid, but in practical application it would be beneficial to be able to dispense with that

computation. For that, we would need to establish that the TSRV estimator is empirically robust to departures

from the optimal K∗. So, we now examine and compare the robustness of the two estimators to the selection

of their respective free parameter.

The left panels in Figure 10 show RV, computed for Intel and Microsoft, as an average of the RV values

over the last ten days in April 2004 for different sparse sampling frequency (which is the choice parameter

for RV). The right panels report the robustness of TSRV to the choice of K. The right panels show that the

estimator is numerically very robust to a large range of choices of K. In other words, the value of the TSRV

estimator is largely unaffected by choice of K within a reasonable range.

7.3 Robustness of TSRV to the Choice of Slow and Fast Time Scales

When the noise is serially dependent, the TSRV estimator defined in (4.4) depends on the choice of both the

slow time scale (K ) and the fast time scale (J).We find that the time-dependent TSRV is quite robust to the

choice of (J,K). Figure 11 shows that the value of the estimator is essentially identical within the reasonable

range of values considered.

7.4 The Improvement in MSRV over TSRV

It is possible to improve upon TSRV by considering MSRV. Both are consistent estimators of hX,XiT , but

MSRV has the faster convergence rate n−1/4 vs. n−1/6 for TSRV. The trade-off involves the additional

computational burden, since the number of slow time scales to be computed for MSRV is M = O(n1/2) and

n can be large in empirical applications: for instance n = 23, 400 for a stock that trades on average once a

second for a full day.

We now examine the difference between TSRV and MSRV in the context of our empirical application.

Figure 12 shows that both methods produce close .estimates, especially when compared to the differences
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exhibited earlier between RV and TSRV. As in the case of TSRV shown in 11, the MSRV estimator is not

sensitive to the specific choice of M within a reasonable range.

7.5 Robustness to Data Cleaning Procedures

One aspect that is sometimes briefly mentioned, but often not emphasized, in empirical papers using high

frequency financial data is the fact that the raw data is typically pre-processed to eliminate data errors,

outliers, etc. In addition, empirical applications of RV can involve pre-filtering of the data of various types,

but we focus here on the impact of data cleaning procedures that typically take place before any actual RV

computation is performed.

It turns out that the impact of the specific data-cleaning procedures used to pre-process the raw data can

have a large impact on RV estimators. We illustrate this effect by considering different cutoffs to determine

which outliers to eliminate before calculating the RV estimator. First, we eliminate the obvious data errors

(such as a transaction price reported as zero, transaction times that are out of order, etc.).

Second, we seek to eliminate outliers of various sizes. This is where things get trickier. For that purpose,

an outlier is a “bounceback”: a log-return from one transaction to the next that is both greater in magnitude

than an arbitrary cutoff, and is followed immediately by a log-return of the same magnitude but of the opposite

sign, so that the price returns to its starting level before that particular transaction. Certainly, we do not

expect such large “roundtrips” to represent meaningful transactions. The question is how large is large, and

so we are led to study the dependence of the RV and TSRV estimators on three different cutoffs that could

conceivably be adopted, 0.1% and 1% respectively in log-returns terms, and no cutoff (no raw bounceback

return is larger than 2% in our sample, so that any cutoff larger than this would make no difference). The

analysis reported above is all based on the intermediary cutoff of 1%.

The left panels in Figure 13 show the large impact of the cutoff on the RV estimator. As shown in the

right panel, where all three curves are close together, TSRV is much less sensitive to the specific cutoff used.

This is due to the structure of TSRV as a difference of two estimators: large returns in the data are part of

the slow time scale calculation, but then subtracted out in the fast time scale one.

Since the cutoff level is essentially arbitrary, we can view such outliers as a form of market microstructure

noise, and the robustness of TSRV to different ways of pre-processing the data is therefore a desirable property.

8 Conclusions

We documented that there are instances where the market microstructure noise contained in high frequency

financial data can exhibit serial correlation. We showed that combining two or more time scales for the purpose

of estimating integrated volatility will work even in the situation where the microstructure noise exhibits time

series dependence.

In most data error situations, one might expect that progress will lead the issue to become somehow

less salient over time. But in this instance, the measurement errors we face in ultra high frequency data

are compounded by the institutional evolution of the equity markets. While changes such as the passage to
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decimalization contribute to reducing the amount of noise in the data, by reducing the rounding errors, the

emergence of competing electronic networks means that multiple transactions can be executed (and ultimately

reported in our database) on different exchanges at the same time, thereby increasing the potential for slight

time reporting mismatches and other forms of data error.

Indeed, the data generated by the individual market venues find their way to the public in various ways.

The principal Electronic Communication Networks (ECNs), such as INET and its precursors and Archipelago,

have high speed dissemination directly to their subscribers. These dissemination systems run on a telecom-

munications protocol known as “frame relay”, which is quite fast. Most other market data, however, reaches

the trading public (and ultimately us econometricians) either through Nasdaq’s dissemination or CTS/CQS.

The Consolidated Tape Association administers the CTS (the consolidated trade system) and CQS (the con-

solidated quote system). Virtually all US trades are reported to CTS, but the path may be indirect. Island

(not INET) may report a trade to the National (formerly Cincinnati) Stock Exchange, which will then report

it to CTS, which then broadcasts it to us. The general problem is that trading activity is fast relative to the

CTS speed of collection and dissemination.

Furthermore, Nasdaq has had long-standing issues with late and delayed trade reports. In principle, a

Nasdaq member has up to 30 (in the past, 90) seconds to report a trade and anecdotal evidence suggests

that some dealers were/are using this leeway to its greatest extent. Since this practice was not uniform across

dealers and across time, the sequencing can be suspect. And the sequencing across exchanges may be unreliable

over very short time intervals: a trade on one exchange followed (and time-stamped to the same second as) a

trade in the same stock on a different exchange, may not in fact have occurred in that order.

While the consolidated tape feed (which we see on TAQ) is probably the best source of data available, we

may not be seeing the trades in the order in which they occurred, and the emergence and further development

of alternative networks on which to trade the same stocks makes the issue of market microstructure noise

in the data an increasing, not decreasing, one. ECNs represent over 30% of Nasdaq trading volume and are

increasing their market share in NYSE-listed issues as well (see e.g., Barclay, Hendershott, and McCormick

(2003)). Clearly, the decentralization of trading, combined with the increased frequency of trading, create

challenges for the data collection which ultimately affect the estimation of a quantity as basic as the daily

integrated volatility of the price. So there are reasons to believe that the issue of controlling for market

microstructure noise in high frequency financial econometrics will be with us for some time.
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Appendix: Proofs

A Proof of Lemma 1

First,
n−JX
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E

⎛⎝Ã nX
i=0

(−ci+J + ci)�ti

!2
|X
⎞⎠ = Var(

nX
i=0

(−ci+J + ci)�ti |X)

≤ E�2

⎛⎝X
i

(−ci+J + ci)
2 + 2

X
l≥1

ρl|
X
i

(−ci+J + ci)(−ci+J+l + ci+l)|
⎞⎠

≤ E�2
X
i

(−ci+J + ci)
2(1 + 2

X
l≥1

ρl)

≤ 4J [X,X](J)T E�2(1 + 2ρ/(1− ρ)) (A.1)

where the last two transitions follow by the Cauchy-Schwarz Inequality. The lemma follows by the Markov
inequality. This finishes the proof.

B Proof of Proposition 1

By (4.7),
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where the second to last transition is due to the Cauchy-Schwarz inequality, and the final one follows from our
moment and mixing assumptions, again in view of Theorem A.6 (p. 278) of Hall and Heyde (1980). Under
(4.5) and by tedious calculation, one obtains that the r.h.s. of (B.1) is no larger than the order O(J/n). (In
fact, this is the exact order under the condition (4.13) below.) Thus

noise term = −2 1
K
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n̄K
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whence, finally,

K

n1/2
(noise term− E [noise term]) = −2 1√

n
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�ti�ti+K + 2
1√
n

n−JX
i=0
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L−→ ξZnoise (B.2)

as n→∞, where Znoise is standard normal, by the same methods as in Chapter 5 of Hall and Heyde (1980)
(we here have a triangular array of sums, but the arguments go through nonetheless). In the case where both
J and K go to infinity with n, standard computations show that ξ2 = ξ2∞. In the case where J does not go
to infinity (the m-dependent case, say),

ξ2 = ξ2∞ + 8
∞X

i=−∞
Cov(�ti−J , �ti+J ) + 8

∞X
i=−∞

Cum(�t0 , �ti , �tJ , �ti+J ),

in obvious notation.

C Proof of Proposition 7

Consider first the behavior of the [X, �](K) term. The conditional covariance behaves as follows:
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For the final summation in (C.1), note that this is a telescope sum, of the form (where a and b depend on J ,
K, and l, and where one can take a ≤ b)
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since hX,Xi0 = 0. Specifically, it is easy to see that a = max(0, l) while b = min(l + J,K). Thus
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At the same time,
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where
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Finally,
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As before,
Cov(�2t0 , �

2
tl
) = 2γ(l)2 +Cum(�t0 , �t0 , �tl , �tl).

Following (6.9) and (C.3)-(C.5), we obtain the combined expression given in equation (6.23). Note that in the
special case of model (3.3), with Gaussian U and V , the fourth cumulant above is zero, and γ(l) is given by
(6.24).
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Descriptive Statistics 3M AIG Intel Microsoft

Transactions

Average number of transactions per day 2, 820 3, 435 13, 018 14, 299
Average time between transactions (seconds) 8.3 6.8 1.8 1.6

Min log-return from transactions −0.019 −0.028 −0.044 −0.083
Max log-return 0.019 0.028 0.044 0.082

Average daily first order autocorrelation −0.41 −0.40 −0.60 −0.63
Average daily second order autocorrelation 0.017 0.08 0.21 0.25
Average daily third order autocorrelation 0.009 −0.01 −0.12 −0.17

Quotes

Average number of quote revisions per day 12, 824 13, 507 22, 275 22, 661
Average time between quote revisions 1.8 1.7 1.1 1.0
Min log-return from quote revisions −0.031 −0.044 −0.016 −0.013

Max log-return 0.034 0.044 0.016 0.013
Average daily first order autocorrelation −0.49 −0.49 −0.24 −0.23
Average daily second order autocorrelation 0.001 0.001 0.07 0.02
Average daily third order autocorrelation 0.005 0.004 0.03 0.02

Table 1: Descriptive Statistics

For the purpose of counting transactions, only transactions leading to a price change are counted. Identical quotes are
counted as a single one when reporting the number of quote revisions. Log-returns from quotes are computed using
a bid-ask midpoint, weighted by the respective depth of the two sides. Autocorrelations of log-returns are reported
in transaction time and quote time, respectively. Averages are computed over the last ten trading days in April 2004
(April 19-23 and 26-30). Minima and maxima are computed over the full ten day sample. All descriptive statistics for
the transactions data are reported prior to any data processing, except for the removal of obvious data errors such as
prices or quotes reported as zero. The estimates to be computed in the rest of the paper from transaction prices are
based on data cleaned to remove any price “bounceback”, defined as a price jump of size greater than a cutoff of 1%,
immediately followed by a jump of equal magnitude but opposite sign (see Section 7.5 below). The raw quotes data are
pre-processed to remove any sets of quotes whose bid or ask price deviate from the closest transaction price recorded
by more than 5% (except in instances where the transaction price itself moves by that amount). The data are from
the TAQ database.
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Autocorrelation Order Constant Avg Time Between Transactions R2

2 0.25 −0.015 0.35
(8.0) (−3.9)

3 −0.16 0.012 0.39
(−6.5) (4.2)

4 0.11 −0.009 0.46
(7.1) (−4.9)

5 −0.08 0.008 0.49
(−6.7) (5.2)

Table 2: Regressions of Higher Order Autocorrelations on Stock Liquidity

This table reports the results of cross-sectional OLS regressions of the autocorrelation coefficients of order 2-5 on the
average time between transactions used as a measure of the liquidity of the stock, for the 30 DJIA stocks. These
autocorrelation coefficients would be zero if the noise term were serially uncorrelated. The autocorrelation coefficients
are computed for each stock as the average of the daily autocorrelations over the last ten trading days in April 2004.
t-statistics are in parentheses.
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Figure 2: This figure shows a regression of lnRV against lnn, plotted in log-log scale. Each data point in
the plot represents a triplet (one stock, one day,j) from the 30 DJIA stocks, the last 10 trading days in April
2004, and j = 1 or 2 depending upon whether all the observations are used on one out of two. For ease of
interpretation, the sample size n on the x-axis is translated into an average sampling interval on the basis of
1 trading day = 6.5 hours = 23, 400 one-second time intervals.
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Figure 3: This figure describes the construction of the TSRV estimator.
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Figure 4: Log-return autocorrelogram from transactions on the stocks of American International Group, Inc.
(trading symbol: AIG) and 3M Co. (trading symbol: MMM), last ten trading days in April 2004.
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Figure 5: Log-return autocorrelogram from transactions for Intel (trading symbol: INTC) and Microsoft
(trading symbol: MSFT), last ten trading days in April 2004.
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Figure 6: Log-return autocorrelogram from transactions for Intel and Microsoft, last ten trading days in April
2004, superimposed with the autocorrelogram fitted from the basic iid plus AR(1) model for the noise.
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Figure 8: Comparison of the RV and TSRV estimators for Intel, computed on a daily basis.
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Figure 9: Comparison of the RV and TSRV estimators for Microsoft, computed on a daily basis.
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Figure 10: Comparison of the RV and TSRV estimators for Intel and Microsoft, averaged over the last ten
trading days of April 2004. The left panels demonstrate the dependence of RV as a function of the sparse
sampling interval, while the right panels study the robustness of TSRV with respect to the choice of the
averaging frequency as represented by the number of subgrids K.
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Robustness of TSRV with Time−Dependent Noise for MSFT
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Figure 11: Robustness of the TSRV estimator for Intel and Microsoft over the choice of the two time scales J
(fast) and K (slow), averaged over the last 10 trading days of April 2004.
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Figure 12: Comparison of the TSRV and TSRV estimators for Intel and Microsoft, for each of the last ten
trading days of April 2004.
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Figure 13: Dependence of the RV and TSRV estimators for Intel and Microsoft, averaged over the last ten
trading days of April 2004 on the degree of pre-processing of the raw data. In each panel, the three curves
correspond respectively to the raw data (solid line), the data where immediate price bouncebacks of 1% or more
are eliminated (large dashes) and the data where immediate price bouncebacks of 0.1% or more are eliminated
(short dashes). In the case of TSRV, the results for the raw data and the elimination of 1% bouncebacks are
virtually indistinguishable.
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