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I. Introduction

The purpose of this paper is to examine empirically the determinants of

the cyclical variability of manufacturing investment. The prevailing "neo-

classical" theory of investment developed by Jorgenson (1963). and extended by

Hall and Jorgenson (1961) • Eisner and Nadiri (1968) • and Pischoff (1971) among

others, does not provide a completely satisfactory explanation of the deter-

minants of business investment. The dissatisfaction with the estimated neo-

classical investment equations is not based on the "fit" of these equations or

on shifts in these equations; rather, the problem arises from the difficulty

of interpreting the estimated distributed lags. Are we to interpret these

distributed lags as expectational lags, as delivery lags, or perhaps, more

likely, as some convolution of expectatioual and delivery lags?

An alternative approach to the estimation of investment equations uses

the q theory of investment Tobin (1969) which is based on the cost of adjust-

ment literature developed by Eisner and Strotz (1963), Lucas (1967a, b). Gould

(1968). and Treadway (1969). fly explicitly modeling the costs of adjustment,

which give rise to distributed lagged responses of investment to various

shocks, we are led to a clearer distinction between the delivery and/or

adjustment lags on the one hand and expectational lags on the other hand. In

the estimated q model, the effects of all lagged variables on the expectations

of relevant future variables are captured by q. The effects of delivery lags

on investment would appear as a relation between investment and lagged expec-

tations of q.

Although the q model appears attractive because it distinguishes delivery

lags from expectational lags, its empirical performance has not been that



—2—

impressive. Studies which regress investment on q [von Furstenberg (1977)

Summers (1981), Blanchard—Wyplosz (1981)] typically find that q does not

explain a large part of the variation in investment and that the unexplained

movement in q is highly serially correlated. However, these studies used

average q (the value of the firm divided by the replacement cost of its capi-

tal) rather than marginal q (the valuation of an additional unit of capital

relative to the cost of this capital). The advantage of using average q is

that it is based on market value data and relies on the market to calculate

the relevant expectations. The disadvantage1 of course, is that in situations

in which average q and marginal q differ, it is marginal q which is the

relevant determinant of investment.

In this paper we study the relation between marginal q and investment.

Because marginal q is not directly observable from asset market data, we must

construct a series for marginal q before relating investment to marginal q.

The construction of the marginal q series is a nontrivial task but provides us

with several interesting results, even before we relate marginal q to invest-

ment. There are two major problems involved in computing marginal q. The

first problem is a standard conceptual question about the appropriate defini-

tions of the cost of capital and marginal profit; we consider alternative sets

of assumptions about goods markets and financial markets and calculate a mar-

ginal q series for each set of assumptions. The second major problem is

technical: we have to compute the expectation of a present value of a stream

of marginal profits. Since we treat as random the one—period discount fac-

tors, the calculation requires the computations of the sun of expected values

of products of random variables. A simp1e approach to this problem would be

to linearize the sum of the products of random variables and then calculate
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its expected value. however, this linearization would not capture the effects

of any second—order (or higher) moments, Because we thought that certain

co;A.1a11ccs might have important effects on marginal . ecided to use a

quadratic rather than a linear approximation.

As mentioned above, the calculation of q provides interesting results

quite apart from any estimated relation between q and investment. The first

result is technical but of some importance for future work. We find that

there is a negligible difference between the linear and quadratic approxima-

tion to q. That is, taking account of the relevant covariances has very lit—

tie effect on the calculation of q. The other two major results are substan-

tive. We find that the cyclical movement in q is due less to movements in the

marginal profits of capital than to movements in the cost of capital. This

result is surprising in light of the fact that investment equations typically

derive more explanatory power from output or accelerator effects than from

cost of capital effects. The final result from the calculation of marginal q

is that the cost of capital component of q and the marginal profit component

arc highly positively correlated.

After constructing the marginal q series, we then investigate the rela-

tion between investment and marginal q. Although regressions of investment on

q are unlikely to be structural relations, they are a convenient way of sum-

marizing sample evidence. The main finding is that, as in the studies cited

above, q is generally a significant explanator of investment but leaves unex-

plained a large, serially correlated fraction of investment. Since our find-

ings are so similar to the results obtained relating investment to average q,

we find little support for the view that the low explanatory power of average

q is due to the fact that average q is simply a poor proxy for the
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theoretically more appealing marginal q. We find that output and profit vari-

ables still enter significantly when added to our investment equations. The

uniformity of results across our different sets of assumptions leads us to

conclude that our data are not sympathetic to the basic restrictions imposed

by the q theory, even extended to allow for — simple — delivery lags. \Vhether

the problem comes from the assumptions implicit in aggregation, the assumption

of homogeneous capital or the assumption of perfect capital markets is a ques-

tion left for future research.

In section II we develop a model of the optimal investment behavior of a

firm and present an expression for marginal q. We also discuss various

approximations to marginal q. After describing the construction of the data

in section III, we briefly discuss in section IV the estimation of the vector

autoregressions used for forecasting the cost of capital and the marginal pro-

fitability of capital. In section V we calculate marginal q under various

alternative sets of assumptions. We compare the linear and quadratic approxi-

mations to marginal q. and then compare the relative contribution of the cost

of capital variation and the marginal profit variation to the cyclical varia-

tions in q. After discussing the observed correlation of the two major com-

ponents of q. we then present the standard errors of estimates of q. In sec-

tion VI, we examine the empirical relation between investment and our con-

structed series for marginal q. Concluding remarks are presented in section

VII.

II. The Model

Let 7tt(KtiI) be the maximized value of the net cash flow of a firm in

period U where is the stock of physical capital and is rate of gross
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investment in physical capital. The variable factors of production have

already been "maximized out" in specifying If the firm pays out

its net cash flow to its owners each period, then the ex post rate of return,

R. to the firm's owners during period t is

(l+R)
+ nt(Kt.It)]/Vt (1)

where Vt is the value of the firm at the beginning of period t.

Let denote the set of information available at the beginning of

period t. Suppose that Vt is contained in but that V41 and are not

contained in t—l• Taking expectations on both sides of (1) conditional on

we obtain

EIVt+i + nt(Kt.It))I0t_i1/V = 1 + E(Rt ?it...l) a 1 + RS (2)

where Re is defined as the ex ante rate of return. This ex ante rate of

return is known as of the beginning of t but is stochastic as of earlier

periods. Solving equation (2) recursively forward and using iterated expecta-

tions yields

Vt = E(!En(1+Rt+*)']nt+i(Kt+..I+.) t—1

We assume that the fin makes its investment decisions so as to maximize

V. In choosing the optimal rate of investment, we suppose that the firm

takes the joint conditional distribution of the sequence of discount factors

• as given.' The firm maximizes Vt subject to the capital

1. This is a plausible assumption. Firms are justified to do so, however,
under the fairly restrictive assumption of multiplicative uncertainty.
Another approach which would not lead to this difficulty would be to use a
consumption based valuation (Breeden [1979]):

.U'(C .)
= E[S y'

U'(C) iI+iIfli] (*)
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accumulation condition

= (1—o)1 + It
The optimal rate of investment is such that a snail change in I will not

change the expected present value of net cash flow. That is, the marginal

cost of investment must be equal to the expected present value of marginal

profits to capital.

where = E( Eu (Sb)

j=O i=O t+j

Following the adjustment cost literature developed by Eisne: hd Strotz

(1963), Lucas (1967a, b). Gould (1968) and Treadway (1969), we assume that

alit 8271t —ott
C 0 and

oi2
< 0. That is, the marginal cost of investment,

aI
is a

t

positive and increasing function of I so that (Sa) implies that investment is

an increasing function of q.

For expositional clarity it will be useful to define

(1+fl+*Y'(1_b) as the ex—ante one—period discount factor and

11tj (1_5)1ar as the marginal profit of capital in period t4-j. There—

t+j

fore, equation (5b) can be written as

= E[q'Ifl_1] (6a)

S j
=

. ! Dt+1Mt+J (Cb)
j=O s=O

We wanted our study to be easily comparable to other work on investment
and decided to use a standard cost of capital variable. The methods used
in this paper could be applied to (*) also. (Such an application would
require a specification of the utility function and an appropriate measure
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From (6) it is clear that the calculation of requires the computation of

expectations of long products of random variables. In this paper we present a

procedure for calculating a series which is an approximation to in (6a). A

very simple approximation procedure would be simply to linearize cl*. How-

ever, this linear approximation would ignore all second—order (and higher

order) moments. Since we are interested in the effect of the covariance of

the discount factor and the marginal profit, for example, we will use a qua-

dratic approximation. For expositional reasons, we derive the linear approx-

imation to in the text, but present the derivation of the quadratic approx-

imation in Appendix A.

We linearize around 3t+i = and H. = N. i = 0.1,2... where and

ii are the sample means of and U respectively:

q + M(l—pY1 i(I3 — ÷ pJl(p — id) (7a)

j=O j=O

where q = (l-3r1 (7b)

In order to calculate we must calculate expectations of both sides of (7a)

conditional on This calculation requires a stochastic specification of

and Recall that is the ex—ante one—period discount factor

Let =
(1+nY1i1—6) be the ex—post one—period

discount factor. We adopt the following stochastic specification: and

are each generated as linear combinations of the elements of some observable

vector which evolves according to a vector autoregression. Formally, we

suppose that

of consumption.)
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= b'Z (8a)

Mt = a'Z (Sb)

where a and b are vectors of known constants and

— z = A(Z1_z) + c ; E(€) = 0 (9)

Iifts
E(ce ) = 0 if t # s

The assumption in (9) that evolves according to a first—order process is

not restrictive. The autoregression in (9) could be the companion form of a

higher order vector autoregression; in this case many of the rows of A

correspond to identities and many elements of are identically zero.

This stochastic specification is introduced in order to calculate the

expectation of (7a) conditional on —1• Since = E(PtI!...i) it follows

from (8a) and (9) that

—
P

= bA(Z 1 — z) ;
= b'Z (10)

Using (8b). (9) and (10), the conditional expectations of the terms on the

right hand side of (7a) are easily calculated

E(I3+. — pIfl1) = b'A34iZt 1 — z) (ha)

E(M+. — iUt_1) = a'A3(Zt_i — Z) (lib)

Using (lla,b) we can calculate the expectation of (la) conditional on

q + L(p) + L(M) (12a)

= M(1_Y'b'(I_AY'A(z 1
— (12b)

L(M) = a'(I_AiiY'A(Z1 — z) (lZc)

The term L(j3) in the linear approximation to captures the first—order

effects on of variability in the cost• of capital. It is a weighted sum of

expected deviations of cx ante discount factors (which in this case is the



—9—

same as expected deviations of cx post discount factors) from their mean, with

exponentially decreasing weights.

Similarly, LUI) captures the first—order effects on of variability in

the marginal profit of capital. It is a weighted sun of expected deviations

of marginal profits from their mean. The weights decline geometrically at the

sane rate that the weights in L(13) decline.

In Appendix A we derive expressions for the quadratic terms OU.P) and

Q(jl,M) which capture the effects of the conditional covariances between dif-

ferent es ante discount factors, and between cx ante discount factors and mar-

ginal profits, respectively. Tbese covariances are conditional covariances

around unconditional means; they depend on and therefore move through

time. Note that since is linear in Mt+i the quadratic term Q(M.M) is

identically zero.

III. The Data

In this section we describe the construction and use of the economic time

series used in the construction of several different time series for \?e

use quarterly data for aggregate U.S. manufacturing 1948:2 to 1979:3 and fit

this data to a 4—th order vector autoregression. Thus, in the first order

system in equation (9). Z' = (Z*tt. Z*_1. Z*'2, Z*'3) where con-

tains either 5 variables or 7 variables depending on how much information we

put in the information set !. The definition and construction of the indivi-

dual elements of are discussed below.



— 10 —

The Discount Factor

The first two elements of Z are used in the measurement of the cx post

discount factor 3. To motivate the definitions of and we observe

that

1 — lt — 8 (13)

where is the real ex post rate of return to the owners of the finn. Recog-

nizing that firms are financed by both debt and equity, we let and

be the ex post equity and debt discount factors, respectively:

1 —
REt

+ mt'mt — (14a)

a 1 — (1_t)RDt + mtwt —
8t (14b)

The definitions of and reflect the fact that interest payments on

debt are tax deductible and that the depreciation rate is not constant.

is the ex post rate of return on equity. calculated as the stint of the dividend

price ratio and the rate of capital gain on the Sep 400. R.D is the rate of

return on debt, measured by the rate of return on commercial paper.* is the

corporate income tax rate. is the physical depreciation rate computed as a

weighted average of the depreciation rates of structures and equipment for

U.S. manufacturing capital stock. 'mt is the rate of price inflation of

manufactured goods, measured by the rate of change of the wholesale price

index.

The cx post discount factor is a weighted average of the ex post equity

and debt discount factors

* A better measure would be the weighted average of the one—period rates of

return on private bonds of different maturities, with weights
corresponding to the proportions of debt of different maturities in total

debt.
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= aZ*1 + (1—a)Z*2 (15)

where a is the share of equity finance, which has decreased over the sample

period. iVe have chosen to examine the behavior of under two alternative

values for a (a = 0.5 and a = 0.3) to determine whether the computation of

is sensitive to the value chosen for a.

Marginal Profit

In order to measure the marginal profit of capital we need to make some

assumptions about technology and about the demand curves facing manufacturing

firms. We assume that capital is homogeneous and any technological progress

is disembodied so that the marginal profit does not depend on the dates at

which capital was installed. We also assume that the production function is

linearly homogeneous in capital, investment, and the variable factors of pro-

duct ion.

We have chosen to make two alternative assumptions about the demand

curves facing manufacturing firms. Our first assumption is that manufacturing

firms are perfectly competitive. That is. they are price—takers and face no

quantity constants in output markets or factor markets. Under these assump-

tions the marginal profit of capital M (u for unconstrained) is simply equal

to the average profit of capital.2 In this case. is computed as

11 = — (16)

2. Suppose that as in Lucas (1967a) nU.I) = max(pF(K,L) — wL — c(I,K)) where

F( ) is linearly homogeneous in K and L andLc( ) is linearly homogeneous
in I and . Observe from Euler's theorem that ,t(K,I) =

PFEUC.L)JC
— c(I,K)

and that = F(K.L) — Øj. Our statement that the marginal profit of
capital is equal 'to the average product of capital (pF(K,L) — wL)/K is

true only if ac/ax is zero. However this restriction is not compatible
with the assumption that the production—cum—adjustment cost function is
linearly homogeneous in capital, investment and the variable factors of
production. Nonetheless we ignore the cyclical variations in ac/ax.
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where
(l_tt)(WtLt/PKtKt)

(16a)

(l_tt)(PThtYt/PKtKt)
(16b)

and '' Kt. and WtLt are the output, capital stock, and nominal wage bill,

respectively, of the manufacturing sector. is the nominal price of capi-

tal.

The alternative assumption is that firms may have faced binding output

constraints during the sample period. In this case, the marginal profit of

capital is equal to wage savings accruing to an additional unit of capital,

which is equal to the wage rate multiplied by the marginal rate of substitu-

tion of labor for capital. In general, calculations of a series of marginal

profits would require a complete specification of technology. Here we assume

that the production function is additively separable in capital and labor on

the one band and other factors of production on the other hand. Futhermore we

suppose that the elasticity of substitution between capital and labor, denoted.

by a, is constant. In this case, marginal rate of substitution of labor for

1

capital is proportional to (L/(Pirt/Pt)Kt)°. Therefore, the after—tax margi-

nal profit of capital, Mc(0) can, except for a constant of proportionality, be

written as

Vt L
=

Z*3t(a) (l_tt)(_&_)((p,pt)g)C
(17)

where W is the nominal wage rate and is the number of person—hours

employed.3

3. Observe that when a 1, M(l) (ir) (WtLtIPK K). which is equal to the

value of in the unconstrained case (16a). tilowever, in our work,
these two series are not identically equal because in (16a) we use data on
the nominal wage bill WtLt obtained from Table 2.1 of the National Income
and Product Accounts: Wage and Salary Disbursements—Manufacturing. In
order to compute (17), we need separate data on and Lt. in general.
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Figures c—i to C—4 In Appendix C present the time series for . M and

M. The ex post discount factor has no clear time trend but both and

have strong trends. Since our focus is on the cyclical behavior of Mt. and

we will detrend all variables first. Therefore, it should be noted that

this paper has nothing to say about trend movements or about the level of

Additional Elements of

In addition to I = 1,2.3.4, defined above, the vector includes

the following three variables

'mtnt (iSa)

a q (lSb)

z*7 (18c)

where q is the average valuation of capital based on a series constructed by

von Furstenberg (1977) from asset market data and is the ratio of

investment to the capital stock for the manufacturing sector. We do not use

von Furstenberg's q series because his series covers only the period 1953:1 to

1976:4. However, we followed his procedure to construct a similar average q

series for the period 1947:2 to 1979:3. For the time period for which we have

data both on von Furstenberg's q and our constructed q the correlation

between the two series is .971.

The variables Z*5, Z6 and are included in the vector autoregres—

These data are obtained from U.S. Employment and Earnings fltilletin 1312—li
from the U.S. Department of Labor using the series for: (1) production—

worker average weekly hours — manufacturing; (2) production workers —

manufacturing; and (3) production—worker average hourly earnings. As it
turns out, the nominal wage bill from the National Income and Product
Accounts is not precisely equal to the product of the series (1). (2) and
(3) obtained from Bulletin 1312—li. Thus our series for and !t(i) are
not equal to each other.
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sions because they nay help predict t+i and The work of Modigliani and

Shiller (1973) suggests that both lagged rates of inflation and lagged rates

of interest help predict future rates of interest. Also, qF and I/K are

likely to contain information which will help prt1ct marginal profits and

interest rates. To coi.pi eie our specification of we must specify a and b,

the vectors of known constants in (8a,b). It follows immediately from (15)

that = b'Zt where

b'[a 1—a 0 0'''O] (19)

As for the vector a in the relation Mt = a'Zt. it follows immediately from

(16) and (17) that

a' = [0 0 —1 1 0 0 0] if M = M (20a)

a' = (0 0 1 0 0 0 0] if Mt = (2Gb)

IV. Estimation of the VAR's

In order to calculate the quadratic approximation to we must estimate

the coefficient matrix A and the disturbance covariance matrix I in (9). For

each definition of marginal profit, we estimate two alternative vector autore-

gressions corresponding to two different information sets: !I Cs for small)

and (L for large). The large information set consists of the 28 vari-

ables i = 1,...,7; j = 1,2,3,4. In this case, the vector in (9)

is a 28 x 1 vector, A is a 28 x 28 matrix in which only the first 7 rows are

non—trivial, and I is a 28 x 28 matrix which is identically zero except for

the 7 x 7 matrix in the upper left corner.

Alternatively, we use the small information set which consists of

the 20 variables i = 1,. ..5; j = 1,2,3,4. In this case, of course,
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is 20 x 1, A is 70 x 20 with only 5 non—trivial rows and I is 20 x 20 with

nonzero elements only in the S x 5 matrix in the upper left corner. The rea-

son for excluding Z"L and Z —. from the information set is that we
p 3 7•tJ

want to compare our constructed series to an asset—market—based q series

(our q series). We also want to characterize the relation of our constructed

series to the investment capital ratio. Therefore, including q and

in the information set would obscure the comparison between the two q series.

A detailed discussion of the estimated parameters in the two vector

autoregressions would be of little interest; we simply note here that all of

the eigcnvalues of A lie well inside the unit circle. (All variables are

first exponentially detrended.)

Table I in the text reports the It2 statistics for each of the equations

for each of six vector autoregressions. Three VAil's were run for each infor-

mation set and For each information set we ran 3 different VAt's

corresponding to three different values for as explained in Table I (these

three different definitions of Z3 correspond to three different definitions of

the marginal profit of capital: it, ?i with a = 0.5, and with a 1.0).

The two results worth noting are the consistently low It2 for Z1, the ex post

equity discount factor, and the consistently high It2 for Z2, the ex post debt

discount factor. The low fl2 for is to be expected given the large move-

ments in stock prices and the resulting large rates of capital gain or loss.

V. Calculation and Decomposition of Marginal g

In this section we use the estimated parameters of the vector autoregres—



Table 1

Vector Autoregressions: R2

1948:2 to 1979:3

5 Variables in Z

MU }f:o = 0.5 = 1.0
.073 .058 .046 .060

.656 .662 .675 .697

Z3
.894 .849 .903 .899

.890 .885 .884 .897

.642 .662 .675 .695

- - - .966

— .958

ex post equity discount factor

ex post debt discount factor

after—tax wage bill divided by capital, if M = MU

after—tax real wage rate multiplied by marginal rate of substitution,
if M = Mc

after—tax output divided by capital

rate of wholesale price inflation

value of average q

ratio of investment to capital

Dependent Variable 7 Variables in Z

NC:o = 0.5 Mc 1.0

.050 .055

.678 .697

.858 .904

.886 .887

.677 .699

.965 .966

.956 .957

z4

z5

z6

z7
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sions to calculate 12 different time series for c1. There are 12 different

series for because we use 2 alternative assumptions for the share of equity

in total financing (a = 0.5. a = 0.3). 3 alternative assumptions for the cal-

culation of the marginal profit of capital (PI, M for a
= 0.5 and for

a = 1.0) and two alternative information sets (Q5 QL) For each of these

twelve q series we ask the following questions. Are the conditional covari

ance effects in the quadratic terms Q(,) and Q(i3.?I) empirically important?

how much of the cyclical variability in is due to variability in the cost

of capital and how much is due to variability in the marginal profit of capi-

tal? Are the variations in ci resulting from variation in the ex ante cost of

capital variability positively or negatively correlated with the variations in

resulting from variability in expected marginal profits?

The Empirical Importance of the Quadratic Terms

A comparison of the fourth and fifth colunns of Table 2 reveals that the

quadratic terms Q(1.I) and Q(p.M) are not very important empirically. For

each of the 12 calculated series for the standard deviation of the linear

approximation to is roughly equal to the standard deviation of the qua-

dratic approximation to that is. the inclusion of the quadratic terms

Q(j34) and Q(flJl) has hardly any effect at all on the standard deviation of

Furthermore, the last column of Table 2 reveals the nearly perfect corre-

lation between linear q and quadratic q. For a more detailed examination of

the role of the quadratic terms, we examine a particular series: a = 0.5.

= M. and fl For this series, the standard deviations of Q(f34J) and

Q(3,M) are .0026 and .0036 respectively; their correlation is .400 so that the

standard deviation of their sum is .0052, which is equal to 5.1% of the stan-

dard deviation of the full quadratic approximation. The correlation between



Table 2

Standard Deviations
and Correlations

L() p Linear q Quadratic q p*

Q =. QS

M =

a = 0.5 .0847 .0494 .913 .1314 .1348 .998
a = 0.3 .0961 .0540 .933 .1478 .1515 .998

H = MC

o — a = 0.5 .2323 .1497 .948 .3773 .3839 .999—
a = 0.3 .2769 .1596 .926 .4289 .4373 .999

o — 1 0{a
= 0.5 .0757 .0458 .968 .1206 .1224 .998

a = 0.3 .0845 .0500 .970 .1335 .1354 .999
U

N = MU

a = 0.5 .0643 .0585 .430 .1040 .1030 .999
a = 0.3 .0837 .0659 .847 .1438 .1468 .998

M = MC

— 5{a = 0.5 .1950 .1323 .918 .3208 .3164 .999—
a = 0.3 .2624 .1377 .778 .3795 .3782 .999

— 1 0{a
= 0.5 .0571 .0369 .733 .0878 .0869 .999— a = 0.3 .0699 .0391 .921 .1070 .1071 .999

Linear q = q + L() + L(M)

Quadratic q = q + L(S) + L(M) + Q(8,) + Q(a,M)

p = Correlation tL(S), L(M)]

0* = Correlation Ilinear q, quadratic q)
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(Q(p,p) + Q(,M)) and (L(p) + LU!)) is —.20.

The result that the quadratic approximation to does not differ sub-

stantially from the linear approximation to is important for future

research on investment and perhaps on asset prices in general. To be feasi-

ble, efficient methods of estimation of models under rational expectations

require these models to be linear or linearized. Our findings above suggest

that although the initial specification of is highly nonlinear, a linear

approximation appears to be acceptable. in the remainder of this section, we

consider the linear approxinat...r. q + L(j3) + L(M) and refer to it as linear

The Contributions of 13 and N to Variability of q

Our calculated q series exhibit variation over time because both the

discount factor 3 and the marginal profit M vary over time. Based on the fact

that most empirical studies of investment find a strong relation between

investment and some measure of output or profit, but find a weaker relation-

ship between investment and the cost of capital, we expected to find most of

the variability in q would be due to variability in M rather than variability

in . As explained below, we found the opposite to be true.

Recall that L(D) is the linear approxir't ion to the q series based on the

assumption that only varies over time and that P1 remains constant. Simi-

larly LU!) is the linear approximation to the q series based on the assumption

that the cost of capital f3 remains constant and only the marginal profit M

varies over time. The standard deviations of L(D) and LU!) are presented in

columns one and two, respectively, of Table 2. In every one of the 12 cases

in Table 2, we find that the standard deviation of L() exceeds the standard
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of LU!); often the difference is quite substantial. In general, we find that

calculating the q series under the assumption that is constant will reduce

the standard deviation of the q series by a factor of 2 or 3. This result

contrasts sharply with our a priori beliefs expressed above.

The finding that the standard deviation of q is reduced by a factor of 2

or 3 when we suppress the variation in the discount factor may shed some light

on volatility tests of asset pricing models. These volatility tests are based

on the assumption that, for instance, stock prices are equal to the expected

present value of dividends. Using this assumption, and the assumption that

the discount factor is constant, one derives a relation between the variabil-

ity of dividends and the variability of stock prices. Typically, actual stock

prices exhibit much greater variability than implied by variability in divi-

dends, holding the discount factor constant. Our findings indicate that, in a

different context, constraining the discount factor to be constant leads one

to understate the standard deviation of the expected present value series by a

factor of 2 or 3. That is, the assumption of a constant discount factor is

far from innocuous.

The correlation of L() and L(M) is presented in the third column of

Table 2. In every one of the 12 cases presented in Table 2, L(p) and L(M)

have a positive correlation, and in 10 of the 12 cases the correlation exceeds

.75. Thus we find that L(I3). L(M) and by implication q, move cyclically

together. That is, periods in which the sequence of expected marginal pro-

ducts is high tend to be periods in which the sequence of expected discount

factors is high, or equivalently, periods in which the sequence of eipected

costs of capital is low. As will be showi below, this does not imply that the

one—period expected discount factor moves cyclically with L(iI). Rather it



I 

T
ab

le
 3

 

D
a
t
e
 

z
l
t
 

E
(
6
1
j
t
—
1
)
 

E
(
S
+
i
I
t
_
1
)
 
E
c
+
2
I
t
_
1
)
 
E
(
+
9
I
t
_
1
)
 

L
(
S
)
 

7
3
—
1
 

.
0
7
5
 

—
.
0
0
3
 

.
0
3
6
 

—
.
0
0
7
 

.
0
1
7
 

.
0
1
3
 

.
0
0
8
 

.
1
0
3
 

2
 

.
0
5
7
 

.
0
0
2
 

.0
29

 
.0

32
 

.
0
0
5
 

—
.
0
0
3
 

.
0
0
3
 

.
0
9
9
 

3
 

—
.
0
3
0
 

—
.
0
0
6
 

—
.
0
1
8
 

.
0
1
4
 

—
.
0
0
2
 

.
0
1
5
 

.
0
0
1
 

.
0
5
3
 

4
 

.
1
2
2
 

—
.
0
0
5
 

.
0
5
9
 

—
.
0
1
6
 

.
0
1
1
 

.
0
1
3
 

.
0
0
2
 

.
0
3
9
 

7
4
—
1
 

.
0
6
1
 

.
0
1
3
 

.
0
3
7
 

.
0
3
8
 

.
0
0
5
 

.
0
0
9
 

—
.
0
0
4
 

.
0
2
8
 

2
 

.
1
3
6
 

.
0
3
5
 

.
0
8
5
 

.
0
4
7
 

.
0
0
5
 

.
0
0
5
 

—
.
0
0
6
 

.
0
2
6
 

3
 

.
2
0
6
 

.
0
5
8
 

.
1
3
2
 

.
0
2
4
 

.
0
1
3
 

—
.
0
0
6
 

—
.
0
0
2
 

.
0
0
0
 

4
 

.
0
1
8
 

.
0
4
5
 

.
0
3
2
 

.
0
5
5
 

—
.
0
1
8
 

—
.
0
0
4
 

—
.
0
0
2
 

—
.
0
4
0
 

7
5
—
1
 

—
.
2
1
2
 

.
0
1
6
 

—
.
0
9
8
 

—
.
0
2
9
 

—
.
0
0
3
 

.
0
0
2
 

.
0
0
3
 

—
.
0
6
6
 

N
 =
 
N

" 
;
 

=
 

=
 

0.
5 



— 19 —

implies that the appropriate weighted average of expected discount factors

moves cyclically with L,(M). (Note that since 13 is approximately 0.97, the

relative weight of the first one—period discount factor in the weighted sum

L(p) is approximately equal to 0.03).

Our finding that L(13) exhibits a substantial cyclical variability and is

highly correlated with LU!) is somewhat surprising. One might argue, and we

initially thought, that this finding might be a spurious result which is a

consequence of our vector autoregression approach. Recall that depends,

with weight a, on the expected equity discount factor E(Zitft2t_i). As dis-

cussed earlier, the equation for has essentially no explanatory power;

however, our formulae for q use the point estimates of the right hand side

variable in this equation and these point estimates differ from zero. Thus it

is possible that large realizations of the right hand side variables may indi-

cate —— incorrectly, if the true coefficients are zero —— large movements in

the ax ante discount factors for future periods and therefore large movements

in L(j3).

The suspccted channel for spurious variation in L(p) turns out not to be

important. Table 3 presents iL, various forecasted values of 13, and L() for

the period 1973:1 to 1975:1. This period was characterized by large movements

in Z1, D' and L(13). In particular, the series of sharp declines in the

stock market from 1973:4 to 1974:3 are reflected in large positive deviations

in and in the cx post return t. The positive deviations in Z1 and

generally lead to positive deviations in J3 = E(tlt—1) for the following

quarter. However, the impact of large realizations of on expected discount

factors 9 quarters ahead is very small. More importantly, the large positive

realizations of in this period are not associated with large positive
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deviations of L(p).

To make the point more generally, we observe that over the entire sample

period, the correlation of the cx post rate of return, s_i' with the cx ante

rate of return, 3. is 0.46 and the correlation of _i and L(P) is —0.06.

In addition, the correlation of and L(P)t is only 0.38, indicating that

high values of the one—period ex ante discount factor are only weakly associ-

ated with high values of L(P).

Standard Errors of Estimated

The calculated series L(J3). LU!) and linear q depend on the estimated

coefficient matrix A. Except for an additive constant, each of these series

can be written as

yc'A(I — AY1 (21)

where y is a scalar constant, c is a vector of known constants, and

zt
= — z. (For Lfl), y = M(1—j3). c = b; for LU!), y = j3, c = a; for

linear q,y = 1, c = i?(1—jTY1b + ia). As of the end of period t—l, the vari-

able t in (21) is known. However, the parameter matrix A is not known with

certainty. Treating the non—trivial rows of matrix A as stochastic and using

the covariance matrix of the estimated parameters of A. we can calculate the

variance of the expression in (21). (See Appendix B). Thus we can compute the

standard error of each our calculated values of L(p), LU!) and linear q. For

the case in which M = Mn = L and a = 0.5, we have computed the sample

average of the standard errors of the estimated values for each of the three q

series reported in Table 4.
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Table 4

q series L(p) L(fl) linear q

average standard error 0.070 0.031 0.083

In figures 1—3 we plot q with the associated two standard error band for q

defined by L(j3). L(M), and linear q, respectively. Observe that the standard

error bands tend to widen somewhat at the end of the sample period.

VI. The a Series and Investment

The motivation for the construction and analysis of a series for marginal

q is that it should be the major determinant of the rate of investment. As

explained earlier, equation (Sa) implies that the optimal rate of investment

is an increasing function of q. If in addition we assume that is a

linearly homogeneous function, then the optimal decision rule for investment

can be expressed as a positive relationship between the investment capital

ratio, Tt/Kt. and marginal qy

In Table 5 we present estimates4 of the following relation between It/I:

and marginal q

It/Lt = a(L)(Oq) + 8t (22)

= p(L)e...1 +

4. GLS estimates the following relation:

(I/K) — p(L)(I/K)t...i a(L)(Oq) — p(L)a(L)(Oq)t..1 +

If cl depended on current variables, two simultaneity problems could
occur. could increase investment demand, aggregate demand and affect
some of the determinants of would also, by increasing investment,
increase capital later and thus could decrease anticipated marginal
profits and These problems do not arise under our assumption that
depends only on lagged variables. They do arise for most of the
regressions which have been run using average q.
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Table 5a

Regressions of I/K on Tax—Adjusted q

=

RES variables a = 0.3 a = 0.5

Sq —.0025 —.0051 —.0029 —.0026 —.0062 —.0038
(.0034) (.0034) (.0033) (.0042) (.0042) (.0041)

(Oq) 1 .0080 .0086 .0088 .0105 .0100 .0102—
(.0038) (.0037) (.0037) (.0047) (.0045) (.0045)

(Sq) 2
.0059 .0059 .0054 .0095 .0085 .0078—

(.0033) (.0034) (.0033) (.0042) (.0043) (.0041)

1
.304 .286

(.097) (.098)

—2
.250 .237

(.096) (.095)

z4
.151 .148

(.092) (.094)

(z4—z 1
.595 .562-

(.180) (.181)
.282 .259

(.172) (.171)
.237 .242

(.178) (.180)

p1
1.59 1.49 1.57 1.58 1.48 1.56

(.07) (.08) (.08) (.07) (.08) (.08)

p2
—.66 —.56 —.63 —.65 —.56 —.62
(.07) (.08) (.08) (.07) (.08) (.08)

.96 .96 .96 .96 .96 .96

DW 2.22 2.25 2.26 2.22 2.24 2.25



Table Sb

Regressions of I/K on Tax—Adjusted q

= ç2S

0.3 a= 0.5
hills variables

Oq .0000 —.0024 —.0007 .0000 —.0035 —.0013

(.0034) (.0034) (.0034) (.0039) (.0040) (.0039)
(Bq) 1

.0089 .0084 .0088 .0109 .0097 .0103—
(.0039) (.0038) (.0037) (.0045) (.0044) (.0043)

(Sq) 2
.0071 .0071 .0066 .0089 .0082 .0077—

(.0033) (.0034) (.0033) (.0039) (.0040) (.0038)
.264 .271

(.096) (.098)
.241 .221

(.097) (.097)

z4
.138 .133

(.094) (.096)

(z,—z ) .566 .560
—1

(.181) (.182)
.246 .233

(.174) (.173)
.216 .215

(.182) (.182)

p 1.58 1.48 1.56 1.58 1.49 1.56
1

(.07) (.08) (.08) (.07) (.08) (.08)

p —.65 —.56 —.62 —.65 —.56 —.62
2

(.07) (.09) (.08) (.07) (.08) (.08)

.96 .96 .96 .96 .96 .96

DW 2.25 2.27 2.28 2.24 2.26 2.27
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where is the tax—adjusted price of capital5 which depends on the investment

tax credit, the present value of depreciation deductions and the price of cap-

ital; a(L) and p(L) are distributed lag operators. The specification in (22)

differs from the investment rule in (5a) in three ways: (1) we have included

the tax factor which recognizes that the investment tax credit and depreci-

ation deductions reduce the effective price of new capital goods; (2) we have

allowed for the disturbance term to be serially correlated; (3) we have

included lagged values of Sq on the right hand side. One should not interpret

the lagged values of Sq as representing the effects of delivery lags. How-

ever, we included lagged values to make our investment specification com-

parable to specifications using current and lagged values of marketvalue

based average q. Thus, these regressions should not be viewed as structural

relations but rather as a convenient way of examining sample correlations.

The first and fourth columns of Tables 5a and 5b present the regressions

of I/K on current and lagged for various information sets (0LqS) and

values of a (0.3. 0.5). These 4 columns all lead to the same results.

Although the contemporaneous value of is not a significant explanator of

investment, both and tend to have significant positive effects on

It/Kt.
In all cases, the various q variables leave unexplained a large and

serially correlated residual which is fairly well approximated by a second—

order autoregressive process. Finally, the implied elasticities of I/K with

respect to current and lagged q are roughly 0.1 to 0.3.

5. 6t is defined as [(1_ktttZt)PKt/Pmt]1 where k1 is the investment tax
credit, is the corporate income tax rate and is the present value of
depreciation deductions. is constructed under static expectations;
constructing it under rational expectations did not appear worth the
effort. The last data available for are for 1976:4 and this has
determined our sample period for the regressions in Table 5.
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The results of regressing I/K on our constructed series for marginal q

are remarkably similar to the results obtained using average q measures based

on asset market valuation of firms. The fact that both types of measures of

q, which are constructed in very different manners, leave large serially

correlated residuals in investment suggests that there may be other important

factors which are not captured by q. We chose to consider the output/capital

ratio (measured by Z4) and profit per unit of capital (measured by Z4—Z3).

Tables 5a and 5b present the regressions in which lagged values of Z4 and

(Z4—Z3) are added to the specification in (22). To avoid obvious simultaneity

problems, and because depends only on lagged variables, we did not include

current values of or (74—Z3) . Again, we note that these regressions are

not structural equations but are merely a convenient form in which to present

sample correlations. We find that in all cases, the output or profit variable

is significant. That is, it appears that output or profit has an effect on

investment beyond any effects which work through marginal q.

We return now to the question of delivery lags and the lagged expecta-

tions of q. If a type of capital requires n periods for delivery, then

investment orders at time t would depend on E(q*la1). Investment expen-

ditures at time t would depend on investment orders from time t—n to t, and

thus on E(q* = 0,..., n, not on a

The calculation of E[q*IL3_] is particularly simple for q measured by

L(), LOt) or linear q. Since each of the three series can be written in the

form presented in (21) and since E(tIt_n) E(Zt_i_ZRt_n) =

we obtain

= yc1(I_AI3)1A(Zt_n_Z) (23)
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where y and c are the scalar and vector constants described below equation

(21). We have calculated these lagged expectations of q and have regressed

I/K on them. However, these lagged expectations of q proved much less suc-

cessful than lagged values of q: E(q*Ifl_1) generally had a negative and

often significant coefficient; E(q*Ic_2) and E(qIfl_3) generally had posi-

tive but insignificant coefficients. Further research is required in order to

combine the q theory and delivery lags in an empirically satisfactory manner.

VII. Concluding Remarks

The research reported in this paper can be divided into two parts: first

we calculated and analyzed the properties of series for marginal q calculated

under a variety of assumptions; then we examined the relation between invest-

ment and our various q series. The major finding of the first part of the

paper is that more than half of thc yciical variation (as measured by the

standard devta;ion) of marginal q is accounted for by variation in the ex ante

cost of capital. This finding appears to be rather robust: it holds for each

of our 12 sets of assumptions which are based on alternative information sets,

alternative measures of the marginal profitability of capital and alternative

shares of equity in total financing. As explained earlier, this finding that

variation in discount factors accounts for a substantial fraction of the vari-

ation in a present value series has implications for the variability of asset

prices in general.

Although the first part of the paper succeeded in finding a large contri-

bution of cost of capital variability to the cyclical variability of q, the

link between investment and the cyclical behavior of the cost of capital is

more tenuous because of the relatively poor performance of q in explaining
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investment. There is a long list of potential culprits. The first is aggre-

gation problems. The second is the specification of technology and the

assumption of homogeneity of capital. The third is the assumption of perfect

financial markets and the absence of "liquidity constraints' for firms.

Prosecution and indictments are left for future research.
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Appendix A. Second Order Approximation to q

Collecting the assumptions from the text, we have:

—

Bt+i}Mt+J]

(Z — — ACZ_i — + ; E(c) — 0

E(ec)eO if t+s
t if tea

B •b'E(l) ; Mt — a'Z

E() E(.Ii) —' — (t_1 ...)

q, 8, H are scalar random variables

Z,t are (n x 1) vector random variables.

a, b, A are (nxi), (nxi) and (nxn) respectively.

Define cx post ç as
O[I Et+i}Ht+J.

(Note that is not the

realized value of the cx post rate in period t+i but the value of the

ax ante rate in period t+i.) Take a quadratic approximation to around

a Vi. and M+j — i Vj, where I and are the imconditional means of B

and K, and take expectations condition on nt_i. This gives:

+ t(8) + L(M) + Q(8,B) + Q(M,M) + Q(8,M)

We define and consider each of these e1eents in turn:
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() I jJ+1 a (1—I)
iso

a
(2) LCB) I 6V68÷ £(8, —

Lao

sri 1
a a ci4Y' i
3—11L0 I

LL4i .1

L(B) — Ru—1f' I E(B+j
—

i—a

— (1—iY1 S V
iso

• (j_,)1 abIA(I — Aa)1 (Z_1 —

a
(3) L(M) I 6q*t/Mt+j E(M+i —

isO

I - Fl•1-Tt -B
t+L

L—O

—
—i+1

L(M)— j B E(M+i_M)

— _i+1 — — smfl(t_AB)'(Z_i ——Ia £
i-a
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(4) Q(8.$) I I + E$t+j — —

iso iso

62q*I68t+j68t+j
— 0 if S

.1

— I iT
kzax(i.j) DO

ti45.5

• i(14Y1 (max(i.5)l) if +

a a

Q(8.B) — (1—i)1 I I i5' t8t+i — —

i—c j—i+1

Consider — — ). It is equal to:

—1) +".+ At+ji)((Z_i — +".+

— !) +...+ t+)(C_i — i)Ahi+l +...+

— !)A'' +...+ —

— ) +...+

Bating that — • 0 Vj > 0 and ECc.jt+j) — 0

Q(B,E) (L4)h{3i + 3 + 33) where:

a a
Si ! z_ — !ys'5 bbtAS+l cz_l —

iso 3.i+1
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— — 1.

32 E b' I I 1.Ltsu5t b
j.0 jsi+i Lao

33 E —b' I I tA'31 b
1—0 j—j+l

Consider 31. It can be rewritten as:

31 — 8h_1 — 1 A'' bb' I 1.5+1i+l(z_1
—

1—0

— I A1+1 bb' (AB)2(I_A8) '(Zn_i —
iso

Decompose A as A — PAP1 where A is a diagonal matrix containing the

eigenvalues of *. Replacing above gives:

31 — iz_1_!r A11 P1bb1P(Ai)2JP(IAB)1(Zt_l)

Define D S P'bb'P — (d15)13
and Si as the matrix in brackets in the

expression for 31, Si — (S1)j. Note that:

S1 — d3X1A82(L
— and

—2 —1 ——1 —

31 • 8 (Z_1 — Z)'P '(51)? (t—AB) (Z1 — Z)
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Consider 32. It can be rewritten as:

.72 — b' I AtZA b
1—0 i—i j—i+i

— b' A1ZA'11 (I—s'Y" b
1—0 i—i

— (i—jr1 b' CAI)uzAtl+lcI_At;)-1 b
1—0

Decotposjng A as and replacing above gins:.

32— (L—1Y' b'P[I (AThtP_uzP_1A1+1Jp1(I_Auj)_1 b

L_L_o

Define F (P1EP1') a and $2 as the a:rix in brackets in the

expression for 32, 52 — Note that:

52 a FA(l — and

32 — (14)a1 b'P(s2)p'(I—A'i)' b

Consider 33. It can be revrjtten as:
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a a

33 — I } b
i—o j—i+i

b

— a 12 * /6)1(5) Q(M,M) E q t+i6t+j
— ii)

iso j—o

— 0 Vi,j

Q(M,M) — 0

• a
(6) Q(B,N) — I 62QI6B+i6H+j E(81 —

1—0 5—0

6M — if icj , 0 if i>j
ti-i t+j

• —
Q(8,M) — I I — —

1—0 5—i

Consider E(B+i — — N). It is equal to:

£(b' + A1c + ••'+ Act+jl))((Ztl_i)IAhu— + ...+ c4A')a)

—2) +••+ c+±)((Z_i — !)!Ati+l +...+ ci-5A')a)

— E(b'c+j((Z_i — !)'A'5' + ••• + c5A')a)

0 ECt c' ) • 0 VWotingthatflc (Z.._!)')a0 Yj_ , 1+5.



A- 7

Q(8,M) - Hi + V + 1(3

where

El C (Z —1
— !)' I I A'1 ba'A3 V (Z —

i—c i—i
t

a — i
E25b' I AttAui+ta

i—O 3i t—O

E3E—b' I I V Ek'3a
i—c i—i

Consider El. It can be rewritten as:

El — — 2)' A' ba'A fl (I—ATBY1(Z —1
— 2)

i—c

A11 P'ba'?A

Define C — (P'ba'P) — (C ) and Vas the atrix in brackets in the
ii iii

expression for El above. Note that:

V13 a G3X113(1
— and

ii — cz1 — !)Pmn'(I_A3)1(ZL — I)



• A-B

Consider R2. It can be rewritten as:

V • b' I I I JALLAIi a

t—o i—t i—i

• b' I I ALZALj(I—A1) &
L_O iSt

• (i.j)_i b' I AtLAL t(I_At)i a
Leo

• (j4)1 b' At P_1tP_uI(A8)hlP(I_At a

Lt° J

Recall the definition of F above and define T as the atrix in brackets in

the expression for 1i2:

• y(1 — and

12 • (14)_i b'PTP' (IA'B)t a

Consider 113. It can be rewritten as:



A- 9

E3 — — b'I ! E a
1—0

— — b' (141t(I—SA') a

Collecting all texts allows computation of the quadratic approxization.
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Appendix B

Suppose that can be written as

g(A*)Z
(B—i)

where is a column vector of length kL and g(A*) is a row vector of the same

length (k is the number of variables in the VAR's, 5 or 7; L is the nun1ber of

lags. 4) . Let A* be the column vector of length k2L obtained from the 1± x kL

matrix A in (9) by stacking the transposes of the Ic estimated rows of A.

Observe that the covariance matrix of A* is 0 (Z0Z0)1 where is the

kxk matrix defined in (9) and is the data matrix with ith row equal to Z.

Finally, suppose that g(A) = yc'A(I—Af3)
1 where y is a scalar constant and c'

is a row vector of known constants. Observe that

Og(At) = yc'E(I—ArY' + A—(I—AI)] (13—2)

—1

Recall that in general —c where G is an invertible matrix.
ax ôx

Therefore.

3(J)1 = (l-ArY' (I-A) (B—U

Substituting (B—3) into (P—2) yields

ÔR(At) = yc'(I—Affl
1

(I—Af)' (13—4)

Observe that
aA = e.e' . where e. and e' . are the ith column and jth row,

øa.. i j 1

respectively, of the identity matrix. Therefore,

Og(A*) = yc'(I—Aj3Y1e.e'.(I—AfD1 (B5)

Lett ing



—2

8g(A) — 18g(A) 8g(A) ôg(A*) ______—

8a11 ""'8a1, 8a21 ••

we obtain

8g(A*) = Y(11k0J(IAit)1c) 0 (I—A13Y1 (B—6)aA *

where is the kxk identity matrix.

Now observe that the variance of given Z. is equal to

• SL$Var(A*) Z. Using this fact along with (13—6) and the variance oft 8A* a

AS we obtain

—1'var(yI) = 72c1(I Af')1 1 (I—Ar) c

— —1x Z(I_AP) (Z°Z°)'(I_APY
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