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I. Introduction

The purpose of this paper is to cxamine empirically the determinants of
the cyclical varisbility of manufecturing investment, The prevailing "neo-
classical” theory of investment developed by Jorgemson (1963), and extended by
Hall and Yorgenson (1967), Eisner and Nadiri (1968), and Bischoff (1971) among
others, does not provide a completely satisfactory explanation of the deter-
minants of ﬁusiness investment. The dissatisfaction with the estimated neo-
classical investment equations is not based on the “fit” of these equations or
on shifts in these equations; rather, the problem arises from the difficulty
of interpreting the estimated distributed lags, Are we to interpret these
distributed lags as expectational lags, as delivery lags, or perhaps, more

likely, as some convolution of expectational and delivery lags?

An alternative approach to the estimatibn of investment egquations uses
the q theory of investment Tobin (1969) which is based on the cost of adjust-
ment literature developed by Eisner and Strotz (1963), Lucas (1967a, b), Gould
(1968), and Treadway (1969), By explicitly modeling the costs of adjustment,
which give rise to distributed lagged responses of investment to various
shocks, we are led to a clearer distinction between the delivery and/or
adjustment lags on the one hand and expectational lags on the other hand, In
the estimated q model, the effects of all lagged variables on the expectations
of relevant future variables are captured by q. The effects of delivery lags
on investment would appear as a relation between investment and lagged expec-—

tations of q.

Although the q model appears attractive because it distinguishes delivery

lags from expectational lags, its empirical performance has not been that



impressive, Studies which regress investment onm g [von Furstemberg (1977),
Summers (1981), Blanchard-Wyplosz {1981)] typically find that q does not
explain a largelpart of the variation in investment and that the unexplained
movement in q is highly serially correlated. However, th;ese studies used
Qverage q {the value of the firm divided by the replacement cost of its capi-
tal) rather than marginal q (the valuation of am additional unif of capital
relative to the cost of this capital). The advantage of usinp average gq is
that it is based on market value data and relies on the market to calculate
the relevant expectations. The disadvantage, of course, is that in situations
in which average ¢ and marginal q differ, it is marginal q which is the

relevant determinant of investment.

In this paper.we study the relation between marpginal g and investment,
Because marginal g is not directly observable from asset market data, we must
construct a series for marginal q before relating investment to marginal gq.
The construction of the marginal q series is a nontriviai task but provides us
with several interestinp results, even before we relate marginal gq to invest-
ment. There are two major problems involved in computing marginal q. The
first problem is a standard conceptual question about the appropriate defini-
tions of the coust of capitel and marginal profit; we consider alternative sets
of assumptions about goods markets and financial markets and calculate a mar-
ginal g series for each set _of assumptions, The second major problem is
technical: we have to compute the expectation of a present value of a stream
of marginal profits, Since we treat as random the one—period discount fac-—
tors, the calculation requires the computations of the sum of expected values
of products of random variables. A simpie approach to this problem would be

to linearize the sum of the products of random variables and them calculate
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its expected value, MHowever, this linearization would not capture the effects
of any second-order (or higher) moments, [Decause we thought that certain
cofu.1succs might have important cffects on wargimsl ¢, v _ccided to use a

quadratic rather than a linear approzimation,

As mentioned above, the calculation of g provides interesting results
quite apart from any estimated relation between q and investment., The first
result is technical but of some importance for future work, We find that
there is a negligible difference between the linear and quadratic approxims-—
tion to q. That is, taking account of the relevant covariances has very lit-
tle effect on the calculation of q. The other two major results are substan-
tive., We find that the cyclical movement in q is due less to movements in the
marginal profits of capital then to movements in the cost of capital. This
result is surprising in light of the fact that investment equations typically
derive more explanatory power from output or accelerator effects than frorm
cost of capital effects. The final result from the calculation of marginal g
is that the cost of capital componment of q and the marginal profit component

are highly positively correlated.

After constructing the marginal q series, we then investigate the rels-
tion between investment and marginal q. Although regressions of investment on
q are unlikely to be structural relations, they are a convenient way of sum-—
marizing sample evidence. The main finding is that, as in the studies cited
above, q is generally a significant explanator of investment but leaves unei-
plained a large, serially correlated fraction of investment. Simce our find-
ings are so similar to the results obtained relating investment to average q,
we find little support for the view that the low explanatory power of average

q is due to the fact that average q is simply & poor proxy for the
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theoretically more appealing marginal gq. We find that output and profit vari-
ables still enter significantly when added to our investment equations. The
uniformity of results across our different sets of assumptions leads us to
conclude that our data are not sympathetic to the basic restrictions imposed
by the q theory, even extended to allow for — simple — delivery lags. Whether
the problem comes from the assumptions implicit in aggregation, the assumption
of homogeneous capital or the assumption of perfect capital markets is a gues-

tion left for future research.

In section II we develop a model of the optimal investment behavior of a
firm and present an expression for marginal gq. We also discuss wvarious
approximations to marginal g, After describing the construction of the data
in section III, we briefly discuss in section IV the estimation of the vector
autoregressions used for forecasting the cost of capital and the mar ginal pro-
fitability of capital, In section V we calculate marginal gq under various
alternative sets of assumptions. We compare the linear and quadratic approxi-
mations to marginal q, and then cbmpare the relative contribution of the cost
of capital variation and the marginal profit variation to the cyclical varia-
tions inm q. After discussing the observed correlation of the two major com—
ponents of q, we then present the standard errors of estimates of g. In sec-—
tion VI, we examine the empirical relation between investment and our con-
structed series for marginal g. Concluding remarks are presented in section

VII.

II. The Hodel

Let ﬂt(Kt.It) be the maxzimized value of the net cash flow of a firm in

period t, where Kt is the stock of physical capital and I, is rate of gross



investment in physical capital, The variable factors of production have
already been "maxzimized out” in specifying ﬂt(Kt'It)‘ If the firm pays out
its net cash flow to its owners each period, then the ex post rate of return,

Rt' to the firm's owners during period t is

(14R) & [V, *+ 7, (K, I )I/V, (1)

where Vt is the value of the firm at the beginning of period t.

Let Qt—l denote the set of information available at the beginning of

period t. Suppose that V. is conmtained in 2, _, but that V, , and =, afe not

contained in ﬂt_l. Taking expectations on both sides of (1) conditicnal on

2. _q» We obtain

ELV ., + nt(Kt.It))lﬂt_I]IVt =1 +E(RI2_) =1 +R-* (2)
where Rt‘ is defined as the ex ante rate of return. This ez ante rate of
return is known as of the beginning of t but is stochastic as of earlier
reriods. Solving equation (2) recursively forward and using iterated expecta-

tions yields

11y (& (3)

@ ]
V. = E{ i [_: (1+nt+i-) I

t+let+j)|Qt_1]

We assume that the firm makes its investment decisions so as to maxzimize

Vt. In cheoosing the optimal rate of investment, we snppose that the firm

takes the joint conditional distribution of the sequence of discount factors

-1 as given.1 The firm maximizes V subject to the capital

{1+R R

t+i‘)

1. This is a plausible assumption. Firms are justified to do so, however,
under the fairly restrictive assumption of multiplicative uncertainty.
Another approach which would not lead to this difficulty would be to use a
consumption based valuation (Breeden [1979]):

= U(C,..)
q, = B[ 3 yimriti

; la, .1 (*)
1(0 U (Ct) t+i' -1



accumilation condition

K, = (1-8)K,_; + I (4)

t

The optimal rate of investment is such that a small change in It will not
change the expected present value of net cash flow, That is, the marginal

cost of investment must be equal to the expected present value of marginal

profits to capital.

an

_t _
-EGT 19, = q, (5a)
| -1 oMy s j
where q = E( 3 [ I (1+R  .® ]5;—-1(1—6) I”t-1} (5b)
j=0 i=0 1 “t+j

Following the adjustment cost literature developed by Eisne: .ud Strotz

(1963), Lucas (1967a, b), Gould (1968) and Treadway (1969}, we assume that

ant azwt —ant

—— ¢ 0 and ¢ 0. That is, the marginal cost of investment, , i85 a

oLy a1? oL, |
t

positive and increasing function of It so that (5a} implies that investment is

an increasing function of qt,

For expositional clarity it will be useful to define
_ -1,._ _ _ . .
Bt+i = (1+Rt+i*) (1-5) as the ex-ante omne-period discount factor and
_1Bnt+.
“t+j = (1-5) EF__l as the marginal profit of capital in period t+j. There-
Ce4]

fore, equation (5b) can be written as

q, = Elg.*la,_;) (6a)
@ A ‘
q*= >[I B, 1M . - (6b)
t j=0 j=p tritH

We wanted our study to be easily comparable to other work on investment
and decided to use a standard cost of capital variable. The methods used
in this paper could be applied to (*) also. (Svch an application would
require a specification of the utility function and an appropriate measure
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From (6) it is clear that the calculation 6f 4, requires the computation of
expectations of long products of random variables. In this paper we present a
procedure for calculating a series which is an approximation to 9, in (6a). A
very simple approximation procedure would be simply to linearize qt*. Bow-
ever, this linear epproximation would ignore all second-order ({(and higher
order) moments. Since we are interested in the effect of the covariance of
the discount factor and the marginal profit, for example, we will usera qua-
dratic approximation, For expositional reasons, we derive the linear approx-—

imation to q, in the text, but present the derivation of the guadratic approx-

imation in Appendix A,

We linearize qt- around Bt+i = E and Ht i = ﬁ. i=20,1,2... where E and

+

' are the sample means of Bt and ”t respectively:

q* Tt M-I Fe, -p s 3P, - (7a)
j=0 ’ §=0 ’
where q = ﬁ;(l*ﬁ)-l {(Th)

In order to calculate 4, we must calculate expectations of both sides of (7a)

conditional on f¢-1+ This calculation requires a stochastic specification of

p

t+] and Ht+j' Recall that Py is the ex-ante one-period discount factor
(1+E(Rt|9t_1))‘1(1-a). Let Et - (1+nt)'1(1-a) be the ex-post one-period

discount factor. We adopt the following stochastic specification: ﬁ and Ht

t

are each generated as linear combinations of the elements of some observable

vector Zt which evolves according to a vector autoregression., Formally, we

suppose that

of consumption.)



B, =b'z ' (82)
M = a'Z -{(8b)
where a and b are vectors of known constants and

z, - Z = AZ -Z) + e, Elg) =0 (9)
- y oy g2 if t = s
I:(":t": s) - {0 if t# s

1

The assumption in (9) that Zt evolves according to a first-order process is

not restrictive. The auvtoregression in (9) could be the companion form of a
higher order vector autoregression; in this case many of the rows of A

correspond to identities and many elements of 2 are identically zero,

This stochastic specification is introduced in order to calculate the

expectation of (7a) conditional on D Since B, = E(Etlﬂt_l) it follows

t-1°
from (8a) and (9) that

B, -B=Db'AMZ_ -2 ;B=1b1Z (10)

1
Using (8b), (9) and (10), the conditional expectations of the terms on the

right hand side of (7a) are easily calculated

r = wepadtl -7
E(hy, - BlO,_p) =vead™(z,_, - 2) (11a)
(2 -l = aeadtl -7z
Bl ~ M2 ) = aad" 0z, - 2) (11b)
Using (11a,b) we can calculate the expectation of (7a) conditional on Qt—l
q, = E(g* 12, ;) T q + L(B) + L(D) ‘  (12a)
L(p) = HQ-P) o (1-ap) Az, - ) (12b)
LD = Ba*(1-ah) Az, - D (12¢)

The term L(f) in the linear approximation to g, captures the first—order
effects on 9 of veriability in the cost.of capital., It is a weighted sum of

expected deviations of ex ante discount factors (which in this case is the
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same as expected deviations of ex post discount factors) from their mean, with

exponentially decreasing weights,

Similarly, L(!) ceptures the first—order effects on q, of varisbility in
the marginal profit of capital. It is a weighted sum of expected deviationms
of marginal profits from their mean., The weights decline geometrically at the

same rate that the weights in L(f) decline.

In Appendix A we derive expressions for the qua&ratic terms Q(f,p) and
Q(f,M) which capture the effects of the conditional covariances between dif-
ferent ex ante discount factors, and between ex ante discount factors and mar-—
ginal profits, respectively. These covariances are conditional covariances

around unconditionazl means; they depend on Z and therefore move through

. t-1
time, Note that since 9, is linear in Mt+i' the quadratic term Q(M,M) is

jdentically =zero.

III. The Data

In thig gection we describe the construction and use of the economic time
series used in the construction of several different time series for q,. Vie
use quarterly data for aggregate U.S, manufacturing 1948:2 to 1979:3 and fit
this data to a 4-th order vector autoregression, Thus, in the first order
system in equation (9), Z't = (Z*’t, AMRTN A M Z*'t_s) where Z* con-
tains either 5 variables or 7 variables depending on how much information we
put in the information set 2, The definition and construction of the indivi-

dual elements of Z‘t are discussed below.
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The Discount Factor

The first two elements of Z*t are used in the measurement of the ex post

discount factor Et' To motivate the definitions of th and Z2t we observe

that

bt ~1-R - & | (13)
where Rt is the real ex post rate of return to the owners of the firm, Recog-—
nizing that firms eare financed by both debt and equity, we let Z"'1t and Z¥,

be the ex post equity and debt discount factors, respectively:

* = - R[ -
Z 1t = 1 REt + PmtIP & {14a)

* -1 - (1-
Z =1 (1 'rt)RDt + Pm

2t t

’Pmt - 5 (14p)

The definitions of Z*1t and Z*Zt reflect the fact that interest payments on

debt are tax deductible and that the depreciation rate is not constant, REt
is the ex post rate of return on eguity, calculated as the sum of the dividend

price ratio and the rate of capital gain on the S&P 400. RDt is the rate of

return on debt, measured by the rate of return on commercial paper.* T, is the

corporate income tax rate. ﬁt is the physical depreciation rate computed as a

weighted average of the depreciation rates of structures and equipment for

U.S, manufacturing capital stock. P /P

nt js the rate of price inflation of

mt
manufactured goods, measured by the rate of change of the wholesale price

index.

The ex post discount factor is a weighted average of the ex post equity

and debt discount factors

* A better measure would be the weighted average of the ome-period rates of
return on private bonds of different maturities, with weights
corresponding to the proportions of debt of different maturities in total
debt,

[
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Bt = aZ*, * (1-a)Z*2t (15)
where a is the share of equity finance, which has decreased over the sample
period, We bhave chosen to examine the behavior of 9, under two altermative
values for ¢ (e = 0.5 and a = 0,3) to determine whether the computation of G4,

is sensitive to the value chosen for a.

Marginal Profit

In order to measure the marginal profit of capital we need to make some
assumptions about technology and about the demand curves facing manufacturing
firms, We assume that capital is homogeneous and any technological progress
is disembodied so that the marginal profit Mt does not depend on the dates at
which capital was installed., We also assume that the production functiom is
linearly homogeneous in capital, investment, and the variable factors of pro-

duction,

We have chosen to make two altermative assumptions about the demand
curves facing manufacturing firms, Our first assumption is that manufacturing
firms are perfectly competitive, That is, they are price—takers and face no
guantity constants in output markets or factor markets. Under these assump-
tions the marginal profit of capital M: (u for uqconstrained) is simply eqgual

to the average profit of capital.2 In this case, M: is computed as

a _
Ht Z.4t - 2%, (16)

2. Suppose that as in Lucas (1967a) n(X,I) = max(pF(K,L) - wL - c¢(I,K)} where

F( ) is linearly homogeneous in K and L anch( } is linearly homogeneous
in I and %. Observe from Euler's theorem that =n(EK,I) = pFE(K,L)K - ¢(I,K)
and that 2L = pF, (X,L) - 2£. Our stetement that the marginal profit of
capital is equal to the average product of capital {pF(K,L) - wL)/K is
true only if 9c¢/0X is zero. Towever this restriction is not compatible

with the assumption that the production—cum-adjustment cost function is
linearly homogeneous in capital, investment and the variable factors of

production. Nonetheless we ignore the cyclical veriations in dc/@K.
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x = (1- :
where Z 3¢ = (1 rt)(WtLthKth) (16a)
- (1-
z 4t = (1 rt)(PththKth) (16b)
and Yt’ Kt. and WtLt are the output, capital stock, and nominal wage bill,

respectively, of the manunfacturing sector. PKt is the nominal price of capi-

tal.

The alternative assumption is that firms may have faced binding output
constraints during the sample period. In this case, the marginal profit of
capital is equal to wage savings accruing to an additional unit of capital,
which is equal to the wage rate multiplied by the marginal rate of substituo-
tion of labor for capital. In general, calculations of a series of marginal
profits would require a complete specification of techpology. Here we assume
that the production function is additively separable in capital and labor on

the one hand and other factors of production on the other hand. Futhermore we

suppose that the elasticity of substitution between capital and labor, denoted.

by o, is constant. In this case, marginal rate of substitution of labor for

1

capital is proportional to (Lt/(Pptipmt)Kt)u. Therefore, the after—-tax margi-
nal profit of capital, Hi(u) can, except for a constant of proportionality, be
written as

W L s
g

M (o) = Z*, (o) = (1-1.)(55) ( —
t It t Pmt (pKtlpm X

(17)

t' 't

where Wt is the nominal wage rate and Lt is the number of person-hours
employed.g'

3, Observe that when o =1, Mg(l) = (l—tt)(WtLthK Kt)’ which is equal to the

value of Z* ¢ in the unconstrained case {16a). However, in cur work,
these two séries are not identically equal because in (16a) we uvse data on
the nominal wage bill W L obtained from Table 2.1 of the National Income
and Product Accounts: Wage and Salary Disbursements-Manufacturing. In
order to compute (17), we need separate data on Wt and L., in general.

LA

LY
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Figures C-1 to C-4 in Appendix C present the time series for Et‘ M: and
M:. The ex post discount factor Et has no clear time tremd but both M: and M:
have strong tremds. Since our focus is on the ¢yclical behavior of Mt’ Bt and

qt' we will detrend all variables first. Therefore, it should be noted that

this paper has nothing to say about trend movements or about the level of Qg

Additional Elements of Z*t

In addition to Z“‘it i =1,2,3,4, defined above, the vector Z*t includes

the following three variables

] =
_ F
* = d
Z 7t = Itlht {18¢)

where qf is the average valuation of capital based on & series constructed by

von Furstenberg (1977) from asset market data and It}Kt is the ratio of

investment to the capital stock for the manufacturing sector. Ve do not use

von Furstenberg’s q series because his series covers only the period 1953:1 to

1976:4. However, we followed his procedure to comstruct a similar average ¢

series for the period 1947:2 to 1979:3. For the time period for which we have
F

dats both omn von PFnrstenberg’s g and our constructed 9 the correlation

between the two series is .971.

The variables Z*St' YAS and Z‘Tt are inclnded in the vector sutoregres—

6t

These data are obtained from U.S. Employment and Earnings Bulletin 1312-11
from the U.S. Department of Labor using the series for: (1) production-
worker average weekly hours — manufacturing; (2) production workers —
manufacturing; and (3) production-worker average hourly earmings. As it
turns out, the nominal wage bill from the National Income and Product
Accounts is not precisely equal to the product of the series (1), (2) and
(3) obtained from Bulletin 1312-11. Thus our series for My and MI(1) are
not equal to each other,
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sions because they may help predict Bt+i and Ht+i' The work of Modigliani and
Shiller (1973) suggests that both lagged rates of inflation and lagpged rates
of interest help predict future rates of interest, Also, qF and I/E are
likely to contain information which will help proeuict marginal profits and
interest rates. To complcie cur specification of qt, we must specify a and b,
the vectors of known constants in (8a,b). It follows immediately from (15)

that Bt =b Zt where

b' = [a 1-a 0 0 """ 0] (19)

As for the vector a in the relation B% = a'Z it follows immediately from

t,
(16) end (17) that

M (20a)

a' = [0 0 -1 1 0 0 "*" 0] if Mt

it
-
—y

LK - -

a' = [0 0 1 0 0 0 """ 0] if Mt (20b)

IV. DLstimation of the VAR's

In order to calculate the guadratic approximation to qt we must estimate
the coefficient matrix A and the disturbance covariance matrix 2 in (9)., For
each definition of marginal profit, we estimate two altermative vector auniore-—
gressions corresponding to two different information sets: 2% (s for small)
and QL (L for large). The large information set 9%_ consists of the 28 vari-

1

ables Z¥%,

_:s i =1,,..,7; § = 1,2,3,4. In this case, the vector Z_ in (9)
1,t—) t

is a 28 x 1 vector, A is a 28 x 28 matrix in which only the first 7 rows are
non—trivial, and J is a 28 x 28 matrix which is identically zero except for

the 7 x 7 matrix in the upper left corner,

Alternatively, we use the small information set ﬂ:_l which consists of

the 20 variables Z"‘i i=1,...5; j=1,2,3,4. 1In this case, of course, Zt
»

t-j
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is 20 x 1, A is 20 x 20 with only 5 non—trivial rows and 2 is 20 x 20 with
nonzerc elements only in the 5 x 5 matrix in the upper left corner. The rea-
son for excluding Z*%

and Z* from the information set ﬂ:_l is that we

6,t—j Tat—]j

want to compare our constructed q, series to an asset-market—based q series

{our qf series)., We also want to characterize the relation of our constructed

q, series to the investment capital ratio. Therefore, including qf and Itht

t

in the information set would obscure the comparison between the two ¢ series.

A detailed discussion of the estimated parameters in the two vector
autoregressions would be of little interest; we simply note here that all of
the eigenvalues of A lie well inside the unit circle. (A1l variables are

first exponentially detrended.)

Table I in the text reports the §2 statistics for each of the equations
for each of six vector autoregressioms. Three VAR's were run for each infor-
mation set Qs and 2;,. For each information set we ran 3 different VAR's
corresponding to three different values for Z3 as explained in Table I (these
three different definitions of Z; correspond to three different definitions of

the marginal profit of capital: Mu, Mc with o = 0.5, and Mc with ¢ = 1.0).
The two results worth noting are the consistently low ﬁg for Z the ex post

1..

equity discount factor, and the conmsistently high ﬁ2 for ZZ' the ex post debt

. =2
discount factor. The low R" for Zl is to be expected given the large move-

ments in stock prices and the resulting large rates of capital gain or loss.

V. Calculation and Decomposition of Marpginal gq

In this section we use the e¢stimated parameters of the vector autoregres—



Table 1

Vector Autoregressions: R

Dependent Variable

]

[

3
.

MY
.073
.656
.894
.890

642

ex post equity discount factor
ex post debt discount factor

after-tax wage bill divided by capital, if M= M

1948:2 to 1979:3

5 Variables in Z

= 0.5 M:i0=1.0

.058

.662

.849

. 885

.662

. 046
. 675
. 903
. 884

.675

"
.060
.697
.899
. 897
. 695
. 966

. 958

u

7 Variables in Z

M io = 0.5 M0 = 1.0

.050 .055
.678 . 697
. 858 . 904
. 886 . 887
677 .699
. 965 . 966
. 956 . 957

after—tax real wage rate multiplied by marginal rate of substftution,

after-tax output divided by capital

rate of wholesale price inflation

value of average g

ratio of investment to capital

if M= MC
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sions to calculate 12 different time series for 9. There are 12 different
series for q, because we use 2 alternative assumptions for the share of equity
in total financing (a = 0.5, a = 0.3), 3 alternative assumptions for the cal-
culation of the marginal profit of capital (M:, Mz for 0 = 0.5 and H: for

g = 1.0) and two alternative information sets (Qs. QL

Y. For each of these
twelve q series we ask the following questions. Are the conditiomal covari-
ance effects in the quadratic terms Q({,f) and Q(p,H) empirically important?
How much of the cyclical varisbility in q, is due to variability in the cost
of capital and how much is due to variability in the marginal profit of capi-
tal? Are the variations in g  resulting from variation in the ex ante cost of

capital variability positiveiy or negatively correlated with the variations in

q, resulting from variability in expected marginal profits?

The Empirical Importance of the Quadratic Terms

A comparison of the fourth and fifth columns of Table 2 reveals that the.
quadratic terms Q(p,p) and Q(B,H) are not very important empirically. For
each of the 12 calculated series for 9., the standard deviation of the linear
approximation to 9, is roughly equal to the standard deviation of the qua-
dratic approximation to g .; that is, the inclusion of the quadratic terms
Q(p,p) and Q(p,M) has hardly any effect at all on the standard deviation of
Q- Furthermore, the last column of Table 2 reveals the nearly perfect corre-
lation between linear q and quadratic gq. For a more detailed examination of
the role of the guadratic terms, we examine a particular 9, series: a = 0.5,
Mt = M:. and @ = ol'. For this series, the standard deviations of Q(p,p) and
Q(p,M) are .0026 and .0036 respectively; their correlation is 400 so that the

standard deviation of their sum is ,0052, which is equal to 5.1% of the stan-—

dard deviation of the full gquadratic approximation, The correlation between
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Table 2

Standard Deviations
and Correlations

L(R) LM ol Linear q Quadratic q p*
M= M
o= 0.5 . 0847 . 0494 .913 .1314 .1348 .998
o= 0.3 . 0961 . 0540 . 933 .1478 .1515 .998
M=M
5 (&= 0.5 .2323 . 1497 . 948 .3773 .3839 .999
a = 0.3 .2769 . 1596 . 926 .4289 L4373 .999
1.o{® = 0.5 .0757 . 0458 . 968 .1206 L1224 .998
o= 0,3 .0845 . 0500 .970 .1335 .1354 .999
M=M
o= 0.5 .0643 .0585 .430 . 1040 .1030 .999
o= 0.3 . 0837 .0659 . 847 .1438 . 1468 .998
M= M
s{® = 0.5 .1950 .1323 .918 .3208 .3164 .999
Yo = 0.3 . 2624 L1377 . 778 . 3795 .3782 . 999
1.00% = 0.5 L0571  .0369 733 . 0878 .0869 . 999
"Toa= 0.3 .0699  .0391 . .921 .1070 .1071 .999

Linear q = q + L(B) + L(M)
Quadratic q¢ = q + L(B) + LM) + Q(B,B) + Q(R,M)
p = Correlation [L(B), L(M)]

p* = Correlation [linear g, gquadratic ql

LY
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(Q(B,p) + Q(B,HM)) and (L(B) + L(M))} is -.20.

The result that the quadratic approximation to qy does not differ sub-
stantially from the 1linear approximation to q, is important for future
research on investment and perhaps on asset prices in general, To be feasi-
ble, efficient methods of estimation of models under rational expectations
require these models to be linear or linearized. Our findings above suggest
that although the initial specificetion of qy is highly nonlinear, a linear
approximation appears to be acceptable. Iu the remainder of this section, we

consider the linear approximat..r gq + L(B) + L(K) and refer to it as linear

9y

The Contributions of P and M to Variability of g

Our calculated q series exhibit variation over time because both the
discount factor § and the marginal profit M vary over time., DBased on the fact
that most empirical studies of investment find e strong relation between
investment and some measure of output or profit, but find a weaker relation—
ship between investment and the cost of Eapital. we expected to find most of
the variability in gq would be due to variability in M rather than variability

in B, As explained below, we found the opposite to be true.

Recall that L(pP) is the linear approxirn~tion to the q series based on the
assuription that only P varies over time and that M remains constant., Simi-
larly L(M) is the linear approximation to the g series based on the assumption
that the cost of capital P remains constant and only the marginal profit M
varies over time, The standard deviations of L{(pP} and L(M) are presented in
columns one and two, respectively, of Table 2. 1In every one of the 12 cases

in Table 2, we find that the standard deviation of L(B) exceeds the standard
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of L(M); often the difference is quite substantial. In general, we find that
calculating the q series under the assumption that P is constant will reduce
the standard deviation of the q series by a factor of 2 or 3. This result

contrasts sharply with our a priori beliefs expressed above.

The finding that the standard deviation of q is reduced by a factor of 2
or 3 when we suppress the variation in the discount factor may shed some light
on volatility tests of asset pricing models. These volatility tests are based
on the assumption that, for instance, stock prices are equal to the expected
present value of dividends. Using this assumption, and the assumption that
the discount factor is constant, one derives a relation between the variabil-
ity of dividends and the variability of stock prices. Typically, actual stock
prices exhibit much greater variability than implied by variability in divi-
dends, holding the discount factor constant. Our findings indicate that, in a
different context, constraining the discount factor to be constant leads one
to understate the standard deviation of the expected present value series by a
factor of 2 or 3, That is, the assumption of a constant discount factor is

far from innocuous,

The correlation of L(f) and L{(M) is presented in the third column of
Table 2., In every one of the 12 cases presented in Table 2, L{(B) and L(M)
have a positive correlation, and in 10 of the 12 cases the correlation exzceeds
«75. Thus we find that L(B), L(M) and by implication q, move cyclically
together., That is, periods in which the sequence of expected marginal pro—
docts is high tend to be periods in which the sequence of expected discount
factors is high, or equivalently, periods in which the sequence of expected
costs of capital is low. As will be shown below, this does not imply that the

one-period expected discount factor moves cyclically with L(M), Rather it

L]

M
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implies that the appropriate weighted average of expected discount factors
moves cyclically with L(M). (Note that since E is approximately 0.97, the

relative weight of the first one-period discount factor in the weighted sum

L(B) is approximately equal to 0.03),

Qur finding that L{B) exhibits a substantial cyclical variability and is
hipghly correlated with L(M) is somewhai surprising, One might argue, and we
initially thought, that this finding might be a spurious result which is a
consequence of our vector autoregression approach, Recall that Bt depends,

with weight a, on the expected equity discount factor E(thlg As dis—-

t—l) :

cussed earlier, the eguation for th has essentially no explanatory power;

however, our formulae for gq use the point estimates of the right hand side
variable in this equation and these point estimates differ from zero. Thus it
is possible that large realizations of the right hand side variables may indi-
cate —— incorrectly, if the true coefficients are zero —— large movements in
the ex ante discount factors for future periods and therefore large movements

in L(E) .

The suspccted channel for spurious variation in L{f} turns out not to be

important. Table 3 presents various forecasted values of Et’ and L) for

"
the period 1973:1 to 1975:1. This period was characterized by large movements
in th, Et’ Py, and L{f). In particular, the series of sharp declines in the
stock market from 1973:4 to 1974:3 are reflected in large positive deviations
in th and in the ex post return Et' The positive deviations in th and Et
generally lead to positive deviations in ﬁt = E(Etlt-l) for the following
quarter. However, the impact of large realizations of Et on expected discount

factors 9 gquarters ahead is very small. More importantly, the large positive

realizations of Et in this period are not associated with large positive

L])
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deviations of L{p}.

To make the point more generally, we observe that over the entire sample
period, the correlation of the ex post rate of return, ﬁt-l' with the ex ante

rate of return, B is 0.46 and the correlation of Et-l and L(ﬂ)t is -0.06.

tl
In addition, the correlation of Bt and L(B)t is only 0.38, indicating that
high values of the one—period ex ante discount factor are only weakly associ-

ated with high values of L(B)f.

Standard Errors of Estimated g

The calculated series L{(fi}, L(M) and linear gq depend on the estimated
coefficient matrix A. Exzcept for an additive constant, each of these series

can be written as

ve'MI - AR TIZ, (21)
where y is a scalar constant, ¢ is a vector of known constants, and

Z, =z

t ‘4 =1 - E- (FO!' L([.'!)p Y = E(I—E)-l' c = b; for L(H)' y = -B-. c = a; for

linear q, v =1, ¢ = ﬁ(l-ﬁ)—lb + Ba). As of the end of period t-1, the vari-
able zt in (21) is known, BHowever, the parameter matrix A is not known with
certainty, Treating the non-trivial rows of matrix A as stochastic and using
the covariance matrix of the estimated parameters of A, we can calculate the
variance of the expression in (21)., (See Appendix B). Thus we can compute the
standard error of each our calculated values of L(f), L{M) and linear q. For
the case in which M = N%, o = QL and a = 0,5, we have computed the sample
average of the standard errors of the estimated values for each of the three g

series reported in Table 4.
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Figure 2
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Table 4
q series L{B) L(M) linear q

average standard error 0.070 0.031 0.083
In figures 1-3 we plot q with the associated two standard error band for g
defined by L(p), L{M), and linear g, respectively. Observe that the standard

error bands tend to widen somewhat at the end of the sample period.

ViI. The g Series and Investment

The motivation for the construction and analysis of a series for marginal
q is that it should be the major determinant of the rate of investment. As
explained earlier, equation (5a) implies that the optimal rate of investment
is an increasing function of q. If in addition we assume that nt(Kt,It) is a
linearly homogeneous function, then the optimal decision rule for investment
can be expressed as arpositive relationship between the investment capital

ratio, I /K

t t.‘and marginal Q¢

In Table 5 we present estimates4 of the following relation between It/Kt

and marginal q

I /X = a(L)(O (22)

e ) + €

t9t t

e¢ = p(Lley g +

4, GLS estimates the following relation:
(/K)o - p(LY(I/K)_; = a(L)(8q), ~- p(L)a(L)(8q),_; + n,

If 9 depended on current variables, two simultaneity problems could
oceur. m. could increase investment demand, aggregate demand and affect
some of tﬁe determinants of q_, 1. would also, by increasing investment,
increase capital later and thus could decrease anticipated marginal
profits and q,, These problems do not arise under our assumption that q;

depends only on lagged variables, They do arise for most of the
regressions which have been run using average q.
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RHS wvariables
Bq
(8q)_,4

(8q)_,

Regressions of I/K on Tax-Adjusted q

(
(
(

.0025
.0034)
.0080
.0038)
.0059
.0033)

.59
.07)
.07)
.96
.22

o

Table 5a

o=qb

=0.3

-.0051
(.0034)
.0086
(.0037)
.0059
(.0034)
.304
(.097)
.250
(.096)
.151
(.092)

1.49
(.08)
-.56
(.08)

.96
2.25

~-.0029
(.0033)
.0088
(.0037)
. 0054
(.0033)

.595
(.180)
.282
(.172)
.237
(.178)
1.57
(.08)

-.63
(.08)

.96
2.26

(
(

(.

—_ ] o~ =

a=

. 0026
.0042)
.0105
.0047)
.0095
0042)

.58
.07)

.07
.96

.22

0.5

(
(
(
(
(
(

1
(

(

2.

. 0062
.0042)
.0100
.0045)
.0085
.0043)
. 286
.098)
.237
.095)
.148
-094)

.48
.08)
.56
.08)

.96
24

~ o~ =~

.0038
.0041)
.0102
.0045)
.0078
.0041)

.562
.181)
.259
171)
.242
.180)
.56
.08)
.62
.08)

.96
.25



RHS variables
fq
(8q) _,

(6q) _,

Regressions of I/K on Tax-Adjusted q

~ e~

. 0000
.0034)
.0089
.0039)
.0071
,0033)

.58
.07)
.65
.07)

.96
.25

Table 5b

-.0024
(.0034)
.0084
(.0038)
.0071
(.0034)
.264
(.096)
L2641
(.097)
.138
(.094)

1.48
(.08)
~.56

(.09)

.96
2.27

~~

o~~~

. 0007
.0034)
.0088
.0037)
.0066
.0033)

. 566
.181)
. 246
.174)
216
.182)
.56
.08)
.62
.08)

.96
.28

~ e~

. 0000
.0039)
.0109
.0045)
.0089
.0039)

.58
.07)
.65
.07)

.96
.24

-.0035

~~

.0040)
.0097
.0044)
.0082
.0040)
271
.098)
.221
.097)
.133
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.49
.08)
.56
.08)

. 96
.26

~ e e~

-.0013
.0039)
.0103
.0043)
.0077
.0038)

. 560
.182)
.233
.173)
.215
.182)
.56

.08)
.62

.08)

.96
.27
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where Gt is the tax—adjusted price of capitals which depends on the investment
tex credit, the present value of depreciation deductions and the price of cap~
ital; a(L) and p(L) are distributed lag operators. The specification in (22)
differs from the investment rule in (5a) in‘three ways: (1) we have included
the tax factor Gt which recognizes that the investment tax credit and depreci-
ation deductions reduce the effective price of new capital goods; (2) we have
allowed for the disturbance term e, to be serially correlated; (3) we have
included lagged values of g on the right hand side. One should not interpret
the lagged values of Oq as representing the effects of delivery lags. IDow-

ever, we included lagged values g to make our investment specification com-

t-i
parable to specifications using current and lagged values of market-value-
based average q. Thus, these regressions should not be viewed as structural

relations but rather as a convenient way of examining sample correlatioms,

The first and fourth columns of Tables 52z and 5b present the regressions
of I/K on current and lagged Gy for various information sets (QL.QS) and
values of a (0.3, 0.5). These 4 columns all lead to the same results,
Although the contemporaneous value of 9, is not a significant explanator of
investment, both 9,1 8nd q,_, tend to have significant positive effects on
ItIKt. In all cases, the various q variables leave unexplained a large and
serially correlated residual which is fairly wgll approximated by & second-
order autoregressive process. Finally, the implied elasticities of I/K with
respect to current and lagged q are roughly 0.1 to 0.3.

5.6, is defined as [(I-kt—ttzt)PKthmt]_l where k, is the investment tax

credit, v _ is the corporate income tax rate and Z_ is the present value of
depreciation deductions. Z_ is constructed under static expectations;
constructing it under rational expectations did not appear worth the ’
effort. The last data available for ©_ are for 1976:4 and this has
determined our ssmple period for the regressions in Table 5.
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The results of regressing I/K om our constructed series for marginal q
are remarkably similar to the results obtained using average ¢ measures based
on asset market valuation of firms. The fact that both types of measures of
q, which are constructed in very different manners, leave large serially
correlated residuals in investment suggests that there may be other important
factors which are not captured by gq. We chose to consider the output/capital

ratio {measured by 24) and profit per unit of capital (measured by Z4—Z3).

Tables 5a and 5b present the regressions in which lagged values of Z4 and
(34—23) are added to the specification in (22). To avoid obvious simultaneity
problems, and because qt depends only on lagged variables, we did not inmclude
current values of Z4 or (24-23). Apain, we note that these regressions are
not structural equations but are merely a convenient form in which to present
sample correlations., We find that in all cases, the output or profit variable

is significant. That is, it appears that output or profit has an effect on

investment beyond any effects which work through marginal q.

We return now to the question of delivery lags and the lagged exzpecta-
tions of q. If a type of capital requires n periods for delivery, then
investment orders at time t would depend on E(q*t+n|9t_1). Investment expen—
ditures at time t would depend on investment orders from time t-n to t, and

* i = = E(q*,__.l9,_. .
thus on E(q .Iﬂt__l_i)p 1 Opcacl n, not om qt_i E(q t—llqt_l_l)

t+n—1

The calculation of E[q*t[Qt_n] is particularly simple for q measured by

L(B), L(M) or linear q. Since each of the three series can be written in the
N . _ - _ n-1 >

form presented in (21) and since E(itlﬂt_n) = E(Zt-l_zlﬂt—n) = A (Zt—n 7).,

we obtain

E(q*,lo, ) = ye (I-AR) A2, _ D) (23)
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where y and ¢ are the scalar and vector constants described below equation
(21). We have calculated these lagged expectations of q and have regressed
I/E on them. However, these lagged expectations of q proved much less suc-
cessful than lagged values of q: E(q‘tIQt_l) generally had a negative and
often significant coefficient; E(q'tlgt_z) and E(q*tlﬂt_s) generally had posi-
tive but insignificant coefficients. Further research is required in order to

combine the g theory and delivery lags in an empirically satisfactory manner.

VII. Concluding Remarks

The research reported in this paper can be divided into two parts: first
we calculated and analyzed the properties of series for marginal g calculated
under a variety of assumptions; then we examined the relation betwcen invest-—
ment and our various q series. The major finding of the first part of the
paper is that more than half of thc uyclical variation (as measured by the
standard dsviation) of marginal g is accounted for by variation in the ex ante
cost of capital. This finding appears to be rather robust: it holds for each
of our 12 sets of assumptions which are based on alternative information sets;
alternative measures of the marginal profitability of capital and alternative
shares of equity in total fipancing. As explained earlier, this finding that
variation in discount factors accounts for a substantial fraction of the vari-
ation in a present value series has implications for the variability of asset

prices in general,

Although the first part of the paper succeeded in finding a large contri-
bution of cost of capital variability to the cyclical variability of gq, the
link between investment and the cyclical behavior of the cost of capital is

more tenuous because of the relatively poor performance of gq in explaining
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investment. There is a long list of potential culprits, The first is aggre-—
gation problems. The second 4is the specification of technology and the

assumption of homogeneity of capital. The third is the assumption of perfect

financial markets and the absence of "liguidity constraints” for firms.

Prosecution and indictments are left for future research.
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Appendix A. Second Order Approximation to q

- Collecting the assumptions from the text, we have:

- [ 3
9 = E jzo ;I:Ic-, B:+1]Ht+j

"D+ ‘e

-

(z, - 2) = Az, _ E(c,) = 0

E(e,e)) =0 1f t4s

=}’ . = 3
Bt .b E(Z:) i M 2 zt

E(-) = E(.Int-l) ’ 2 - {ct_ll Et-z‘ ses}

q., B, M are scalar randem variables
2.t are (nx]1) vector randot variables.
a8, b, Aare (nx1), (nx1) and (nxn) respectively.
Define ex post 9, q: as jzo ;EE Bt+1 ut+j' (Note that Bt+i is not the
realized value of the ex post rate in period t+i but the value of the
ex ante rate in period t+i.) Take a quadratic approximation to q: around

Bt+1 = § ¥4 and Ht+j - ¥ Vi, vhere B and M are the unconditional means of g

and M, and take expectations condition on Rt_l. This gives:

Qe = @+ L(B) + L(¥) + Q(8,8) + QUM,M) + Q(8,M)

Ve define and consider sach of these elements in turn:



(1)

(2)

(3)
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3=0

L(8) = [ &qi/eB ., E(B.,, - 8)

i=0
Sq* /88, = 1|3 5,4, = &a-H~E
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L4

e o=l ® =i .. -
L(8) = H(1-E) 120 8" E(B,,, = 8
e B lE [ Boeatte =D
1=0
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= b T -1:. 2 - f - R
(%) Q(s,B) = 120 jZD 5 S an/e8 88 (B, - B)(Bpyy = B)
8¢+ /68,88 0 i 4.
Ve e+t " e+ b
- k

- ) T &, ¥
wemax(1,1) (=0 ETE| K
141,3

- E(I_E)-l -B-(MX(i'j)']') if 4 + 3 -

- ==1lT % =51 - -
’ - 1- - -
Q(8,8) = M(1-B) 120 j)-:id-l BT E(8,,, - BB, - B)

Consider E(BH_1 - B)(Bﬁ_j - £). It is equal to:

' 1+1 H . - Ty lj+1 ees ' L] -
EG' (A2, -8+t Ae (@2, _y - 2)'A oot :t+j_1A w)

t+i-1
IO AR TR R IO Dt esel v -
EGe,,, ((2,_y = DA 4ees el o0 -
IO S I TIIEA R LWL

Roting that E(‘:+j(z:-1 -Z)') w0 ¥ >0 and ‘(‘:+3‘§+1) -0 Viti,

Q(g,8) = ﬁ(l-ﬁ)-l{J1 +3, + 33} vhere:

- -
Jl &

-J-l ' |1+1 ' j+1
z 8 (2 - 2)'a bb'A (2 -9
ge0 ymit+l t=-1 t=1
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[ - 1
Jj2eb' § ) 33'1 ) Abpard-itt
1=0 jei+l t=0
ey § 1 Bttty
1e0 §=i+l

Consider J1. It can be rewritten as:

nefle, -n I aMw [ AN EYe,-D
1=0 jmi+l

- E’%zt_1 -2 I At e By aan 7
1=0

(Zely -

Decompose A as A = PAP—l vhere A is a diagonal matrix containing the

eigenvalues of A. Replacing above gives:

T ATt I Al MO YT b P -aB) "z, , - D)
t-1 1=0 t-1

Define D = P'bb'P = (dij)i 3 and S1 as the matrix in brackets in the
]
expression for J1, Sl = (5111)1 5 Hote that:
]

S1,, = 4,,) 2821 - A B! and

] 131 3

ned iz . -pelisneiaab e - D
B 2oy ) t-1
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Consider J2. It can be rewvritten as:

- - -
2= ] ] 7 B atpadter
220 {=p jei+]

- -
=v' ] 1 At gtgarpl,
2= i=}

=D [ @Bt ey
1=0

Deconposing A as PAP-1 and replacing above gives:

2 @B e T bl e gy
1=0

Dafipe F = (P-IIP-I') - (Fij)i j and S2 as the matrix in brackets in the

expression for J2, §2 » (52,.)

Note thar:

13°1,3°

- _ =\ =1
§2 Fi 2.1 Ail g8) and

1] 3 3

J2 = (1-'3')'1 b'r(sz)r'(I-A'§)°1 b

Consider J3. It can be revritten as:
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33 = b8} ) 8t ) tea)"ty
10 =i+l

e b' (1-F)"lza' (1-FA") 7}

2 - .
(5) QMM = 1.{.0 jzo STqx oM BN g B - (M, - )
s2qx /My My = O vi,) -
Q(M,M) = O
(6 Q(8,M) = 120 jgo s%as/6e, M B, - BYCH - D
s2qua/ee &M . = B 1f <3 0 1f >3 -
t o trl Tt - ’
Qe = ] ] B BBy, - DGl ~ 9
1=0 j=1 e+]
Consider E(Bt+i - E)(Mtﬂ - ¥). It is equal to:
Lo il = 1 .. _Syiaedtl
E(b'(A (Zt_l-Z) + A €, et AE:H.-I))((zt-l 2)'A + + f:=+JA Ya)
1+1 2 F) 4 eee RS2
S BB TR = D) reee e (2 - DT 4k gl AN)a)
- E®'c,,, ((2,_, - DA 4eaih el ADa)

t+i t-1 t+]

Noting that £(=:+

§Zey = DY =0 V20, Elegeg,,) =0 VL%,

e+ Sttt



Q(8,M) = Hl + B2 + H3

where

Bz -3 TV ot g -
-1 120 321 ’ t-1

- - i
meb J] ] B O ataiit,
4=0 §=1 =0

b ] ] Hnait,
1=0 j=i

H3

Consider El. It can be rewvritten as:

me_, -0 ] AP et -aDz,_, - D
1=0

TR 20 ] B il T PU TRl o 1 3 e SV e
t-l 1-0 t-l

-2
Define G = (P'ba'P) = (Gij)i j and V as the matrix io brackets in the

3
axpression for Hl above. Kote that:

v, =6, A0 -3 e and

1 131 3

5y 1p=legp=1(oazy~t _3
Bl = (2, - DV (AR (2 - D)
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Congider H2. It can be rewritten as:

mev' I I 1 Fhatard-itt,
£=0 i=2 3=1

- -
eb' ] 1} At Btaaht e
=0 i=2

e Bty § oAttt EaahT a
£=0

e (- et | ] it el b olt P a-ae) s
2=0

Recall the definition of F above and define 1 as the matrix in brackets in

the expression for H2:

T (- B and

13 = F13 3

g2 = (15! bt (1A H) 7

Consider H3. It can be rewritten as:
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e -5 (1-B)"lr(1-Banyl a

Collecting all terms allows computation of the quadratic approximation.



Appendix D
Suppose that ¥, can be written as

v = 8(ANZ, (B-1)
where Et is & column vector of lenpgth kL and g{(A*) is a row vector of the same
length (k is the number of variables in the VAR's, 5 or 7; L is the number of
lags, 4),. Let A*¥ be the column vector of length kzL obtained from the kL x kL
matrix A in (9) by stacking the traasposes of the k estimated rows of A,
Observe that the covariance matrix of A* is 2 ® (ZO'ZO)-1 where 2 is the
kxk matrix defined in (9) and ZO is the data matrix with ith row equal to Et'

Finally, suppose that g{A*) = Tc'A(I-AE)_l where y is a scalar constant and c’

is a row vector of known constants, Observe that

dp(A*) _  ,rBAy a0yl B yroamy 1 o
x = yc [ax(I An) + Aax(I Ap)y 7] (E-2)
Yelia -1 §G.-1
Pecall that in general 25;— = =0 5;6 where G 1is an invertible matrix.

Therefore,

_.__1 _ - _
UI-AR) _ _ Fe1-ap) 71 (a7 (B-3)
9x ox
Substituting (B-3) into (I-2) yields
* - -_—
22 8%) — yer(1-ap ! Brap? (E-4)
X dx
Observe that agA = eie'. where ey and e'j are the ith columm and jth row,
ij

respectively, of the identity matrix. Therefore,

da.

Dg(A®) _ yc'(I—AE)_leie'j(I—Ap)_l (B-5)
ij

Letting



3(A%) _ 2g(A%) dg(A%) 8g(A%) 3z (A*)

s e ay ’ Pe vy ]'
dA* 881’1 aal’kL aaz'l aak,kL
we obtain
8488 _ yarlo1a-am Vo) @ (1-am ! (E-6)

where Ik is the kxk identity matrix.

Now observe that the variance of Yio given Et' is egual to

A jﬂL’Var(A‘)ihL Et'

¢ A IAS Using this fact along with (B-6) and the variance of

A* we obtain

fom s =
— g2 :0 —_ 1
var(ytlzt) = Tzc'(I—Aﬁ) 1{6?'6}(I—A?) 1 c (E-7)

x Et'(I-Aﬁ)’l’(zo'z°)'1(I—AE)‘1Et
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