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1 Introduction

Many households have “consumption commitments” such as housing that are costly to adjust in

response to fluctuations in income. Chetty and Szeidl (2007) document that more than 50% of the

average U.S. household’s budget remains fixed when the household faces moderate income shocks

such as unemployment. Olney (1999) gives historical evidence on the importance of households’

installment finance commitments during the Great Depression. Such consumption commitments

can amplify the welfare costs of shocks because–for shocks that are not large enough to induce a

change in commitments–households are forced to concentrate all reductions in wealth on changes in

adjustable (e.g., food) consumption. Through this mechanism, consumption commitments can help

explain microeconomic evidence in domains ranging from wage rigidities (Postlewaite, Samuelson

and Silverman 2008) to added-worker effects (Chetty and Szeidl 2007), housing choices of couples

(Shore and Sinai 2009), and portfolio choice (Chetty and Szeidl 2014).

In this note, we show that household-level consumption commitments also have important im-

plications at the macroeconomic level, especially for the dynamics of aggregate consumption. We

show that when idiosyncratic risk is large relative to aggregate risk, nonlinear dynamics due to com-

mitments at the household level aggregate into approximately linear dynamics for larger groups,

producing patterns that are approximately identical to representative-agent habit formation.1 In

particular, commitments can explain the key facts–often attributed to habit formation–that con-

sumption exhibits excess sensitivity and excess smoothness. But the commitments model also

explains empirical regularities that are not consistent with standard habit formation models. For

instance, it predicts that excess sensitivity and smoothness vanish for large shocks, providing foun-

dations for an empirical phenomenon termed the “magnitude hypothesis” (Japelli and Pistaferri

2010). Hence, our results suggest that some of the behavior previously attributed to habit for-

mation may be due to adjustment costs in consumption. The distinction between the two models

matters because they generate different comparative statics and yield different welfare implications.

We begin our analysis in Section 2 with a household-level model in which changing the con-

sumption of certain goods is costly. These costs could reflect either transaction costs or mental

costs such as the effort required for changing plans (Grossman and Laroque 1990, Chetty and

1Beginning with Ryder and Heal (1973), models in which habit is an average of past consumption are widely used
in economics. Sundaresan (1989), Constantinides (1990), Campbell and Cochrane (1999) and Boldrin, Christiano and
Fisher (2001) use variants of this model in macro-finance, while Carroll, Overland and Weil (2000), Fuhrer (2000),
Christiano, Eichenbaum, and Evans (2003) and a literature building on this work uses variants in macroeconomics
and monetary policy.
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Szeidl 2007). We show that in an economy populated by many such agents, aggregate dynamics

can be represented by the preferences of a representative agent whose utility function involves a

state variable corresponding to aggregate commitments.2 This state variable is endogenous: each

household chooses commitments to maximize expected utility, and hence aggregate commitments

are shaped by the expectations agents hold on the dates on which they update.

In Section 3, we characterize the aggregate dynamics of consumption commitments. Our

main result is a precise characterization showing that when the ratio of idiosyncratic to aggregate

consumption risk is large, aggregate commitments are well approximated by a (linear) weighted

average of past consumption with fixed weights. As a result, the commitments economy is closely

approximated by a representative-agent habit model in which the habit stock is a weighted average

of past consumption.3 To understand this result, note that the impulse response to aggregate

shocks in the commitments model depends on the distribution of agents in the inaction region

for commitment consumption. Aggregate shocks perturb this distribution, while idiosyncratic

shocks push it back towards its steady state. When idiosyncratic risk is large, the second effect

dominates, and hence on most dates the distribution remains close to its steady state. Thus

impulse-responses are approximately state-independent, which in turn can be generated in a habit

model with fixed weights. Since in practice idiosyncratic risk is much larger than economy-wide

risk (e.g., Deaton, 1991, Carroll, Hall, and Zeldes 1992), we interpret this result as showing that

consumption commitments and habit formation generate similar aggregate consumption dynamics

in a typical environment.

While the commitments model matches the predictions of habit models in a commonly-studied

domain, it yields new predictions in other settings. In Section 4, we illustrate the similarities and

differences between the two models using three applications. We first consider the consumption

response to income shocks. Two well-documented empirical regularities are that consumption

does not respond fully to contemporaneous shocks (“excess smoothness,” Deaton 1987) and that

anticipated changes affect current consumption (“excess sensitivity,” Flavin 1981). Fuhrer (2000)

argues that both of these facts can be explained by a habit formation model in which habit responds

sluggishly to shocks, which is one reason why habit models have been influential in macroeconomics.

Our equivalence result implies that the commitments model also produces sluggish responses in most

2 In our economy the relative price of commitment and adjustable consumption is exogenous and fixed. We discuss
both general equilibrium and partial equilibrium interpretations of this assumption in Section 2.2.

3Our characterization is analytical. Previous studies of aggregate consumption with adjustment costs use numerical
techniques (Marshall and Parekh 1999), or time-dependent adjustment (Lynch 1996, Gabaix and Laibson 2001, Reis
2006). These studies focus on a model with a single illiquid good, as in Grossman and Laroque (1990).
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periods and therefore also explains excess sensitivity and smoothness.

However, a key prediction of the commitments model–but not the habit model–is that the

excess sensitivity of consumption vanishes for large shocks. When such shocks occur, households

adjust their commitments and thus behave more in line with the permanent income model. This

prediction helps explain a large body of micro evidence about consumption responses to shocks

termed the “magnitude hypothesis” by Japelli and Pistaferri (2010). For example, Hsieh (2003)

finds that Alaskan households’ consumption is excessively sensitive to tax refunds (a small income

change), but not to payments from the Alaska Permanent Fund (a large income change). Similarly,

Parker (1999), Souleles (1999) and Souleles (2002) find excess sensitivity to small income changes

associated with tax and social security payments, but Browning and Collado (2001) and Souleles

(2000) find no excess sensitivity to large changes in disposable income coming from bonus salary

payments and college tuition. Such facts are difficult to explain with standard habit models, in

which the impulse response to income shocks does not depend on shock size. They can, however, be

explained by the commitments model, suggesting that a significant part of consumption behavior

attributed to habits in preferences may be due to adjustment costs in consumption.

In our second application, we explore how consumption dynamics are affected by changes in

the environment. Because commitments are chosen by the consumer, they respond endogenously

to such changes. In contrast, the parameters determining reduced-form habit are exogenous and

do not vary with the environment. We show that reductions in risk or in expected growth increase

sluggishness of consumption in the commitment economy because they reduce the frequency of

adjustment. This result yields a new prediction about excess sensitivity: consumption should

respond more quickly to shocks in high-growth and high-risk environments. At the macroeconomic

level, this logic suggests that recessions may be shorter lived in rapidly growing economies, in

which agents reorganize their arrangements frequently. Similarly, recessions may last longer in

welfare states that have large social safety nets. Evidence on these predictions would help further

distinguish between the commitments and habit models.

In our final application, we turn to welfare analysis. Distinguishing between the commitments

and habit models is especially important because the two models have different welfare and policy

implications. We first note that the commitment model has a natural welfare measure based on

expected utility. In the habit model, such a measure is not immediately available. Prior work

(e.g., Ljungquist and Uhlig 2000, Ljungquist and Uhlig 2009) has assumed that the welfare of

agents with habit preferences is fully determined by surplus consumption, without including the
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habit stock. We follow this approach and compare the welfare cost of a shock–measured by the

willingness to pay to avoid it–in the two models. We find that the welfare cost of large shocks

is smaller in the commitments model than in the habit model because agents can abandon their

commitments but not their habits in extreme events. This result suggests that the optimal size

of social insurance programs that insure large shocks such as disability or job displacement may

be smaller than predicted by analyses using habit models such as Ljungquist and Uhlig (2000).

We also find that reducing idiosyncratic risk–e.g., by expanding social insurance programs–can

increase the welfare cost of aggregate shocks by slowing the rate of adjustment.

Our results build on two strands of prior research. First, several papers have pointed out

the qualitative similarity between the commitment and habit models. Dybvig (1995) examines

ratcheting consumption demand under extreme habit persistence and motivates these preferences

by pre-commitment in consumption. Flavin and Nakagawa (2008) study asset pricing in a two-

good adjustment cost model and note the similarity to habit. Fratantoni (2001) and Postlewaite,

Samuelson and Silverman (2008) also study two-good models and note this similarity in other

contexts. We contribute to this literature by analyzing aggregate dynamics, presenting formal

conditions under which commitments and habit formation are similar, and deriving new behavioral

and welfare predictions that distinguish the two models (summarized in Section 5).

Second, our results also build on a literature on industry dynamics, including Bertola and

Caballero (1990), Caballero (1993), and Caballero and Engel (1993, 1999). Our main innovation

relative to this literature is to develop a theory of state-dependent impulse responses, which we then

use to derive an analytical characterization of aggregate dynamics. Our habit equivalence result

is also related to Khan and Thomas (2008), who establish approximate linearity in a production

setting with endogenous prices computationally. We establish approximate linearity–emerging

through a different mechanism–in a consumption setting with exogenous prices analytically.

2 A Model of Consumption Commitments

In this section, we present our model, characterize household behavior, and show the existence of a

representative consumer in our setting. We present a map of all proofs in the Appendix, and full

technical details in a Supplementary Appendix.
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2.1 Setup

We study a continuous-time economy with a unit mass of consumers. We index agents by i ∈ [0, 1],

but suppress the index in notation for simplicity when it does not cause confusion. Each agent

maximizes expected lifetime utility given by

E

∫ ∞

0
e−ρt

(
κ
at
1−γ

1− γ
+
xt
1−γ

1− γ

)
dt (1)

where ρ is the discount rate. Each agent consumes two goods: at and xt measure the service

flows from adjustable (e.g., food) and commitment (e.g., housing) consumption, and κ measures

the relative preference for adjustables. Adjusting commitment consumption xt involves a fixed

monetary cost, which may depend both on the pre-existing and new service flow from commitment

consumption. Formally, denoting xt− = lim supsրt xs, if on date t the agent sets xt 6= xt−, he

must pay a monetary cost of λ1xt− + λ2xt where λ1, λ2 ≥ 0 and at least one of them is positive.4

We are interested in characterizing how individual heterogeneity translates into aggregate dy-

namics in the presence of consumption commitments. We therefore study an economy in which

agents are exposed to both idiosyncratic and aggregate risk. We introduce these risks by assuming

that agents have access to a variety of financial assets. The return processes of all assets are tech-

nologically determined and exogenous, and all returns are paid out in the adjustable good. Each

agent can invest in a bond with a constant instantaneous riskfree return r, so that the face value

of the bond evolves as

dBt/Bt = rdt. (2)

We also allow two types of risky investments, both with i.i.d. returns. The source of aggregate risk

is the stock market, with instantaneous return

dSt/St = (r + π)dt+ σdzt (3)

where zt is a standard Brownian motion that generates a filtration {Ft, 0 ≤ t <∞}, π is the ex-

pected excess return, and σ is the standard deviation of asset returns. Households also face idio-

syncratic risk in the form of a household-specific risky investment opportunity. This background

risk can be thought of as entrepreneurial investment or labor income risk (where “investment” is

4Similar utility and adjustment cost specifications have been used by Flavin and Nakagawa (2008), Fratantoni
(2001), Li (2003), and Postlewaite, Samuelson and Silverman (2008).
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investment in human capital). The return of household i’s entrepreneurial investment is given by

dSE,it /SE,it = (r + πE)dt+ σEdz
i
t

where the zis are standard Brownian motions uncorrelated across households.5 Each agent can

invest or disinvest any amount into his private asset at any time. We ignore imperfections in

financial markets: an agent can go long and short in any of the assets available to him.

We assume that the relative price of adjustable and commitment consumption services is exoge-

nous and normalized to one. We discuss below both general equilibrium and partial equilibrium

interpretations of this assumption. We also assume that the agent pays for the commitment

consumption service every period (e.g., as with rental housing).6 Denoting total wealth by wit, the

wealth share invested in the stock market by αit, and the wealth share invested in the entrepreneurial

asset by αE,it , the dynamic budget constraint of agent i is

dwit = wit

[
αit
dSt
St

+ αE,it

dSE,it

SE,it

+
(
1− αit − α

E,i
t

) dBt
Bt

]
− (at + xt) dt− 1{xt− 6=xt} (λ1xt− + λ2xt) .

(4)

We make the standard assumption that ρ > (1− γ) r +
[
π2/

(
2σ2
)
+ π2E/

(
2σ2E

)]
(1− γ) /γ, which

ensures that with zero adjustment costs, expected consumption utility grows at a smaller rate than

the discount rate in the optimum, generating finite lifetime utility.

2.2 Discussion of Modelling Choices

Consumption commitments. As a benchmark, we interpret the adjustment cost as the physical

transaction cost inherent in changing consumption of illiquid durables such as houses, cars, or

appliances, or the cost of renegotiating service contracts (Attanasio 2000, Eberly 1994, Grossman

and Laroque 1990).7 However, the adjustment cost may also represent costs required to respond

to new circumstances and make new choices (Browning and Collado 2001, Ergin 2003), and may

arise from attention costs or computing costs (Ameriks, Caplin and Leahy, 2003, Reis, 2006).

Exogenous price of commitment good. The fixed relative price of the commitment good can

5Sun (1998) develops the mathematical foundations for working with a “large number” of independent stochastic
processes, and derives exact laws of large numbers in these settings.

6Because the agent is free to borrow, this model is equivalent to one in which the agent buys and sells the
capitalized service flow at price x/r on every adustment date.

7More recently, several studies have examined state-dependent models with two consumption components, one
freely adjustable and one that is costly to adjust (Flavin and Nakagawa 2008, Fratantoni 2003, Li 2003).
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be interpreted as arising from a technology that can transform adjustable into commitment and

commitment into adjustable goods at a given conversion rate, after paying the adjustment cost.

With this interpretation, since investment opportunities are also technologically determined, our

model environment is a general equilibrium economy.

An alternative, partial equilibrium interpretation of the exogenous price assumption is that the

model describes a group of people who are small from the perspective of the aggregate economy.

In this interpretation “aggregate shocks” affect all members of the group but are uncorrelated

with economy-wide fluctuations; and a “representative agent” represents the group, not the entire

economy. This partial equilibrium interpretation is closest to the micro evidence we discuss in the

context of excess sensitivity and smoothness in Section 4.1 below.

In a parallel literature on adjustment costs in firm investment, Khan and Thomas (2008) show

that even though dynamics at the firm level are highly nonlinear, endogenous prices can create

aggregate dynamics which are approximately linear. Our habit equivalence result below is con-

nected to this finding. It establishes that a high ratio of idiosyncratic risk to aggregate risk can also

create aggregate dynamics which are approximately linear in our exogenous-price setting. In the

Khan and Thomas model, the nonlinearities generated by simultaneous adjustment of many firms

are infrequent because relative prices adjust such that the benefits of adjustment are limited. In

our model, simultaneous adjustment by many agents is infrequent because idiosyncratic risk keeps

the cross-sectional distribution near its steady-state shape. The fact that price effects push in the

same direction as idiosyncratic risk suggests that even when the price of the commitment good is

endogenized–an important issue we leave for future research–the results on approximate linearity

are not likely to be overturned.

Preferences. When κ → ∞, our model converges to a neoclassical model without adjustment

costs, and when κ = 0 we obtain a model with only commitment consumption, as in Grossman

and Laroque (1990). Because utility is time-separable, γ measures the elasticity of intertemporal

substitution as well as relative risk aversion for an individual who is free to adjust both x and a.

We use this functional form to make the evolution of commitments tractable. However, we believe

that the intuitions underlying our main results apply more generally to other specifications as well.

2.3 Household Behavior

Optimal choice of commitment and adjustable consumption. The following proposition characterizes

the choice of commitment consumption using an (S,s) band. This result has been previously

7



established for a class of models that nests our model as a special case (Flavin and Nakagawa

2008). We state the proposition here as a reference.

Proposition 1 [Household behavior] There exist s < s∗ < S such that xit is not adjusted as long

as xit/w
i
t ∈ (s, S), but adjusted otherwise; and when it is adjusted, the household sets x

i
t = s∗wit.

The behavior of adjustable consumption ait can be characterized directly from the Euler equa-

tion. The appendix shows that log at is a random walk with drift that satisfies

d log ait = µa · dt+
π

γσ
· dzt +

πE
γσE

· dzit. (5)

Here, µa is the constant mean growth rate, while the second and third terms measure how at

responds to aggregate shocks dzt and idiosyncratic shocks dz
i
t. Motivated by (5), we define σA =

π/ (γσ) and σI = πE/ (γσE), which measure the standard deviation of adjustable consumption due

to aggregate respectively idiosyncratic risk. Let σ2T = σ2A + σ
2
I measure total consumption risk.

Characterizing consumption dynamics. Proposition 1 and equation (5) do not constitute a

full characterization of consumption dynamics because the (S,s) rule involves the commitments-to-

wealth ratio, and, by equation (4), the evolution of wealth depends on portfolio decisions. We

obtain a full characterization of optimal consumption dynamics by specifying the household’s choice

of xit as a function of a
i
t instead of w

i
t. Define y

i
t = log(xit/a

i
t). It then follows from Proposition

1 that there exist numbers L < M < U such that for yit ∈ (L,U), the household does not adjust

xit from its prior level; but as soon as yit reaches L or U , the household resets x
i
t so that y

i
t = M .8

This rule characterizes the choice of xit with an inaction region over y
i
t. Importantly, because y

i
t

depends on the endogenous variable ait, this rule is a description of optimal behavior. However,

in combination with (5), which characterizes the evolution of ait, this description yields a complete

characterization of consumption dynamics. In particular, given initial values for wealth wi0 and

commitment xi0, the household chooses the initial level of adjustable consumption a
i
0 based on the

long-run budget constraint, and the evolution of ait and x
i
t are then completely pinned down.

A key implication of this characterization is that household consumption cit = ait + xit jumps

on adjustment dates. Chetty and Szeidl (2007) document evidence consistent with this prediction

and with the (S,s) policy predicted by Proposition 1. Using data from the Panel Study of Income

8The existence of an inaction region representation with x/a follows from the fact that the consumption function
ait = a

(
wit, x

i
t

)
is strictly increasing in wit and homogenous of degree one. As a result it can be used to map the (S,s)

band over wealth into a band over adjustable consumption: for example L = 1/a (1/s, 1).
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Dynamics, they show that following “small” unemployment shocks that generate a wage income

loss of less than 33 percent, most households cut food consumption significantly, while 31 percent

of them move out of their house and adjust housing consumption discretely. In response to larger

shocks (wage loss greater than 33 percent), households are more likely to adjust on both margins,

and in particular 40 percent of them move and change housing consumption discontinuously.

Interpreting at as permanent income. As shown by equation (5), log at follows a random walk:

it adjusts immediately and fully to both aggregate and idiosyncratic shocks. In fact, for an agent

facing no adjustment costs (λ1 = λ2 = 0) equation (5) would also characterize the dynamics of

total consumption, and hence at is proportional to what consumption (equivalently, permanent

income) would be in the absence of adjustment costs. Thus ait is usefully thought of as a measure

of the permanent income of agent i. Given the equivalent characterization of the optimal policy

described above, we often take the perspective that ait, defined by (5), measures fluctuations in

permanent income, and that xit evolves in response to these fluctuations.

Initial conditions. We assume that at t = 0 initial wealth and commitment consumption levels

are such that households are all inside their inaction region, that ai0 = A0 is the same for all

households, and that the distribution of yi0 inside the (L,U) region is given by F0 (y).

2.4 Existence of a Representative Consumer

We now show that aggregate dynamics in the adjustment cost model coincide with those of a

single-agent economy in which aggregate commitments act as a habit-like reference point for the

representative consumer. Let Xt =
∫
i x
i
tdi, At =

∫
i a
i
tdi, and Ct = Xt + At denote aggregate

commitment, adjustable, and total consumption at time t.

Proposition 2 Assume that δ = ρ−
π2I
2σ2

I

(
1 + 1

γ

)
> 0. Then the aggregate dynamics of consumption

are the optimal policy of a representative consumer with external habit formation utility

E

∫ ∞

0
e−δt

(Ct −Xt)
1−γ

1− γ
dt (6)

where Xt follow the dynamics of aggregate commitments.

The intuition for the existence of a representative consumer is that–as in Grossman and Shiller

(1982)–idiosyncratic shocks cancel in the aggregation. The presence of idiosyncratic risk also

increases mean consumption growth, and to compensate for this, the representative consumer must
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be more patient than the individual households. An implication of Proposition 2 is that the

functional form for the utility of the representative consumer is identical to the commonly used

“additive habit” specification (e.g., Constantinides, 1990, Campbell and Cochrane, 1999). In this

framework, the only observational difference in the aggregate between the commitment model and

habit formation models comes from the dynamics of Xt.

3 Dynamics of Aggregate Commitments

We now turn to characterize the evolution of the aggregate commitments Xt. We set the stage

in Section 3.1 by adapting existing results about the cross-sectional distribution to our setting.

The new contribution is in the remainder of the section. In Section 3.2 we present our key idea:

we represent Xt as a moving-average of past shocks, in which the weights are state-dependent

impulse responses determined by the cross-sectional distribution at the time of the shock. In

Section 3.3 we show that habit models admit an analogous representation in which the weights are

state-independent. Finally, in Section 3.4 we identify conditions under which the weights of the

commitments model are approximately state-independent, establishing approximate linearity and

an equivalence with habit formation.

3.1 The Cross-Sectional Distribution

We begin with preliminary results which build on the literature on firm dynamics. Because they

have identical preferences, the numbers {L,M,U} are the same for all households in the economy.

However households face different idiosyncratic shocks and as a result are in general in different

locations in the (L,U) region. Characterizing the dynamics of Xt thus requires keeping track

of the distribution of households. The main object we use for this purpose is the adjustable-

consumption-weighted cross-sectional distribution of y, defined as F (y, t) = (1/At)
∫
{i:yi(t)<y}

aitdi.

This quantity equals the share of total adjustable consumption at date t which is consumed by

households i whose yit is below y in the inaction region (L,U). Given our discussion in Section 2.3

that at reflects lifetime resources, F (y, t) can be intuitively thought of as measuring how permanent

income is distributed inside the inaction region. Note that because at t = 0 we have ai0 = A0 for all

households, F (y, 0) = F0 (y). Let µA denote the instantaneous drift of At and f (y, t) denote the

density of F (y, t), the existence and dynamics of which are characterized by the following result.
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Proposition 3 f(y, t) exists for all t > 0 and satisfies the stochastic partial differential equation

for t > 0 and y ∈ (L,U)

df(y, t) =

[(
µA +

σ2I
2

)
∂f(y, t)

∂y
+
σ2T
2

∂2f(y, t)

∂y2

]
dt+ σA

∂f(y, t)

∂y
dz (7)

together with the following boundary conditions:

∂f(M, t)

∂y

+

−
∂f(M, t)

∂y

−

=
∂f(U, t)

∂y

−

−
∂f(L, t)

∂y

+

f(U, t) = f(L, t) = 0 and f(M, t)+ = f(M, t)−.

Aggregate commitments follow the dynamics

dXt = At
σ2T
2
·
(
fy(L, t)(e

M − eL) + fy(U, t)(e
U − eM )

)
dt. (8)

This result is based on Propositions 1 and 2 in Caballero (1993) combined with Girsanov’s

theorem to account for a change in drift. Equation (8) shows that the evolution of commitments

is “smooth” in the aggregate in the sense that it is a bounded variation process (has no dz term).

This follows because the cross-sectional densities go to zero near the boundary of the (S,s) band.

As a result the total mass of agents who adjust in response to an aggregate shock of size dz is small:

it is proportional to the area under the density at the boundaries, which is of order (dz)2 = dt.

To understand the intuition for equation (7), first consider the case with no aggregate risk

(dz = 0). Then the final term on the right hand side vanishes, and the resulting partial differential

equation has a unique time-invariant solution f∗. This density f∗ can be thought of as the

“unperturbed” steady state of the economy. In the presence of aggregate shocks, the actual cross-

sectional density f is constantly perturbed relative to f∗, as represented by the dz term in (7); but

in the long term the system returns to f∗ in expectation.

Figure 1 illustrates these results. The top panels plot the steady-state distribution f∗ in two

environments: one with high aggregate and low idiosyncratic risk and the other with low aggregate

and high idiosyncratic risk. The bottom panels show the actual cross-sectional distribution sampled

twenty times from simulating the two environments. The actual distributions are more similar

to the steady state distribution when idiosyncratic risk is high relative to aggregate risk. This

observation–which follows because idiosyncratic risk forces the distribution to converge towards

f∗, while aggregate risk pushes it away from f∗–plays a key role in our approximation result below.
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Figure 1: Cross-sectional densities of the log commitment to adjustable consumption ratio. Top
panel shows the long run steady state f∗, bottom panel shows twenty realizations. Environment
(a) has high aggregate risk (σA = .1) and low idiosyncratic risk (σI = .05), environment (b) has
low aggregate risk (σA = .05) and high idiosyncratic risk (σI = .1).

3.2 State-Dependent Impulse Responses and aMoving-Average Representation

To connect the dynamics of Xt to exogenous habit models, we develop a moving average (MA)

representation forXt. This representation summarizes the dynamic response ofXt to past aggregate

shocks. Because our interest is in fluctuations, we focus on the de-trended processes At = e−µAtAt,

which is a martingale, and Xt = e−µAtXt. It is useful to think of At as summarizing aggregate

shocks up to date t.

The next definition introduces the impulse response of commitments to an aggregate shock at

t = 0. Specifically, we consider a small change in A0 relative to an initial value A
∗
0, holding fixed

the initial distribution of commitment consumption. Given the initial value A∗0, the commitment

consumption of agent i is xi∗0 = ai0 exp y
i
0 = A∗0 exp y

i
0. Hence–given that the initial distribution

of yi0 is F0–the initial cross-sectional distribution of commitment consumption is F
x (x0|A

∗
0) =

F0 [log x0 − logA
∗
0]. We let Xt (A0, F

x (x0|A
∗
0)) denote normalized aggregate commitments at

date t when ai0 = A0 may differ from A∗0, but the initial distribution of commitments is fixed at

F x (x0|A
∗
0).
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Figure 2: Normalized cumulative impulse response function of aggregate commitment consumption
in four environments with high (σ = .1) and low (σ = .05) aggregate and idiosyncratic risk.

Definition 1 The impulse response function of the commitments model in state F is the function

ξ (t|F ) =
∂E0

[
Xt (A0, F

x (.|A∗0)) |
]

∂A0

∣∣∣∣∣
F0=F, A0=A∗0

.

This is just the derivative of E0Xt with respect to a uniform change in a0 for all households,

holding fixed initial commitments. The Appendix shows that ξ (t|F ) is well-defined and indepen-

dent of A∗0. Because we usually work with cross-sectional distributions that have a density, we often

write ξ (t|f) where f is the density of F , or ξ (t|f (s)) when f (s) is the adjustable-consumption-

weighted cross-sectional density at date s. It is intuitive that impulse responses should depend on

the initial distribution: when many households are on the verge of downsizing, a negative aggregate

shock will reduce commitments at a faster rate. Figure 2 plots impulse-responses in our model in

four environments (assuming f = f∗). As t→∞, these impulse responses gradually converge to a

limit (normalized to one in the figures), which corresponds to full adjustment to the initial shock.

Higher risk leads to more rapid convergence, as commitments are updated more quickly.

We use ξ (t|f) to make explicit the dependence of Xt on past aggregate shocks.
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Proposition 4 De-trended aggregate commitments admit the moving average representation

Xt =

∫ t

0
ξ (t− s, f (s)) dAs + E0Xt. (9)

As we show below, this MA representation is the key diagnostic in analyzing the dynamics of

Xt. The result is intuitive: the current level of Xt equals its ex ante expectation plus the sum of the

effects of aggregate shocks between date 0 and date t, accounting for partial adjustment to shocks

using the impulse response function. We interpret (9) as a “state-dependent MA representation”

for commitments, where the coefficients ξ (t− s, f (s)) depend on the state of the economy at date

s through f (y, s).

3.3 Habit Models and a State-Independent MA Representation

A leading special case of the moving-average representation in (9) is where the weights ξ are state-

independent, i.e., do not depend on history. We now show that this special case coincides with

reduced-form habit models in which Xt is specified as an average of past consumption with weights

that only depend on the time lag. Intuitively, if habit is a linear function of past consumption, it

should be expressible as a linear function of shocks to past consumption as well.

Habit model. Consider a representative agent economy in which external habit preferences are

given by (6), and the habit stock is exogenously determined as

Xh
t = oh(t)Xh

0 +

∫ t

0
ζh(t− s)Chs ds (10)

with weights ζh and oh which are exogenous locally integrable functions asymptoting to zero.

Throughout, we follow the convention that the superscript h refers to the representative agent

habit model. We assume that the habit consumer has access to the same stock and bond in-

vestment opportunities given in equations (3) and (2). Our habit model is therefore a variant

of Constantinides (1990). Since the shock processes are identical, we can think of the habit and

commitment models as being defined on the same probability space. It is a direct consequence of

the Euler equation that in the optimum, the “surplus” consumption Cht −Xh
t for the habit agent

follows the same path as At in the commitments model. Thus, At keeps track of aggregate shocks

to marginal utility in both economies.

Moving average representation. Lemma 5 in the appendix shows that we can rewrite (10) into

a representation in which Xh
t is a weighted average of past values of As, rather than past values of
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Cs. This follows essentially because C, X and A are linked by an accounting identity, and hence

any linear representation of X in terms of C can also be written as a linear representation in terms

of A. From that representation, integration by parts yields

X
h
t =

∫ t

0
ξh (t− s) · dAs + E0X

h
t (11)

where ξh (u) is absolutely continuous with respect to the Lebesgue measure. Equation (11) is an MA

representation for the detrended habit stock. The fact that the weights in this MA representation

are state-independent is a consequence of starting from a habit model in which the consumption

weights are state-independent.

3.4 Equivalence Result: A Fixed-Weight Representation in the Commitments

Model

The results above imply that the central difference between the fixed-weight habit and the commit-

ment models comes from the state-dependent nature of impulse-responses in the latter case. We

now show that when the ratio of idiosyncratic to aggregate risk is high, aggregate commitments

evolve approximately according to a fixed weight specification.

We begin by introducing a fixed-weight habit model that generates dynamics which match the

evolution of commitments on average.

Definition 2 A fixed-weight habit model Xh
t matches the steady state impulse response of commit-

ments if ξh (t) = ξ (t, f∗) for all t.

In words, we focus on the habit model that has the same impulse responses as the commitment

model in its “unperturbed” steady state f∗. This definition pins down all MA coefficients in (11).

We denote the impulse-response weights by ξ∗ (u) = ξ (u, f∗) and the habit model by Xh∗
t .

Main result. Our equivalence result holds when the ratio of idiosyncratic (σI) to aggregate (σA)

consumption risk is large. Since both of these parameters are endogenous, we study sequences of

exogenous parameters such that the implied ratio σI/σA goes to infinity. We explain why σI/σA

drives the result in the discussion below. Consider a sequence of models Θn such that, as n→∞,

the following properties hold: 1) σnI /σ
n
A → ∞; 2) γ, κ and λi remain fixed; 3) r

n stays bounded

away from zero; 4) µnA remains bounded; and 5) r
n/ρn is bounded away from zero and infinity. An

example of such a sequence is when πn = 1/n, while all other exogenous parameters stay constant.

In this sequence, σnA → 0.
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Figure 3: Ratio of aggregate commitments and habit in four environments.

Theorem 1 For any sequence of models Θn specified above and any p ≥ 1,

lim sup
t

∥∥∥∥
Xt −X

h∗
t

At

∥∥∥∥
p

= o

(
σA
σI

)
.

The left hand side of the expression measures the distance between aggregate commitments

Xt and habit in the matching fixed-weight model X
h∗
t , rescaled by a measure of the aggregate

economy At. Since these quantities are stochastic, we use the Lp norm to measure distance,

defined as ‖Y ‖p = [EY p]1/p for any random variable Y . The small order o (.) on the right hand

side shows the accuracy of the approximation: the distance between the two models becomes an

arbitrarily small share of σA/σI when this ratio goes to zero. The interpretation is that fixed-

weight habit provides a highly accurate, “better than first-order” approximation. For example,

along a sequence where σA → 0, the difference between commitments and the fixed-weight model

goes to zero even relative to σA: when the size of aggregate shocks shrinks, the approximation

error becomes small compared to these shocks. Similarly, when the magnitude of idiosyncratic risk

grows, the distance between the two models goes to zero at a faster rate than the growth in σI .

Simulations presented in Figure 3 illustrate the theorem. The figure uses a calibration to plot

the evolution of Xh∗
t /Xt in four environments, in which σI and σA equal either 5% or 10%. The
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figure shows that the ratio is close to one in most periods, particularly when idiosyncratic risk is

high (right panels) and when aggregate risk is low (bottom panels).

The intuition underlying Theorem 1 is that when most of the uncertainty comes from idiosyn-

cratic risk, the cross-sectional distribution is usually close to its steady state. Hence aggregate

shocks generate the same pattern of adjustment in most periods, resulting in impulse response

weights that are almost constant over time. The proof of the theorem involves several techni-

cal steps, but the basic logic is intuitive. The key is to analyze both models using their MA

representations. Differencing (9) and (11) yields

Xt −X
h∗
t − E0

[
Xt −X

h∗
t

]
=

∫ t

0
[ξ∗ (t− s)− ξ (t− s, f (s))] · dAs

=

∫ t

0
[ξ∗ (t− s)− ξ (t− s, f (s))] · σA ·Asdzs

where we use dAs = AsσAdzs. Focusing on the final integral, consider a sequence of models

Θn along which the level of aggregate risk σA → 0. Since the integrand involves σA, its value

goes to zero as σA → 0: as aggregate shocks become small, both models will stay close to their

unconditional expectation. But the equation also reveals an additional effect. As σA/σI becomes

small, much of the shock each household experiences is idiosyncratic. This pushes the cross-sectional

distribution f close to its unperturbed steady state f∗, because the force pushing for convergence,

determined by σI , becomes stronger relative to the force of divergence, determined by σA.
9 As a

result, f and f∗ are usually close. This in turn implies that ξ∗ (t− s)− ξ (t− s, f (s)) is typically

small: when the system is close to the steady state, its impulse response is also close to the steady

state impulse response. Thus X −X
h
is on average small even relative to σA.

The mechanism described here is illustrated in the bottom panel of Figure 1. As noted above,

there is much more “variance” in the evolution of the cross-sectional distribution in the left panel

(low σI/σA), because the forces of divergence are stronger. This creates fluctuations in the impulse-

response across periods, producing behavior that diverges from a fixed-weight habit model. In

contrast, the cross-sectional density varies much less in the right panel. As a result, the impulse-

responses are approximately constant, creating approximately linear aggregate dynamics.

The case where σI/σA is large is the most empirically relevant scenario, since idiosyncratic

consumption risk is generally much larger than economy-wide risk (e.g., Deaton, 1991, Carroll,

Hall, and Zeldes 1992). This suggests commitments can potentially account for behavior typically

9This mechanism is labeled the “attractor effect” by Caballero (1993).
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attributed to habit formation.

4 Comparing Consumption Commitments and Habit Formation

In addition to replicating the patterns previously attributed to habit formation models in a commonly-

studied environment, the commitments model also yields new predictions in other settings. In this

section, we illustrate these predictions using three applications. We discuss how existing evidence

and future empirical work can distinguish between the commitment and habit models and derive

welfare implications which show why distinguishing the two models is important.

4.1 Consumption Dynamics

Two well-documented features of consumption behavior–both in the aggregate and at the micro

level–are excess sensitivity and excess smoothness to shocks (see Japelli and Pistaferri (2010)

for a review). One major reason for using habit preferences in applied macroeconomic models

is that they generate such delayed consumption responses (Fuhrer 2000). In this subsection, we

show that the commitments model not only produces these patterns but also matches additional

microeconometric evidence on how excess sensitivity depends on the size of the shock and varies

across types of consumption.

Fix a date t0 and history up to t0. For any t1 > t0 consider the following regression specification

for consumption growth:

log (Ct1)− log (Ct0) = α1 + β1 · [logAt1 − logAt0 ] + ε. (12)

This regression builds on the interpretation developed in Section 2.3 that adjustable consumption–

because it immediately and fully responds to shocks–can be thought of as a measure of permanent

income for an individual or a group of households. Thus the regression evaluates the extent to

which consumption responds to contemporaneous shocks affecting lifetime income. To make explicit

its dependence on t1, we denote the regression coefficient by β1 (t1). The neoclassical permanent

income model predicts β1 (t1) = 1 for all t1 > t0. Following Flavin (1981), we say that consumption

is excessively smooth if β1 (t1) < 1 for some t1 > t0, i.e., if consumption does not fully respond to

contemporaneous shocks.
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Next, let t3 > t2 > t1 and consider the regression

logCt3 − logCt2 = α2 + β2 [logAt1 − logAt0 ] + ε. (13)

This regression evaluates the extent to which consumption adjusts to income shocks with a delay.

Using the notation (t1, t2, t3) = t, we denote the regression coefficient by β2
(
t
)
. The neoclassical

permanent income model implies β2
(
t
)
= 0 for all t because consumption responds fully at the

time of the shock. We say that consumption is excessively sensitive if current consumption does

respond to past shocks to permanent income, i.e., if there exists t such that β2
(
t
)
> 0.

Proposition 5 (Excess smoothness and sensitivity) In the commitments model, consumption is

both excessively smooth and excessively sensitive.

Excess smoothness follows because commitments respond slowly to the shock. Therefore ini-

tially (for t1 close to t0) β1 (t1) ≈ At0/Ct0 < 1 in regression (12). Excess sensitivity is an implication

of the fact that eventually, households do adjust their commitments, and hence β2
(
t
)
approximates

Xt0/Ct0 > 0 when t2 → t0 and t3 → ∞. The shape of delayed adjustment is illustrated in Figure

2, which plots the normalized steady-state impulse response of commitments. Our model suggests

that both the sluggishness and sensitivity of consumption may be consequences of adjustment costs

that delay updating.

Large shocks. We now show that excess sensitivity and smoothness vanish for large shocks in

the commitments model, but not in the habit model. We first introduce a notion of large shocks.

Because our model does not feature jumps, we focus on the (unlikely) events in which At changes

rapidly during a short interval after t0. Formally, consider the events in which logAt1 reaches

either logAt0 +∆ or logAt0 −∆ by date t1. These events correspond to a positive (respectively

negative) shock, and ∆ measures the size of the shock, i.e., the percentage change in At. We denote

the former event by S (+, t1,∆), the latter event by S (−, t1,∆), and their union by S (t1,∆).
10

We now compare the commitment model with its matching habit specification introduced in

Definition 2 during and after these large shocks. Consider estimating the regression (12) con-

ditional on the shock event S (t1,∆). We denote the regression coefficients by β1 (t1,∆) in the

commitments model and βh1 (t1,∆) in the habit model. Note that because these coefficients are

estimated conditional on the low-probability shock events, they need not match the unconditional

coefficients β1 (t1) and β
h
1 (t1) introduced earlier.

10The formal way to model these events is to assume that a Brownian bridge drives logAt between t0 and t1.
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Proposition 6 (Excess smoothness for large shocks) The following statements hold:

(i) In the commitments model excess smoothness vanishes for large shocks. Formally, there

exists K > 0 such that for all t1 > t0, β1 (t1,∆) > 1−K/∆.

(ii) In the habit model excess smoothness remains for large shocks. Formally, there exists K ′ < 1

such that for all ∆ large enough, we can find t1 for which β
h
1 (t1,∆) < K ′.

Part (i) shows that in the commitments model the correlation between consumption and per-

manent income increases in extreme events. Because large shocks force people to adjust their

commitments, β1 (t1,∆) approaches 1 as ∆→∞. Part (ii) shows that this result does not extend

to the habit model: because in that setting impulse responses do not depend on the size of the

shock, βh1 (t1,∆) remains bounded below 1 even for ∆ large.

We now turn to excess sensitivity. Consider estimating the regression (13) conditional on

the shock event S (t1,∆). We denote the regression coefficients by β2
(
t,∆

)
in the commitments

model, and by βh2
(
t,∆

)
in the habit model. To explore the impact of a sudden large shock,

we focus on the limit in which, holding fixed ∆ the size of the shock, t1 → t0. We define

the lim sup and lim inf of the regression coefficients to be β2 (t2, t3,∆) = limt1→t0 supβ2
(
t,∆

)

and β
2
(t2, t3,∆) = limt1→t0 inf β2

(
t,∆

)
in the commitments model, and define β

h
2 (t2, t3,∆) and

βh
2
(t2, t3,∆) analogously for the habit model.

We consider a sequence of models Θn as defined in Section 3. The following result is stated for

the case when n is large enough, that is, when σA/σI is small enough. We focus on this case for

the technical reason that it ensures that Xh
t /A

h
t remains bounded in Lp norm uniformly in t.

Proposition 7 (Excess sensitivity for large shocks.) Suppose that n is large enough. Then:

(i) In the commitments model, excess sensitivity vanishes for large shocks. Formally, there

exists K > 0 such that for any t3 > t2, we have β2 (t2, t3,∆) < K/∆.

(ii) In the habit model excess sensitivity remains for large shocks as well. Formally, there exists

K ′ > 0 such that for all large enough ∆, we can find t2 and t3 for which β
h
2
(t2, t3,∆) > K ′.

Part (i) shows that the commitments model does not generate delayed adjustment for large

shocks. As more and more households are pushed over the boundary of their (S,s) bands, fewer and

fewer of them will adjust to the shock with a lag. As a result, β2 (t2, t3,∆) becomes arbitrarily small

as ∆ grows. Conversely, part (ii) shows that–because impulse responses are state-independent–

the habit model produces delayed responses for large shocks as well.
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The challenging part of the proof is claim (ii). To establish that result, we need to characterize

Xh
t3/At3 as t3 →∞. SinceXh

t3 is essentially a weighted sum in which the number of terms grows with

t3, to obtain a characterization we need to make sure that terms corresponding to the distant past,

even when normalized by At3 , remain bounded. Because σA governs the variance of the normalizing

term Aht3 , while σI affects the rate with which the weights in the weighted sum approach zero, this

is ensured when σA/σI is small.

Microeconometric evidence for the “magnitude hypothesis.” Summarizing the empirical liter-

ature on consumption, Japelli and Pistaferri (2010) write that consumers “tend to smooth con-

sumption and follow the [neoclassical] theory when expected income changes are large, but are less

likely to do so when the changes are small and the cost of adjusting consumption is not trivial.”

Japelli and Pistaferri term this pattern the “magnitude hypothesis.” In what follows, we briefly

summarize this body of evidence and discuss how it is explained by the commitments model.

Several empirical studies have found that the degree of excess sensitivity in consumption–often

measured with the consumption response to anticipated income shocks–depends on the size of the

shock. Hsieh (2003) finds that Alaskan households increase consumption in the quarter in which

they receive their tax refunds (a small income change), but not in the quarter in which they receive

payments from the Alaska Permanent Fund (a large income change). In the same spirit, Browning

and Crossley (2001) note that Parker (1999) finds excess consumption sensitivity to the income

change associated with US households reaching the Social Security payroll cap (a small income

change) while Browning and Collado (2001) find no excess consumption sensitivity of Spanish

workers to anticipated bonus salary amounting to two months’ wages (a large income change). In

support of the idea that the magnitude of the shock may drive these differences, Browning and

Crossley (2001) estimate that the welfare cost of ignoring the Spanish bonus system is equivalent

to an annual loss of a month’s consumption, that of ignoring the Alaska Permanent Fund schedule

is equivalent to a week of consumption, and that of the Social Security cap is equivalent to an

afternoon’s consumption. Similarly, Souleles (1999) finds excess sensitivity to tax refunds and

Souleles (2002) to the Reagan tax cuts, but Souleles (2000) finds no excess sensitivity to college

expenditures, which are typically larger in magnitude. Finally, Scholnick (2013) shows that the

anticipated income increase associated with a household’s final mortgage payment has a positive

effect on consumption, but the effect is decreasing in the size of the payment.

The commitments model can help explain this body of evidence through Propositions 6 and 7,

which together imply that the delay with which consumption responds to income shocks is smaller
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for large shocks.11 This result can explain Hsieh’s findings through the logic that consumers

respond slowly to information on tax refunds, because those payments are small. But the same

consumers respond quickly to news about the payment of the Alaska Permanent fund because those

payments are large. In particular, through Proposition 6 the commitments model predicts that

consumers should not increase consumption when the actual payment of the Alaska Permanent

Fund is made; instead, they should increase consumption earlier, right after the announcement.

This prediction is consistent with Hsieh’s finding that the growth in expenditures on durables is

lower when the Alaska Permanent Fund payment is higher, suggesting that consumers purchase

durables before they receive the Fund payment. Similarly, the commitments model predicts slow

adjustment to the small income change associated with the relatively small tax refunds and with

reaching the social security cap; but like the permanent income model, early adjustment–when

the worker is hired, or when a decision is made that the child will attend college–to the wage

bonuses and to college expenditures. The habit model does not match these predictions because

it produces a state-independent impulse response, as shown in Propositions 6 and 7.12

An important caveat is that both the commitment and habit models predict that consumption

should be unaffected by the timing of income conditional on the announcement date. Both models

simply predict gradual adjustment after the announcement, which results in comovement between

income and consumption. Thus neither model can explain the findings of Johnson, Parker and

Souleles (2006) that consumption responds to variation in the timing of income tax rebates. Other

factors, such as credit constraints (Agarwal, Liu and Souleles, 2007) or salience effects (Bordalo

et al. 2012, Koszegi and Szeidl 2013) may help explain this behavior. Despite these caveats, it

is clear that important elements of the evidence on excess sensitivity are more consistent with a

model of adjustment costs than with habits, suggesting that at least part of the behavior previously

attributed to habit formation may in fact be due to consumption commitments.

4.2 Comparative Dynamics

In this subsection, we compare the effects of changes in the environment in the commitment and

habit models. In the habit model, the weights that determine the speed of adjustment are exogenous

11Here we use the aggregated commitments model to match micro evidence. The interpretation is that the theo-
retical aggregate corresponds to the group of households who experience the shock.
12 In the commitments model, total consumption Ct exhibits excess sensitivity and smoothness, while adjustable

consumption At does not. Since most consumption goods have both adjustable and fixed components, the more
general empirical prediction is that more adjustable goods exhibit less excess sensitivity and smoothness. This
prediction also accords with empirical evidence. For instance, Chetty and Szeidl (2007) find that consumption of
housing responds much more sluggishly to unemployment shocks than consumption of food.
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Aggregate Idiosyncratic Riskfree Individ cons How many years till X adjusts p̃?
risk risk rate growth p̃ = 0.25 p̃ = 0.5 p̃ = 0.75

Adjustment cost= 1 x annual consumption
10% 10% 1% 0.87% 0.5 1.8 4.5
5% 10% 2.5% 0.87% 0.6 2.2 5.6
10% 5% 2.5% 0.87% 0.6 2.3 5.7
5% 5% 4% 0.87% 0.8 3.4 8.7
10% 10% 4% 2.37% 0.4 1.6 4.2

Adjustment cost= 5 x annual consumption
10% 10% 1% 0.87% 1.1 4.2 10.3
5% 10% 2.5% 0.87% 1.2 4.9 12.8
10% 5% 2.5% 0.87% 1.5 5.7 14
10% 10% 4% 2.37% 0.7 3.1 8.4

Table 1: Speed of adjustment of consumption commitments

and unaffected by environmental changes. In contrast, in the commitments model household

adjustment behavior is endogenous and responds to environmental changes.

To characterize how responses to shocks vary with the environment, let T (p̃, f) = inft {ξ (t|f) ≥ p̃ · x}

denote the time required for commitments or habit to adjust, in expectation, a share p̃ to a unit

shock to permanent income.13 This quantity can be interpreted as a measure of excess sensitivity of

consumption. By definition, in a fixed-weight habit model, T (p̃) is pinned down by the exogenous

weights and hence remains constant when other parameters are varied.

We begin with some numerical examples to illustrate the comparative dynamics of the commit-

ments model. Table 1 reports T (p̃|f∗) for the commitments model when p̃ = 0.25, 0.5 and 0.75

for various parameters. In the top panel, the adjustment cost equals one year’s consumption value

of the commitment good, or 1% of its capitalized value with a riskfree rate of 1%. The first row

shows that when σA = σI = 10% and rf = 1%, it takes on average about 1.8 years for 50% of

full adjustment to occur. The next three rows illustrate the effect of reducing σA or σI , changing

rf so that expected consumption growth remains unchanged in these comparisons. The table

shows that reducing either idiosyncratic or aggregate risk results in a slower response to shocks.

The intuition is that higher risk forces consumers to update their commitments more frequently,

allowing aggregate shocks to get absorbed by commitment consumption more quickly. Comparing

the first and last rows in the top panel shows the effect of higher consumption growth generated

by a higher safe return. Faster growth also leads to faster adjustment to shocks, as agents update

commitments more frequently in a growing economy. The bottom panel of the table shows that

13Here, x denotes the steady state ratio of commitments to adjustables, so that ξ (t) /x asymptotes to one.
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for a higher adjustment cost (5% of the capitalized value of the commitment good), adjustment is

more sluggish, but the effects of risk and growth remain similar.

To demonstrate that these results are driven by the intuition we describe, we now establish

a formal analog of the preceding numerical examples in a special case of the model. Consider a

sequence of economies Θ
n
with n = 1, 2, ... in which πn = πnE = 1/n and r = ρ. This sequence is

a special case of the Θn sequence introduced earlier in which σI , σA, µa and µA all go to zero at a

rate of 1/n. When n grows large, this economy converges to an environment in which households

face no risk and have zero consumption growth, which we denote by Θ
∗
. Clearly, in that limit

economy agents either adjust commitments immediately at t = 0 or never do so. The habit model

that matches the consumption pattern of Θ
∗
(as given by Definition 2) is one in which the habit

stock remains unchanged at the initial level of commitment x0 forever.

Proposition 8 Fix p̃ > 0. In the commitments model, Tn (p̃|x0) is finite but limn→∞ Tn (p̃|x0) =

∞. In the habit model, T h,n (p̃|x0) =∞ for all n.

In the commitments model, adjustment occurs with positive risk and growth (n finite), but as

n→∞, it occurs at a vanishingly small rate, so that the expected time to adjustment converges to

infinity. In contrast, in the habit model, the presence of risk and growth does not affect adjustment

of the habit stock, which remains constant permanently.

At the macroeconomic level, Proposition 8 suggests that recessions may be shorter in rapidly

developing economies, in which households change their arrangements frequently because of high

trend growth. Conversely, recessions may be longer in economies with substantial social insurance

against idiosyncratic risk (such as European welfare states) because people have weaker incentives to

change their commitments. Future research testing these predictions would help further distinguish

between the commitments and the habit model as drivers of excess consumption sensitivity.

4.3 Welfare Costs of Shocks

In our final application, we briefly explore the welfare implications of the commitment and habit

models. To begin, note that the commitments model offers a natural welfare measure based on

expected utility. In contrast, in the habit model, the appropriate measure is open to debate: in

particular, should habit consumption be included in welfare calculations? Following prior work

(e.g., Ljungqvist and Uhlig 2000, Ljungqvist and Uhlig 2009), we assume that the welfare of the

habit agent is fully determined by surplus consumption, without including the habit stock itself.
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Figure 4: Value (lifetime utility) as a function of wealth of a commitment agent (solid line) and the
matching habit agent (dashed line) in an economy with zero consumption risk and no growth. The
value function of the habit agent is shifted vertically to account for the utility value of commitments.

This assumption fits with the neoclassical tradition of assuming that the agent’s objective is to

maximize his own welfare. It would be useful to examine other welfare measures in future work.

We measure the welfare cost of a one-time, unanticipated wealth shock using a certainty-

equivalent approach. We ask what certain reduction in wealth the agent would accept to avoid

the risk of experiencing the wealth shock in a given instant of time.14 Because this measure is

denominated in units of wealth, it can be used to make welfare comparisons across models.

To build intuition, we first focus on the economy Θ
∗
defined earlier, in which there is no

aggregate or idiosyncratic risk and no consumption growth (π = πE = 0 and r = ρ, implying

µa = σA = σI = 0). Consider Figure 4, which plots the value functions of the commitment and

habit agents in this environment. As long as it remains optimal for the commitment agent not

to move, the two value functions are parallel.15 In this range, all changes in wealth are absorbed

by adjustable consumption, and hence the welfare implications of the two models are identical.

However, for large shocks, the commitment agent adjusts on both consumption margins, while

14Focusing on unanticipated shocks allows us to rule out precautionary behavioral responses, simplifying compu-
tations.
15There is a difference in the level of utility because here we assume that the habit agent does not derive utility

from commitment consumption. The figure abstracts away from this effect by shifting the value function of the habit
agent vertically.
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adjustment of the habit stock is not permitted. As a result, large shocks have a higher welfare cost

with habits than with commitments.

To establish this intuition in a more general setting, we consider an unanticipated wealth shock

at time t that hits with probability q and reduces total wealth by a share b. Consider the com-

mitment economy in its unperturbed steady state in which all agents face this shock, and contrast

it with the matching habit model where the shock affects the representative agent. We define the

proportional risk premium Π(q, b) in either model as the dollar amount that agents in that model

are collectively willing to give up in excess of the expected value to avoid this risk, normalized by

total wealth in the economy.

Proposition 9 Assume that λ1 = 0 but λ2 > 0. Then:

(i) As b → 1, the proportional risk premium in the fixed-weight habit economy exceeds that in

the corresponding commitment economy: Πh (q, b) > Π(q, b) .

(ii) Consider the sequence of economies Θn. For b > 0 sufficiently small, in the commitment

model the risk premium Πn (q, b) < Π∗ (q, b), while in the habit model Πh,n (q, b) = Πh∗ (q, b).

Part (i) implies that habit agents are more averse to large shocks than are commitment agents.

Commitments adjust immediately to a big shock, mitigating its impact. In contrast, reduced-form

habits adjust sluggishly for all shocks, hence agents suffer relatively more from a large shock.16

Part (ii) explores comparative statics of the welfare cost as risk and growth vanish. With

commitments, risk and growth reduce the risk premium Π(q, b): since agents adjust for other

reasons, a shock can be partly absorbed by commitments. Because this possibility is absent in the

reduced-form habit model, there the risk premium is unaffected by changes in risk or growth.

A policy lesson from (i) is that a habit model that matches observed dynamics of consumption

well may nevertheless yield misleading conclusions about the welfare costs of large shocks. In

particular, the optimal size of social insurance programs that insure large, long-term shocks such as

disability or job displacement may be smaller than predicted by analyses using habit models such

as Ljungqvist and Uhlig (2000). Result (ii) implies that policies which increase social insurance

or reduce growth can make aggregate fluctuations more costly by slowing households’ response

16The assumption that λ1 = 0 guarantees that when moving, the commitment agents can get rid of all pre-
commitments. Otherwise, even when moving they would still have promised expenditures of λ1Xt−, which behave
like sluggish habits. In simulations, we find that unless λ1 is very high, the conclusion of the proposition is unaffected.
Intuitively, moving costs are much smaller than habit expenditures.
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commitments habit

Behavioral Predictions

1. household consumption jumps on adjustment dates yes no
2. consumption excessively sensitive/smooth for small shocks yes yes
3. excess sensitivity/smoothness vanishes for large shocks yes no
4. less excess sensitivity/smoothness for adjustable goods yes no
5. reducing long-term growth can increase excess sensitivity yes no
6. insuring idiosyncratic risk can increase excess sensitivity yes no

Welfare Implications

1. unambiguous welfare measure yes no
2. welfare cost of small shocks amplified yes yes
3. welfare cost of large shocks amplified less yes no
4. reducing trend growth can increase cost of aggregate shocks yes no
5. insuring idiosyncratic risk can increase cost of aggregate shocks yes no

Table 2: The main predictions of the commitments and habit models

to changing circumstances. These results illustrate the potential importance of distinguishing

between the commitments and habit models.

5 Conclusion

A large literature in macroeconomics has used habit formation in preferences as an explanation

for key properties of consumption dynamics, such as the excess sensitivity and smoothness of

consumption. In this note, we showed that these properties can also be explained by aggregating

a model with adjustment costs at the microeconomic level. We also showed that the commitments

model yields new predictions in other domains. We conclude with Table 2 which summarizes the

key similarities and differences between the models and helps identify directions for future research.

The first four predictions in Table 2, on the dynamics of consumption and its response to

shocks, have been studied in prior empirical research. As discussed above, available evidence on

the predictions where the models differ aligns more closely with the commitments model. It would

be useful to have more evidence on the mechanism underlying these predictions. For example,

the commitments model predicts that excess sensitivity should be greater for small shocks (such as

lottery winnings) than large shocks, particularly for less adjustable goods like housing or durables.

Standard habit models do not predict such heterogeneity.

Predictions 5 and 6 on the impacts of changes in the economic environment offer new ways to

distinguish between the two models. One way to test prediction 6 at the microeconomic level would
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be to compare the effect of tax rebates on households who have vs. have not recently experienced

a positive income shock, such as a promotion. The commitments model predicts that excess

sensitivity of consumption to tax rebates should be lower for those who also had another positive

income shock, because they are more likely to adjust for that reason. At the macroeconomic level,

prediction 6 suggests that countries with more generous welfare systems, such as those in Northern

Europe, should have relatively longer business cycles.17

Differentiating between the commitment and habit models is important because the two models

generate different welfare implications, listed in the second part of Table 2. If commitments are the

root cause of habit-like behavior, then the welfare gains from insuring small or moderate shocks may

be larger than the gains from insuring large shocks, especially in economies with low trend growth

and idiosyncratic risk. In contrast, if consumers have habit formation preferences, then insuring

the largest shocks is most important. More broadly, revisiting existing results on optimal policy

in models featuring consumption commitments would be a useful direction for future research.
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Appendix A: Proof Map

We present a series of Lemmas and arguments that build up to the proof of Theorem 1 and to the

applications. Additional proofs are contained in the online Supplementary Appendix.

A.1 Preliminaries

Two convenient probability measures. Let Q be the probabilty measure which weighs the sample

paths of yt by their share in aggregate adjustable consumption. Then F (y, t) = PrQ
[
yit < y|A[0,t]

]
.

It follows from the proof (in the Supplementary Appendix) of Proposition 2 that the probability

density associated with Q is

dQ

dP
|t =

ait
At
= exp

[
πI
γσI

zit −
π2I

2γ2σ2I
t

]

which is an exponential martingale. By the Cameron-Martin-Girsanov theorem, under Q, the

process dzit = dzit − πI/ (γσI) t is a Brownian motion.

For our second probability measure note that–as shown in the proof of Proposition 2–At is

an exponential random walk, and hence At = e−µAtAt is an exponential martingale. We define

a measure R by letting, for any random variable Zt measurable with respect to Ft, E
R [Zt] =

E
[
ZtAt

]
. By the Girsanov theorem, under R, the process dzt = dzt − σAt is a martingale. The

advantage of this measure is that E0Xt = ER0
[
Xt/At

]
. This makes it easier to compute the

mean and the impulse response of Xt, because Xt/At is a bounded process. We can also write

E0Xt = ER0
[
Xt/At

]
= EQR0 [xt/at] where the superscript QR means that we first apply the

transformation associated with R and then the transformation associated with Q. Because the

densities associated with these transformations are driven by independent Brownian motions, QR

is also a probability measure. By applying R, we move to using the mean dynamics of X/A; and

then, by also applying Q, we can focus on the mean dynamics of a single agent, albeit under a

driving process with different drift.

Limits of models. Theorem 1 takes a sequence of models Θn. Below we focus on a sequence

along which σA → 0. At the end of the proof we show how to convert this result–using a clock

change–to a sequence where σI → ∞. Along the sequence Θn, endogenous parameters of the
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model, such as U and L, also change. While we do not always indicate it in notation, we always

understand those changes to be taking place.

A.2 Auxiliary results about the commitments model

We begin with a technical lemma that establishes the smoothness of conditional expectations of

yt. Consider a new process w̃t, which is a Brownian motion with some drift µw and variance

σw reborn at some interior point Mw when hitting the boundaries of the interval [Lw, Uw]. With

appropriate choice of parameters w̃t will have the same distribution as yt under QR. We let

h (y, t, σw, µw, Lw,Mw, Uw) = E
[
ew̃t |w̃0 = y

]
. Often we just write h (y, t), in which case we assume

that the other arguments are given by the optimal policy of the commitments model, so that

h (y, t) = EQRE [eyt |y0 = y]. Let L1 < L2 < M1 < M2 < U1 < U2.

Lemma 1 h (y, t, σw, µw, Lw, Uw,Mw) is infinitely many times differentiable in [Lw, Uw]×(0,∞)×

(0,∞)× [L1, L2]× [M1,M2]× [U1, U2].

Thus h and it’s various derivatives in y and t are all continuous and therefore locally bounded in

(µw, σw, Lw,Mw, Uw). This is useful because when we take σA to zero as n→∞, optimal behavior

changes, and hence the endogenous parameters
(
µy, σy, L,M,U

)
vary. But these parameters will

all stay in some bounded open set, and due to positive idiosyncratic risk σy stays bounded away

from zero. Thus along this sequence h (y, t) and its derivatives exist and are all bounded.

Our next Lemma expresses Xt as a moving average with weights determined by h.

Lemma 2 Let ξ (u, y) = h (u, y)− hy (u, y) and ξ (u, f (s)) =
∫ U
L ξ (u, y) f (y, s) dy. Then

Xt =

∫ t

0
ξ (t− s, f (s))σAsdzs + E0

[
Xt

]
. (14)

Proposition 4 follows from this result. We next show that ξ (t, y) converges exponentially fast.

Lemma 3 There exists x such that limt→∞E0
[
Xt

]
= limt→∞ ξ (t, y) = x. There exist K1,K2 > 0

independent of y and σA so that |ξ (t, y)− x| < K1e
−K2t and

∣∣E0
[
Xt

]
− x
∣∣ < K1e

−K2t for all

(y, σA) ∈ [L,U ]× [0, σA].

The next result will be used in the proof of Theorem 1 to show that for σA small, the impulse

responses of the two models are typically close. Let F ∗ denote the invariant distribution of y under

Q, which is also the long run average cross-sectional distribution of the commitments model.
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Lemma 4 lim supt→∞
∥∥supy |F (y, t)− F ∗ (y)|

∥∥
p
converges to zero as σA → 0.

A.3 Auxiliary results about the habit model

We first show the link between C-weighted and A-weighted habit models.

Lemma 5 Consider two habit models Xt =
∫ t
0 j(t − s)Asds + k(t)X0 and Xt = o(t)X0 +

∫ t
0 ζ(t −

s)Csds where the weight functions j, k, o and ζ are locally integrable. Then there is a one-to-one

correspondence between these representations, and the weights are linked to each other through the

Volterra integral equations ζ(u) = j(u) −
∫ u
0 ζ(v)j(u − v)dv and o(t) = k(t) −

∫ t
0 ζ(t − s)k(s)ds

with initial conditions ζ(0) = j(0), o(0) = k(0). In particular, each C-average representation has a

unique equivalent A-average representation.

We next construct the best-fit habit model.

Lemma 6 Let θ (u) = ξ∗′ (u) · eµAu and θ0 (u) = (x− ξ∗ (u)) · eµAu, then the habit model Xh
t =

∫ t
0 θ (t− s)Asds+ θ0 (t)A0 generates the impulse response ξ

∗.

A.4 Proof of Theorem 1 when aggregate risk vanishes

We require a technical Lemma bounding the tail of the MA representation in both models.

Lemma 7 Let g (u, s) be progressively measurable with respect to Fs satisfying |g (u, s)| ≤ K1e
−K2u

for all u, s, and let Gt =
(
1/At

) ∫ t
0 g (t− s, s)Asdzs. For any 1 ≤ p < ∞, for σA small enough,

there exists M (p) such that ‖Gt‖p ≤M (p).

Consider a sequence along which σA → 0. We can write

Xt −X
h
t

σAAt
=
1

At

∫ t

0
[ξ (t− s, f (s))− ξ∗ (t− s)]Asdzs +

E0Xt − x

AtσA
.

We now break this expression into three pieces. Fix some ε > 0, let k > 0, and consider

∥∥∥∥
1

At

∫ t−k

0
[ξ (t− s, f (s))− ξ∗ (t− s)]Asdzs

∥∥∥∥
p

≤

∥∥∥∥
At−k

At

∥∥∥∥
2p

·

∥∥∥∥
1

At−k

∫ t

t−k
[ξ (t− s, f (s))− ξ∗ (t− s)]Asdzs

∥∥∥∥
2p

≤ K2p (k, σA) ·M (2p) · e−K2k

where we used Lemma 7. We can chose k large enough so that this entire term is less than ε/3.
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Given this k, we next bound the term

∥∥∥∥
1

At

∫ t

t−k
[ξ (t− s, f (s))− ξ∗ (t− s)]Asdzs

∥∥∥∥
p

≤

∥∥∥∥
At−k

At

∥∥∥∥
2p

·

∥∥∥∥
∫ t

t−k
[ξ (t− s, f (s))− ξ∗ (t− s)]

As

At−k
dzs

∥∥∥∥
2p

≤ K2p (k, σA) ·K2p (k) ·

[
E

∫ t

t−k
[ξ (t− s, f (s))− ξ∗ (t− s)]2p

∣∣∣∣
As

At−k

∣∣∣∣
2p

ds

]1/2p

≤ K2p (k, σA) ·K2p (k) ·

[
E

∫ t

t−k
[ξ (t− s, f (s))− ξ∗ (t− s)]4p ds

]1/4p
·

[
E

∫ t

t−k

∣∣∣∣
As

At−k

∣∣∣∣
4p

ds

]1/4p

≤ K2p (k, σA) ·K2p (k) ·K4p (k, σA) ·

[
E

∫ t

t−k
[ξ (t− s, f (s))− ξ∗ (t− s)]4p ds

]1/4p

where we repeatedly used the Cauchy-Schwarz inequality and a martingale moment bound, and

where all constants are bounded as σA goes to zero. Next note that

ξ (t− s, f (s))− ξ∗ (t− s) =

∫ U

L
ξ (t− s, y) · [f (t− s, y)− f∗ (y)] dy

= −

∫ U

L

∂

∂y
ξ (t− s, y) · [F (t− s, y)− F ∗ (y)] dy.

Here, for any fixed k, by Lemma 1, ∂ξ (t− s, y) /∂y is uniformly bounded in (y, σA) ∈ [L,U ]×[0, σA].

Denoting this bound by K (k), we have

E [ξ (t− s, f (s))− ξ∗ (t− s)]4p < K4p (k) · E sup
y
|F (t− s, y)− F ∗ (y)|4p .

Lemma 4 shows that the limsup over t of the last term goes to zero as σA → 0. Thus given k and

ε > 0, for all σA small enough to make the entire term bounded above by ε/3. Finally, consider

1

σA
·

∥∥∥∥
E0Xt − x

At

∥∥∥∥
p

≤
1

σA
·

∥∥∥∥
1

At

∥∥∥∥
p

·K1e
−K2t ≤

1

σA
· eK3(p)·σ2At ·K1e

−K2t.

If σA is small enough, then the limsup of this as t→∞ is zero.

A.5 Proof of Theorem 1 when idiosyncratic risk grows large

We next consider a sequence where σI →∞. Here the key is to change the “clock,” i.e., the speed

with which we go through the Brownian sample paths. This effectively reduces both σI and σA at

the same rate, converting our sequence of models into one in which σA → 0.
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Lemma 8 Fix τ > 0, and let
(
ãit, x̃

i
t

)
denote the optimal solution of a model with deep parameters

τ ·
(
ρ, r, π, σ2, πI , σ

2
i

)
, fixed costs λ =

(
λ1, λ2

)
, curvature γ and relative preference κ. Then the

process
(
ãit, x̃

i
t

)
has the same distribution as τ ·

(
aiτt, x

i
τt

)
: rescaling the time dimension acts the

same way as rescaling the parameters of the model.

Consider a sequence of models where σI →∞ and let τ = (σI)
−2. Changing the clock, dynamics

will be identical to a model with parameters
(
τσ2I , τσ

2
A, τr, τµA, γ, λ1, λ2, κ

)
=
(
1, τσ2A, τr, τµA, λ1, λ2, κ

)
.

Along this sequence aggregate risk goes to zero while other parameters remain bounded. Hence

this model is close to its habit representation; but then so is the original model.

A.6 Proof map for Section 4

These proofs–which build on the ideas described above–are in the Supplementary Appendix.

Appendix B: Simulations

Details are in the Supplementary Appendix. Our strategy is to choose deep parameters to generate

variation in the consumption risk parameters σI and σA while holding fixed consumption growth.

In all environments of Figures 1-3, the parameters (γ, κ, λ1, λ2, δ) = (2, 1, 1, 0, .0326) are held fixed.

Other parameters and the implied values of σA, σI , µa and µA are given below.

πM/σM πE/σE r σA σI µa µA

(a) High aggr, low idiosyncr risk 20% 10% 3.24% 10% 5% 1.24% 1.37%

(b) High aggr, high idiosyncr risk 20% 20% 1% 10% 10% .87% 1.37%

(c) Low aggr, low idiosyncr risk 10% 10% 4.74% 5% 5% 1.24% 1.37%

(d) Low aggr, high idiosyncr risk 10% 20% 2.5% 5% 10% .87% 1.37%
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September 2015

This material supplements the paper “Consumption Commitments and Habit Formation. We

provide missing proofs for results stated in the main paper and we explain the numerical methods

used to simulate the model.

A-1 Proofs of Propositions 2 and 3

Proof of Proposition 2. Since the only risky assets for household i are S and Si, there exists a

unique state price density associated with the household-specific private market. The following

dynamics for adjustable consumption generates a state price density that prices both risky assets

as well as the safe asset

ait = ai0 exp

{
1

γ

(
π2

2σ2
+

π2I
2σ2I

+ r − ρ

)
t+

π

γσ
zt +

πI
γσI

zit

}
(15)

and hence must describe the optimal choice of household i. Because ai0 = A0 for all i, aggregating

across i yields, by the strong law of large numbers for a continuum of agents (Sun, 1998)

At = A0 exp

{
1

γ

(
π2

2σ2
+

π2I
2σ2I

+ r − ρ

)
t+

π

γσ
zt

}∫

i
exp

{
πI
γσI

zit

}
di

= A0 exp

{
1

γ

(
π2

2σ2
+

π2I
2σ2I

(
1 +

1

γ

)
+ r − ρ

)
t+

π

γσ
zt

}
.

1E-mails: chetty@fas.harvard.edu, szeidla@ceu.edu.
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Define a new discount rate δ = ρ−
(
1 + 1

γ

)
π2I/(2σ

2
I). Then the dynamics of aggregate adjustable

consumption is given by

At = A0 exp

{
1

γ

(
π2

2σ2
+ r − δ

)
t+

π

γσ
zt

}
.

This is exactly the dynamics of adjustable consumption that would obtain for a representative

consumer with power utility over At and discount rate δ who can invest in the publicly traded risky

and safe assets.

Proof of Proposition 3. We are interested in characterizing the evolution of the conditional

distribution of yit given a realization of the path of A under Q. Using (15) we obtain

d log ait =
1

γ

(
π2

2σ2
+

π2I
2σ2I

+ r − ρ

)
dt+

π

γσ
dz +

πI
γσI

dzi = θdt+
π

γσ
dz +

πI
γσI

dzi

where

θ =
1

γ

(
π2

2σ2
+

π2I
2σ2I

+ r − ρ

)
+

π2I
γ2σ2I

(16)

is the drift under Q. We first show that F (y, t) is absolutely continuous for all t > 0 for almost

all realizations of the path of aggregate shocks. We do this assuming that the initial condition is

ai0 = A0 and x
i
0 = X0 for all agents i, i.e., that the initial distribution F0 (y) is concentrated on

a single point. For other initial distributions the density f (y, t) can simply be computed as an

integral of these densities with respect to F0 (y).

Throughout the argument we work with the probability measure Q. Our proof logic is to fix

t = T and the realization of At for t ∈ [0, T ], pick a collection of intervals I ⊂ [L,U ], compute an

upper bound on the probability that yT ∈ I, and then establish that the upper bound goes to zero

as the total length of these intervals, denoted |I|, goes to zero. Our upper bound is obtained by

separately bounding the probabilities of two events.

(1) Reaching I through paths that do not involve “too many” adjustments. Let ỹi0 = y0 and

dỹit = −θ · dt− σA · dzt − σI · dz
i
t.

Given the dynamics of log ait, this specification implies that the evolution of ỹ is the same as that

of y except for the discrete adjustments. In particular, ỹit = yit before the first adjustment occurs.

More generally, if yi experiences nU upward and nD downward adjustments in the interval [0, t],

2



then yit = ỹit+nD (M − L)−nU (U −M). Because ỹ
i
t is a Brownian motion with a drift, its density

is bounded from above by some constant which depends on the parameters of the process, which

we denote by K (µa, σA, σI , T ). As a result, for any given n ≥ 1, the total probability of paths

which involve nU < n upward and nD < n downward adjustments such that yiT ∈ I is at most

K (µa, σA, σI , T ) · n
2 · |I|.

(2) The total probability of paths that involve at least n adjustments. Let ỹA0 = y0 and

dỹAt = −θ · dt − σA · dzt so that ỹ
A
t represents the aggregate shocks and trend in ỹt, and let

ỹI,i0 = 0 and dỹI,it = σI · dz
i
t so that ỹ

I,i
t represents the idiosyncratic shocks. Then ỹit = ỹAt + ỹI,it .

The path of ỹAt contains the same information as the path of aggregate shocks At, hence we are

effectively conditioning on the realization of the path of ỹAt . Set ∆y = min (U −M,M − L) /2.

We say that a process ut moves ∆y between s and t if |ut − us| = ∆y. Suppose that s1 < s2 are

two consecutive adjustment dates for household i. Then either ỹAt or ỹ
I,i
t must move at least ∆y

between s1 and s2. Because almost surely the path of ỹ
A
t is continuous, one can straightforwardly

verify that there is an upper bound K
(
ỹA[0,T ]

)
on the number of non-overlapping time intervals in

[0, T ] over which yAt moves at least ∆y. For ease of notation, in the rest of this proof we will simply

denote K
(
ỹA[0,T ]

)
= K. Then, if household i adjusts at least n times in [0, T ], there must exist

at least n −K non-overlapping intervals in [0, T ] over which ỹI,it moves at least ∆y. Assume now

that n > 2K + 1. At least one of these intervals–denote it by [s1, s2]–cannot be longer than

T/ (n−K). Now cover the [0, T ] interval with subintervals of length 2T/ (n−K) starting at zero,

and by another set starting at T/ (n−K). It is clear that an interval in one of these covers, say

[s0, s3] must fully contain [s1, s2].

The probability that ỹI,it moves at least∆y over [s1, s2] is bounded by the probability that the dif-

ference between the minimum and the maximum of ỹI,it in [s0, s3] is at least ∆y. Given that the den-

sity of the running maximum of a standard Brownian motion is (2/ (πt))1/2 e−m
2/(2t), this probabil-

ity is bounded above by a universal constant times
(
(n−K) /

(
πTσ2I

))1/2
exp

[
−∆2 (n−K) /

(
2Tσ2I

)]
.

Because the total number of intervals in the two covers we introduced is at most 2 (n−K), the

probability that ỹI,it moves at least∆y over an interval of length at most T/ (n−K) is bounded from

above by a constant (which depends on T and σI) times (n−K)
3/2 exp

[
−∆2 (n−K) /

(
2Tσ2I

)]
.

Recalling the assumption that n > 2K+1, the last expression can be bounded above by a different

constant (which depends on T and σ2I) times exp
[
−∆2n/

(
8Tσ2I

)]
.

We now combine these bounds. Given K, which is determined by the path of ỹAt , and main-
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taining n > 2K + 1, the total probability that yiT ∈ I is at most

K (µa, σA, σI , T ) · n
2 · |I|+K

(
σ2I , T

)
· exp

[
−∆2n/

(
8Tσ2I

)]
.

Setting n = |I|−1/4, for small enough |I| such that n > 2K + 1 is satisfied, the bound becomes

K (µa, σA, σI , T ) · |I|
1/2 +K

(
σ2I , T

)
· exp

[
−∆2 |I|−1/4 /

(
8Tσ2I

)]

which goes to zero as |I| goes to zero.

We now turn to the stochastic partial differential equation. Proposition 1 in Caballero (1993)

derives a stochastic partial differential equation, given the path of aggregate shocks, for the condi-

tional density of a double-barrier Brownian motion with rebirth. Caballero’s equation is

df(y, t) =

[
θ
∂f(y, t)

∂y
+
σ2T
2

∂2f(y, t)

∂y2

]
dt+ σA

∂f(y, t)

∂y
dz.

Substituting in (16) yields the equation in the text. The boundary conditions follow directly from

Caballero’s proposition.

To derive the dynamics of aggregate commitments, note that Xt =
∫ U
L eyf(y, t)dy · At and we

can use Ito’s lemma to write

dXt = At

∫ U

L
ey · df(y, t) · dy + dAt ·

∫ U

L
eyf(y, t)dy +

〈∫ U

L
ey · df(y, t) · dy, dAt

〉
.

We now evaluate each term on the right hand side. The first term is

At

∫ U

L
ey ·

∂f(y, t)

∂y

{(
µ+

π2I
2γ2σ2I

)
dt+

π

γσ
dz

}
dy + Ft

∫ U

L
ey ·

∂2f(y, t)

∂y2
σ2T
2
dt · dy.

Integrating by parts, and using the boundary conditions shows that this term equals

−Xt

((
µ+

π2I
2γ2σ2I

)
dt+

π

γσ
dz

)
+At

σ2T
2
·
(
fy(L, t)(e

M − eL) + fy(U, t)(e
U − eM )

)
dt+

σ2T
2
Xtdt.

The second term is

Xt ·
dAt
At

= Xt

((
µ+

π2

2γ2σ2

)
dt+

π

γσ
dz

)

while the third term is simply −π2/ (γσ)2Xtdt. Collecting terms gives the result of the proposition.
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A-2 Proofs of results leading up to Theorem 1

A-2.1 Proofs of auxiliary results about the commitments model including proof

of Proposition 4

Proof of Lemma 1. We start with the case where wt is driven by a standard Brownian motion. Let

ζy = inf {t ≥ 0 : wt /∈ [L,U ] , w0 = y}. Set Fw (t) = Pr
[
ζy ≤ t

]
and h (y, t) = E

[
ewt · 1

{
ζy > t

}]

be h (y, t) killed at the boundary. Let F
(1)
y (t) = Fy (t) and F

(n+1)
y (t) =

∫ t
0 F

(n)
y∗ (t− τ) dFy (τ) =

∫ t
0 FM (t− τ) dF

(n)
y (τ) be the the distribution of the n+ 1st exit time. Then

h (y, t) = h (y, t) +
∞∑

n=1

∫ t

0
h (M, t− τ) dF (n)y (τ) = h (y, t) +

∫ t

0
h (M, t− τ) dF ∗y (τ) (17)

where

F ∗y (t) =
∞∑

n=1

F (n)y (t) = Fy (t) +

∫ t

0
F ∗M (t− τ) dFy (τ) = Fy (t) +

∫ t

0
FM (t− τ) dF

∗
y (τ) (18)

is the expected number of boundary hits until t.

The transition density of the killed diffusion p (y, y′, t) = Pr
[
ζy > t, yt = y′

]
can be expressed

as an infinite sum of normal densities (Revuz and Yor, 1992, p 106), and in particular, is infinitely

many times differentiable in [L,U ]× [L,U ]× (0,∞). This implies that h (y, t) =
∫
ey

′

p (y, y′, t) dy′

is infinitely many times differentiable in [L,U ] × (0,∞). The density of the first hitting time ζy

can also be expressed in closed form as an infinite sum (Darling and Sieger, 1953), and is infinitely

many times differentiable in y and t over [L,U ] × (0,∞). This, combined with (18) implies that

F ∗y (t) is C
∞ in [L,U ]× (0,∞). Combining these observations with (17) shows that h (y, t) is also

C∞ in the [L,U ]× (0,∞) domain.1

We next show that h is also smooth when driven by any Brownian motion with drift and

variance, and that it is smooth in the other parameters. Changing the clock of yt scales both

the mean and the variance, and is obviously a smooth transformation of h (y, t) as it just scales

the time argument. Shifting and rescaling the vertical axis are smooth operations that shift and

rescale the triple [L,M,U ]. Thus we only need to show smoothness in the drift and in M . The

drift can be dealt with using the Girsanov theorem, which implies that the density of the killed

diffusion under drift can be obtained as pµw (y, y′, t) = p (y, y′, t) · exp
[
µw (y

′ − y)− µ2wt/2
]
, which

1Grigorescu and Kang (2002) compute the transition density of y explicitly.
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is clearly C∞ in µw, and hence so is h (y, t). Next, the distribution of the first hitting time is

1 − F
µy
y (t) =

∫
pµy (y, y′, t) dy′ is also smooth. The smoothness of h in µy now follows from (17).

Smoothness in M follows easily from (17).

Proof of Lemma 2. We have

Es
[
Xt

]
= As · E

R
s

[
Xt/At

]
= As · E

QR
s [xt/at] = As ·

∫ U

L
h (t− s, y) f (y, s) dy

which is a martingale in s. Computing the Ito-differential

dsEs
[
Xt

]
= dAs · E

QR
s [xt/at] +As ·

∫ U

L
h (t− s, y) fy (y, s)σAdzs · dy

where we used (7) for the evolution of f (y, s) and collected only the dz terms, since the ds terms

must cancel by the martingale property. Equivalently,

dsEs
[
Xt

]
= dAs·

(
EQRs [xt/at] +

∫ U

L
h (t− s, y) fy (y, s) dy

)
= dAs·

∫ U

L
(h (u, y)− hy (u, y)) f (y, s) dy

where we integrated by parts. This equation shows the existence of ξ as well as the desired repre-

sentation.

Proof of Lemma 3. Ben-Ari and Pinsky (2009) show that yt = log [xt/at] converges exponentially

fast to a unique invariant distribution. it follows from Ben-Ari and Pinsky (2007) that the rate

of convergence is uniformly bounded if the drift is from a bounded interval. This implies uniform

convergence for all σA ∈ [0, σA] through a clock-change argument. Since

E0
[
Xt

]
= ER0

[
Xt/At

]
= EQR0 [xt/at] ,

it follows that E0
[
Xt

]
converges exponentially fast to the mean x of x/a under the invariant

distribution, and that this is uniform in σA. Recalling that h (u, y) = EQR [xu/au|x0/a0 = ey],

we also have h (u, y) converge at the same rate to x as u → ∞, uniformly in y and σA. Letting

FQRt [y|y0] denote the cross-sectional distribution of yt given initial value y0, fixing some s < u, we

6



can write

hy0 (u, y0) =
∂

∂y0

∫ U

L
h (u− s, y) dFQRt [y|y0] =

∫ U

L
h (u− s, y)

∂2FQRt [y|y0]

∂y0∂y
dy

=

∫ U

L
(h (u− s, y)− x)

∂2FQRt [y|y0]

∂y0∂y
dy

where at the last step we used that ∂2FQRt [y|y0] /∂y0∂y integrates to zero in y. By the arguments

of Lemma 1, ∂2FQRt [y|y0] /∂y0∂y is bounded, while h (u− s, y)− x converges exponentially fast to

zero; hence so does the integral.

Proof of Proposition 4. We show that ξ (u, f) equals the impulse response of Definition 1. Let

A
∗
0 be the point at which we want to differentiate E0

[
Xt (A0, F

x (x0|A
∗
0))
]
. We can write

E0
[
Xt (A0, F

x (x0|A
∗
0))
]
= A0 · E

R
0

[
Xt (A0, F

x (x0|A
∗
0))t /At

]

= A0 ·

∫ U

L
h (t, y − (logA0 − logA

∗
0)) dF0 (y) .

This is because when A0 = A
∗
0, the mass of people at any point y is given by dF0 (y), and the

conditional expectation given y is summarized by h. When A0 changes, the mass of these people

is unaffected, and hence dF0 (y) is unchanged; but–because commitments are held fixed while A0

changes–their y shifts. Hence we must evaluate h at a point which recognizes this change.

Differentiating this expression in A0 gives

E0
[
Xt (A0, F

x (x0|A
∗
0))
]

∂A0
=

∫ U

L
h (t, y) dF0 (y)−

∫ U

L
hy (t, y) dF0 (y) =

∫ U

L
[h (t, y)− hy (t, y)] dF0 (y)

which is exactly the definition of ξ given above when F0 (y) has a density. This confirms that the

impulse response is well defined, that it is independent of A∗0, and that the MA representation

claimed in the proposition holds.

Proof of Lemma 4. We know that EF converges to F ∗ uniformly in y. Fix ε > 0 and pick

s so that for all t > s, |EFt − F
∗| < ε/8 for all initial conditions and for all σ small enough.

Consider the rectangular set [−κ, κ]× [t− s, t], and let Gκ denote the event when the realization of

logAu− logAt−s for u ∈ [t− s, t] is in this set. Let F
(
y, t, A[t−s,t], ys

)
denote the distribution of yt

under Q when started at ys in s, and when the realization of aggregate shocks is given by A[t−s,t].

We then have that
{
supyt,ys

∣∣∣F
(
y, t, A[t−s,t], ys

)
− F

(
y, t, A

′
[t−s,t], ys

) ∣∣∣ A[t−s,t], A
′
[t−s,t] ∈ Gκ

}
goes

7



to zero as κ → 0: two sufficiently close paths of aggregate consumption generate cross-sectional

distributions that are themselves close. This is because the share of people for whom the two

aggregate paths result in sufficiently different behavior goes to zero. Take κ small enough so that

this quantity is less than ε/8. For any fixed κ we can pick σ small enough so that Pr
[
A[t−s,t] ∈ Gκ

]
>

1− ε/8. This implies that |EsFt − E [Ft|f (s) , Gκ]| < ε/4. Combining these bounds, for A[t−s,t] ∈

Gκ we have

∣∣F
(
y, t, A[t−s,t], f (s)

)
− F ∗ (y)

∣∣ ≤
∣∣F
(
y, t, A[t−s,t], f (s)

)
− E [Ft|f (s) , Gκ]

∣∣+|E [Ft|f (s) , Gκ]− EsFt|+|EsFt − F ∗ (y)| <
ε

8
+
ε

4
+
ε

8
=
ε

2
.

Using this, we have

∥∥∥∥sup
y
|F (y, t)− F ∗ (y)|

∥∥∥∥
p

p

=

Pr [Gκ] · E

[
sup
y
(F (y, t)− F ∗ (y))p |Gκ

]
+ (1− Pr [Gκ]) · E

[
sup
y
(F (y, t)− F ∗ (y))p | not Gκ

]
≤

[(ε
2

)p
+ 2p

ε

8

]
< 2pε.

Since this is true for all t > s, it is also true for the lim sup. But ε was arbitrary, and the bound

applies for all σ small enough given ε; hence the desired result follows.

A-2.2 Proofs of auxiliary results about ther habit model

Proof of Lemma 5. Starting with the A-weighted habit model, consider the unique solution of the

integral equations for ζ and o (see Lew, 1972 for existence and uniqueness) and define

X̃t = o(t)X0 +

∫ t

0
ζ(t− s)Csds.

We will show that X̃t = Xt for all t ≥ 0. First note that

X̃t = o(t)X0 +

∫ t

0
ζ(t− s) [As +Xs] ds

= o(t)X0 +

∫ t

0
ζ(t− s)As + ζ(t− s)

[∫ s

0
j(s− u)Audu + k(s)X0

]
ds

= o(t)X0 +

∫ t

0
As

[
ζ(t− s) +

∫ t−s

0
j(u)ζ(t− s− u)du

]
ds+X0

∫ t

0
ζ(t− s)k(s)ds.

8



Equating coefficients, Xt = X̃t holds if

j(t− s) = ζ(t− s) +

∫ t−s

0
j(u)ζ(t− s− u) du

or, with t− s = u,

ζ(u) = j(u)−

∫ u

0
ζ(v)j(u− v)dv

and

o(u) = k(u)−

∫ u

0
ζ(u− v)k(v)dv.

Substituting in u = 0 gives ζ(0) = j(0) and o(0) = k(0). The integral equation for ζ(u) then yields

a unique solution, which can be used to determine o(.). By the above argument, a pair of functions

that solve these equations also give Xt = X̃t, which is the desired representation.

Proof of Lemma 6. Detrending both sides and integrating by parts (using that ξ∗ is smooth)

X
h
t =

∫ t

0
ξ∗′ (t− s)Asds+ [x− ξ

∗ (t)]A0 =
[
−ξ∗ (t− u)Au

]t
0
+

∫ t

0
ξ∗ (t− s) dAs + [x− ξ

∗ (t)]A0

=

∫ t

0
ξ∗ (t− s) dAs + xA0.

A-2.3 Proofs of results used in establishing Theorem 1

Proof of Lemma 7. We proceed by induction on t. Fix some k > 0. We show that (i) the desired

bound holds when t ≤ k, and (ii) if the bound holds for some t, it also holds for t + k. We begin

by showing (ii), which is the more difficult part.

We can write

‖Gt‖p ≤

∥∥∥∥
At−k

At

∫ t

t−k
g (t− s)

As

Au−k
dzs

∥∥∥∥
p

+

∥∥∥∥
At−k

At

∥∥∥∥
p

·

∥∥∥∥
1

At−k

∫ t−k

0
g (t− s)Asdzs

∥∥∥∥
p

where we used independence of the Brownian increments. Denoting g (u, s) = eK2kg (u+ k, s) we

can rewrite the final term in brackets as

e−K2k ·
1

At−k

∫ t−k

0
g (t− k − s, s)Asdzs

where |g (u, s)| ≤ K1e
−K2u by construction. By our induction assumption, this term has p-norm

9



bounded by e−K2k ·M (p). To bound the remaining terms, first observe that by lognormality

∥∥∥∥
At−k

At

∥∥∥∥
p

≤ Kp (σA, k)

for some Kp (σA, k) that goes to one in σA for all k. Next note that

∥∥∥∥
At−k

At

∫ t

t−k
g (t− s, s)

As

At−k
dzs

∥∥∥∥
p

≤

∥∥∥∥
At−k

At

∥∥∥∥
2p

·

∥∥∥∥
∫ t

t−k
g (t− s, s)

As

At−k
dzs

∥∥∥∥
2p

by the Cauchy-Schwarz inequality. Here

∥∥∥∥
At−k

At

∥∥∥∥
2p

≤ K2p (σA, k)

where K2p (σA, k) also goes to one in σA for all k. Finally, using standard bounds (e.,g., Karatzas

and Shreve, 2008) for moments of the Ito integral, we obtain

∥∥∥∥
∫ t

t−k
g (t− s, s)

As

At−k
dzs

∥∥∥∥
2p

≤ K2p



∫ t

t−k
K2
1

∥∥∥∥∥

(
As

Au−k

)2∥∥∥∥∥
p

ds



1/2

which is bounded by K2pK1k ·K2p (σA, k). Combining terms we obtain

‖Gt‖p ≤ K2
2p (σA, k) ·K2pK1k +Kp (σA, k) · e

−K2k ·M (p) .

It is easy to see that if

M (p) =
K2
2p (σA, k) ·K2pK1k

1−Kp (σA, k) · e−K2k

is positive, then the induction step follows. We can make sure that this is the case by first choosing

some k > 0, and then picking σA small enough so that for all σA ≤ σA we have Kp (σA, k) < eK2k/2.

With this choice ofM (p), the induction step follows; and (i) can be verified easily from the argument

of the induction step.

Proof of Lemma 8. We verify directly that changing the clock is equivalent to rescaling the

relevant parameters in the setup of the problem. Maximizing the consumer’s problem in the original

model is equivalent to maximizing

E

∫ ∞

0
e−ρtτ

(
a1−γτt

1− γ
+ µ

x1−γτt

1− γ

)
dt

10



which is proportional to the objective function in the model with new parameters. Similarly, the

budget constraint of the original model implies

dwτt =
[(
τr + ατtτπ + α

i
τtτπI

)
wt − τct

]
dt+ ατtwτtστ

1/2dzτt + α
i
τtwτtσiτ

1/2dziτt

on all non-adjustment dates due to the scaling invariance of Brownian motion. Finally, on adjust-

ment dates, dw = λ1xt−/r + λ2xt/r = λ1 · τxt−/ (τr) + λ2 · τxt/ (τr). Since the optimal policy is

unique, the claim follows.

A-3 Proofs for Section 4.1

A-3.1 Proof of Proposition 5

(1) Excess smoothness. Using a Taylor expression we can write

logCt1 − logCt0 =
At0
Ct0

(logAt1 − logAt0) + εt1 (19)

where, because Xt has bounded variation, there exists Kε such that Eε
2
t1 < Ke (t1 − t0)

2. Thus

β1 (t1) =
cov (log (Ct1/Ct0) , log (At1/At0))

var (log (At1/At0))
≤
At0
Ct0

+
σA (t1 − t0)

1/2Kε (t1 − t0)

σ2A (t1 − t0)
=
At0
Ct0

+
(t1 − t0)

1/2Kε

σA

and the right-hand side approaches At0/Ct0 as t1 → t0.

(2) Excess sensitivity. Let t1 = t2. From the proof of Lemma 3 we know that log [At3/Ct3 ]

converges exponentially fast to an invariant distribution. In particular, Et1 [log [At3/Ct3 ]] converges

exponentially fast to the mean of this invariant distribution, which we denote by ξ, so that we can

write logCt3 = logAt3 + ξ + εt3 where Et1 [εt3 ] converges to zero at a given exponential rate as

t3 →∞. Using (19) we can write

logCt3 − logCt1 = logAt3 + ξ + εt3 − logCt0 −
At0
Ct0

(logAt1 − logAt0)− εt1

=
Xt0
Ct0

(logAt1 − logAt0) + (logAt3 − logAt1) +
(
logAt0 + ξ

)
+ (εt3 − εt1) .

To compute β2, we evaluate the covariance of logAt1 − logAt0 with each of the terms in this

expression. Because logAt is a Brownian motion with drift, the covariance with the term in the

second parenthesis is zero. Conditional on the history up to t0, the terms in the third parenthesis

11



are constants, hence their covariance is also zero. The terms in the fourth parenthesis are error

terms: just like in the proof of (1), ε1 can be made arbitrarily small by choosing t1 small; and εt3

is approximately orthogonal to events before t1 for t3 large. Thus for t1 small and t3 large the

regression coefficent is determined by the first term, implying that β2 is approximately Xt0/Ct0 > 0.

A-3.2 Modeling large shocks

Our approach is to construct, on a single probability space, a set of “shock” processes for each

t1 > t0, such that the distribution of the process for a given t1 is identical to the distribution of At

conditional on the shock event S (t1,∆). This construct will allow us to take limits while holding

fixed the probability space.

Formally, we introduce the auxiliary process Ãt, which agrees with At for t ≤ t0, and has the

same distribution as At for t > t0. The idea is that innovations in Ãt will be driving At after

the shock. We also introduce an independent standard Brownian motion Bs defined for s ≥ 0,

which will drive the innovations during the shock. We then model the positive shock as a Brownian

bridge for logAt conditioned to start at logAt0 at time t0, and to reach logAt0 + ∆ at time t1.

We denote this process by At (+, t1,∆), and construct it as follows: for t0 ≤ t ≤ t1, we let log

At (+, t1,∆) = σA
(
Bt−t0 − (t− t0)Bt1

)
+ (t− t0)∆, and for t ≥ t1 we let d log At (+, t1,∆) =

d log Ãt. Although the expression for t0 ≤ t ≤ t1 does not make this clear, it is well-known that

this Brownian bridge is an Ito-processes. We construct At (−, t1,∆) analogously. Given that it is a

Brownian bridge between t0 ≤ t ≤ t1 it follows that log At (+, t1,∆) has the same distribution as

our original process log At conditional on S (+, t1,∆).

The formulas for the dynamics of Xt, Ct, X
h
t and Cht , once we replace At by At (+, t1,∆)

respectively At (−, t1,∆), directly extend, and generate the distributions of commitments, habit,

and consumption conditional on the shock event. To clarify which process we have in mind, we

sometimes use notation such as Xt (+, t1,∆) to refer to aggregate commitments (during or after

a positive shock) on the probability space just constructed. However, when it does not cause

confusion we often just write X
h
t and say in words that we work with the “shock” processes.

One key feature of this construction is that instead of considering a sequence of non-overlapping

events S (t1,∆), we consider a single probability space and a sequence of processes. The advantage

is that we can use the Lp norm on this common probability space when we take various limits over

t. In particular, throughout the analysis below, we use Lp (conditional on the history up to t0) for

all p ≥ 1 as we take the limits t1 → t0 and t2 → t0.
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A-3.3 Continuity after large shocks

We show that X
h
t and C

h
t change continuously around t0 in the limit as t1 → t0 and as t2 → t0.

Lemma 9 We have limt1→t0 X
h
t1 (+, t1,∆) = X

h
t0 and limt1→t0 X

h
t1 (−, t1,∆) = X

h
t0. Moreover,

even after taking the limit t1 → t0 the the dynamics of X
h
t continuous at t0: limt2→t0 limt1→t0 X

h
t2 (+, t1,∆) =

X
h
t0 and limt2→t0 limt1→t0 X

h
t2 (−, t1,∆) = X

h
t0.

Proof. Consider the case when the shock is positive. Suppressing in notation that we work with

the “shock” processes, according to the representation in Lemma 7,X
h
t2 =

∫ t2
0 ξ∗′ (t2 − s)As (+, t1,∆) ds+

[x− ξ∗ (t2)]A0. When t2 = t1 goes to t0, this expression converges to
∫ t0
0 ξ∗′ (t2 − s)As (+, t1,∆) ds+

[x− ξ∗ (t2)]A0 = X
h
t0 proving, for a positive shock, the first claim. For the second claim, note that

as t1 → t0 the last term is constant while the first term converges to
∫ t2
t0
ξ∗′ (t2 − s) Ãs · e

∆ds +
∫ t0
0 ξ∗′ (t2 − s)Asds. Here only the first integral depends on t2 and as t2 → t0 it converges to zero.

The same logic works when the shock is negative.

Lemma 10 We have limt1→t0 log
[
C
h
t1 (+, t1,∆)

]
= log

[
e∆At0 +X

h
t0

]
and limt1→t0 log

[
C
h
t1 (−, t1,∆)

]
=

log
[
e−∆At0 +X

h
t0

]
. And analogously we have limt2→t0 limt1→t0 log

[
C
h
t2 (+, t1,∆)

]
= log

[
e∆At0 +X

h
t0

]

and limt2→t0 limt1→t0 log
[
C
h
t2 (−, t1,∆)

]
= log

[
e−∆At0 +X

h
t0

]
.

Proof. Suppose the shock is positive. Then, supressing in notation that we work with the

“shock” processes, using the fact that log (1 + z) ≤ z,

∣∣∣log
[
C
h
t2

]
− log

[
e∆At0 +X

h
t0

]∣∣∣ =
∣∣∣∣∣log

[
At2 +X

h
t2

e∆At0 +X
h
t0

]∣∣∣∣∣

≤ max

[
At2 +X

h
t2

e∆At0 +X
h
t0

− 1,
e∆At0 +X

h
t0

At2 +X
h
t2

− 1

]

≤ max



(
At2 − e

∆At0
)
+
(
X
h
t2 −X

h
t0

)

e∆At0 +X
h
t0

,

(
e∆At0 −At2

)
+
(
X
h
t0 −X

h
t2

)

At2 +X
h
t2




≤ max



∣∣At2 − e∆At0

∣∣+
∣∣∣Xh

t2 −X
h
t0

∣∣∣
e∆At0

,

∣∣e∆At0 −At2
∣∣+
∣∣∣Xh

t0 −X
h
t2

∣∣∣
At2


 .

For the first set of limits we assume t1 = t2 and take them to t0 simultaneously; for the second set

of limits we first take t1 → t0 and then take t2 → t0. In either case, in both terms of the maximum,

the numerator converges to zero in L2p while the inverse of the denominator is bounded in L2p. By
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the Cauchy-Schwarz inequality, the terms themselves converge to zero in Lp, hence so does their

maximum. The argument for a negative shock is analogous.

A-3.4 Notation and proof structure

Bounds. We use the notation that K
(
t,∆

)
refers to a family of random variables which are

uniformly bounded independently of ∆, in the limit as t1 → t0, when t2 and t3 are for ap-

propriately chosen. Formally, we require that there exists a family of constants K (p), such

that given p, for any ∆, we can find t2 (∆, p) small enogh and t3 (∆, p) large enough so that

limt1→t0 sup ‖K (t1, t2 (∆, p) , t3 (∆, p))‖p ≤ K (p). Different occurences of K
(
t,∆

)
may refer to

different families of random variables and may have a different K (p) values associated with them.

For example, Lemma 10 implies that log
[
C
h
t2 (+, t1,∆)

]
= log

[
e∆At0 +X

h
t0

]
+K

(
t,∆

)
.

Order of limits. The statement of Proposition 7 assumes that n is large enough; this means that

σA/σI is small enough, while other parameters of the model, as described in Section 3.4, remain

bounded. We first analyze the case in which σA becomes small, and then establish the result when

σI becomes sufficiently large using a clock change.

A-3.5 Long-term behavior

Lemma 11 Suppose that n is large enough and σA is small enough. Then

lim
t3→∞

lim
t1→t0

[
X
h
t3 (−, t1,∆)

At3 (−, t1,∆)
−
X̃h
t3

Ãt3

]
= 0.

The intuition for the Lemma is that Xt3 is just a weighted sum of past As values, with the

weights for the distant past going to zero exponentially fast. Thus, if As is multiplied by a constant

after date t0, then for t3 large enough, most of the terms determining Xt3 in this weighted sum will

also be multiplied by that constant, and hence Xt3/At3 will be approximately the same as it would

be on the no-shock path. The caveat is that the terms in the weighted average corresponding to

the distant past, divided by current At3 , must not blow up. For this we need that 1/At3 does not

become big too quickly relative to the rate with which the weights on the past converge to zero.

These weights go to zero at a given exponential rate, so if the variance of the At process is not too

big, we are fine.

Proof of Lemma 11. Suppressing in notation that we work with the “negative shock” processes,
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we have

lim
t1→t0

X
h
t3

At3
= lim
t1→t0

1

At3

∫ t3

0
ξ∗′ (t3 − s)Asds+ [x− ξ

∗ (t3)]
A0

At3

=
1

At3

∫ t3

t0

ξ∗′ (t3 − s) Ãse
−∆ds+

1

At3

∫ t0

0
ξ∗′ (t3 − s)Asds+ [x− ξ

∗ (t3)]
A0

At3

= e−∆
X̃h
t3

At3
+
(
1− e−∆

) 1

At3

(∫ t0

0
ξ∗′ (t3 − s)Asds+ [x− ξ

∗ (t3)]A0

)

=
X̃h
t3

Ãt3
+
(
1− e−∆

) 1

Ãt3e
−∆

([
−ξ∗ (t3 − s)As

]t0
0
+

∫ t0

0
ξ∗ (t3 − s) dAs + [x− ξ

∗ (t3)]A0

)

=
X̃h
t3

Ãt3
+
(
e∆ − 1

) 1

Ãt3

(
−ξ∗ (t3 − t0)At0 + ξ

∗ (t3)A0 +

∫ t0

0
ξ∗ (t3 − s) dAs + [x− ξ

∗ (t3)]A0

)

=
X̃h
t3

Ãt3
+
(
e∆ − 1

) 1

Ãt3

(∫ t0

0
ξ∗ (t3 − s) dAs + xA0 − ξ

∗ (t3 − t0)At0

)
.

Here the last term can be written as

(
e∆ − 1

) 1

Ãt3

(∫ t0

0
(ξ∗ (t3 − s)− x) dAs +At0 [x− ξ

∗ (t3 − t0)]

)
.

Because, by Lemma 3, |ξ∗ (t3 − s)− x| ≤ K1e
−K2(t3−s) for some constants K1,K2 independent of n,

it follows from Lemma 7 that, for n large enough, the first term here converges to zero as t3 →∞.

Also by Lemma 3 the second term converges to zero as t3 →∞.

Lemma 12 Suppose that n is large enough and σA is small enough. There exists a constant K2

such that the following holds. For any ∆, we can find t2 and t3 such that for all t1 close enough to

t0,

E
[
logC

h
t3 − logC

h
t2 | S (+, t1,∆)

]
− E

[
logC

h
t3 − logC

h
t2 | S (−, t1,∆)

]
≥ ∆−K2.

Proof. A key element of the proof is that we bound the left hand side for each realization, that

is, without the expectations operator. However, because S (+, t1,∆) and S (−, t1,∆) are disjoint

events, we can only do this using the “shock processess”, which have the same distribution as the

original processes conditioned on the shock events, but are defined on a common probability space.

Suppose first that the shock is positive. Supressing in notation that we work with the shock

process, we have logC
h
t3 ≥ logAt3 = log Ãt3 + ∆. Moreover, by Lemma 10, for t2 close to t0, we

have

logC
h
t2 = log

[
e∆At0 +Xt0

]
+K

(
t,∆

)
= logAt0 +∆+K

(
t,∆

)
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where the second equality follows because, given that we condition on the history up to t0, X
h
t0/At0

is a constant. We can now write, for a positive shock, that

logC
h
t3 − logC

h
t2 ≥

(
log Ãt3 +∆

)
−
(
logAt0 +∆+K

(
t,∆

))
= log Ãt3 − logAt0 +K

(
t,∆

)
.

Now suppose that the shock is negative. Then, using Lemma 10,

logC
h
t2 = log

[
e−∆At0 +Xt0

]
+K

(
t,∆

)
= logAt0+log

[
e−∆ +Xt0/At0

]
+K

(
t,∆

)
≥ logAt0+K

(
t,∆

)

because Xt0/At0 is a constant. Moreover, using the fact that log (1 + z) ≤ z,

logC
h
t3 = log

[
At3 +X

h
t3

]
= logAt3 + log

[
1 +X

h
t3/At3

]

≤ log Ãt3 −∆+X
h
t3/At3 = log Ãt3 −∆+ X̃

h
t3/Ãt3 +K

(
t,∆

)

where at the last step we used Lemma 11. It follows that for a negative shock

logC
h
t3 − logC

h
t2 ≤ log Ãt3 −∆+ X̃

h
t3/Ãt3 − logAt0 +K

(
t,∆

)
.

Combining the inequalities for the positive and the negative shocks yields, for the shock processes,

the bound

[
logC

h
t3 (+, t1,∆)− logC

h
t2 (+, t1,∆)

]
−
[
logC

h
t3 (−, t1,∆)− logC

h
t2 (−, t1,∆)

]
≥

log Ãt3 − logAt0 −
(
log Ãt3 −∆+ X̃

h
t3/Ãt3 − logAt0

)
+K

(
t,∆

)

= ∆− X̃h
t3/Ãt3 +K

(
t,∆

)
.

Finally,

X̃t3

Ãt3
=

1

Ãt3

∫ t3

0
ξ∗ (t3 − s) dÃs + x

Ã0

Ãt3
= x+

1

Ãt3

∫ t3

0
[ξ∗ (t3 − s)− x] dÃs

and by Lemma 7 the last term is bounded in Lp for all t3. Thus the above difference is ∆ plus a

term bounded in Lp, and the claim of the Lemma follows.
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A-3.6 Proofs of Propositions 6 and 7

Proof of Proposition 6. (i) Taking expectations in the regression equation (12) conditional on the

shock being positive respectively negative, and differencing, we obtain

E
[
logCt1 − logCt0 | S (+, t1,∆)

]
− E

[
logCt1 − logCt0 | S (−, t1,∆)

]
= 2β1 (t1,∆) ·∆ (20)

which gives an expression for β1 (t1,∆). An analogous formula expresses β
h
1 (t1,∆). Because Xt/At

is bounded from below by L and from above by U , we have
∣∣log

(
Ct1/Ct0

)
− log

(
At1/At0

)∣∣ ≤

log (1 + U)− log (1 + L) = K1 and therefore

E
[
logCt1 − logCt0 | S (+, t1,∆)

]
− E

[
logCt1 − logCt0 | S (−, t1,∆)

]

≥ E
[
log
(
At1/At0

)
| S (+, t1,∆)

]
− E

[
log
(
At1/At0

)
| S (−, t1,∆)

]
− 2K1 = 2 (∆−K1) .

Hence β1 (t1,∆) ≥ 1−K1/∆.

(ii) Lemma 10 implies that for any positive K2, we can choose t1 close enogh to t0 such that

E
[
logCt1 | S (+, t1,∆)

]
−E

[
logCt1 | S (−, t1,∆)

]
≤ log

[
e∆At0 +X

h
t0

]
− log

[
e−∆At0 +X

h
t0

]
+K2.

The right-hand side can be bounded as

log

[
e∆At0 +X

h
t0

e−∆At0 +X
h
t0

]
= log

[
e∆ +X

h
t0/At0

e−∆ +X
h
t0/At0

]
≤ log

[
e∆ +X

h
t0/At0

X
h
t0/At0

]
≤ ∆+log

[
1 +X

h
t0/At0

X
h
t0/At0

]
= ∆+K3

where–given that we condition on the history up to t0–K3 is a constant. It then follows from (20)

that, for a given ∆, we can choose t1 close enough to t0 such that β
h
1 (t1,∆) < 1/2+(K2 +K3) /∆.

Proof of Proposition 7. (i) Taking expectations in (13) and differencing, we obtain

E
[
logCt3 − logCt2 | S (+, t1,∆)

]
− E

[
logCt3 − logCt2 | S (−, t1,∆)

]
= 2β2

(
t,∆

)
·∆ (21)

which gives an expression for β2
(
t,∆

)
. An analogous formula expresses βh2

(
t,∆

)
. Because Xt/At

is bounded from below by L and from above by U , we have
∣∣log

(
Ct3/Ct2

)
− log

(
At3/At2

)∣∣ ≤

17



log (1 + U)− log (1 + L) = K1 and therefore

E
[
logCt3 − logCt2 | S (+, t1,∆)

]
− E

[
logCt3 − logCt2 | S (−, t1,∆)

]

≤ E
[
log
(
At3/At2

)
| S (+, t1,∆)

]
− E

[
log
(
At3/At2

)
| S (−, t1,∆)

]
+ 2K1 = 2K1.

Using (21) we obtain β2 (t1, t2, t3,∆) ≤ K1/∆.

(ii) Using Lemma 12 we can find t2 and t3, and t1 close enough to t0, such that β
h
2 (t1, t2, t3,∆) ≥

1 − K2/∆. This gives the proof along a sequence Θn in which σA → 0. Finally we discuss the

case when as n → ∞, we have σI → ∞. The only step we need to verify is that Lemma 12 also

holds for n large enough. To show this, just like in the proof of our main result, we change the

clock. Using the transformation introduced in Lemma 8, we let τ = 1/σ2I and slow down the model

by rescaling deep parameters with τ . In the habit representation of that “rescaled” model, for n

large enough Lemma 12 holds, because all the assumptions, in particular, the requirement that σA

is small enough, are satisfied. And because the habit representation of the model after the clock

change is the same as changing the clock in the habit representation of the original model, it follows

that–with appropriately unscaled values for t2 and t3–Lemma 12 also holds in the original model.

A-4 Proofs for Sections 4.2 and 4.3

Proof of Proposition 8. In Θ
∗
, agents in the interior of the band never adjust, hence T∗ (p̃|x0) =∞.

For n finite, agents does adjust eventually, but since the drift and variance of y goes to zero,

the expected time to adjustment approaches infinity. In the habit model, x never changes, hence

T h,n (p̃|x0) =∞.

Proof of Proposition 9. (i) Our first goal is to compute the value function of the habit agent. Let

ψ be defined so that the value function of the Merton consumption problem in the environment of

the representative habit consumer, but without habit, is ψW 1−γ/ (1− γ). By the envelope theorem,

this Merton agent has consumption policy c = ψ−1/γW . The surplus consumption of our habit

agent is identical to the consumption of a Merton agent, because they solve the same maximization

problem. Hence, if the habit consumer sets his initial surplus consumption to be A0, the dollar cost

of his lifetime surplus consumption expenditure is A0ψ
1/γ .

To proceed, we now evaluate the lifetime budget constraint of the habit consumer. Each dollar

of consumption spending in a period also creates future expenditure in the form of increased habit.
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Suppose 1+B dollars is the present value of these future expenditures for a dollar of consumption

spending today, where B = 0 with no habits. Then B must satisfy

B =

∫ ∞

u=0
θ (u) e−rudu · (1 +B)

because each dollar of consumption creates θ (u) habit spending u periods ahead, which has a total

cost of θ (u) (1 +B) in period u dollars, which we must then discount back at the riskfree rate

because these payments are certain. Solving yields

B =
1

1−
∫∞
u=0 θ (u) e

−rudu
.

At any time t, our habit consumer also has pre-existing habit created by his past consumption.

The dollar value of the expenditures generated is

Zt = (1 +B) ·

[∫ t

s=0
Ct−s

∫ ∞

s
θ (u) e−r(u−s)du ds+

∫ ∞

s=t
θ0 (u)X0e

−rudu

]

where the term in parenthesis measures future consumption expenditures created by habits estab-

lished before t, discounted back at the riskfree rate because these are certain; and the factor 1+B

is included because each dollar of consumption spending has this total expenditure cost.

The consumer’s lifetime budget constraint must then satisfy

Wt = At · ψ
1/γ (1 +B) + Zt

and his lifetime utility from surplus consumption, by the Merton value function, is simply ψ1/γA1−γt / (1− γ).

Combining these equations yields

V habitt (Wt, Xt) =
ψ

1− γ

(
Wt − Zt
1 +B

)1−γ
.

The welfare of an individual commitment agent for a move-inducing negative wealth shock is

proportional to (w − λ1x)
1−γ / (1− γ).

Now compare the welfare cost of shocks in the commitment and the habit economies. As wealth

falls to zero, if Zt > 0 then the marginal utility of the habit agent will be driven to infinity even

with a finite shock. In contrast, when λ1 = 0, the marginal utility of the commitment agent only

blows up when all his wealth is taken. It follows that for large finite shocks, Π(q, b) is higher for
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the habit agent than in the commitment economy.

(ii) Begin with the commitment model. The agent in the limit economy never moves, and

hence his value function is proportional to (W − x/r)1−γ / (1− γ). It follows that the coefficient

of relative risk aversion CRRA∗ (W0, x0) = γW0/ (W0 − x0/r). Now consider an agent in economy

n. Let p0 denote the total dollar value at date zero of his total commitment expenditures on

his current home. Given positive risk and growth, this agent does move eventually, implying

p0 < x0/r. One policy available to this consumer at any wealth W is to maintain his spending

and moving patterns on current commitments, and adjust spending proportionally on all other

goods relative to the optimal policy with initial wealth W0. Given that λ1 = 0, this policy yields

lifetime utility Vn (W0, x0) (W − p0)
1−γ / (W0 − p0)

1−γ . This is a lower bound for the agent’s true

value function, and the both equal Vn (W0, x0) at W0. It follows that the lower bound has higher

curvature at W0. As a result, CRRA
n (W0, x0) ≤ γW0/ (W0 − p0). Since p0 < x0/r, we have

CRRAn (W0, x0) < CRRA∗ (W0, x0). Hence for b small, the Arrow-Pratt approximation implies

Πn (q, b) < Π∗ (q, b) uniformly in n.

In the habit model, the value function in every economy is proportional to (W − x/r)1−γ / (1− γ),

and hence Πh,n (q, b) = Πh∗ (q, b).

A-5 Simulations

Solving the commitments model. In the simulations we use an ODE characterization of the optimal

policy that builds on a similar characterization for the one-good model by Grossman and Laroque.

To develop this ODE, we must study the Bellman equation of the commitment agent. By the

mutual fund theorem the agent will combine the risky assets available to him in fixed proportions,

effectively sharing his wealth between the mutual fund and the riskfree asset. Let πr and σr denote

the mean and standard deviation of the mutual fund’s excess return.2 Denote the value function

by V (W,x), then the Bellman equation between adjustment dates is

ρV (W,x) = max
α,α

[
κ
a1−γ

1− γ
+
x1−γ

1− γ
+ V1 (W,x)EdW +

1

2
V11 (W,x)V ar (dW )

]
.

2 In our setting we can use πr =
[
(πM/σM )

2 + (πM/σM )
2
]
/
[
πM/σ

2

M + πM/σ
2

M

]
and σ2r =

πr/
[
πM/σ

2

M + πM/σ
2

M

]
.
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Following Grossman and Laroque, let y = W/X − λ1 and define h (y) = x−1+γV (W,x) =

V (W/x, 1). Dividing through by x1−γ in the Bellman equation we obtain

ρh (y) = max
a,α

[
κ
(a/x)1−γ

1− γ
+

1

1− γ
+ h′ (y)Edy +

1

2
h′′ (y)V ar (dy)

]

and the budget constraint yields

dy = ((y + λ1) (r + απr)− 1− a/x) dt+ (y + λ1)ασrdz.

Maximizing in α, the optimal portfolio satisfies

α (y + λ1) =
−h′ (y)

h′′ (y)

πr
σ2r

and adjustable consumption is

a

x
=

[
h′ (y)

κ

]−1/γ
.

Substituting back into the Bellman equation we obtain

ρh (y) = h′ (y)1−1/γ κ1/γ
γ

1− γ
+

1

1− γ
+ h′ (y) [(y + λ1) r − 1]−

1

2

h′ (y)2

h′′ (y)

π2r
σ2r
.

This is an ordinary differential equation for h (y). To obtain boundary conditions, note that on an

adjustment date the value function equals

V (W,x)

x1−γ
=

1

x1−γ
max
x′

V
(
W − λ1x− λ2x

′, x′
)

=

(
W − λ1x

x

)1−γ
·max
x′

(
x′

W − λ1x

)1−γ
· V

(
W − λ1x

x′
− λ2, 1

)

=

(
W − λ1x

x

)1−γ
·max

y
(y + λ1 + λ2)

−1+γ h (y) .

Define

M = max
y
(y + λ1 + λ2)

−1+γ h (y)

then by the above reasoning, at the edges of the inaction band, denoted y1 and y2 we have

h (yi) =My1−γi
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moreover, smooth pasting implies

h′ (yi) =M (1− γ) y−γi .

Finally, the target value of y satisfies

y∗ = argmax (y + λ1 + λ2)
−1+γ h (y) .

To numerically solve the ODE subject to these conditions, we follow the approach outlined by

Grossman and Laroque. We first pick some M , pick y1, solve the ODE with initial conditions as

given above. If there is no y2 for which the boundary conditions are satisfied, then we start with

a different y1. If the boundary conditions do hold for some y2, then we check if M satisfies the

equation above; if not, we start with a different M .

Simulating dynamics. We simulate the dynamics of an economy populated by a continuum of

commitment agents using the partial differential equation of Proposition 3. We discretize the dif-

ferential equation following the approach presented in Caballero (1993). We use this methodology

to compute the steady state density f∗, to compute the impulse response (Definition 1), and to

simulate dynamics along a sequence of aggregate shocks. We compute the matching consumption

habit weights using Lemma 5 of this Appendix, and simulate the dynamics of the habit model using

equation (10) of the main text.
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