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ABSTRACT

This paper introduces an equilibrium framework for analyzing residential sorting, designed to take

advantage of newly available restricted-access Census microdata. The framework adds an

equilibrium concept to the discrete choice framework developed by McFadden (1973, 1978),

permitting a more flexible characterization of preferences than has been possible in previously

estimated sorting models. Using data on nearly a quarter of a million households residing in the San

Francisco Bay Area in 1990, our estimates provide a precise characterization of preferences for many

housing and neighborhood attributes, showing how demand for these attributes varies with a

household's income, race, education, and family structure. We use the equilibrium model in

combination with these estimates to explore the effects of an increase in income inequality, the

findings indicating that much of the increased spending power of the rich is absorbed by higher

housing prices.
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1 INTRODUCTION 

Economists have long been interested in analyzing residential sorting in an urban setting.  

A long line of theoretical studies, including important papers by Epple, Filimon and Romer 

(EFR) (1984, 1993), Benabou (1993, 1996), Fernandez and Rogerson (1996, 1998), and Nechyba 

(1999, 2000), have developed and used models of sorting to analyze the way that interdependent 

individual decisions in the housing market aggregate up to determine the equilibrium structure of 

a metropolitan area.  As these papers demonstrate, equilibrium models of residential sorting 

provide a coherent framework for analyzing the provision of local public goods, residential 

segregation, and education finance reform, proving particularly useful in tracing many complex 

and otherwise difficult-to-predict effects of policy.   

In recent years, a new line of empirical research has sought to take these models to the 

data.  Epple and Sieg (1999) develop an estimator for the equilibrium sorting model of EFR, 

providing the first unified treatment of theory and empirics in the literature.  In the same vein, 

Sieg et al. (2004) use this approach to explore the general equilibrium impacts of air quality 

improvements in the Los Angeles Basin.1  Concurrent with these developments, the availability 

of data appropriate for estimating models of residential sorting has improved dramatically with 

the opening of Census Research Data Centers at several locations across the United States.  

These centers allow researchers to access individual-level Census data at a level of geographic 

detail (the Census block) far smaller than has been available in the public versions of these 

datasets, thereby permitting researchers to characterize residential sorting much more precisely 

than ever before. 

                                                           
1 See also Ferreyra (2003) and Walsh (2004) for empirical applications of equilibrium sorting models to education, 
open space policy, and urban sprawl as well as Bayer, McMillan, and Rueben (2004), Bayer Ferreira, and McMillan 
(2003) Timmins (2003) and Coffey (2003) for applications using the equilibrium framework of the type developed 
in this paper to segregation, education, global warming, and public health. 
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This paper introduces a new framework for analyzing residential sorting designed to take 

full advantage of these newly available Census microdata.  In particular, we add an equilibrium 

concept to the empirically-flexible discrete choice framework developed by McFadden (1973, 

1978) and extended in an important way by Berry et al. (1995).  The specification permits a 

more flexible characterization of preferences than has been possible in the models that have been 

taken to the data thus far.2  In particular, household preferences are defined over a wide range of 

potentially relevant housing and neighborhood attributes, including many that are endogenously 

determined by the sorting process itself, and preferences for each attribute are allowed to vary in 

a flexible way with a household’s own characteristics.  The resulting horizontal model of sorting 

permits, for example, households to have segregating racial preferences; such preferences are not 

possible in a vertical specification.3  Moreover, when combined with these rich Census data, 

which also characterize each individual’s place of work down to the block level, this flexible 

preference structure brings the geography of the urban housing market into the model in a natural 

way, as household preferences over commuting generate geographic variation in the aggregate 

demand for housing in neighborhoods throughout the metropolitan area, leading for example to 

higher property values near employment centers. 

 We estimate the model using data on nearly a quarter of a million households (a 1-in-7 

sample) residing in the San Francisco Bay Area in 1990, developing a strategy for identifying the 

                                                           
2 In terms of the previous theoretical literature, the closest antecedent to our model is that of Nechyba (1999, 2000). 
3 It is important to point out that this flexibility in our model is made possible because we abstract from issues 
related to local politics.  As Epple, Filimon, and Romer (1993) note, incorporating local politics into models of 
residential sorting requires restrictions to be placed on preferences in order to guarantee the existence of an 
equilibrium.  Accordingly, important recent papers by Epple and Sieg (1999) and Epple, Romer and Sieg (2001) 
estimate equilibrium models that include voting over the level of public goods, restricting households to have shared 
rankings over a single public goods index.  We view our model as having a comparative rather than absolute 
advantage over the papers in that line of the literature, better suited for exploring research questions, such as those 
related to segregation, where a vertical restriction is inappropriate or for use in an institutional setting such as that in 
Californian, where Proposition 13 leaves almost no discretion over property tax rates or the level of public goods 
spending at the local level. 
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model in the presence of correlation between unobserved housing or neighborhood quality and 

the prices and sociodemographic composition of the neighborhood.  Such correlation is likely to 

arise in any model of sorting whenever households observe more housing and neighborhood 

attributes than does the researcher, yet the resulting endogeneity problem has not been 

adequately addressed in the literature.  The strategy that we develop builds on the boundary fixed 

effects approach first used by researchers seeking to deal with the correlation of school quality 

with unobserved neighborhood quality; we show how this approach can be applied in our setting 

to properly identify preferences over neighborhood sociodemographic characteristics.  

The resulting estimates provide a precise characterization of preferences for many 

housing and neighborhood attributes as well as showing how demand for these attributes varies 

with a household’s income, race, education, and family structure.  To illustrate the power of the 

general equilibrium framework, we use these preference estimates along with the sorting model 

to explore the impact of an increase in income inequality on the housing market equilibrium.  In 

particular, we provide estimates of the way that an increase in income for only those households 

in the top quartile affects stratification patterns, consumption of housing and neighborhood 

attributes by households at various income levels, and the implicit price of these attributes in the 

marketplace.   

The results indicate that the increased spending of top quartile households is reflected in 

significantly higher housing prices, particularly for the most desirable houses and neighborhoods 

in the metropolitan area.  As a consequence, the effects of the increased income for households 

in the top quartile in terms of the increased consumption of housing and neighborhood attributes 

are reasonably small.  The consumption of housing and neighborhood attributes by households 

throughout the remainder of the income distribution is adversely affected by the increased 
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spending power of households in the top quartile, with households near but not in the top income 

quartile experiencing the largest adverse effects.    

The rest of the paper is organized as follows: Section 2 outlines the key feature of our 

San Francisco Bay Area dataset, focusing on the restricted-access Census data.  Section 3 

describes our equilibrium model of residential sorting and Sections 4 and 5 describe the 

estimation procedure and the estimated preference parameters in turn.  Section 6 uses the model 

and estimates to conduct a general equilibrium simulation designed to examine the impact of 

increased income inequality on the sorting equilibrium, and Section 7 concludes. 

 

2 DATA  

The analysis conducted in this paper is facilitated by access to restricted Census 

microdata for 1990.  These restricted Census data provide the detailed individual, household, and 

housing variables found in the public-use version of the Census, but also include information on 

the location of individual residences and workplaces at a very disaggregate level.  In particular, 

while public-use Census data specify the PUMA (a Census region with approximately 100,000 

individuals) in which a household lives, the restricted data specify the Census block (a Census 

region with approximately 100 individuals), thereby identifying the local neighborhood that each 

individual inhabits and the characteristics of each neighborhood far more accurately than has 

been previously possible with such a large-scale data set.  

For our primary analysis, we use data from six contiguous counties in the San Francisco 

Bay Area: Alameda, Contra Costa, Marin, San Mateo, San Francisco, and Santa Clara.  We focus 

on this area for two main reasons: because it is reasonably self-contained, and because the area is 

sizeable along a number of dimensions, including over 1,100 Census tracts, and almost 39,500 
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Census blocks, the smallest unit of aggregation in the data.  The sample consists of 242,100 

households.   

The Census provides a wealth of data on the individuals in the sample – race, age, 

educational attainment, income from various sources, household size and structure, occupation, 

and employment location.4  In addition, it provides a variety of housing characteristics: whether 

the unit is owned or rented, the corresponding rent or owner-reported value,5 number of rooms, 

number of bedrooms, type of structure, and the age of the building.  We use these housing 

characteristics directly and in constructing neighborhood measures that characterize the stock of 

housing in the neighborhood surrounding each house, as well as neighborhood racial, education 

and income distributions based on the households within the same Census block group, a Census 

region containing around 10 blocks or 500 housing units.  We merge additional data describing 

local conditions with each house record, constructing variables related to crime rates, land use, 

local schools, topography, and urban density.  For each of these measures, a detailed description 

of the process by which the original data were assigned to each house is provided in a Data 

Appendix.  The list of the principal housing and neighborhood variables used in the analysis, 

along with means and standard deviations, is given in the first two columns of Table 1. 

 

                                                           
4 Throughout our analysis, we treat the household as the decision-making agent and characterize each household’s 
race as the race of the ‘householder’ – typically the household’s primary earner.  We assign households to one of 
four mutually exclusive categories of race/ethnicity: Hispanic, non-Hispanic Asian, non-Hispanic Black, and non-
Hispanic White.   
5 As described in the Data Appendix, we construct a single price vector for all houses, whether rented or owned.  
Because the implied relationship between house values and current rents depends on expectations about the growth 
rate of future rents in the market, we estimate a series of hedonic price regressions for each of over 40 sub-regions of 
the Bay Area housing market.  These regressions return an estimate of the ratio of house values to rents for each of 
these sub-regions and we use the average of these ratios for the Bay Area, 264.1, to convert monthly rent to house 
value for the purposes of reporting results at the mean. 
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3 A MODEL OF RESIDENTIAL SORTING 

We now set out an equilibrium model of a self-contained urban housing market in which 

households sort themselves among the set of available housing types and locations.  The model 

consists of two key elements: the household residential location decision problem and a market-

clearing condition.  While it has a simple structure, the model allows households to have 

heterogeneous preferences defined over housing and neighborhood attributes in a very flexible 

way; it also allows for housing prices and neighborhood sociodemographic compositions to be 

determined in equilibrium.   

We estimate this model using rich individual data, appealing to the notion of revealed 

preference - specifically that the residential location decision reveals preferences for a wide 

range of housing and neighborhood attributes.  By examining how location decisions vary, on 

average, with household characteristics such as income, education, and race, one can learn how 

preferences for the housing and neighborhood attributes vary with these sociodemographic 

characteristics.  Once the broad set of preference parameters in the model have been estimated, 

we then use the estimates and the equilibrium model to conduct a simulation designed to explore 

how an increase in income inequality affects the housing market equilibrium.   

 

The Residential Location Decision.  We model the residential location decision of each 

household as a discrete choice of a single residence from a set of house types available in the 

market.  The utility function specification is based on the random utility model developed in 

McFadden (1973, 1978) and the specification of Berry, Levinsohn, and Pakes (1995), which 
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includes choice-specific unobservable characteristics.6,7  Let Xh represent the observable 

characteristics of housing choice h,  including characteristics of the house itself (e.g., size, age, 

and type), its tenure status (rented vs. owned), and the characteristics of its neighborhood (e.g., 

school, crime, land use, and topography).  We use the notation capital letter Zh to represent the 

average sociodemographic characteristics of the corresponding neighborhood, writing it 

separately from the other housing and neighborhood attributes to make explicit the fact that these 

characteristics are determined in equilibrium.8  Let ph denote the price of housing choice h and, 

finally, let dh
i denote the distance from residence h to the primary work location of household i.  

Each household chooses its residence h to maximize its indirect utility function Vh
i: 9  
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The error structure of the indirect utility is divided into a correlated component associated with 

each housing choice that is valued the same by all households, ξh, and an individual-specific 

term, εi
h.  A useful interpretation of ξh is that it captures the unobserved quality of each housing 

choice, including any unobserved quality associated with its neighborhood.10,11     

                                                           
6 Discrete choice applications in the urban economics literature include Anas (1982), Quigley (1985), Gabriel and 
Rosenthal (1989), Nechyba and Strauss (1998), Bajari and Kahn (2004).  Only the latter paper includes choice-
specific unobservables.   
7 Brock and Durlauf (2001, 2003) develop a number of theoretical and econometric properties for a class of discrete 
choice models with social interactions, focusing primarily on models where an individual’s propensity to make a 
choice is affected by the characteristics or decisions of individuals in a reference group.  The class of models studied 
here differs in that the utility that an individual receives in making a choice (or the propensity of an individual to 
make a choice) is a function of the characteristics of others making the same choice (in our context, choosing the 
same neighborhood).  Further, we address a number of endogeneity issues that arise when some choice 
characteristics are observable to households but not the researcher. 
8 This component of the utility function allows for endogenous sorting on the basis of race, as in Schelling (1969, 
1971), as well as other characteristics such as income and education.  The assumption that utility depends on the 
average sociodemographic composition of the neighborhood rather than a more complicated function is made for 
simplicity.  The identification of more general functions is certainly possible.   
9 Alternative specifications of the indirect utility function that are non-linear in housing prices could certainly be 
estimated, as the linear form is not essential to the model. 
10 The inclusion of a choice-specific unobservable in this specification captures the fact that many features of a given 
housing type or neighborhood may be unobserved by the researcher.  We assume throughout the paper that ξh is not 
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Each household’s valuation of choice characteristics is allowed to vary with its own 

characteristics, zi, including education, income, race, employment status, and household 

composition.  Specifically, each parameter associated with housing and neighborhood 

characteristics and price, αi
j, for j ∈ {X, Z, d, p}, varies with a household’s own characteristics 

according to: 

 

(2) ∑
=

+=
R

r

i
rrjj

i
j z

1
0 ααα , 

 

with equation (2) describing household i’s preference for choice characteristic j.   

The specification of equations (1) and (2) gives rise to a horizontal model of sorting in 

which households have preferences defined distinctly over each choice characteristic.  This 

contrasts with vertical models, which restrict households to have preferences over a single 

locational index, thereby constraining households to have the same preference ordering across 

locations.  The additional flexibility of horizontal model is especially relevant when modeling 

preferences over the neighborhood racial composition, as one would certainly expect households 

of different races to rank neighborhoods according to their preferences very differently.  The 

horizontal specification also captures the geography of the urban housing market very naturally, 

allowing households to have preferences over neighborhoods depending on the distance from 

their employment locations.  This gives rise to variation in the aggregate demand for housing in 

various neighborhoods throughout the metro area, thereby increasing equilibrium housing prices 

in neighborhoods near employment centers.     

                                                                                                                                                                                           
sorting dependent, that is, that all relevant neighborhood amenities affected by household sorting are included as 
observables.     
11 Recent papers related to housing demand and neighborhood sorting including Bayer (1999), Bajari and Kahn 
(2004), and Ferreira (2003) find that including a choice-specific unobservable and addressing the endogeneity 
problem that results from its correlation with price has a significant effect on preference estimates. 
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Characterizing the Housing Market.  As with all models in this literature, the existence of a 

sorting equilibrium is much easier to establish if the individual residential location decision 

problem is smoothed in some way.  To this end, we assume that the housing market can be fully 

characterized by a set of housing types that is a subset of the full set of available houses, letting 

the supply of housing of type h be given by Sh.  We also assume that each household observed in 

the sample represents a continuum of households with the same observable characteristics, with 

the distribution of idiosyncratic tastes εi
h mapping into a set of choice probabilities that 

characterize the distribution of housing choices that would result for the continuum of 

households with a given set of observed characteristics.12        

Given the household’s problem described in equations (1)-(2), household i chooses 

housing type h if the utility that it receives from this choice exceeds the utility that it receives 

from all other possible house choices - that is, when  

 

(3) hkWWWWVV i
h

i
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h

i
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i
h ≠∀−>−⇒+>+⇒> εεεε   

 

where Wi
h includes all of the non-idiosyncratic components of the utility function Vi

h.  As the 

inequalities in (3) imply, the probability that a household chooses any particular choice depends 

in general on the characteristics of the full set of possible house types.  Thus the probability Pi
h 

that household i chooses housing type h can be written as a function of the full vectors of 

housing and neighborhood characteristics (both observed and unobserved) and prices {X, Z, p, 

ξ}:13 

 

                                                           
12 For expositional ease and without loss of generality, let the measure of this continuum be one.   
13 For the purposes of characterizing the equilibrium properties of the model, we include an individual’s 
employment location in zi and the residential location in Xh. 
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h

i
h zfP =  

 

as well as the household’s own characteristics zi. 

Aggregating the probabilities in equation (4) over all observed households yields the 

predicted demand for each housing type h, Dh: 

 

(5) ∑=
i

i
hh PD .

 
 

In order for the housing market to clear, the demand for houses of type h must equal the supply 

of such houses and so: 

 

(6) hSPhSD h
i

i
hhh ∀=⇒∀= ∑, .   

 

Given the decentralized nature of the housing market, prices are assumed to adjust in order to 

clear the market.   The implications of the market clearing condition defined in equation (6) for 

prices are very standard, with excess demand for a housing type causing price to be bid up and 

excess supply leading to a fall in price.  In particular, given the indirect utility function defined in 

(1) and a fixed set of housing and neighborhood attributes, we can prove that a unique set of 

prices (up to scale) clears the market:  

 

Proposition 1: If Ui
h is a decreasing, linear function of ph for all households and ε is drawn from 

a continuous distribution, a unique vector of housing prices (up to a scaleable constant) solves 

the system of equations depicted in (6), conditional on a set of households z and housing and 

neighborhood Z, X, ξ characteristics.  Proof: See Theory Appendix. 
 

Building on Proposition 1, the following lemma is also useful for characterizing the properties of 

a sorting equilibrium in the housing market: 
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Lemma 1: If in addition to the assumptions specified in Proposition 1, Ui
h is continuous in 

characteristic xh for each household i, the unique vector of housing prices that clears the market 

is continuous in x.  Proof: See Theory Appendix. 
 

In proving Proposition 1, we show that it is possible to write the solution to (6) as a contraction 

mapping in p.14  Thus, starting from any vector p, an iterative process that increases the prices of 

houses with excess demand and decreases the prices of houses with excess supply at each 

iteration leads ultimately to an even spread of households across houses.  Writing this market-

clearing vector of prices as p*(z, Z, X, ξ), the probability that household i chooses house h can be 

written: 

 

(7) ( )ξξ),X,Z,z,(pX,,Z, *i
h

i
h zfP =  

 

where the notation p*(z, Z, X, ξ) indicates that the set of market-clearing prices is a function of 

the full matrices of the household z and housing and neighborhood attributes {Z, X, ξ}.   

 

Defining a Sorting Equilibrium. The utility function defined in equation (1) allows households 

to have preferences for the sociodemographic characteristics of their neighbors.15  Using the 

                                                           
14 The conditions stated in Proposition 1 provide sufficient but not necessary conditions for the existence of a unique 
vector of market clearing prices.  For example, while reasonable, the condition that ph enters Ui

h in a negative 
manner for every household is more stringent than is actually necessary to ensure the uniqueness result.  Essentially 
these conditions ensure that it is possible to write the solution to the system of equations depicted in (7) as a 
contraction in p.  Beyond establishing existence this is important because it makes it possible to solve quickly for 
market clearing prices in counterfactual simulations. 
15 Note that it is certainly possible to allow other neighborhood characteristics such as school quality and crime to 
depend explicitly on neighborhood sociodemographic characteristics, provided these are continuous functions of 
neighborhood sociodemographic characteristics.  We abstract from this issue in this paper to make the exposition as 
straightforward as possible.  In Bayer, McMillan, and Rueben (2004) we derive bounds for general equilibrium 
counterfactuals that account for the fact that the levels of school quality and crime in each neighborhood is affected 
by the re-sorting of households. 
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notation h∈n to indicate the housing choices that belong to neighborhood n, the average 

sociodemographic composition of neighborhood n is given by: 

 

(8) ∑∑
∈

•=
i nh

i
h

i
n PzZ  

 

Given preferences defined either directly or indirectly over the neighborhood sociodemographic 

composition, a sorting equilibrium is defined as a set of choice probabilities { i
hP *} and a vector 

of housing prices p* such that: 

i. The housing market clears according to equation (6). 

ii. The set of choice probabilities { i
hP *} is a fixed point of the mapping defined in 

equations (7), where Z is formed by explicit aggregation of ),(
*

kjP j
k ∀  according to 

equation (8).   

This second condition ensures that, in equilibrium, each household makes its optimal location 

decision given the location decisions of all other households.16   

 

Existence. Combining equations (7) and (8), yields the following system of equations (one for 

each neighborhood) that implicitly define the vector of average neighborhood sociodemographic 

characteristics Z: 

 

(9) ( ) ξ)X,Z,z,(ξξ),X,Z,z,(pX,,Z, *
n
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i
h
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16 Notice that while each household actually makes a discrete location decision, we define the equilibrium in terms 
of the vector of choice probabilities {Pi

h}.  These choice probabilities represent the distribution of location decisions 
made in equilibrium by the continuum of households that each household i represents.  Note that the alternative 
assumption that ε is observed only privately along with a symmetric Bayesian Nash equilibrium concept would 
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Any fixed point of this mapping, Z* = g(Z*) is associated with a unique vector of market 

clearing prices p* and a unique set of choice probabilities { i
hP *} that together satisfy the 

conditions for a sorting equilibrium.  In this way, finding a sorting equilibrium can be 

transformed into a fixed-point problem in Z.  The existence of a sorting equilibrium then follows 

directly from Brouwer’s fixed-point theorem:   

 

Proposition 2:  If the assumptions of Proposition 1 hold and Ui
h is continuous in Z, a sorting 

equilibrium exists.  Proof: See Theory Appendix. 
 

Uniqueness.  While it is straightforward to establish the existence of an equilibrium for the class 

of models described above, a unique equilibrium need not arise.  Consider an extreme example 

in which two types of households that have strong preferences for living with neighbors of the 

same type must choose between two otherwise identical neighborhoods.  In this case, it is easy to 

see that the model has multiple equilibria.  In particular, two stable equilibria arise with 

households sorting across neighborhoods by type.  When the neighborhoods are identical except 

for their sociodemographic composition, the matching of each household type with a particular 

neighborhood is not uniquely determined in equilibrium.  Thus, uniqueness is not a generic 

property of the class of models developed above.17   

 

                                                                                                                                                                                           
allow us to define the equilibrium in terms of discrete location decisions rather than working with the choice 
probabilities.  Existence would continue to hold under this interpretation concerning ε.   
17 This extreme example does give an unduly pessimistic impression of the likelihood that multiple equilibria arise 
in this model.  Extending the simple example just described, imagine that households of one type have significantly 
more income than households of the other type, that the quality of one of the neighborhoods is significantly better 
than that of the other neighborhood in some fixed way, and that households have preferences for neighborhood 
quality.  In this case, while strong preferences to segregate certainly ensure that households again sort across 
neighborhoods by type, the matching of household type and neighborhood is made much clearer by the marked 
differences in income and neighborhood quality.  In general, a unique equilibrium will arise when the meaningful 
variation in the exogenous attributes of households, neighborhoods, and houses { }hh

i XZ ξ,,  is sufficiently rich 
relative to the role that preferences.  See Bayer and Timmins (2003) for a formal analysis of this issue. 
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4 ESTIMATION 

Estimation of the model follows a two-stage procedure closely related to that developed 

in Berry, Levinsohn, and Pakes (1995).  It is helpful in describing the estimation procedure to 

first introduce some notation.  In particular, we rewrite the indirect utility function as:   
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In equation (11), δh captures the portion of utility provided by housing type h that is common to 

all households, and in (12), k indexes household characteristics.  When the household 

characteristics included in the model are constructed to have mean zero, δh is the mean indirect 

utility provided by housing choice h.  The unobservable component of δh, ξh, captures the portion 

of unobserved preferences for housing choice h that is correlated across households, while εh
i 

represents unobserved preferences over and above this shared component.   

 The estimator is a two-stage procedure.  The first stage selects the heterogeneous 

parameters λh and mean indirect utilities δh that maximize the probability that the model 

correctly predicts each individual’s location decision conditional on the full set of observed 

housing and neighborhood attributes, including those endogenously determined.  Formally, the 

validity of this first stage requires two assumptions: that the observed location decisions are 

individually optimal, given the collective choices made by other households and the vector of 
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market-clearing prices, and that households are sufficiently small such that they do not interact 

strategically with respect to particular draws on ε.  This latter assumption ensures that 

households can each effectively integrate out the idiosyncratic preferences of all others when 

making their own location decisions and so that no household’s particular idiosyncratic 

preferences affect the equilibrium.  Thus the vector of idiosyncratic preferences ε is uncorrelated 

with the prices and neighborhood sociodemographic characteristics that arise in any equilibrium. 

 In essence, the first-stage of the estimation procedure is equivalent to a Maximum 

Likelihood procedure that treats housing prices and neighborhood sociodemographic 

characteristics as exogenous from the individual’s point-of-view.  Importantly, the assumption 

that prices and neighborhood sociodemographic characteristics are uncorrelated with the vector 

of idiosyncratic preferences ε does not imply that they are uncorrelated with the full error term, 

as we explicitly allow for a portion of unobserved preferences, ξ, that is correlated with price and 

endogenous neighborhood characteristics in equilibrium.  This correlation is addressed in the 

second stage of the estimation procedure, in which the vector δ estimated in the first stage is 

decomposed into components.   

 Operationally, for any combination of the heterogeneous parameters in λ and mean 

indirect utilities, δh, the model predicts the probability that each household i chooses house type 

h.  We assume that εh
i is drawn from the extreme value distribution, in which case this 

probability can be written: 
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Maximizing the probability that each household makes its correct housing choice gives rise to 

the following quasi-log-likelihood function:  
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where Ii
h is an indicator variable that equals 1 if household i chooses house type h in the data and 

0 otherwise.  The first stage of the estimation procedure consists of searching over the 

parameters in λ and the vector of mean indirect utilities to maximize l~ .  Notice that the quasi-

likelihood function developed here is based solely on the notion that each household’s residential 

location is optimal given the set of observed prices and the location decisions of other 

households.   

   

The Mechanics of the First Stage of the Estimation.  Intuitively, it is easy to see how this first 

stage of the estimation procedure ties down the heterogeneous parameters – those involving an 

interaction of household characteristics with housing and neighborhood characteristics.  If more 

educated households are more likely to choose houses near better schools in the data for instance, 

a positive interaction of education and school quality will allow the model to fit the data better 

than a negative interaction would.  What is less intuitive is the way the vector of mean indirect 

utilities is determined.  To better understand the mechanics of the first stage of the estimation, it 

is helpful to write the first-order conditions related to δh:   
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It is apparent that the quasi-likelihood function is maximized at the vector δ that forces the sum 

of the probabilities that each observed individual chooses each house type to equal the total 

supply of such houses: ( ) hSP h
i

i
h ∀=∑ .  That this condition must hold for all house types results 

from a fundamental trade-off in l~ .  In particular, an increase in any δh raises the probability that 

each household in the sample chooses house type h.  While this increases the probability that the 

model correctly predicts the choice of the households that actually reside in houses of type h, it 

decreases the probability that all of the other households in the sample make the correct choice.  

Thus the first stage of the estimation procedure consists of choosing the interaction parameters 

that best match each individual with their chosen house, while ensuring that total predicted 

demand equals supply for each house type.  

 For any set of interaction parameters (those in λ), a contraction mapping can be used to 

calculate the vector δ that solves the set of first order conditions: ( ) hSP h
i

i
h ∀=∑ .   For our 

application, the contraction mapping is simply:    
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where t indexes the iterations of the contraction mapping.  Using this contraction mapping, it is 

possible to solve quickly for an estimate of the full vector δ̂  even when it contains a large 

number of elements, thereby dramatically reducing the computational burden in the first stage of 

the estimation procedure.18       

                                                           
18 It is worth emphasizing that a separate vector δ is calculated for each set of interaction parameters – and at the 
optimum, this procedure returns the quasi-ML estimates of the interaction parameters and the vector of mean 
indirect utilities δ. 
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 Notice that while we have not explicitly enforced the market clearing conditions derived 

above, the conditions that result from maximizing the quasi-likelihood function with respect to δ 

are identical to the market-clearing conditions shown in equation (6).  Thus, there is a clear 

duality between the equilibrating role of prices in our characterization of equilibrium in the 

housing market and the way that the vector of mean indirect utilities is determined as a result of 

maximizing the likelihood that each household chooses its appropriate house conditional on 

prices and housing and neighborhood attributes.   

 

The Second Stage.  Having estimated the vector of mean indirect utilities in the first stage of the 

estimation procedure, the second stage involves decomposing δ into observable and 

unobservable components according to equation (11).19  Because households sort across 

locations based in part on the portion of housing and neighborhood quality unobserved by the 

researcher, housing prices and neighborhood sociodemographic characteristics are almost 

certainly correlated with ξh and consequently the corresponding endogeneity problems must be 

confronted.   

 To deal with the correlation of price and unobserved housing/neighborhood quality, ξh, 

we instrument for price.  The particular instrument that we develop takes advantage of an 

inherent feature of housing markets: that the demand for a house in a particular neighborhood is 

affected not only by the features of the neighborhood itself but also by the availability of 

alternative houses and neighborhoods in the wider region.  For example, neighborhoods that 

possess certain amenities that are unique or difficult to replicate will command higher prices in 

equilibrium, partly because of this scarcity.  The exogenous attributes of houses and 
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neighborhoods at a reasonable distance from a particular neighborhood serve as suitable 

instruments for price, as the attributes of these more distant neighborhoods affect equilibrium 

prices but not the utility derived from living in the neighborhood.20   

In practice, the precision of the estimation is improved significantly when the logic of 

this IV strategy is used to construct a single variable that approximates the optimal instrument.  

In particular, we construct an instrument by solving for the vector of prices that would clear the 

market when only exogenous features of houses and neighborhoods are included in the utility 

function.  This instrument captures the portion of housing price variation attributable to the 

distribution of the exogenous features of houses and neighborhoods throughout the region, 

summarizing this information in a single variable.   

A couple of additional practical items are worth describing.  First, the construction of the 

instrument requires an initial conjecture as to the parameters associated with exogenous housing 

and neighborhood attributes.  We obtain such an initial conjecture for the parameters of the mean 

indirect utility equation by making a reasonable guess as to the price coefficient and then 

estimating equation (11) via OLS, bringing the price term to the left hand side of the equation.  

Using the resulting coefficients on X from this regression along with those obtained in the first 

stage, we then calculate the vector of housing prices that clears the market, ) Z,(Xp̂ i
h

* , setting 

ξh=0 for all h, and including only exogenous choice characteristics in the model.21  In the results 

                                                                                                                                                                                           
19 Notice that the set of observed residential choices provides no information that distinguishes the components of δ.  
That is, regardless of the way δ is broken into components, the effect on choice probabilities is the same. 
20 Put another way, for most individuals, the relevant extent of the housing market is much larger when they are 
searching for a house (they might live, for example, to the north, south, east, or west of their job location) than when 
they actually choose a residence, in which case the characteristics of houses on the opposite side of town likely have 
only a minimal direct impact on utility.  It is the fact that a much broader set of houses is in play during the search 
process that implies that the characteristics of the housing stock on the other side of town will influence equilibrium 
prices. 
21 To obtain the final estimates reported in the paper, we repeat this procedure using the estimated parameters from 
the initial estimation to construct a new price instrument for the next iteration.  While using such an iterative process 
is not necessary to ensure consistency, in practice it ensures that the final estimates are not sensitive to our initial 
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reported below, we include a full set of controls for the characteristics of a house and its 

neighborhood as well as five variables that describe land use22 and six variables that describe the 

housing stock23 in each of the 1, 2, 3, 4, and 5 mile rings around the house.  In this way, the 

additional information embedded in our instrument derives from the exogenous features of the 

housing stock and land use in a region beyond five miles from the house in question.24 

   

The Endogeneity of Neighborhood Sociodemographics.  A second identification issue 

concerns the correlation of neighborhood sociodemographic characteristics Z with unobserved 

housing and neighborhood quality, ξh.  To properly estimate preferences in the face of this 

endogeneity problem, we adapt a technique previously developed by Black (1999) when 

estimating preferences for school quality.  Black’s strategy makes use of a sample of houses near 

school attendance zone boundaries, estimating a hedonic price regression that includes boundary 

fixed effects.  Intuitively, the idea is to compare houses in the same local neighborhood but on 

opposite sides of the boundary, exploiting the discontinuity in the right to attend a given school.   

 There are, however, good reasons to think that households will sort with respect to such 

boundaries.  Thus, while boundary fixed effects are likely to do a good job of controlling for 

differences in unobserved fixed factors, neighborhood sociodemographics are likely to vary 

discontinuously at the boundary.  In this way, the use of boundary fixed effects isolates variation 

                                                                                                                                                                                           
conjecture of the coefficient on price.  For this reason, we believe that this iterative procedure is likely to be more 
efficient than applying the procedure once, but we do not have a proof of this.  
22 That is: percent industrial, percent commercial, percent residential, percent open space, and percent other. 
23 The housing stock variables are: percent owner-occupied single family homes with 7 rooms or more; percent 
owner-occupied single family homes with less than 7 rooms; percent renter-occupied single family homes; percent 
renter-occupied units in large apartment buildings; percent of units in small apartment buildings; percent other. 
24 In first-stage price regressions, this instrument, which is derived entirely from the exogenous characteristics of the 
alternatives and the distribution of household characteristics in the population, adds significantly to the predictive 
power of these regressions.  In each specification, the optimal price instrument is strongly predictive of price, over 
and above the set of variables included directly in X, increasing the R2 of each regression by approximately 4 
percentage points. 
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in both school quality and neighborhood sociodemographics in a small region in which 

unobserved fixed features, (e.g., access to the transportation network), likely vary only slightly, 

thereby providing an appealing way to account for the correlation of both school quality and 

neighborhood sociodemographics with unobservable neighborhood quality 

 We incorporate school district boundary fixed effects when estimating equation (11).  In 

particular, we create a series of indicator variables for each Census block that equal one if the 

block is within a given distance of each unique school district boundary in the metropolitan area 

(e.g., Palo Alto-Menlo Park).25  To show the variation in school quality and neighborhood 

sociodemographics at school district boundaries, Table 1 displays descriptive statistics for 

various samples related to the boundaries.  The first two columns report means and standard 

deviations for the full sample while the third column reports means for the sample of houses 

within 0.25 miles of a school district boundary.  Comparing the first column to the third column 

of the table, it is immediately obvious that the houses near school district boundaries are not fully 

representative of those in the Bay Area as a whole.  To address this problem, we create sample 

weights for the houses near the boundary.26  Column 7 of Table 1 shows the resulting weighted 

means, indicating that using these weights makes the sample near the boundary much more 

representative of the full sample. 

                                                           
25 A number of empirical issues arise in incorporating school district boundary fixed effects into our analysis.  A 
central feature of local governance in California helps to eliminate some of the problems that naturally arise with the 
use of school district boundaries, as Proposition 13 ensures that the vast majority of school districts within 
California are subject to a uniform effective property tax rate of one percent.  Concerning the width of the 
boundaries, we experimented with a variety of distances and report the results for 0.25 miles, as these were more 
precise due to the larger sample size. 
26  The following procedure is used: we first regress a dummy variable indicating whether a house is in a boundary 
region on the vector of housing and neighborhood attributes using a logistic regression.  Fitted values from this 
regression provide an estimate of the likelihood that a house is in the boundary region given its attributes.  We use 
the inverse of this fitted value as a sample weight in subsequent regression analysis conducted on the sample of 
houses near the boundary. 
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 The fourth and fifth columns report means for houses within 0.25 miles of a boundary, 

comparing houses on the high versus low average test score side of the each boundary; the sixth 

column reports t-tests for the difference in means.  Comparing these differences reveals that 

houses on the high side cost $53 more per month and are assigned to schools with test scores that 

are 43-point higher on average.27  Moreover, houses on the high quality side of the boundary are 

much more likely to be inhabited by white households and households with more education and 

income.  These types of across-boundary differences in sociodemographic composition are what 

one would expect if households sort on the basis of preferences for school quality.  While far less 

significant, other housing characteristics do vary across the boundaries as well.  Consequently, 

we expect the use of boundary fixed effects to control for much but not all of the variation in 

unobserved housing and neighborhood quality, thereby giving rise to better estimates of 

preferences for neighborhood sociodemographics and school quality.28   

 

Characterizing the Housing Market – A Practical Issue.  A final practical issue for estimation 

concerns the way the choices that characterize the housing market should be defined.  This 

modeling decision essentially corresponds to an assumption regarding the way demand for 

particular houses in the market is determined.  The trade-offs implicit in the required assumption 

can be seen using a simple example: Consider a city neighborhood with two types of housing 

structures, one of which is more prevalent than the other, with all houses in the neighborhood 

selling for the same price.  To simplify this discussion, further assume that households have 

                                                           
27 As described in the Data Appendix, we construct a single price vector for all houses, whether rented or owned.   
28 In terms of the estimates related to neighborhood sociodemographic characteristics, the key point about using 
school district boundary fixed effects rather than Census tract fixed effects is that in the boundary case we have a 
clear sense of what fundamentally leads to the sorting of households across neighborhoods within the region upon 
which the fixed effect is based.  Because we control directly for that cause of the sorting - schooling in this case - we 
are less concerned that the variation in sorting is related to variation in unobservables within the region upon which 
the fixed effect is based. 
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identical tastes.  In this case, if we characterized the choice set as the two types of structure, we 

would infer that the more prevalent structure provided higher mean direct utility; this is 

necessary to explain why more households choose that structure given equal prices.  If, on the 

other hand, we characterized the housing market by randomly drawing a subset of the houses in 

the neighborhood, we would infer that all of the houses in the neighborhood offered the same 

utility.  We do not see any strong a priori for making one of these choices versus the other.  

Moreover, given that any definition of ‘type’ would be based only on the limited characteristics 

observed in the data, we adopt the second option described above, simply characterizing housing 

types as the 1-in-7 random sample of the houses observed in our Census dataset.  This 

characterization also facilitates comparisons with the hedonic price regression literature; with 

this characterization of the choice set, a hedonic price regression corresponds to estimating mean 

preferences under the assumption of no heterogeneity in household tastes.29 

 

Asymptotic Properties of the Estimator.   As described in McFadden (1978), an attractive 

aspect of the underlying IIA property for each individual is that we can estimate the model using 

only a sample of the alternatives not selected by the individual.  This permits estimation despite 

having many alternatives – i.e., many distinct house types.  More generally, our problem fits 

within a class of models for which the asymptotic distribution theory has been developed.  In this 

sub-section, we summarize the requirements necessary for the consistency and asymptotic 

normality of our estimates and provide some intuition for these conditions.  

In general, there are three dimensions in which our sample can grow large: H (number of 

housing types), N (number of individuals in the sample), or C (number of non-chosen 

                                                           
29 Nothing theoretically prevents estimation of the model under an alternative assumption concerning housing 
choices.  A comparison with corresponding hedonic price regressions is shown in Table 2 and discussed in an 
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alternatives drawn for each individual).  For any set of distinct housing alternatives of size H and 

any random sampling of these alternatives of size C, the consistency and asymptotic normality of 

the first-stage estimates (δ, θλ) follows directly as long as N grows large.  This is the central 

result of McFadden (1978), justifying the use of a random sample of the full census of 

alternatives.  Intuitively, even if each household is assigned only one randomly drawn alternative 

in addition to its own choice, the number of times that each house type is sampled (the dimension 

in which the choice-specific constants are identified) grows as a fixed fraction of N.        

 If the true vector δ were used in the second stage of the estimation procedure, the 

consistency and asymptotic normality of the second-stage estimates θδ would follow as long as 

H  ∞.30  In practice, ensuring the consistency and asymptotic normality of the second-stage 

estimates is complicated by the fact the vector δ is estimated rather than known.  Berry, Linton, 

and Pakes (2002) develop the asymptotic distribution theory for the second stage estimates θδ for 

a broad class of models that contains our model as a special case, and consequently we employ 

their results.  In particular, the consistency of the second-stage estimates follows as long as H  

∞ and N grows fast enough relative to H such that NHH log goes to zero, while asymptotic 

normality at rate H  follows as long as NH 2  is bounded.  Intuitively, these conditions ensure 

that the noise in the estimate of δ becomes inconsequential asymptotically and thus that the 

asymptotic distribution of θδ is dominated by the randomness in ξ as it would be if δ were 

known.   

Given that the consistency and asymptotic normality of the second stage estimates 

requires the number of individuals in the sample to go to infinity at a faster rate than the number 

                                                                                                                                                                                           
appendix. 
30 This condition requires certain regularity conditions.  See Berry, Linton, and Pakes (2002) for details. 
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of distinct housing units, it is important to be clear about the implications of the way that we 

characterize the housing market in the paper.  In particular, we characterize the set of available 

housing types using the 1-in-7 random sample of the housing units in the metropolitan area 

observed in our Census dataset.  Superficially, this characterization seems to imply that the 

number of housing types is as great as the number of households in the sample, which appears at 

odds with the requirements for the establishing the key asymptotic properties of our model. 

It is important to note, however, the housing market may be characterized by a much 

smaller sample of houses, with each ‘true’ house type showing up many times in our large 

sample.  Consider, for example, using a large choice set of 250,000 housing units, when the 

market could be fully characterized by 25,000 ‘true’ house types, with each ‘true’ house type 

showing up an average of 10 times in the larger choice set.  On the one hand, the 250,000 

observations could be used to calculate the market share of each of the 25,000 ‘true’ house types, 

with market shares averaging 1/25,000 and the second stage δ regressions based on 25,000 

observations.  On the other hand, separate market shares equal to 1/250,000 could be attributed 

to each house observed in the larger sample and the second stage regression based on the larger 

sample of 250,000.  These regressions would return exactly the same estimates, as the former 

regression is a direct aggregation of the latter.  What is important from the point-of-view of the 

asymptotic properties of the model is not that the number of individuals increases faster than 

then number of housing choices used in the analysis, but rather that the number of individuals 

increases fast enough relative to the number of truly distinct housing types in the market.  That 

the number of distinct housing types in the market grows at a rate slower than the number of 

households seems plausible. 
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5 PARAMETER ESTIMATES 

 Estimation of the full model proceeds in two stages, as noted, the first stage recovering 

interaction parameters and vector of mean indirect utilities, the second stage returning the 

components of mean indirect utility.  The first stage of the estimation procedure returns 178 

parameters on terms that interact individual and housing/neighborhood characteristics, permitting 

great flexibility in preferences across different types of households.  In particular, the model 

includes the following household characteristics: household income from non-capital sources, 

household income from capital sources (a proxy for wealth), race, education, work status, age, 

the presence of children, and interactions of household income and race.  These household 

characteristics are interacted with many housing and neighborhood attributes including house 

price, owner-occupancy status,31 number of rooms, the age of the structure, average test score, 

elevation, population density, crime and eight variables characterizing the neighborhood 

sociodemographic composition: the fraction of households of each race, the fraction of 

households college educated, average neighborhood income, and neighborhood income 

interacted with race.  The model also captures the spatial aspect of the housing market by 

allowing households to have preferences over commuting distance.32   

 Normalized estimates of the full set of parameters estimated in the first stage of the 

estimation procedure are reported in Appendix Table 1.  To make the discussion of these 

estimates more transparent, we transform the estimates so that they can be described in terms of 

                                                           
31 We treat ownership status as a fixed feature of a housing unit in the analysis.  Thus, whether a household rents or 
owns is endogenously determined within the model by its house choice.  In the model, we allow households to have 
heterogeneous preferences for home-ownership (a positive interaction between household wealth and ownership, for 
example, implying that wealthier households are more likely to own their housing unit, as we find below).  A single 
price index is used for owner- and renter-occupied units - see the Data Appendix for details. 
32 We treat a household’s primary work location as exogenous, calculating the distance from this location to the 
location of the neighborhood in question.  MWTP estimates for other housing and neighborhood attributes based on 
a specification without commuting distance are qualitatively similar except for variables that are strongly correlated 
with employment access such as population density. 
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marginal willingness-to-pay measures (MWTP), reporting these estimates in Tables 2 and 3.  

The first two columns of Table 2 report measures of the mean MWTP for housing and 

neighborhood attributes; these estimates are based on a weighted sample of houses33 within 0.25 

miles of school district boundaries, with and without including fixed effects, respectively.  

Comparing the coefficients on the neighborhood sociodemographic characteristics with and 

without the inclusion of boundary fixed effects (columns 1 and 2) yields the pattern of results 

one would expect if boundary fixed effects control for fixed aspects of unobserved neighborhood 

quality that are correlated with neighborhood sociodemographic characteristics in the expected 

way.  In particular, controlling for fixed effects increases the coefficient on percent black 

(reported at the mean average neighborhood income) from -$285 to -$234; on percent Hispanic 

from -$37 to $104; and on percent Asian from -$70 to $150.  Doing so also reduces the 

coefficient on the percent of households with a college degree from $186 to $165 and the 

coefficient on average neighborhood income (/$10,000) from $89 to $85 per month.  In this way, 

the use of boundary fixed effects appears to be effective in controlling for fixed aspects of 

unobserved neighborhood quality that are correlated with neighborhood sociodemographics, and 

thus provides an attractive way of estimating preferences for neighborhood sociodemographic 

characteristics in the presence of this important endogeneity problem.34 

Table 3 reports the estimates of the heterogeneity in MWTP for housing and 

neighborhood characteristics.  For ease of comparison, the first column of Table 3 reports the 

estimated mean MWTP for the changes in housing or neighborhood attributes described in the 

row headings.  The remaining columns report the difference in MWTP associated with the 

                                                           
33 The procedure for constructing sample weights designed to make the boundary sample as representative of the full 
sample as possible is described in Section 4 above.  The estimates reported for the boundary sample without 
boundary fixed effects are qualitatively similar to those for the full sample. 
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comparison of household characteristics shown in the column heading.  So, for example, the first 

entry of the table implies that, on average, households are willing-to-pay $109 more per month 

on the margin for an additional room, while the second entry in the first row implies that 

households with children are willing to pay an average of $31 per month more for a room than 

households without children. 

 In almost every instance, the parameter estimates reported in Table 3 seem to have 

reasonable signs and magnitudes.  Focusing specifically on some of the key factors driving the 

location decision, the results imply that households are willing to pay an average of $50 per 

month to be an additional mile closer to work or about a dollar per additional mile of actual 

commuting travel.35  Households with children are willing to pay more for school quality and for 

an extra room.  A number of household characteristics in the model may proxy to some extent 

for lifetime wealth.  Demand for larger homes, owner-occupancy (which may proxy in part for 

unobserved house quality), and additional rooms in a house is an increasing function of a 

household’s income from non-capital sources, its income from capital sources, whether a 

household is working, and a household’s educational attainment. 

 Turning to the estimated preferences for neighborhood attributes, an interesting 

distinction arises between tastes for more educated versus higher income neighbors.  In 

particular, the estimates imply a high mean taste for neighbors with more income, but little 

heterogeneity in taste around this mean.  Having controlled for income, however, the estimates 

reveal preferences for segregation on the basis of educational attainment.  In particular, college-

educated households are willing to pay a sizeable premium to live with other college-educated 

                                                                                                                                                                                           
34 The analogous hedonic price regressions reported in the remaining columns of Table 2 provides further support 
for the plausibility of this assertion, as discussed in an Appendix.  
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households, while non-college-educated households would slightly prefer, on average, to live 

with others who also do not have a college degree. 

 In examining the estimated heterogeneity in MWTP for neighborhood racial composition, 

it is important to point out that the parameters corresponding to the interactions between 

household and neighborhood race in fact combine a number of potential explanations for racial 

sorting that are indistinguishable in the data.  In particular, the estimated interactions combine 

the effects of (i) discrimination in the housing market (e.g., centralized discrimination against 

recent immigrants from China), (ii) direct preferences for the race of one’s neighbors (e.g., 

preferences on the part of a recent immigrant from China to live with other Chinese immigrants), 

and (iii) preferences for race-specific portions of unobserved neighborhood quality (e.g., 

preferences for Chinese groceries which are located in neighborhoods with a high fraction of 

Chinese residents).   If one thinks of discrimination as an expression of the racial preferences of 

the discriminating group concerning the group discriminated against, our model essentially mis-

assigns these preferences to the group discriminated against.  In this way, the estimated 

difference in MWTP for black versus white neighbors combines the difference that results from 

decentralized preferences acted upon in each individual’s own location decision as well as any 

centralized discrimination that causes black households to appear as if they prefer black versus 

white neighborhoods more strongly than they actually do.  Consequently, the estimates reported 

in Table 3 are informative about the overall importance of role of racial sorting in the housing 

market, but, importantly, do not distinguish preferences per se. 

 The estimated heterogeneity parameters related to race reveal strong segregating racial 

interactions, with, interpreted literally as preference, households of each race preferring to live 

                                                                                                                                                                                           
35 Note that the estimate of each individual’s disutility from commuting naturally gives rise to declining rent 
gradients moving away from employment centers.  In this way, the model organically captures any number of 
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near others of the same race.  In reading the numbers associated with racial interactions, it is 

important to keep in mind that these numbers represent the difference in the amount households 

of the race shown in the column heading would be willing to pay for the corresponding change in 

neighborhood racial composition compared with white households.  So, for example, the $86 per 

month that characterizes the difference between the MWTP of black versus white households for 

a 10 percentage point increase in the fraction of black versus white neighbors reflects the sum of 

what a black household is willing to pay for this increase and what white households would be 

willing to pay for the opposite change.  The parameter estimates also reveal strong segregating 

preferences for Hispanic and Asian households and that Asian, black, and Hispanic households 

are more willing to live with minority households of other races than white households are.  

Finally, the estimates reveal that the strength of these segregating racial interactions does not 

decline significantly with income.  That is, high-income households of each race exhibit a 

remarkably similar MWTP pattern with respect to the race of their neighbors.   

   

6 GENERAL EQUILIBRIUM SIMULATIONS 

We now use the estimated parameters to conduct a general equilibrium simulation 

designed to examine the impact of an increase in income inequality on the housing market 

equilibrium.  In particular, we calculate the new equilibrium that arises following a 10 percent 

increase in the income of households in the top income quartile, characterizing the way this 

change affects a number of aspects of the housing market equilibrium.   

The basic structure of solving for a new equilibrium consists of a loop within a loop.  The 

outer loop calculates the sociodemographic composition of each neighborhood, given a set of 

prices and an initial sociodemographic composition of each neighborhood.  The inner loop 

                                                                                                                                                                                           
employment centers within the metropolitan region. 
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calculates the unique set of prices that clears the housing market, given an initial 

sociodemographic composition for each neighborhood.  Thus for any change in the primitives of 

the model, we first calculate a new set of prices that clears the market.  Using these new prices 

and the initial sociodemographic composition of each neighborhood, we then calculate the 

probability that each household chooses each housing type, and aggregating these choices to the 

neighborhood level, calculate the predicted sociodemographic composition of each 

neighborhood.  We then replace the initial neighborhood sociodemographic measures with these 

new measures and start the loop again  – i.e., calculate a new set of market clearing prices with 

these updated neighborhood sociodemographic measures.  We continue this process until the 

neighborhood sociodemographic measures converge.  The set of household location decisions 

corresponding to these new measures along with the vector of market clearing housing prices 

describe the new equilibrium.36 

As discussed in Section 3, uniqueness is not a generic property of our sorting model.  

Without this property, it is sometimes difficult to justify counterfactual simulations 

corresponding to non-marginal changes in the primitives of the underlying model.  As argued by 

Debreu (1969), however, the property of local uniqueness provides a coherent basis for 

conducting counterfactual simulations associated with a marginal change in the model’s 

primitives.  In this case, the results of our equilibrium counterfactual simulations correspond to a 

series of GE comparative static measures estimated at the current equilibrium.  In general, one 

can verify whether the actual equilibrium is locally unique by checking that the derivative of the 

implicit function mapping that defines the vector of equilibrium prices has a non-zero 

                                                           
36 It is also important to point out that because the model itself does not perfectly predict the housing choices that 
individuals make, the neighborhood sociodemographic measures initially predicted by model, Zn

PREDICT, will not 
match the actual sociodemographic characteristics of each neighborhood, Zn

ACTUAL.  Consequently, before 
calculating the new equilibrium for any simulation, we first solve for the initial prediction error associated with each 
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determinant at the current equilibrium.  In the results that follow, we present the results of a 

counterfactual simulation that increases the income of households in the top income quartile by 

10 percent in order to ensure that the reported results are not sensitive to errors related to 

rounding and the convergence criterion used in the computation.  Such a change is certainly 

small enough to be considered marginal and the new equilibrium appears to have a very similar 

structure to the existing one.    

 

An Increase in Income Inequality.  We now present the results of this counterfactual 

simulation, starting with an examination of the impact of this change on neighborhood 

stratification.  Table 4 presents a series of exposure measures that describe the average 

neighborhood composition (in terms of income) for households in each income quartile before 

and after the simulation.  The measures shown in the first row imply, for instance, that 

households in the bottom income quartile live in Census block groups that have on average 32.4 

percent of households in the bottom income quartile as opposed to 16.5 percent in the top 

quartile.  Households in the top income quartile, on the other hand, live in neighborhoods that 

have on average 16.6 percent of households in the bottom income quartile and 37 percent in the 

top quartile.  The lower panel of Table 4 reports analogous exposure rates calculated using the 

location decisions predicted in counterfactual equilibrium.  As one would expect, an increase in 

the income of the top income quartile leads to additional income stratification, leading to a 2 

percentage-point (5 percent) increase in the exposure of households in the top income quartile to 

one another.  

                                                                                                                                                                                           
neighborhood n: ωn = Zn

PREDICT - Zn
PREDICT.  We add this initial prediction error ωn to the sociodemographic measures 

calculated in each iteration before substituting these measures back into the utility function.   
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 Table 5 reports a number of consumption measures before and after the simulation, 

describing the consequences of an increase in the income for the top quartile for the consumption 

of neighborhood and housing amenities for households at all points of the income distribution.   

The rows of the table report the average monthly house price, home-ownership rate, average 

commuting distance, and the average consumption of house size, school quality, crime, 

neighborhood income and education for each income quartile.   Looking first at the total amount 

households in each quartile spend on housing, notice that households in the top income quartile 

increase their spending on housing by slightly more than the 10 percent increase in their incomes 

(possible if housing and neighborhood amenities are luxury goods on the margin).   The 

increased spending power of households in the top income quartile also affects the consumption 

of households in the other income quartiles, but by much smaller percentages, from 2 percent for 

those in the bottom quartile to just over 5 percent for those in the third quartile. 

 The average income of the neighbors of households in the top income quartile also 

increases by nearly 10 percent in the new equilibrium, combining the effect of the 10 percent 

increase in income of the top quartile households that these households were already exposed 

and the increased income stratification shown in Table 4.  Interestingly, the corresponding 

increases in the consumption of housing and neighborhood attributes by households in the top 

income quartile are much smaller in percentage terms, averaging around only a 1-4 percent 

improvement for home-ownership, house size, the crime rate, and college-educated neighbors.  

In this way, in competing for housing and neighborhood attributes in fixed supply, much of the 

increased spending power of the top income quartile is competed away in bidding for the best 

houses and neighborhoods available in the market.  
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 This competitive bidding also affects households in the other income quartiles, having an 

especially negative effect on households in the third quartile.  That the consumption of housing 

and neighborhood attributes drops most markedly for the third income quartile is intuitive as 

these households are most directly in competition for the types of houses and neighborhoods in 

which households in the top income quartile reside.  As Table 5 makes clear, these households 

wind up paying approximately 5 percent more for housing, while experiencing lower levels of 

consumption for all of the neighborhood and housing attributes shown except for the average 

income of their neighbors, which increases by 4 percent.  The effect of an increase in the income 

of households in the top income quartile on the consumption of housing and neighborhood 

amenities by households in the poorest income quartile is decidedly less marked.   

 The changes in consumption reported in Table 5 suggest that the implicit prices of 

various housing and neighborhood amenities may be changing considerably for households near 

the top of the income distribution as the now richer top quartile households bid up housing prices 

for the most desirable houses and neighborhoods.  Table 6 reports the results of selected 

coefficients for six weighted hedonic price regressions both before and after the simulation.  In 

each case, housing price is regressed on a series of housing and neighborhood attributes, with 

weights determined by how close the income of the occupant is to the 10th, 25th, 50th, 75th, 90th, 

and 95th percentile of the income distribution, respectively.37  Thus the first regression provides 

an indication of the implicit price that households near the 10th percentile of the income 

distribution for various housing and neighborhood amenities, for example.   

 Comparing the equilibrium after the simulation to that before, the implicit prices of 

housing and neighborhood attributes are affected throughout the distribution, although slightly 

                                                           
37 The particular form of the weight that we use is given by )(,

,
pincinci i

w −+= 00010
00010 for the pth percentile. 
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larger effects occur near the top of the income distribution.  Consequently, the increased 

spending power of high-income households has an affect on prices throughout the housing 

market, thereby dampening the potential benefit of this income increase.  The households most 

negatively affected by the change, however, are those with income near the top quartile but who 

do not get the 10 percent increase.  These households essentially face the greatest increase in 

implicit prices without any additional spending power and, as Table 5 reveals, consume lower 

levels of housing and neighborhood amenities as a result.   

  

7 CONCLUSION 

This paper introduces an equilibrium model of residential sorting designed to make full 

use of newly available Census microdata that provide residential and employment locations 

down to the level of a city block.  This equilibrium model permits a more flexible 

characterization of preferences than has been possible in the equilibrium sorting models that 

have been taken to the data thus far, allowing sorting over many housing and neighborhood 

attributes and bringing the geography of the urban housing market into the model in a natural 

way.  Using a sample of almost quarter of a million households and their corresponding houses 

and neighborhoods for the San Francisco Bay Area, we estimate a rich set of household 

preferences for housing and neighborhood attributes, accounting for important endogeneity 

problems that arise due to the correlation of unobserved aspects of housing and neighborhood 

quality with equilibrium housing prices and neighborhood sociodemographic compositions, 

correlations that are induced by residential sorting.   

 The estimated preference parameters imply that commuting distance, school quality, 

crime, housing attributes, and particularly neighborhood sociodemographic composition all play 
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a significant role in the typical household’s location decision.  Conditional on income, the 

estimates reveal that college-educated households have clear preferences for living with like 

households and that households of each race strongly prefer neighborhoods in which a sizeable 

fraction of their neighbors are of the same race.  Demand for desirable housing and 

neighborhood attributes tends to be an increasing function of a number of household 

characteristics that proxy to some degree for lifetime wealth, including income from capital and 

non-capital sources, current employment, and educational attainment. 

 Using the estimated preference parameters, we conduct a counterfactual simulation that 

illustrates the capabilities of the model as a tool for analyzing economic or policy changes 

accounting for effects on residential sorting and housing prices throughout the market.  In 

particular, we characterize a new sorting equilibrium following a 10 percent increase in the 

income of the richest 25 percent of households in the metro area.  The results of this simulation 

illustrate how the increased income of the top quartile filters through the housing market, raising 

the prices of the most desirable houses and neighborhoods in the metropolitan area, in turn 

affecting the consumption of neighborhood and housing attributes by households throughout the 

income distribution.  The price increases induced by increased competition for the most desirable 

houses and neighborhoods have the effect of eliminating some of the benefit of increased income 

for top quartile households and has an especially negative welfare effect on households near but 

not in the top quartile of the income distribution.   
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Table 1. Overall Sample and Sub-Sample Near School District Boundaries

Sample full sample
Boundary/Weights actual sample high test score side* low test score side* t-test for weighted sample
Observations 27,958 13,348 14,610 difference in 27,958

(1) (2) (3) (4) (5) means (6)
Mean S.D. Mean Mean Mean ((4) versus (5)) Mean

Housing/Neighborhood Characteristics
monthly house price 1,087 755 1,130 1,158 1,105 5.71 1,098
average test score 527 74 536 558 515 50.96 529
1 if unit owned 0.597 0.491 0.629 0.632 0.626 1.04 0.616
number of rooms 5.114 1.992 5.170 5.207 5.134 3.13 5.180
1 if built in 1980s 0.143 0.350 0.108 0.118 0.099 5.09 0.148
1 if built in 1960s or 1970s 0.391 0.488 0.424 0.412 0.437 4.22 0.406
elevation 210 179 193 194 192 1.14 212
population density 0.434 0.497 0.352 0.349 0.355 2.08 0.374
crime index 8.184 10.777 6.100 6.000 6.192 2.36 7.000
% Census block group white 0.681 0.232 0.704 0.712 0.686 9.62 0.676
% Census block group black 0.081 0.159 0.071 0.065 0.076 6.21 0.080
% Census block group Hispanic 0.110 0.114 0.113 0.107 0.119 8.62 0.117
% Census block group Asian 0.122 0.120 0.112 0.110 0.113 2.50 0.121
% block group college degree or more 0.438 0.196 0.457 0.463 0.451 5.14 0.433
average block group income 54,744 26,075 57,039 58,771 55,457 10.23 55,262

Household Characteristics
household income 54,103 50,719 56,663 58,041 55,405 4.20 55,498
1 if children under 18 in household 0.333 0.471 0.324 0.322 0.325 0.54 0.336
1 if black 0.076 0.264 0.066 0.062 0.070 2.69 0.076
1 if Hispanic 0.109 0.312 0.111 0.102 0.119 4.54 0.115
1 if Asian 0.124 0.329 0.112 0.114 0.110 1.06 0.121
1 if white 0.686 0.464 0.706 0.717 0.696 3.86 0.682
1 if college degree or more 0.438 0.497 0.460 0.467 0.454 2.64 0.441
age (years) 47.607 16.619 47.890 48.104 47.699 1.99 47.660
1 if working 0.698 0.459 0.705 0.702 0.709 1.28 0.701
distance to work (miles) 8.843 8.597 8.450 8.412 8.492 0.82 8.490

within 0.25 miles of boundaries

Notes:  Columns 1 and 2 report the mean and standard deviation for key variables for the full sample.  Column 3 reports means for the sample of houses within 0.25 miles of a school district 
boundary.  Columns 4 and 5 report means on the high versus low test score side of boundaries.  Column 6 provides a t-statistic for a test of whether the means reported in columns 4 and 5 are 
equal.  Column 7 reports weighted means for the sample of houses within 0.25 miles of a school district boundary.  Weights are constructed so as to make the boundary sample more 
representative of the full sample and are described in the main text.   In constructing columns 4 and 5, we assign each house in the full sample to the nearest school district boundary, noting 
whether its local school has a higher test score than the school associated with the closest Census block on the other side of the boundary.

242,100
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Table 2: Implied Mean MWTP Measures

Sample
Boundary Fized Effects
Observations

% Black*

% Hispanic* 

% Asian*

% College Degree or More

Average Income*

Average Test Score (in s.d.'s)

Owner-Occupied

Number of Rooms

Built in 1980s

Built in 1960s or 1970s

Elevation (in s.d.'s)

Population Density(in s.d.'s)

Crime Index (in s.d.'s)

F-statistic for boundary fixed effects

(3)

Notes: All neighborhood attributes are measured using the corresponding Census block group.  Specifications shown in the table also include controls for 
interactions between neighborhood racial composition variables and average income as well as land use (% industrial, % residential, % commercial, % 
open space, % other) in 1, 2, 3, 4, and 5 mile rings around location and six variables that characterize the housing stock in each of these rings. 
*Coefficients for % Asian,% Black, % Hispanic, Average Income reported at mean.

4.162

(38.87)

104.11
(59.01)

11.50
(8.61)

-10.96

No Yes

85.44
(2.64)

149.77
(55.21)

164.78
(39.42)

(2)

-233.94

(17.25)

21.46
(5.29)

11.02
(7.14)

87.40
(10.00)

2.48
(7.47)

148.15

-5.31

(3.90)

20.33
(6.90)

(6.86)

71.36

111.67
(1.95)

(7.38)

109.28
(1.96)

1.32

(7.00)

-285.46
(32.06)

-37.19
(46.83)

-69.84
(45.68)

185.74
(25.96)

-26.08

16.69
(4.23)

(9.29)

141.08
(7.40)

89.48
(2.18)

within .25 mile of boundaries

27,958 27,958

Residential Sorting Model

27,958

within .25 mile of boundaries
Hedonic Price Regressions

(7.85)

(2)
27,958

11.65

(3)

7.29

(2.16)

108.57
(10.99)

(9.47)

3.88
(18.97)

No Yes

-40.46
(42.74)

254.31
(64.88)

8.754

109.22
(2.90)

241.13

4.87
(8.21)

(60.71)

177.11
(43.34)

121.72

113.26
(2.40)

125.63
(8.12)

19.01
(4.66)

117.59
(8.14)

23.67
(5.81)

-1.69
(50.27)

235.04
(28.57)

-94.96
(35.28)

106.60
(51.54)

24.44
(7.59)

10.08
(7.70)

-25.20
(4.29)

-4.40
(7.55)

123.91
(2.15)

80.58
(10.23)
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Table 3: Heterogeneity in Marginal Willingness to Pay
Mean Children Non-Capital Capital Black Hispanic Asian Some College  Working Age Black* Hispanic* Asian*

Under 18 Income Income College Degree Hhld Hhld Hhld
(vs. none) (+ $10,000) (+10,000) (vs. White) (vs. White) (vs. White)vs. HS or lesvs. HS or les (vs. not) (+10 yrs) Income Income Income

(+10,000) (+10,000) (+10,000)

Number of Rooms 109.3 31.2 4.2 2.5 0.3 -13.7 -32.4 0.9 1.0 0.3 2.0
(+1 room) (2.0) (2.6) (0.2) (0.5) (4.6) (3.4) (2.2) (1.3) (2.2) (2.6) (0.5)

Owner-Occupied 148.0 -12.1 15.9 26.1 -50.0 -4.9 91.5 1.2 21.3 33.5 50.8
(vs. Renter Occupied) (7.4) (5.6) (0.8) (6.1) (19.4) (13.6) (12.0) (2.6) (6.1) (6.2) (1.8)

Built in 1980s 87.4 -21.8 7.0 9.9 10.7 -6.0 27.8 12.2 30.5 52.4 -16.9
(vs. Pre-1960) (10.0) (9.8) (0.9) (6.9) (33.0) (21.5) (17.3) (7.8) (8.2) (6.7) (3.9)

Built in 1960-79 2.5 5.5 1.5 1.7 37.2 -15.0 23.9 7.4 4.9 23.3 -5.1
(vs. Pre-1960) (7.5) (5.1) (0.8) (10.1) (10.0) (7.9) (7.7) (5.5) (9.2) (10.8) (2.7)

Average Test Score 21.5 6.6 0.1 3.1 -13.1 -4.0 4.5 4.1 11.2 7.7 6.1
(+1 s.d.) (5.3) (4.8) (0.2) (0.9) (7.3) (6.2) (3.4) (1.2) (2.4) (2.8) (1.3)

Elevation 11.0 4.5 1.1 -1.0 -5.6 -7.1 0.3 3.2 4.9 -1.0 3.3
(+1 s.d.) (7.1) (5.0) (0.5) (0.3) (7.1) (4.7) (8.9) (2.5) (5.0) (3.4) (1.0)

Population Density 11.5 -25.7 0.9 3.2 -32.2 -1.6 0.2 -0.1 8.7 -13.8 -3.1
(+1 s.d.) (8.6) (5.8) (0.3) (1.0) (10.9) (8.4) (8.7) (1.1) (2.4) (6.0) (1.4)

Crime Index -11.0 1.1 -0.9 2.6 28.2 2.3 0.8 -1.0 12.9 -8.9 7.6
(+1 s.d.) (17.3) (2.6) (0.2) (0.4) (4.9) (4.0) (5.9) (2.2) (4.3) (4.5) (1.8)

% Black* -23.4 8.5 -0.7 -4.4 85.8 23.0 22.6 -1.2 5.0 -3.9 -0.9 -2.1
(+10%) (3.9) (1.5) (0.2) (0.4) (2.2) (1.5) (1.6) (0.5) (1.0) (3.1) (0.6) (0.7)

% Hispanic* 10.4 13.0 0.2 -3.4 35.3 56.6 19.6 -3.8 -4.5 -0.7 -5.0 2.3
(+10%) (5.9) (1.7) (0.3) (0.8) (3.6) (3.2) (3.1) (0.8) (1.7) (1.8) (0.5) (0.6)

% Asian* 14.9 8.8 0.3 -3.2 38.3 13.6 87.5 -1.2 -9.8 -2.5 0.6 -1.7
(+10%) (5.5) (3.2) (0.2) (0.2) (5.7) (2.2) (2.6) (1.0) (2.0) (1.6) (0.5) (0.3)

% College Degree or More 16.4 -12.2 0.6 3.1 16.8 2.1 -1.4 4.3 46.8 -9.4 -1.8
(+10%) (3.9) (2.0) (0.7) (0.3) (6.1) (5.1) (4.3) (0.8) (2.2) (2.0) (0.7)

Average Income* 85.4 2.2 0.9 1.3 -17.8 4.9 -1.1 -0.2 -6.6 2.1 0.7
(+10,000) (2.6) (1.3) (0.1) (0.9) (2.4) (5.0) (2.9) (0.7) (2.7) (1.4) (0.3)

% Black*Average Income 2.9 0.7 9.7 -0.4
(+10,000*8.1%) (2.9) (0.1) (1.5) (0.3)

% Hispanic*Average Incom -20.3 0.7 3.6 -1.0
(+10,000*11.0%) (2.4) (0.1) (0.9) (0.2)

% Asian*Average Income 1.4 0.1 1.9 0.0
(+10,000*12.2%) (1.5) (0.1) (0.7) (0.1)

Distance to Work 1.2 -0.1 -1.7 -1.0 0.7 0.8 -0.1 0.6 -50.0 -0.4
(+1 mile) (0.3) (0.0) (0.0) (0.4) (0.4) (0.3) (0.1) (0.2) (0.3) (0.1)
Notes:  The first column reports the estimated mean MWTP for the changes in housing or neighborhood attributes described in the row headings.  The remaining columns report the difference in MWTP 
associated with the comparison of household characteristics shown in the column heading.  So, for example, the first entry of the table implies that, on average, households are willing-to-pay $109 more 
per month on the margin for an additional room, while the second entry in the first row implies that households with children are willing to pay an average of $31 per month more for a room than 
households without children.  *Coefficients for % Asian,% Black, % Hispanic, Average Income reported at mean.  
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Table 4: Income Stratification: Effects of Increasing Income of Top Quartile by 10% 

Panel A: Pre-Simulation

1 2 3 4
Income Quartile 1 0.324 0.275 0.235 0.165
Income Quartile 2 0.278 0.265 0.250 0.207
Income Quartile 3 0.236 0.248 0.258 0.257
Income Quartile 4 0.166 0.207 0.258 0.370

Panel B: Post-Simulation 

1 2 3 4
Income Quartile 1 0.327 0.278 0.237 0.157
Income Quartile 2 0.281 0.267 0.251 0.200
Income Quartile 3 0.239 0.250 0.259 0.252
Income Quartile 4 0.158 0.200 0.253 0.390

Note: Each entry in the table shows the average exposure of households in the income quartile shown
in the row heading to households in the income quartile shown in the column heading. Numbers are
reported for the sample and for a counterfactual simulation that increases the income of households in
the top income quartile by 10 percent.

Average Exposure to Households in Income Quartile

Average Exposure to Households in Income Quartile
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Table 5: Housing/Neighborhood Consumption: Effects of Increasing Income of Top Quartile by 10%

1 2 3 4

Pre-Simulation 726 903 1112 1608
Post-Simulation 734 926 1161 1790

Pre-Simulation 0.37 0.50 0.67 0.85
Post-Simulation 0.38 0.50 0.66 0.86

Pre-Simulation 3.95 4.61 5.41 6.50
Post-Simulation 3.95 4.61 5.39 6.52

Pre-Simulation 502 517 529 559
Post-Simulation 505 517 528 557

Pre-Simulation 12.36 8.65 6.67 5.05
Post-Simulation 12.29 8.72 6.76 4.94

Pre-Simulation 6.32 8.12 9.56 9.98
Post-Simulation 7.09 8.87 10.30 10.81

Pre-Simulation 43.3 48.5 54.6 69.6
Post-Simulation 43.9 50.0 56.5 76.0

Pre-Simulation 0.36 0.41 0.45 0.54
Post-Simulation 0.34 0.40 0.45 0.56

Average Consumption By Households in Income Quartile

Note: This table reports the consumption of housing and neighborhood amenities by households of each
race in each quartile of the overall income distribution. Numbers are reported for the sample and for a
counterfactual simulation that increases the income of households in the top income quartile by 10 percent.

Average Monthly Rental Value

Ownership Rates

House Size

Average Test Score

Average Crime Rate

Percent College Educated

Average Neighborhood Income (,000s)

Average Commute
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Table 6: Changes in Implicit Prices: Effects of Increasing Income of Top Quartile by 10% for Select Characteristics

PRE-SIMULATION

10 25 50 75 90 95
Owner-Occupied 90.7 95.3 112.3 149.8 165.5 160.1
Number of Rooms 103.1 103.9 107.3 114.2 125.8 132.5
Built in 1980s 97.7 94.4 89.7 96.0 135.7 161.8
Average Test Score (in s.d.s) 27.2 27.8 29.9 30.4 30.4 34.7
Average Income (/10,000) 87.6 84.7 82.3 83.2 90.7 97.5

POST-SIMULATION

10 25 50 75 90 95
Owner-Occupied 105.2 109.9 130.0 170.3 183.8 176.3
Number of Rooms 111.9 113.0 117.1 125.5 138.4 145.4
Built in 1980s 81.2 77.8 72.6 84.6 132.3 160.8
Average Test Score (in s.d.s) 30.1 30.1 31.9 32.5 33.5 38.5
Average Income (/10,000) 95.3 92.9 91.1 92.3 100.7 108.1

DIFFERENCE
10 25 50 75 90 95

Owner-Occupied 14.5 14.6 17.7 20.6 18.4 16.3
Number of Rooms 8.8 9.2 9.8 11.3 12.6 12.9
Built in 1980s -16.5 -16.6 -17.0 -11.4 -3.4 -0.9
Average Test Score (in s.d.s) 3.0 2.3 2.0 2.1 3.1 3.8
Average Income (/10,000) 7.8 8.2 8.7 9.1 10.0 10.6

Note: This table reports the selected coefficients for six weighted price regressions estimated pre- and post-simulation, respectively. The
weight in each case depends on income of the occupant of the house and is given by 10,000/(10,000+|income - income-pth percentile|) for
the regression associated with p-th percentile, which puts more weight on households near the p-th percentile. Results are reported for the
sample and for a counterfactual simulation that increases the income of households in the top income quartile by 10 percent.

Coefficients from Hedonic Price Regressions 
Weighted to Center on Income Percentile

Coefficients from Hedonic Price Regressions 
Weighted to Center on Income Percentile
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Appendix Table 1: Interaction Parameter Estimates

Hhld Children Black Hispanic Asian Some College  Working Age Hhld Black* Hispanic* Asian*
Total Under 18 College Degree Capital Hhld Hhld Hhld

Income or More Income Income Income Income

Housing/Neighborhood Attribute

Monthly House Price 0.371 0.074 0.025 -0.076 0.067 0.118 0.198 0.091 0.119 0.035 0.041 0.151 0.076
(0.016) (0.028) (0.058) (0.057) (0.049) (0.028) (0.030) (0.030) (0.031) (0.025) (0.062) (0.050) (0.058)

Owner-Occupied 0.739 -0.052 -0.121 -0.014 0.274 0.011 0.095 0.140 0.776 0.261
(0.036) (0.024) (0.047) (0.040) (0.036) (0.024) (0.027) (0.026) (0.027) (0.061)

Number of Rooms 0.785 0.544 0.003 -0.163 -0.394 0.035 0.018 0.005 0.122 -0.167
(0.045) (0.046) (0.045) (0.040) (0.027) (0.047) (0.039) (0.044) (0.028) (0.030)

Built in 1980s 0.233 -0.067 0.018 -0.013 0.059 0.080 0.097 0.156 -0.184 0.053
(0.029) (0.030) (0.057) (0.045) (0.037) (0.051) (0.026) (0.020) (0.042) (0.037)

Built in 1960-79 0.070 0.024 0.090 -0.044 0.071 0.068 0.022 0.097 -0.077 0.005
(0.035) (0.022) (0.024) (0.023) (0.023) (0.050) (0.041) (0.045) (0.041) (0.029)

Average Test Score 0.007 0.058 -0.065 -0.024 0.028 0.077 0.102 0.065 0.191 0.155
(0.021) (0.042) (0.036) (0.037) (0.021) (0.023) (0.022) (0.024) (0.040) (0.045)

Elevation 0.100 0.039 -0.027 -0.042 0.002 0.059 0.044 -0.008 0.104 -0.108
(0.045) (0.044) (0.035) (0.028) (0.054) (0.047) (0.045) (0.029) (0.030) (0.029)

Population Density 0.087 -0.225 -0.159 -0.009 0.001 -0.003 0.079 -0.118 -0.096 0.116
(0.030) (0.051) (0.054) (0.050) (0.053) (0.020) (0.022) (0.051) (0.043) (0.037)

Crime Index -0.083 0.010 0.139 0.014 0.005 -0.018 0.117 -0.076 0.235 0.181
(0.023) (0.023) (0.024) (0.024) (0.036) (0.041) (0.039) (0.038) (0.055) (0.030)

% Black -0.382 0.119 0.482 0.218 0.219 -0.037 0.072 -0.053 -0.043 -0.304 -0.043
(0.060) (0.041) (0.035) (0.028) (0.031) (0.029) (0.029) (0.085) (0.060) (0.052) (0.051) .

% Hispanic -0.329 0.130 0.198 0.279 0.137 -0.080 -0.047 -0.007 -0.177 -0.211 0.232
(0.061) (0.033) (0.041) (0.043) (0.043) (0.032) (0.035) (0.034) (0.033) (0.099) (0.047)

% Asian -0.014 0.092 0.227 0.098 0.550 -0.027 -0.107 -0.026 0.023 -0.219 -0.080
(0.050) (0.067) (0.068) (0.032) (0.038) (0.045) (0.044) (0.033) (0.038) (0.034) (0.036)

% College Degree 0.115 -0.209 0.163 0.025 -0.017 0.156 0.834 -0.157 -0.108 0.258
(0.137) (0.035) (0.059) (0.060) (0.052) (0.028) (0.040) (0.033) (0.045) (0.028)

Average Income 0.232 0.050 -0.229 0.077 -0.017 -0.012 -0.155 0.046 0.056 0.056
(0.031) (0.030) (0.031) (0.078) (0.046) (0.036) (0.064) (0.032) (0.023) (0.039)

% Black 0.280 0.191 -0.034
*Average Income (0.038) (0.029) (0.024)

% Hispanic 0.347 0.106 -0.150
*Average Income (0.025) (0.025) (0.025)

% Asian 0.053 0.091 -0.008
*Average Income (0.063) (0.034) (0.042)

Distance to Work -0.114 0.162 -0.077 0.059 0.071 -0.039 0.080 -6.380 -0.167 -1.294
(0.035) (0.037) (0.030) (0.036) (0.030) (0.029) (0.031) (0.032) (0.031) (0.031)

Household Characteristic

Note:  Parameter estimates reported with all variables normalized to have mean zero, standard deviation one.  Standard errors are in parentheses.
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APPENDICES FOR “AN EQUILIBRIUM MODEL OF SORTING IN AN URBAN HOUSING 
MARKET” by Patrick Bayer, Robert McMillan, and Kim Rueben 
 
This document contains three appendices for the paper  “An Equilibrium Model of Sorting in an Urban 
Housing Market.”  A Data Appendix documents the sources for the data and the construction of variables 
used in the analysis.  A Theory Appendix provides proofs for the propositions and lemmas in Section 3 of 
the paper.  A Results Appendix relates the main parameter estimates presented in the paper to analogous 
estimates from a series of hedonic price regressions. 
 
DATA APPENDIX 
1. Census Variables 
House Prices.  Because house values are self-reported, it is difficult to ascertain whether these prices 
represent the current market value of the property, especially if the owner purchased the house many years 
earlier.  Fortunately, the Census contains other information that helps us to examine this issue and correct 
house values accordingly.  In particular, the Census asks owners to report a continuous measure of their 
annual property tax payment.  The rules associated with Proposition 13 imply that the vast majority of 
property tax payments in California should represent exactly 1 percent of the transaction price of the house 
at the time the current owner bought the property or the value of the house in 1978.  Thus, by combining 
information about property tax payments and the year that the owner bought the house (also provided in the 
Census in relatively small ranges), we are able to construct a measure of the rate of appreciation implied by 
each household’s self-reported house value.  We use this information to modify house values for those 
individuals who report values much closer to the original transaction price rather than current market value.  
In our study most households list the purchase price of their house rather than an estimated market value 
for their house.  Thus if two identical houses were found in the census data but one was last sold in 1989 
and one was last sold in 1969 we find on average the listed market price of the more recently sold house is 
on average 15 percent higher than the other house.   
 A second deficiency of the house values reported in the Census is that they are top-coded at 
$500,000, a top-code that is often binding in California.  Again, because the property tax payment variable 
is continuous and not top-coded, it provides information useful in distinguishing the values of the upper tail 
of the value distribution.  We find that top-coding was fairly predominant in the Bay Area and that higher 
top-codes may be useful to gain a better understanding of house prices in expensive markets like California 
or New York.   
  The exact procedure that we use to adjust self-reported house values is as follows.  We first 
regress the log of self-reported house value on the log of the estimated transaction price (100 times the 
property tax payment), and a series of dummy variables that characterize the tenure of the current owner: 
 

(A1) jjjj yTV ωαα ++= 21 )log()log(  

 
where Vj represents the self-reported house value, Tj represents the estimated transaction price, and yj 
represents a series of dummy variables for the year that the owner bought the house.  If owner-estimated 
house values were indeed current market values and houses were identical except for owner tenure, this 
regression would return an estimate of 1 for α1 and the estimated α2 coefficients would indicate the 
appreciation of house values in the Bay Area over the full period of analysis.  If owners tend to underreport 
house values, especially when they have lived in the house for a long time, the estimated α2 parameters will 
likewise underreport appreciation in the market.  In this way, the estimated α2 parameters represent a 
conservative estimate of appreciation.  Given the estimates of equation (2), we construct a predicted house 
value for each house in the sample and replace the owner-reported value with this measure when this 
predicted measure exceeds the owner-reported value.  In practice, in order to allow for different rates of 
appreciation in different regions of the housing market, we conduct these regressions separately for each of 
the 45 Census PUMA (areas with at least 100,000 people) in our sample and allow appreciation to vary 
with a small set of house characteristics within each PUMA.  In this way, the first adjustment that we make 
to house prices is to adjust owner-reported values for likely under-reporting. 
 The adjustment to top-coded house prices uses the same approach, using the information on 
property taxes that are continuous and not top-coded.  Using estimates of equation (2) based on a sample of 



  
 

 

houses that does not include the top-coded house values, we construct predicted house values for all top-
coded houses.  This allows us to assign continuous house values for top-coded measures. 
  
Reported Rental Value. We next examined questions of reported monthly rents.  While rents are 
presumably not subject to the same degree of misreporting as house values, it is still the case that renters 
who have occupied a unit for a long period of time generally receive some form of tenure discount.  In 
some cases, this tenure discount may arise from explicit rent control, but implicit tenure discounts generally 
occur in rental markets even when the property is not subject to formal rent control.  Thus while, this will 
not lead to errors in the answering of the listed census question it may lead to an inaccurate comparison of 
rents faced by households if they needed to move. In order to get a more accurate measure of the market 
rent for each rental unit, we utilize a series of locally based hedonic price regressions in order to estimate 
the discount associated with different durations of tenure in each of over 40 sub-regions within the Bay 
Area.  
 In order to get a better estimate of market rents for each renter-occupied unit in our sample, we 
regress the log of reported rent Rj on a series of dummy variables that characterize the tenure of the current 
renter, yj, as well as a series of variables that characterize other features of the house and neighborhood Xj: 
 

(A2) jjjj XyR υββ ++= 21)log(  

 
again running these regressions separately for each of the 45 PUMAs in our sample.  To the extent that the 
additional house and neighborhood variables included in equation (3) control for differences between the 
stock of rental units with long-term vs. short-term tenants, the β1 parameters provide an estimate of the 
tenure discount in each PUMA.1  In order to construct estimates of market rents for each rental unit in our 
sample, then, we inflate rents based on the length of time that the household has occupied the unit using the 
estimates of β1 from equation (2).  In this way, these three price adjustments bring the measures for rents 
and house values reported in the Census reasonably close to market rates. 
 
Calculating Cost Per Unit of Housing Across Tenure Status. Finally, in order to make owner- and 
renter-occupied housing prices comparable in our analysis we need to calculate a current rental value for 
housing.  Because house prices reflect the expectations about the future rents for the property they 
incorporate beliefs about future housing appreciation.  To appropriately deflate housing values – and 
especially to control for differences in expectations about appreciation in different segments of the Bay 
Area housing market – we regress the log of house price (whether mo nthly rent or house value) Πj on an 
indicator for whether the housing unit is owner-occupied oj and a series of additional controls for features 
of the house including the number of rooms, number of bedrooms, types of structure (single-family 
detached, unit in various sized buildings, etc.), and age of the housing structure as well as a series of 
neighborhood controls Xj:  
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We estimate these hedonic price regressions for each of 40 sub-regions (Census Public Use 

Microdata Areas - PUMAs) of the Bay Area housing market.  These regressions return an estimate of the 
ratio of house values to rents for each of these sub-regions and we use these ratios to convert house values 
to a measure of current monthly rent.   
 
2. External Data 

We next discuss the additional variables we have added to the Census data to provide a more 
nuanced understanding of the neighborhood characteristics that affect house prices and residential location 
decisions.  These data sets are linked to census blocks and can be used to determine the appropriateness of 
the questions and sampling techniques used.  This additional data includes: 

                                                 
1 Interestingly, while we estimate tenure discounts in all PUMAs, the estimated tenure discounts are substantially 
greater for rental units in San Francisco and Berkeley, the two largest jurisdictions in the Bay Area that had 
formal rent control in 1990.  



  
 

 

 
School and School District Data. The Teale data center in California provided a crosswalk that matches 
all Census blocks in California to the corresponding public school district.  We have further matched 
Census blocks to particular schools using a variety of procedures that takes account of the location (at the 
block level) of each Census block within a school district and the precise location of schools within the 
district using information on location from the Department of Education.  Other school information in these 
data include: 

• 1992-93 CLAS dataset provides detailed information about school performance and peer group 
measures.  The CLAS was a test administered in the early 1990s that will give us information on 
student performance in math, literature and writing for grades 4, 8 and 10.  This dataset presents 
information on student characteristics and grades for students at each school overall and across 
different classifications of students, including by race and education of parents. 

• 1991-2 CBEDS (California Board of Education data sets) datasets including information from the 
SIF (school information form) which includes information on the ethnic/racial and gender make-
up of students, PAIF – which is a teacher based form that provides detailed information about 
teacher experience, education and certification backgrounds and information on the classes each 
teacher teaches, and (LEP census) a language census that provides information on the languages 
spoken by limited-English speaking students. 

 
Procedures for Assigning School Data.  While we have an exact assignment of Census blocks to school 
districts, we have only been able to attain precise maps that describe the way that city blocks are assigned 
to schools in 1990 for Alameda County.  In the absence of information about within-district school 
attendance areas, we employ the alternative approaches for linking each house to a school.  The crudest 
procedure assigns average school district characteristics to every house falling in the school district.  A 
refinement on this makes use of distance-weighted averages.  For a house in a given Census block, we 
calculate the distance between that Census block and each school in the school district.  We have detailed 
information characterizing each school and construct weighted averages of each school characteristic, 
weighting by the reciprocal of the distance-squared as well as enrollment.   
 As a third approach we simply assign each house to the closest school within the appropriate 
school district.  Our preferred approach (which we use for the results reported in the paper) refines this 
closest-school assignment by using information about individual children living in each Census block - 
their age and whether they are enrolled in public school.   In particular, we modify the closest-school 
assignment technique by attempting to match the observed fourth grade enrollment for every school in 
every school district in the Bay Area.  Adjusting for the sampling implicit in the long form of the Census, 
the 'true' assignment of houses to schools must give rise to the overall fourth grade enrollments observed in 
the data.   
 These aggregate numbers provide the basis for the following intuitive procedure: we begin by 
calculating the five closest schools to each Census block.  As an initial assignment, each Census block and 
all the fourth graders in it are assigned to the closest school.  We then calculate the total predicted 
enrollment in each school, and compare this with the actual enrollment.  If a school has excess demand, we 
reassign Census blocks out of its catchment area, while if a school has excess supply, we expand the 
school's catchment area to include more districts. 

To carry out this adjustment, we rank schools on the basis of the (absolute value of) their 
prediction error, dealing with the schools that have the greatest excess demand/supply first.  If the school 
has excess demand, we reassign the Census block that has the closest second school (recalling that we 
record the five closest schools to each Census block, in order), as long as that second school has excess 
supply.  If a school has excess supply, we reassign to it the closest school district currently assigned to a 
school with excess demand.  We make gradual adjustments, reassigning one Census block from each 
school in disequilibrium each iteration.  This gradual adjustment of assignments of Census blocks to 
schools continues until we have 'market clearing' (within a certain tolerance) for each school.  Our actual 
algorithm converges quickly and produces plausible adjustments to the initial, closest-school assignment. 
 
Land use. Information on land use/land cover digital data is collected by USGS and converted to 
ARC/INFO by the EPA available at: http://www.epa.gov/ost/basins/ for 1988.  We have calculated for each 
Census block, the percentage of land in a 1/4, 1/2,1, 2, 3, 4 and 5-mile radii that is used for commercial, 



  
 

 

residential, industrial, forest (including parks), water (lakes, beaches, reservoirs), urban (mixed urban or 
built up), transportation (roads, railroad tracks, utilities) and other uses.   
 
Crime data. Information on crime was drawn from the rankings of zipcodes on a scale of 1-10 on the risk 
of violent crime (homicide, rape or robbery).  A score of 5 is the average risk of violent crime and a score 
of 1 indicates a risk 1/5 the national average and a 10 is 10 or more times the national average.  These 
ratings are provided by CAP index and were downloaded from APBNews.com.  
 
Geography and Topography. The Teale data center in California provided information on the elevation, 
latitude and longitude of each Census block. 
 
THEORY APPENDIX 
Proof of Proposition 1:2 Following the assumptions of Proposition 1, consider a utility specification that is 
a linear, decreasing function of ph: 
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If εε  is drawn from a continuous distribution, the probability Pi

h that household i chooses housing type h as: 
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is continuous and differentiable in p with derivatives that obey the following strict inequalities: 

0<∂∂ h
i
h pP  and hkpP k

i
h ≠>∂∂ ,0 , if -αp

i is negative for each household i.  Aggregating these 

probabilities over all observed households yields the predicted demand for each housing type h, Dh: 
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Given the properties of Ph

i just described, Dh is also continuous and differentiable in p with derivatives that 

obey the following strict inequalities: 0<∂∂ hh pD  and hkpD kh ≠>∂∂ ,0 .  In order for the housing 

market to clear, the demand for houses of type h must equal the supply of such houses and so: 
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Also note that for any finite values of },{ hkpk ≠ , hD̂  approaches arbitrarily close to zero as ph goes to 

+∞, while hD̂  approach arbitrarily close to ∑
h

hS  as ph approaches –∞. 

Holding the price of one house fixed (without loss of generality set p0 = 0), we will show that a 

unique vector of prices clears the market, i.e., that a unique vector )S(p 1−= D exists.  We begin by 

defining the element-by-element inverse )(p, hh Dr .  This function is defined as the price of house h such 

that the predicted value Dh exactly equals Sh.  That is, r is implicitly defined as: 
 
(A8) hSpDrppD hHhhh ∀=)),...,(p,,...,,( 21     

  
Given the properties of the function Dh defined in (A6), this element-by-element inverse exists and is 
continuous and differentiable in p.  Note that rh is strictly increasing in pk and does not depend on ph.  Also 
define the vector values r = (r1, …, rN). 

                                                 
2 This proof follows directly the structure of the proof that appears in the technical appendix of Berry 
(1994).  We simply modify it here for our problem. 



  
 

 

 The element-by-element inverse allows us to transform the problem of solving for the vector 
inverse into a fixed-point problem, for a vector p satisfies equation (A7) if and only if p = )Dr(p, .  The 

method of proof is to use a slight variant of Brouwer’s fixed-point theorem to prove existence of a fixed 
point of the element-by-element inverse.  It is then necessary to show that there cannot be two such fixed 
points. 
 To establish existence, first hold p0 = 0 and note that )(p, hh Dr  has an upper bound.  This upper 

bound is ),(p' hh Dr  with p'  set equal to any vector in RN+1 such that pk =  +∞ for )0,(hk ≠ .  Define p  
as the largest values across houses of these upper bounds.  There is no lower bound for ph, but the 
following lemma allows one to establish existence in the absence of a lower bound. 
 
Lemma. There is a value p , with the property that if one element of p, say ph, is lower than p , then there 

is a house k  such that )D̂(p,kr  >  pk. 

 
Proof of Lemma.  To construct p , again set pk = +∞, )0,(hk ≠∀ .  Then define 

h
p  as the value of ph that 

sets 00 SD =ˆ .  Define p  as any value lower than the minimum of the 
h

p .  Now, if for the vector p there 

is an element h such that ph < p , then 00 SD >(p)ˆ , which implies h

N

h h SND •−<∑ =
)((p)ˆ 1

1
, so there 

is at least one element k  with hk SD <(p)ˆ .  For this k , )D̂(p,kr  >  pk.  Q.E.D. 
 

Now define a new function that is a truncated version of rh: }),D̂(p,{max )D̂(p,~ prr hh = .  Clearly 

)D̂(p,r~ is a continuous function which maps [ p , p ]N into itself, so by Brouwer’s fixed–point theorem, 

)D̂(p,r~  has a fixed point, p*.  By the definition of p  and p , p* cannot have a value at the lower bound, 

so p* is in the interior of [ p , p ]N.  This implies that p* is also a fixed point of the unrestricted function 

)D̂r(p, , which establishes existence. 

A well-known sufficient condition for uniqueness is ∑ <∂∂
k kh pr 1/ , which establishes that r is 

a contraction mapping.  By the implicit function theorem, ]/ˆ/[]/ˆ[/ hhkhkh pDpDpr ∂∂∂∂−=∂∂ .  From 

this ∑ <∂∂
k kh pr 1/  if and only if the following dominant diagonal condition holds: 
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To establish this condition, note that increasing all prices (including p0) by the same amount will not 
change the demand for any house.  Then (A9) follows from: 
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Q.E.D. 
 
Proof of Lemma 1.  Lemma 1 follows directly if we can show that the mapping that defines the fixed-point 
problem above is continuous in x, as the unique fixed-point p* of a mapping continuous in both x and p is 
also continuous in x.  The assumption that utility is continuous in xh along with assumption about the 

continuous distribution of εε  implies that Ph
i is continuous in x for all i, which in turn implies that hD̂  is 

continuous in x, which in turn implies that the element-by-element inverse defined in (A8) is continuous in 
x.    Q.E.D.     



  
 

 

 
Proof of Proposition 2. Conditional on any vector g and the primitives of the model {Z, X, ξξ}, Proposition 
1 implies that a unique set of housing prices clears the market and assumption (i) ensures that this vector of 
market-clearing prices is continuous in g.  Assumptions (ii) and (iii) in turn imply that that equation (2.11), 
along with the definition of the function g, implicitly defines g and represents a continuous mapping of a 
closed interval into itself.   The existence of fixed point of this mapping, g*, follows directly from 
Brouwer’s fixed-point theorem.  Any fixed point, g*, is associated with a unique vector of market clearing 

prices p* and a unique set of choice probabilities { i
hP *} that together satisfy the conditions for a sorting 

equilibrium.  Consequently, the existence of a fixed point, g*, implies the existence of a sorting equilibrium. 
Q.E.D. 
 
RESULTS APPENDIX   
 In order to judge whether our parameter estimates are reasonable, it is helpful to compare them to 
analogous hedonic price regressions.  This Appendix carries out such a comparison, complementing the 
discussion in Section 5. 
              Hedonic price regressions arise as a direct restriction on our residential sorting model when there 
is no heterogeneity in household preferences for each house.  See Bayer, Ferreira and McMillan (2003) for 
more details.3   Equation (11), which describes mean preferences in the general case where preferences are 
heterogeneous, can be re-written: 
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This bears more than a passing resemblance to a hedonic price regression.  It makes clear that, in the 
presence of heterogeneous preferences, the mean indirect utility δh estimated in the first stage of the 
estimation procedure provides an adjustment to the hedonic price equation so that the price regression 
accurately returns mean preferences.   
 It is useful to spell out the significance of (A10).  We can distinguish the willingness to pay of the 
marginal household, setting the equilibrium price of a given attribute, and that of the mean household.  The 
equilibrium price function, approximated by a hedonic price regression, measures the marginal willingness 
to pay (MWTP) of the marginal household, and in the presence of heterogeneity, this may differ markedly 
from the MWTP of the mean household.  The sorting model controls for which individual in the 
distribution of tastes sets the price of a given attribute given the supply of that attribute.  This provides an 
adjustment that reflects the difference between this household’s valuation and that of the mean household 
so that the adjusted hedonic price regression accurately reflects mean preferences.  
 The final two columns of Table 2 present the results from three hedonic price regressions 
analogous to those reported in the first three columns for the full sorting model.  Comparing the hedonic 
price regressions to the mean MWTP estimates derived from the sorting model reveals that while the 
estimates related to housing characteristics, school quality, and crime remain similar in the hedonic price 
regression, those related to neighborhood sociodemographic composition and race in particular change 
dramatically.  To explain the results, consider the estimated mean coefficient on percent black, which is -
$234 in the full sorting model as opposed to only -$40 for the hedonic price regression.  For simplicity, 
assume that neighborhoods are completely segregated, so that the equilibrium price of a black 
neighborhood is driven by the MWTP of the black household with the least MWTP for a black 
neighborhood (or, alternatively, the white household with the greatest MWTP).  Here, the hedonic price 
regression returns the MWTP of the household on the margin between choosing a black versus white 
neighborhood, which in this case is substantially greater than the MWTP of the mean household, which is 
estimated in the more general sorting model.  Put another way, a much lower differential in price between 
black and white neighborhoods is required to equilibrate the housing market than would be required to 
make the mean household indifferent between these neighborhoods. 

                                                 
3 For a more careful discussion as to how the discrete choice model described here relates to continuous choice 
models commonly used in the hedonics literature (including Rosen (1974), Brown and Rosen (1982), Epple 
(1987), Bartik (1987), and Ekeland, Heckman, and Nesheim (2002), Bajari and Benkhard (2002)), see Bayer, 
McMillan, and Rueben (2003). 




