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ABSTRACT

Growth theory can go a long way toward accounting for phenomena linked with U.S. economic

development. Some examples are: 

(i) the secular decline in fertility between 1800 and 1980, 

(ii) the decline in agricultural employment and the rise in skill since 1800, 

(iii) the demise of child labor starting around 1900, 

(iv) the increase in female labor-force participation from 1900 to 1980, 

(v) the baby boom from 1936 to 1972. 

Growth theory models are presented to address all of these facts. The analysis emphasizes the role

of technological progress as a catalyst for economic transformation.
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1 Introduction

Life in the 1800’s: Imagine living as a typical American child in the nineteenth century.

You have six brothers and/or sisters. You live in a house, outside of an urban area, with

no running water, no central heating, and no electricity. Your father labors 70 hours a

week in the agricultural economy. Your mother probably puts in about the same amount of

time doing work at home. Less than half of your years between the ages of 5 and 20 will be

devoted to school. So, perhaps you are playing in the family kitchen that contains a cast iron

range, a table, and a dresser. But, more likely you are helping your parents by doing one of

a litany of chores: carrying wood or water into the house, washing clothes on a scrub board

or ironing them with a flat iron, looking after younger siblings, preparing meals, cleaning

the house, making clothes, tending crops or animals, etc. In this era, household production

is an incredibly labor-intensive process. What changed this situation? The catalyst for the

ensuing economic transformation to modern day life was technological progress, both in the

market and at home, or so it will be argued here.

1.1 Technological Progress in the Market

Fertility: Over the period from 1830 to 1990 real wages increased by a factor of 9 — see

Figure 1.1 This rise was propelled by a near 7-fold increase in market-sector total factor

productivity (TFP) between 1800 and 1990. Such tremendous technological advance had a

dramatic impact on everyday life. As an example, consider the effect that economic progress

could have had on fertility. Raising children takes time. A secular increase in real wages

implies that the opportunity cost of having a child, when measured in terms of market goods,

will rise. The utility value of an extra unit of market consumption relative to an extra child

should fall, however, as market goods become more abundant with economic development.

So long as the marginal utility of market goods falls by less than the increase in real wages

fertility should decline. And so fertility did decline, from 7 kids per woman in 1800 to 2

1 The data sources used in Figure 1 are given in Greenwood, Seshadri and Vandenbroucke (2002)
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Figure 1: Technological Progress in the Market and Fertility

today.

Industrialization and Skilled Labor : At the start of the 1800’s America was largely a rural

economy. Over seventy percent of workers were employed in agriculture — see Figure 2.2

Less than 50 percent of children between the ages of 5 and 20 went to school. From 1800

to1940 technological advance in the nonagricultural sector of the U.S. economy was twice

as fast as in the agricultural sector. Furthermore, agricultural goods had a lower income

elasticity than nonagricultural ones. These two facts together implied that the demand for

labor in the nonagricultural sector of the economy rose relative to the demand for labor in

the agricultural sector. Since the nonagricultural sector required a more skill-intensive labor

force than did the agricultural sector, the demand for skilled labor rose too.

Child Labor : Children formed an important part of the labor force in the nineteenth

century. Exact numbers are hard to come by, though. First, the data before 1870 is scarce.

Lebergott (1964, p. 50) reports that 43 percent of textile workers in Massachusetts around

2 The enrollment rate figures come from Historical Statistics of the United States: Colonial Times to
1970 (1975, Series H 433). See Greenwood and Seshadri (2002) for the sources of the other data plotted in
Figure 2.
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Figure 2: The Decline in Agriculture and the Rise in Skilled Labor

1820 were children, as were 47 and 55 percent in Connecticut and Rhode Island. Second, the

available figures pertain to paid labor. These statistics omit the labors of children on family

farms and businesses, or around the home — the same is true for the housewives of the era.

The incidence of child labor rose until 1900, as Table 1 shows. At that time children made

up about 20 percent of the paid labor force. It then began to decline. By 1930 child labor

had vanished.

A reasonable hypothesis is that technological progress reduced the need for unskilled labor

in agriculture and manufacturing. Take agriculture, for example, where the late nineteenth

and early twentieth centuries saw massive improvements in agricultural technology. Two of

the most important inventions were the horse-drawn harvester in the mid-nineteenth century

and the tractor that began to diffuse into American farms in the early twentieth century.

Mechanization of farms virtually eliminated the need for raw labor: In 1830, it would take a

farmer 250-300 hours to grow 100 bushels of wheat; in 1890, 40-50 hours with the help of a

horse-drawn machine; in 1930, 15-20 hours with a tractor; and in 1975, 3-4 hours with large

tractors and combines.3
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Table 1: Children aged 10-15 as Percentage of the Gainfully Employed

Year All Occupations Agriculture Manufacturing Mining

1870 13.2 9.3 5.6 7.1

1880 16.8 11.6 6.7

1890 18.1 11.5 2.8

1900 18.2 11.4 3.2 2.1

1910 15.0 9.8 2.4 0.8

1920 11.3 8.0 1.3 (<1.0)

1930 4.7 3.3 (<1.0) (<1.0)

Source: Lebergott (1964, p. 53)

1.2 Technological Progress in the Home

Female Labor-Force Participation: Just as the last 200 years have witnessed technological

progress in the market sector, they have witnessed tremendous technological advance in the

home sector. Since productivity numbers are not computed for the home sector, given the

elusive nature of output and inputs, the evidence on technological progress is circumstantial.

The household sector in the American economy was basically a cottage industry until the

dawning of the Second Industrial Revolution. With the onset of the electric age a host of

new appliances were ushered in: washing machines, refrigerators, etc. It took time for these

new capital goods to diffuse through the economy, as Figure 3 shows.4 At the same time,

the principles of scientific management were being applied to everyday household tasks. The

large table and isolated dresser that characterized a kitchen of the 1800’s were replaced by

continuous countertops and built-in cabinets. This wave of technological progress in the

home freed up tremendous amounts of labor — see Figure 3. The time spent on housework

fell from 58 hours per week in 1900 to just 18 in 1975. Married women could now enter the

labor force, and they did in droves.

3 Source: U.S. Department of Agriculture, http://www.usda.gov/history2/text4.htm.

4 The data sources for the Figure 3 are provided in Greenwood, Seshadri and Yorukoglu (2002).
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Figure 3: Technological Progress in the Home and Female Labor-Force Participation

Fertility: Technological progress in the household sector could also have had implications

for fertility. Labor-saving household goods that ease the burden of housework will lower the

cost of raising children. Fertility should rise. In fact it did, between 1936 and 1957 fertility

increased by 53 percent — see Figure 1.

1.3 The Goal

The goal here is to persuade you that standard Solow (1956) -cum- Ramsey (1928) growth

theory can be fruitfully employed to explain these phenomena. Specifically, all of these facts

can be accounted for by modifying the standard growth paradigm to incorporate fertility

decisions, household production, human capital investment in children, labor-force partic-

ipation, and multiple sectors. It will be argued that technological progress is the engine

driving economic transformation. A selective review of the literature is provided in Section

7.
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2 The Baby Bust and Baby Boom

Two facts stand out about the fertility of American women. First, it has dropped drastically

over the last two hundred years. This decline is called the demographic transition, but will

be labeled here the baby bust. Second, the secular decline in fertility has had only one

interruption, the baby boom. These two facts can easily be accounted for within the context

of the neoclassical growth model. Just two modifications to the standard model are required:

a fertility decision needs to be added, and household production incorporated.

2.1 The Environment

Imagine a small open economy populated by overlapping generations.5 People live for three

periods, one period as children and two as adults. Young adults are endowed with one unit

of time. They can use this time for either working or raising kids. An adult is fecund only

in the first period of his life. Old agents are retired.

Tastes: The lifetime utility function for a young adult is given by

φ ln(cy + c) + βφ ln(co0) + (1 + β)(1− φ) lnny, (1)

where cy and co0 denote the adult’s consumption when young and old, and ny represents

the number of kids that he would like to have when young. The constant c proxies for the

household production of market goods. As will be seen, it plays an important role in the

analysis.

Income: Young agents work for the market wage w. They save for old age at the

internationally determined time-invariant gross interest rate r.

Cost of Children: Children are expensive. The production function for children is given

by

ny = x(ly)1−γ, (2)

where ly is the time a young adult devotes to raising children and x is the level of productivity

5 The model presented here is based on Greenwood, Seshadri and Vandenbroucke (2002).
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in the home sector. The consumption cost, k, of raising ny kids is therefore given by

k = w(
ny

x
)1/(1−γ).

The cost of raising children is directly proportional to the wage rate.

The Young Agent’s Choice Problem: The decision problem facing a young adult is

max
cy,co0,ny

{φ ln(cy + c) + βφ ln(co0) + (1 + β)(1− φ) lnny},

subject to

cy +
co0

r
= w − w(

ny

x
)1/(1−γ).

The Euler equation for consumption is

1

cy + c
= βr

1

co0
,

which can be rewritten as

co0 = βr(cy + c). (3)

This equation simply states that consumption of market goods over the household’s lifetime

will grow at the (gross) rate βr. If the gross rate of interest, r, exceeds the gross rate of

time preference, 1/β, consumption increases over the household’s lifetime, and likewise will

decline when r < 1/β.

The above optimization problem can be reformulated using (3) to appear as

max
cy,ny

{(1 + β)[φ ln(cy + c) + (1− φ) lnny] + βφ ln(βr)}, (4)

subject to

cy + c =
1

1 + β
[w − w(

ny

x
)1/(1−γ) + c]. (5)

The first-order condition to this problem is

φ

cy + c

1

1 + β

1

1− γ
wx−1/(1−γ)(ny)γ/(1−γ) =

(1− φ)

ny
. (6)

The righthand side of this equation gives the marginal benefit from having an extra kid. The

lefthand side represents the marginal cost. This is the product of two components. Having
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an extra child necessitates working less in the market. This will lead to a sacrifice in terms

of market consumption in the amount [(1+β)(1− γ)]−1wx−1/(1−γ)(ny)γ/(1−γ). The marginal

utility derived from an extra unit of consumption is φ/(cy + c).

The Firm’s Problem: Let market output, o, be produced in line with the following

production function:

o = zkαl1−α,

where k and l are the inputs of capital and labor used in production and z is the level of

productivity in the market sector. Now, suppose that capital depreciates fully after use in

production. The rental rate on capital will then be r, since it must yield the same return as

a bond. The problem facing the firm is therefore given by

max
k,l
{zkαl1−α − rk − wl}.

The first-order conditions connected to this problem are

αzkα−1l1−α = r, (7)

and

(1− α)zkαl−α = w. (8)

These first-order conditions simply state that each factor gets paid its marginal product.

By substituting equation (7) into (8), it is easy to see that

w = (1− α)αα/(1−α)z1/(1−α)r−α/(1−α). (9)

Hence, the wage rate, w, is determined by the level of market productivity, z, and the

international rate of return on capital, r.

Population Growth: Let sy and so stand for the current sizes of the young and old adult

populations, respectively. Since today’s young generation will be tomorrow’s old generation

it must transpire that

so0 = sy, (10)
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where a prime affixed to a variable denotes its value next period. Now, each young adult

has ny kids so the size of next period’s young generation is given by

sy0 = nysy. (11)

2.2 Analysis

Lemma 1 Fertility, ny, decreases with market wages, w, and increases with technological
advance in the home sector, x.

Proof. Take the first-order condition for ny, or (6), and rewrite it as

ny = A1−γx[
(cy + c)

w
](1−γ), (12)

where

A ≡ (1 + β)(1− γ)(1− φ)

φ
.

Plugging the above equation into the budget constraint (5) yields

cy + c =
1

1 + β +A
(w + c).

Last, using the solution for cy + c in (12) generates

ny = [
A

1 + β +A
]1−γx(1 + c/w)1−γ. (13)

The proof is now complete since it’s trivial to see that ny is decreasing in w, and increasing

in x.

Intuition: With the aid of some diagrams, it’s easy to ferret out the intuition underlying

the above lemma. First, observe that (5) specifies the consumption possibilities frontier

facing the household. The slope of the frontier is

d(cy + c)

dny
= −w( 1

x
)1/(1−γ)(ny)γ/(1−γ)/[(1 + β)(1− γ)] ≤ 0. (14)

This is shown in Figure 4 by the concave consumption possibilities frontier, labeled PP .

The frontier hits the vertical axis at the point cy + c = [w + c]/(1 + β), and the horizontal

one at ny = x(1 + c/w)(1−γ).
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Figure 4: The Determination of Fertility

The objective function (4) defines indifference curves over the various (ny, cy + c) combi-

nations. The slope of an indifference curve is given by

d(cy + c)

dny
|utility constant= −

(1− φ)

φ

cy + c

ny
≤ 0. (15)

The equilibrium level of fertility and market consumption are shown in standard fashion by

the point (ny∗, cy∗+c) where the indifference curve is tangent to the consumption possibilities

frontier — see Figure 4.

Let wages increase by a factor of λ and assume that c = 0. In response, the consumption

possibilities frontier will rotate upwards from the curve PP , by a factor of λ, to the position

shown by the curve P 0P — see Figure 5. Thus, there is a positive income effect associated

with an increase in wages. The slope of the consumption possibilities curve will increase by

a factor of λ at any ny point, too, as is evident from (14). That is, the marginal cost of

an extra child rises. This effect should operate to reduce fertility. It’s easy to deduce that

consumption, cy, will move up by a factor of λ and that fertility, ny, will remain constant.

This transpires because the substitution and income effects on fertility from an increase in

wages exactly cancel out, an artifice of the logarithmic form of preferences adopted in (1).
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Figure 5: The Effect of an Increase in Wages on Fertility when c = 0

To see this, note that along any vertical line the slopes of the indifference curves increase in

proportion with the increases in cy, as is clear from (15). The slope of the indifference curve

at the point (ny∗, λcy∗) is higher by a factor of exactly λ relative to the slope of the curve at

the point (ny∗, cy∗).

Now suppose that wages jump up by a factor of λ and assume that c > 0. The consump-

tion possibilities frontier no longer shifts upwards in a proportional manner. The horizontal

intercept now shifts in — see Figure 6. A higher wage rate implies that the household pro-

duction of market goods, c, now frees up less time for kids. As can be seen, fertility must

unambiguously fall from ny∗ to ny∗0. Why? Suppose that fertility remains fixed at its old

level, ny∗, and that consumption once again rises by a factor of λ, say from cy∗ to λcy∗. (Note

that cy∗ and λcy∗ are not labeled on the diagram.) The slope of the consumption possibilities

frontier will once again increase by a factor of λ, in line with (14). The slope of the indiffer-

ence curve through the point (ny∗, λcy∗+ c) will increase by less, though, due to the presence

of the c term in preferences — see (15) and the dashed indifference curve in Figure 6. Hence,

a point of tangency cannot occur. At the margin a parent is willing to give up a child for

11
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[(1− φ)/φ](λcy∗ + c)/ny∗ units of consumption. According to his production possibilities he

can get λw(1/x)1/(1−γ)(ny∗)γ/(1−γ)/[(1 + β)(1− γ)] units of consumption for an incremental

cut in fertility. Now, [(1−φ)/φ](λcy∗+ c)/ny∗ < λw(1/x)1/(1−γ)(ny∗)γ/(1−γ)/[(1+β)(1−γ)],

since [(1 − φ)/φ](cy∗ + c)/ny∗ = w(1/x)1/(1−γ)(ny∗)γ/(1−γ)/[(1 + β)(1 − γ)]. Therefore, he

should cut his level of fertility. In other words, when c > 0 the substitution effect from an

increase in w outweighs the income effect.

Last, consider the effect of technological progress in the household sector. An increase

in x shifts the consumption possibilities frontier outwards in the manner shown by Figure

7 (from PP to PP 0). At any ny point the consumption possibilities curve becomes less

steep since the consumption cost of an extra kid falls. As a result, both the income and

substitution effects operate to increase fertility. (Since kids are a normal good, as one moves

upwards along any vertical line the slopes of the indifference curves increase. This implies

that the new consumption point must lie to right of ny.)

Corollary Fertility, ny, is decreasing in the level of market productivity, z. (Fertility is

increasing in the international rate of return, r.)
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Proof. Substitute equation (9) into (13) to get

ny = [
A

1 + β +A
]1−γx[1 + cα−α/(1−α)z−1/(1−α)rα/(1−α)/(1− α)]1−γ. (16)

The desired result is now immediate6 .

The Baby Bust : Now, suppose that market productivity is advancing over time at the

constant rate z0/z = ζ > 1. Wages must be growing at the constant rate ζ1/(1−α) > 1, a

fact evident from (9). Assume that there is no technological progress in the home sector.

Fertility declines monotonically over time, as is immediate from (13). Since w is growing

at a constant rate it must transpire that c/w → 0 over time. Therefore, fertility converges

from above to

ny = [
A

1 + β +A
]1−γx.

Observe that

ny R 1 as x R [1 + β +A

A
]1−γ.

6 The intuition is obvious since w, the wage rate, is increasing in z and decreasing in r.

13



Using (10) and (11) it is easy to see that the long-run growth rate of the population can be

expressed as
sy0 + so0

sy + so
=

nysy + sy

sy + sy/ny
=

ny + 1

1 + 1/ny
= ny.

Hence, in the long-run the population may grow or shrink depending on the value of x.

Example 1 (Fertility, 1800 and 1940) Assign the following parameter values to the model:
(i) Tastes: β = 0.9420, φ = 0.47, c = 2.97.
(ii) Technology α = 0.33, γ = 0.33, r = 1/β.
Normalize the level of market and home productivity for the year 1800 to be unity. That is,
set x = z = 1.0 for 1800. With this configuration of parameter values, equation (16) predicts
that the level of fertility per adult should be 3.5, exactly the value observed in the U.S. in
1800 — at that time a married couple experienced 7 births on average. Now, between 1800
and 1940 market productivity grew by a factor of 3.5. So, reset z to equal 3.5 for 1940. The
model predicts that fertility should fall to 1.2. It actually fell to 1.1.

The Baby Boom: Once again presume that market productivity is growing over time at

the constant rate z0/z = ζ > 1. Now imagine that a once-and-for-all jump in household

productivity happens. According to (13), fertility will jump up on this account. After this

innovation fertility will revert back to its old time path of monotonic decline.

Example 2 (Fertility, 1960 and 2000) Keep the parameter values from the previous ex-
ample. U.S. fertility per prime-age adult (males plus females) rose from 1.1 to 1.8 between
1940 and 1960. This was the baby boom. By 1960 market-sector TFP had risen to 4.9, so
now reset z = 4.9 for 1960. Using (16) it is easy to deduce that a fertility rate of 1.8 can
be obtained by letting x = 1.8. That is, the baby boom can be generated by assuming that
household-sector productivity grew by a factor 1.8 between 1940 and 1960. Finally, U.S.
TFP had risen to 7.4 by the year 2000. The model predicts that the fertility rate should be
1.5, as opposed to the observed rate of 1.0.

3 The U.S. Demographic Transition

At the start of the nineteenth century most adult males worked in the agricultural sector and

children got very little in the way of a formal education. By the end of the twentieth century

almost no adult worked in agriculture, at least relative to nonagriculture. The average child

got about 13 years of formal education. To address these facts, a two-sector version of the

standard neoclassical growth model will employed. One sector will represent agriculture,
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the other manufacturing. Agriculture hires unskilled workers while manufacturing employs

skilled ones. In the framework developed, parents will decide upon both the number of chil-

dren to have and the level of education for their offspring. The idea is that as manufacturing

expands relative to agriculture, the demand for skilled labor rises. This entices parents to

provide more education for their children. Since education is costly, they choose to have less

kids too.

3.1 The Environment

Take the setup of the previous section with two slight modifications.7 First, assume that

parents now care about the quality of their children in addition to the quantity of them.

Second, suppose that there are two production sectors in the economy. One sector uses

solely skilled labor, the other only unskilled workers. A unit of skilled labor earns the wage

v, while a unit of unskilled labor gets w. A parent must choose the skill level to endow his

offspring with (or the quality of his children).

Tastes: A young adult’s preferences are described by

ψ ln(cy) + βψ ln(co0) + (1 + β)χ lnny + (1 + β)χ ln[w0(1− h0) + v0h0], (17)

with 0 ≤ h0 ≤ 1. This utility function is identical to (1), with two modifications. First, the

children’s skill level, h0, now enters into the utility function. Other things equal, a parent

would prefer to have skilled children because they will earn a higher wage when they grow

up than unskilled children; i.e., v0 > w0. In particular, a child’s labor earnings are a weighted

average of next period’s skilled and unskilled wage rates, w0(1− h0) + v0h0, where the weight

on the skilled wage rate is the child’s skill level. Second, the constant term c in (1) is now

deleted. This term is responsible for getting fertility to fall as wages rise in the previous

model — see (13). The current setup will rely instead on a quantity-quality tradeoff in raising

children to generate the decline in fertility.

7 The model presented below is a simplified version of Greenwood and Seshadri (2002). Some aspects of
the framework also bear a resemblance to Hansen and Prescott (2002) and Fernandez-Villaverde (2001).
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Output: Suppose that consumption goods can be made using one of two production

functions, a primitive technology, say agriculture, that converts unskilled labor into output

ou = xuσ/σ,

and a modern technology, read manufacturing, that converts skilled labor into output

os = zsσ/σ.

In the above expressions ou and os are the levels of output produced by the primitive and

modern technologies, and s and u are the inputs of skilled and unskilled labor. Both tech-

nologies exhibit decreasing returns to scale. For simplicity, assume that each young adult

owns a firm that can operate one or both of these technologies — hence the number of firms

in the economy is the same as the number of young adults.

Budget Constraint : The budget constraint for a young adult is

cy +
co0

r
= (1− τny − φnyh0)[(1− h)w + hv + π]. (18)

There are two types of costs associated with having children, connected with birth, τ , and

education, φ. These costs of having kids are expressed as fractions of family income. The

young adult’s skill level is represented by h (versus h0 for his children). Since each young

adult owns one of each type of production function he earns the profits, π, associated with

operating them. Family income is (1− h)w + hv + π. The cost of having ny children, plus

providing each of them with the human capital level h0, is (τny +φnyh0)[(1− h)w+ hv+ π].

The Young Adult’s Choice Problem: The decision problem facing a young adult is

max
cy,co0,h0,ny

{ψ ln(cy) + βψ ln(co0) + (1 + β)χ lnny + (1 + β)χ ln[w0(1− h0) + v0h0]},

subject to (18). The Euler equation for consumption is given by

co0 = rβcy, (19)

which has the same intuition as (3). This allows the above problem to be restated as

max
cy,h0,ny

{ψ ln(cy) + χ lnny + χ ln[w0(1− h0) + v0h0]}, (20)
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subject to

cy = (1− τny − φnyh0)[(1− h)w + hv + π]/(1 + β).

The first-order conditions with respect to ny and h0 (after solving out for cy) are

ψ(τ + φh0)

(1− τny − φnyh0)
=

χ

ny
, (21)

and
ψφny

(1− τny − φnyh0)
=

χ(v0 − w0)

w0(1− h0) + v0h0
. (22)

Dividing equation (21) by equation (22) yields

τ + φh0

φ
=

w0(1− h0) + v0h0

v0 − w0
,

which implies that
w0

v0
=

τ

τ + φ
. (23)

In other words, tomorrow’s skill premium is a constant, pinned down by the proportional

costs for birth and education. Note that this follows directly from the assumption that

quantity and quality have same weight χ in the utility function.

The Firms’ Problems: The firms in the agricultural and manufacturing sectors will solve

the problems

πu ≡ max
u
{xuσ/σ − wu},

and

πs ≡ max
s
{zsσ/σ − vs}.

The first-order conditions associated with these problems are:

w = xuσ−1, (24)

and

v = zsσ−1. (25)

The profits earned by a young agent from operating these firms will be π = πu + πs.
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Population Growth: Let sy and so stand for the current sizes of the young and old adult

populations, respectively. The manner in which these populations evolve is exactly the same

as that in Section 2 and is given by equations (10) and (11) — from here on out ny will be

replaced by n.

Labor Market Clearing Conditions: The markets for unskilled labor and skilled labor

must clear each period. Consequently, the equations

u = (1− h) ,

and

s = h, (26)

hold.

Equilibrium: Using these two market clearing condition in the firms’ first-order conditions

(24) and (25) yields

w = x[(1− h)]σ−1, (27)

and

v = z(h)σ−1. (28)

Substituting equations (27) and (28) into (23) gives a single equation determining the human

capital for a child, h0:

x0(1− h0)σ−1 =

µ
τ

τ + φ

¶
z0h0σ−1. (29)

The righthand side implicitly represents the demand for skilled labor in the manufacturing

sector.8 The lefthand side specifies the supply of skilled labor available by freeing up

8 It comes from (28), which implies that

h0 = (z0/v0)1/(1−σ).

As can be seen, the demand for skilled labor h0 is decreasing in the skilled wage, v0.

18



workers from agriculture.9 This equation can be solved to get a closed-form expression for

the level of human capital that reads

h0 =
1

1 + ω(z0/x0)1/(σ−1)
, (30)

where ω ≡ [τ/(τ + φ)]1/(σ−1) > 1.

3.2 Analysis

Now, imagine that the economy is resting in a steady state where z0 and x0 are constant. It is

then easy to see from (30) that h0 will be constant. Notice that if z0 and x0 were to increase

at the same rate, h0 would also remain unchanged. This result follows because identical

increases in total factor productivity in both sectors leave unchanged the demand for each

type of labor, given the constancy of the skill premium. This leaves unchanged the fraction

of total labor allocated to each sector. So, when will human capital rise?

Lemma 2 As TFP in manufacturing, z, rises relative to agriculture, x, human capital, h,
increases and fertility, n, falls.

Proof. Using a backdated version of (30), it is easy to calculate that the derivative of h

with respect to z/x is given by

∂h

∂(z/x)
=

1

[1 + ω(z/x)1/(σ−1)]
2

ω

1− σ
(z/x)

1
σ−1−1 > 0, (31)

since σ < 1. Now, using (30), equation (21) may be rewritten as

n =
χ

(ψ + χ) [τ + φ
1+ω(z/x)1/(σ−1)

]
=

χ

(ψ + χ)

1 + ω(z/x)1/(σ−1)

[τ + φ+ τω(z/x)1/(σ−1)]
.

Hence,
∂n

∂(z/x)
= − χ

(ψ + χ)

1

[τ + φ+ τω(z/x)1/(σ−1)]
2

φω

(1− σ)
(z/x)

1
σ−1−1 < 0. (32)

9 The lefthand is based on (27). Equation (27) can be rewritten as

h0 = 1− (x0/w0)1/(1−σ).

Hence, h0 is increasing in the unskilled wage, or equivalently the skilled wage using (23).
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The above lemma suggests that faster technological progress in the manufacturing sector,

relative to the agricultural sector, increases the demand for skilled labor and this triggers a

demographic transition and a rise in educational attainment. This accords well with U.S.

historical experience.

What happens in the very long run?

Lemma 3 As z/x→∞, the agricultural sector vanishes or h→ 1 and fertility declines to
its lower bound, n∗ = χ/[(ψ + χ) (τ + φ)].

Proof. From equation (30), backdated, it is easy to see that h → 1 as z/x → ∞.

Further, equation (21) implies that n→ n∗ = χ/[(ψ + χ) (τ + φ)].

Asymptotically, agriculture’s share of GDP goes to zero as everyone in the economy

becomes skilled. The economy eventually converges to a steady state where population grows

at the constant rate n∗. One objection might be that, in reality, the ratio of manufacturing

TFP to agricultural TFP has only grown two-fold or so during the last 200 years, thereby

calling into question the importance of the above lemma. This is certainly true. A more

realistic setup would have agricultural and manufacturing goods entering the utility function

separately, with agricultural goods having a lower income elasticity of demand. As incomes

rise, identical increases in z and x will reduce the demand for agricultural goods relative to

manufacturing goods, at least in a closed economy. This creates an additional channel for

structural transformation. Now, what can be said about the dynamics of human capital and

fertility as z rises relative to x? Lemma 2 provides a characterization.

Lemma 4 Human capital h is convex in z/x when z/x < [ωσ/(2− σ)]1−σ = (z/x)∗, and is
concave otherwise.

Proof. Using equation (31), it can be deduced that

∂2h

∂(z/x)2
=

ω

1− σ

1

[1 + (z/x)1/(σ−1)]
3

1

1− σ
(z/x)

1
σ−1−2

h
σ + ωσ(z/x)

1
σ−1 − 2

i
.

Now,
∂2h

∂(z/x)2
R 0 as σ + ωσ(z/x)

1
σ−1 R 2,
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or as

z/x Q
µ

ωσ

2− σ

¶1−σ
.

The above lemma indicates that when incomes are low, human capital will increase at an

increasing rate when z/x rises. After a certain point, the rate of increase in human capital

will slow down, and human capital will increase at a decreasing rate as z/x rises. Thus, the

convergence of h from a society where every individual is unskilled (h = 0) to one in which

every one is skilled (h = 1) will have an S shape that is characteristic of the diffusion of many

innovations. Now, recall that fertility is inversely related to human capital. Consequently,

fertility will initially fall at a increasing rate, and then will eventually decline at an decreasing

rate as it converges to n∗. The following corollary characterizes the dynamics of fertility.

Corollary Fertility n is convex in z/x when z/x >
³

τωσ
(τ+φ)(2−σ)

´1−σ
= (z/x)∗∗and is concave

otherwise.

Proof. Using equation (32), it is easy to see that

∂2n

∂(z/x)2
=

χ

ψ + χ

φω

1− σ

1

1− σ
(z/x)

1
σ−1−2

1

[τ + φ+ τω(z/x)1/(σ−1)]
3

×{(τ + φ) (2− σ)− τωσ(z/x)
1

σ−1}.

Now,
∂2n

∂(z/x)2
R 0 as (τ + φ) (2− σ)

τωσ
R (z/x) 1

σ−1 ,

or as

z/x R
µ

τωσ

(τ + φ) (2− σ)

¶1−σ
.

Figure 8 illustrates the dynamics of the transition path. One interesting aspect of the

figure, as is evident from the above lemma and corollary, is that the point of inflection

associated with the dynamics of fertility occurs at a lower value of z/x than does the cor-

responding number for human capital; i.e., (z/x)∗∗ < (z/x)∗. This implies that the decline

in fertility begins to slow down before the increase in human capital does. This is in accord
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Figure 8: The Dynamics of Fertility and Human Capital

with the evidence in the United States. What creates this asymmetry between the fall in

fertility and the rise in human capital? The answer is the skill premium. Note that when

the skill premium is zero, which transpires when φ = 0, (z/x)∗∗ = (z/x)∗ . The analysis thus

implies that economies with a higher skill premium will experience a longer delay between

the slowdowns in the decline in fertility and the rise in human capital.

A numerical example will help clarify the ability of the model to match the historical

facts.

Example 3 (The U.S. Demographic Transition) Assume the parameter values given
below.
Tastes: β = 0.9420, χ = 0.5, ψ = 1− 0.5.
Technology: σ = 0.8.
Child care: τ = 0.123, φ = 0.4.
The time is 1800. Assume that (z/x)1800 = 2.36. Then, equation (30) implies that h1800 =
0.05; i.e., about 5 percent of the population are skilled. The rest of the population, 95 percent,
live in the rural sector. Further, equation (21) implies that n1800 = χ/[(ψ + χ) (τ+φh1800)] =
3.5, which is exactly the number of kids per adult (male plus female) in 1800. An aver-
age married couple in 1800 had 7 kids. Now, move ahead to 1940. TFP in agriculture
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grew by a factor of 1.95, while TFP in manufacturing grew by a factor of 4.11. Con-
sequently, (z/x)1940 = (4.11/1.95) × (z/x)1800 = 4.97. Now, equation (30) implies that
h1940 = 0.69, or that about 31 percent of the population live in the rural sector. Further,
n1940 = χ/[(ψ + χ) (τ + φh1940)] = 1.26, so that an average family has 2.52 children (as
opposed to 2.23 in the data). Finally, the long-run value of fertility is n∗ = 0.96. In the long
run an average family will give birth to 1.92 children.

Notice that even without employing any differences in curvature between manufacturing or

agricultural goods, or differences in the skill intensities associated with the production of

these goods, technological advance can account for most of the decline in fertility between

1800 and 1940.10

4 The Demise of Child Labor

Economically Valuable and Emotionally Worthless to Economically Worthless and Emotion-

ally Valuable: In 1896 the Southern Railroad Company of Georgia was sued for the wrongful

death of a two-year-old boy.11 The parents claimed that their son performed valuable

services worth $2 per month, “going upon errands to neighbors ... watching and amusing

... younger child.” The court’s judgement allowed just for minimum burial expenses to be

recovered. The ruling stated that the youngster was “of such tender years as to be unable

to have any earning capacity, and hence the defendant could not be held liable in damages.”

The problem was that the boy was too young to do productive work. And the court at-

tached no value to the pain and suffering connected with the loss of a child. An older child

could earn money, but it was still a fraction of what an adult would get. For example, a

ten-year-old in 1798 could earn the equivalent of $22 a year working as a farm laborer, as

compared with $96 for an adult — Lebergott (1964, pp. 49-50).

10 Greenwood and Seshadri (2002) allow for agricultural and manufacturing goods to enter the utility
function separately. The assumed form of their utility function ensures that agricultural goods have a lower
income elasticity than do manufacturing goods. They show that a two-fold increase in z/x, together with a
lower income elasticity of demand for agricultural goods relative to skill-intensive manufactured goods, can
account for the demographic transition and the structural transformation that the United States experienced
over the nineteenth and twentieth centuries.
11 This and the next case are taken from Zelizer (1994, pp. 138-139). This is the source for the quotations

as well.
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Now move forward in time to January 1979. The New York State Supreme Court jury

awarded $750,000 to the parents of three-year-old William Kennerly. He had been given a

lethal dose of fluoride in a city dental clinic. The twentieth century has witnessed a pro-

found transformation in the value of children. Along with the Second Industrial Revolution

emerged the “economically worthless” and the “emotionally priceless” child. For in strict

economic terms, today’s children are worthless to their parents. They are expensive. The

direct cost to a two-parent median income family of raising a child born in 1995 through to

the age of 17 was estimated to be $145,320.12 And this does not include college costs, time

costs, and foregone earnings. In return they provide no labor.

What caused this dramatic change in society’s valuation of children over such a relatively

short period of time? And what accounts for the apparent paradox that the value in the

twentieth century that society placed on an economically useless child far surpassed the one

in the nineteenth century that society placed on an economically useful child? A case can be

made that technological progress resulted in the liberation of children from work. Increased

mechanization of agriculture and manufacturing in the late nineteenth and early twentieth

centuries resulted in a decline in the demand for unskilled labor and a rise in the demand

for skilled labor. Thus, the return to skill rose. This created an incentive for parents both to

educate their offspring more, and to have less of them; i.e., to substitute away from quantity

toward quality of children. The death of child labor was natural.

4.1 The Environment

The analysis here closely follows the setup of the previous section. Assume that an individual

lives for three periods: the first as a child, and the second and third as an adult. In the first

period of life a person undertakes no economic decisions; he simply accumulates the level of

human capital dictated by his parents. He begins the second period of his life with a fixed

number of children, η. In addition to being exogenous, childbearing is costless. Skilling a

12 Source: Expenditures on Children by Families, 1995 Annual Report, USDA Miscellaneous Publication
Number 1528-1995.
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child, however, involves two costs. First, as before, there is the direct cost of educating the

child. In particular, endowing a child with h0 units of human capital involves a cost of φh0

units of unskilled time. Second, there is the opportunity cost of sending the child to school;

that is, by going to school a child forgoes some labor earnings. Specifically, suppose that a

child is as productive in the labor market as ζ < 1 unskilled adults. Additionally, assume

that in order for the child to acquire h0 units of human capital he must go to school for h0

units of time.

A Young Adult’s Decision Problem: The economic environment is pretty much the same

as that in the previous section, with the above notable exceptions. Another distinction is

that a parent now cares about the leisure that his children will enjoy, in addition to his

own consumption and the quality of his children. The purpose is to break the link between

the time spent schooling and the time spent working by children. The analogue to choice

problem (20) is

max
cy,h0,l

{ψ ln(cy) + χ1 ln[w
0(1− h0) + v0h0] + χ2 ln l},

subject to

cy = [(1− h)w + hv + π + wζη(1− h0 − l)− wφηh0]/(1 + β), (33)

where once again consumption when old, co0, has been substituted out using the Euler

equation (19). In this maximization problem, h denotes the human capital of the parent, h0

the human capital of the child, l the leisure time for the child, w the unskilled wage rate, v

the skilled wage rate, and π is the flow of profits associated with the operation of firms in

the agricultural and manufacturing sectors.

The first-order condition for h0 is

ψη

(1 + β)

(wζ + wφ)

cy
=

χ1(v
0 − w0)

w0(1− h0) + v0h0
. (34)

The righthand side of this equation gives the value from extra human capital accumulation

in children. It has the same form as (22). The lefthand side gives the cost of extra human

capital accumulation. Observe that part of this cost is the forgone earning wζ that a child

would realize by working instead of going to school. Also, the cost of educating kids is an
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increasing function of the number of kids, η. Hence, one would expect that as η falls h0

should rise. Note that an equiproportionate increase in v, v0, w, w0 and cy will have no effect

on h. Consequently, along a balanced growth path h will be constant. Hence, in order to

get some action it must transpire that v must rise relative to w, or equivalently that z must

increase relative to x. Recall that this was exactly what was needed to account for the U.S.

demographic transition in Section 3.

Finally, the first-order condition for leisure reads

ζψη

(1 + β)

w

cy
=

χ2
l
. (35)

The righthand side of this equation gives the marginal benefit from providing an extra unit

of leisure to each child while the lefthand side gives the marginal cost. Observe that for

leisure, l, to increase, cy must rise relative to wη. This will happen if either v rises relative

to w, or if the level of human capital h increases, ceteris paribus. Note that a fall in fertility,

η, plays an important role in increasing l. When fertility declines, the marginal cost to the

parent of providing more leisure to each of his children falls, hence leisure rises.

4.2 Analysis

Imagine that the economy is resting in a steady state where z and x are constant.13

Variables such as h, l, w/cy, and v/cy will also be constant. Others such as the size of the

young generation, sy, will be changing at a constant rate dictated by the size of η. The

market-clearing condition for skilled labor will again be described by (26). The one for

unskilled labor will now appear as

u = [1− h+ (1− h− l)ηζ − φηh] . (36)

The firms’ problems are exactly the same as in Section 3.1. In a steady-state situation,

wages will be given by

w = w0 = x [1− h+ (1− h− l)ηζ − φηh]σ−1 , (37)

13 For simplicity the analysis will be restricted to a study of comparative steady states.
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v = v0 = z[h]σ−1, (38)

which follow from equations (24), (25), (26), and (36).

In principle one can solve the first-order conditions (34) and (35), in conjunction with

(37) and (38), to obtain a solution for h and l.14 General results are hard to obtain for this

economy, however, so a numerical example will be used to highlight the effect of changes in

z/x and η on h.15 The goal of this example is to show that the above setup is capable of

generating a large decline in child labor. Little attention has been paid to its realism.

Example 4 (The Death of Child Labor) Assume the parameter values listed below.
Tastes: β = 0.9420, χ1 = 0.14, χ2 = 0.03, ψ = 1− χ1 − χ2.
Technology: σ = 0.7.
Child care: φ = 0.1.
Child Productivity: ζ = 0.15.
Again, start off in 1800. Set η1800 = 3.5, since an average family gave birth to 7 children.
Observe that in work a child has the productivity of 0.15 adults.16 Assume that z1800 =
x1800 = 1. Then, equations (34) and (35) imply that h1800 = 0.025 and l1800 = 0.16; i.e.,
about (1− h1800 − l1800)× 100 = 81.5 percent of children are gainfully employed. Now, move
ahead to 1940. TFP in agriculture grew by a factor of 1.95 while TFP in manufacturing
grew by a factor of 4.11. Consequently, (z/x)1940 = (4.11/1.95)× (z/x)1800 = 2.1. Also, let
η1940 = 1.1. Now, h1940 = 0.49 and l1940 = 0.51 so that no child works in 1940!

Child Labor Laws & Compulsory Schooling Laws: Child labor laws are often cited as a

reason for the decline in child labor. While the National Child Labor Committee was formed

14 Additionally, it is easy to show that profits are

π = (
1− σ

σ
){w [1− h+ (1− h− l)ηζ − φηh] + vh},

so that consumption is given by

cy = {w [1− h+ (1− h− l)ηζ − φηh] + vh+ π}/(1 + β)

=
1

(1 + β)σ
{w [1− h+ (1− h− l)ηζ − φηh] + vh}.

15 Analytical solutions can be obtained in Section 3 due to the fact that the costs of raising kids are
expressed as a fraction of family income. With child labor the convenience of this formulation disappears so
a more traditional one is adopted — compare (18) with (33).

16 Recall that according to Lebergott (1964), a child in agriculture could earn $22 in a year, while an adult
would receive 8× 12 = $96. Assuming that the child would work from the age of 7, and given that a period
in the model is 20 years, the child equivalent of a man is (22/96)× (13/20) = 0.149.

27



as early as 1904, it wasn’t until 1938, when the Fair Labor Standards Act was passed, that

children were freed from the bondage of dangerous work. The data suggests that the process

of the withdrawal of children from the workforce had been completed before child labor laws

were firmly in place. The conventional wisdom among economic historians is that these laws

had little impact on teen attendance early in the twentieth century because the laws were

imperfectly enforced [Landes and Solmon (1972) and Eisenberg (1988)]. More recent work

by Margo and Finegan (1996) finds significant positive effects on school attendance when

compulsory schooling laws were coupled with child labor laws. There is still the possibility

that the enactment of these laws was a reaction to the greater demand for skilled labor, and

the lower demand for unskilled labor, caused by industrialization. Nardinelli (1990) echoes

this sentiment and provides conclusive evidence that those areas that industrialized first

were also amongst the first to adopt these laws. Hence the enactment of these laws in more

industrialized states is consistent with the notion that technological progress increased the

demand for skilled labor vis à vis unskilled labor and consequently reduced the demand for

child labor.

The above example suggests that sector-specific technological progress alone can account

for all of the decline in child labor. There are three effects at play. First, the demand

for skilled labor rises relative to unskilled labor. This increases the skill premium, and

promotes investment in skill via a substitution effect. Second, technological advance makes

parents wealthier. This income effect makes parents more likely to invest in the well-being

of their children. Third, fertility drops also, which reduces the cost of educating a family.

Consequently, h and l both rise. A more serious treatment of the issue of child labor would

endogenize fertility and incorporate the quantity-quality trade-off that parents face. There is

one aspect of the data that make a technology-based explanation appealing. The period from

1900 to 1930 saw a dramatic decline in child labor. These three decades saw an enormous

increase in manufacturing productivity relative to agricultural productivity, z/x. The United

States experience accords well with this implication. Last, observe that the utility flow that

a parent realizes from a child increases with technological progress. This transpires because
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both the child’s level of human capital (or quality) and leisure rise.

5 Engines of Liberation

“Is it, then, consistent to hold the developed woman of this day within the

same narrow political limits as the dame with the spinning wheel and knitting

needle occupied in the past? No, no! Machinery has taken the labors of woman

as well as man on its tireless shoulders; the loom and the spinning wheel are but

dreams of the past; the pen, the brush, the easel, the chisel, have taken their

places, while the hopes and ambitions of women are essentially changed.”

Elizabeth Cady Stanton, "Solitude of Self," an address before United States

Congressional Committee on the Judiciary, January 18, 1892

“For ages woman was man’s chattel, and in such condition progress for her

was impossible; now she is emerging into real sex independence, and the resulting

outlook is a dazzling one. This must be credited very largely to progression in

mechanics; more especially to progression in electrical mechanics.

Under these new influences woman’s brain will change and achieve new ca-

pabilities, both of effort and accomplishment.”

Thomas Alva Edison, as interviewed in Good Housekeeping Magazine, LV,

no. 4 (October 1912, p. 440)

The twentieth century witnessed a dramatic rise in labor-force participation by married

women.17 It will be argued here that technological advance in the household sector liberated

women from the home, in particular from the oppressive burden of housework. The standard

Solow(1956)/Ramsey(1928) growth model will be extended along two dimensions. First,

17 Labor-force participation also increased for single women, but not as dramatically. For instance, 38.4
percent of single white women worked in 1890 — Goldin (1990, Table 2.1, p. 17). By 1988 this had risen to
68.6 percent.
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household production will be included in the framework. Second, a technology adoption

decision will be incorporated into the analysis.

Time Savings: As a backdrop to the subsequent analysis, a quick detour will be taken to

consider some evidence on the reduction of time spent on housework. At the start of Second

Industrial Revolution women’s magazines were filled with articles extolling the virtues of

appliances, the new domestic servants. For example, in 1920 an article in the Ladies’ Home

Journal entitled "Making Housekeeping Automatic" claimed that appliances could save a

4-person family 18.5 hours a week in housework — see Table 2. Some more scientific evidence

comes from the sociology literature — see Table 3. In 1924 a pair of famous sociologists,

Robert and Helen Lynd, studied a small town in Indiana, Middletown. They found that

87 percent of married women in 1924 spent 4 or more hours doing housework each day.

Zero percent spent less than 1 hour a day. The town was restudied by sociologists at two

later dates. By 1999 only 14 percent of married women spent more than 4 hours a day on

housework, and 33 percent spent less than 1 hour a day.

Table 2: estimated weekly hours saved by appliances

Task With Appliances Without Time Savings

Breakfast 7 10 3

Luncheons 10.5 14 3.5

Dinners 10 12 2

Dishwashing and Clearing 10.5 15.75 5.25

Washing and Ironing 6.5 9 2.5

Marketing and Errands 6 6 0

Sewing and Mending 3.5 4 0.5

Bed Making 2.75 3.5 0.75

Cleaning and Dusting 2 3 1

Cleaning Kitchen and Refrigerator 2 2 0

Total 60.75 79.25 18.5

Source: Ladies’ Home Journal (1920)
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Table 3: Daily Housework in Middletown

(Percentage of married housewives in each category)

Year ≥ 4 hours 2 to 3 hours ≤ 1 hour

1924 87 13 0

1977 43 45 12

1999 14 53 33

Source: Caplow, Hicks and Wattenberg (2001, p. 37)

5.1 The Environment

Consider a small open economy populated by overlapping generations.18 Individuals live

for two periods, they work in the first period and retire in the second. They are endowed

with one unit of time for either working in the market or at home.

Tastes: The lifetime utility function for a young adult is given by

µ ln cy + (1− µ) lnny + βµ ln co0 + β(1− µ) lnno0, (39)

where cy and co0 denote the individual’s consumption when young and old, and (with a

change in notation from the previous sections) ny and no0 now stand for young and old

household production.

Income: Young adults work for the market wage, w. They save for old age at the

internationally determined time-invariant gross interest rate r.

Household Production Technology : Let the production of home goods, n, be governed by

n = [θδκ + (1− θ)hκ]1/κ , for κ ≤ 1,

where δ is the stock of household capital and (with another change in notation) h now

represents the amount of time spent on housework. When κ > 0 (κ < 0), capital and labor

are Edgeworth-Pareto substitutes (complements) in producing utility.19 Finally, assume

18 The framework developed below is a stripped-down version of Greenwood, Seshadri and Yorukoglu
(2002).

19 Let

U(δ, h) ≡ (1− µ) ln{[θδκ + (1− θ)hκ]
1/κ}.
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that household capital is lumpy or indivisible. A person acquires this capital when young

and keeps it for his entire life, whereupon it fully depreciates. Let the time cost of purchasing

δ units of household capital be q.

The Young Household’s Choice Problem: Since the agent spends the entire one unit of

his time endowment during retirement on household production, ho0 = 1. Consequently,

no0 = [θδκ + (1− θ)]1/κ, a constant. The decision problem facing a young adult is

U(w, r, δ, q) = max
cy,hy,co0

{µ ln cy+(1−µ) lnny+βµ ln co0}+β(1−µ) ln [θδκ + (1− θ)]1/κ , (40)

subject to

cy +
co0

r
= w(1− hy)− wq, (41)

and

ny = [θδκ + (1− θ)(hy)κ]1/κ . (42)

Since there is only one h to worry about, let hy = h from here on out to save on notation.

The function U is the household’s indirect utility function. It gives the maximal level of

utility that the household can attain given the prices w, r and q, and the level of household

capital δ. Note the above problem presumes that the household purchases the household

production technology represented by the pair (δ, q). This assumption will be relaxed later

on.

The efficiency condition for housework reads

µw

cy
=
1− µ

ny
[θδκ + (1− θ)hκ]

1
κ
−1 (1− θ)hκ−1. (43)

This above equation can be derived by using (41) and (42) to substitute out for cy and

ny in (40) and then differentiating with respect to h. The lefthand side gives the marginal

cost of an extra unit of housework. An extra unit of time spent in housework comes at

the expense of a forgone unit of market work that earns the wage rate, w. To convert this

into utility terms, multiply by the marginal utility of consumption when young, µ/cy. The

It is easy to see that
U12(δ, h) Q 0 as κ R 0.
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righthand side represents the marginal benefit from an extra unit of housework. An addi-

tional unit of time spent at home increases household production by the marginal product

of labor, [θδκ + (1− θ)hκ]
1
κ
−1 (1− θ)hκ−1. To convert this to utility terms, multiply by the

marginal utility of home goods, (1− µ)/ny. At the optimum, the marginal cost and benefit

of housework must equal each other.

The Euler equation for consumption is exactly the same as equation (19), which together

with the budget constraint (41) gives

cy =
w[(1− h)− q]

1 + β
and co0 =

βrw[(1− h)− q]

1 + β
. (44)

Now, using (42) and (44) to substitute out for cy and ny in (43), while rearranging, yields a

single equation determining the equilibrium level of housework, h :

1 =
1− µ

µ(1 + β)

(1− h)− q

[θδκ + (1− θ)hκ]
(1− θ)hκ−1. (45)

The intuition underlying this equation will be presented later on.

The Firm’s Problem: Once again let market output, o, be produced in line with the

following production function:

o = zkαl1−α,

where k and l are the inputs of capital and labor used in production and z is the level of

productivity in the market sector. Now, suppose that capital depreciates fully after use in

production. The rental rate on capital will therefore be r, since it must yield the same return

as a bond. Given this production structure, once again wages will be given by (9).

5.2 Analysis

What is the effect of technological advance in the home sector on the amount of time devoted

to housework? The answer will depend upon whether capital and labor in household pro-

duction are Edgeworth-Pareto substitutes or complements in generating utility. Likewise,

what impact will technological progress in the market sector have on the amount of time

allocated to housework?
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Lemma 5 An increase in the market wage rate, w, will have no effect on the amount of
time spent in housework, h, while an increase in the stock of household capital, δ, will

(a) cause h to decline when capital and labor are Edgeworth-Pareto substitutes (or when
κ > 0),

(b) cause h to increase when capital and labor are Edgeworth-Pareto complements (or when
κ < 0),

(c) have no effect on h when capital and labor are neither Edgeworth-Pareto substitutes or
complements (or when κ = 0).

Proof. The first part of the lemma is trivial since w doesn’t enter equation (45) and

therefore cannot influence h. To establish the second part of the lemma, totally differentiate

(45) with respect to h and δ to get

dh

dδ
= −κ [(1− h)− q]hθδκ−1

{(1− q)[θδκ + (1− θ)hκ]− κ(1− h− q)θδκ} .

Now, the denominator of the above expression is unambiguously positive since κ ≤ 1 and

(1− q) ≥ (1− h− q). Therefore,

sign(
dh

dδ
) = −sign(κ).

Corollary Technological progress in the market sector, or an increase in z, has no effect on

the time spent in housework, h.

Proof. The proof is trivial since z does not enter (45), because w doesn’t.

Intuition: Observe that the first-order condition (43) can be expressed as

w =
1− µ

µ

cy

ny
× [θδκ + (1− θ)hκ]1/κ−1(1− θ)hκ−1.

The lefthand side of this above equation is the marginal product of labor in the market

sector, w. This is portrayed by the WW curve in Figure 9. The value of the marginal

product of labor in the home sector is given by the righthand side. This equals the marginal

product of labor in the home sector, [θδκ + (1 − θ)hκ]1/κ−1(1 − θ)hκ−1, multiplied by the
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Figure 9: The Effect of an Improvement in Household Technology on Time Spent on House-
work

(implicit) relative price of home goods, [(1 − µ)/µ]cy/ny. Substituting out for cy and ny,

using (44) and (42), gives

w =
1− µ

µ(1 + β)

w[(1− h)− q]

[θδκ + (1− θ)hκ]1/κ
× [θδκ + (1− θ)hκ]1/κ−1(1− θ)hκ−1

=
1− µ

µ(1 + β)

w[(1− h)− q]

[θδκ + (1− θ)hκ]
(1− θ)hκ−1 (46)

≡ RHS(h; δ, w).

The righthand side of the equation spells out the demand curve for housework, h. It’s

shown in Figure 9 by the DD curve. This curve is decreasing in h, a fact easily deduced by

observing that both the price and marginal product terms are decreasing in h. Note that

RHS(h; δ, w)→∞ as h→ 0, and that RHS(h; δ, w)→ 0 as h→ 1− q.

The equilibrium level of housework, h∗, is given by the point where the DD and WW

curves intersect. So, how will technological advance in the home sector affect the equilibrium

level of housework? It’s clear from (46) that

∂RHS(h; δ, w)

∂δ
= −κ 1− µ

µ(1 + β)

w[(1− h)− q]

[θδκ + (1− θ)hκ]2
(1− θ)hκ−1θδκ−1 Q 0 as κ R 0.
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Figure 10: The Effect of an Increase in Wages on Time Spent on Housework

Therefore, the demand curve for housework will shift down or up depending upon whether

labor and capital are substitutes (κ > 0) or complements (κ < 0) in home production.

Figure 9 portrays the case where labor and capital are substitutes.

Now, let wages jump up by a factor of λ. It’s easy to deduce that the WW and DD

curves will also shift up by a factor of λ to W 0W 0 and D0D, as is shown in Figure 10.

Hence, the equilibrium level of housework remains unaffected. With logarithmic preferences

an increase in wages by a factor of λ will cause the consumption of market goods to increase

by the same factor, which leads in turn to an equiproportionate rise in the relative price of

home goods. Therefore, the value of marginal product curve shifts up by the factor λ.

Example 5 (Female Labor-Force Participation, 1900 and 1980) Assume the follow-
ing parameter values:
(i) Tastes, β = 0.9420,
(ii) Technology, θ = 0.33, κ = 0.5, q = 0.
In 1900 about 5 percent of married white females worked. Assume that none did. There are
about 224 non-sleeping hours available per couple in a week. If males worked a 40 hour week
then 1− h = 40/224 = 0.18 in 1900. Now, suppose that the amount of household capital in
1900 is negligible; i.e., set δ = 0. By using (45) it can be calculated that a value of µ = 0.145
is need to generate 1− h = 0.18. Next, about 50 percent of white married women worked in
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1980. Therefore, 1 − h = 60/224 = 0.27. From (45) it can be deduced that this value for
1 − h can be obtained by setting δ = 1.41. Thus, a rise in female labor-force participation
from zero to 50 percent can be generated by letting δ increase from 0 to 1.41.

A Technology Adoption Decision: Now suppose that the household faces a choice between

two household production technologies, namely a new versus an old one. Represent the new

technology by the pair (δ1, q1), and the old one by (δ2, q2). To make the problem interesting,

assume that δ1 > δ2 and q1 > q2. The new technology offers more capital services but costs

more. Characterizing the household’s adoption decision is straightforward:

Adopt new technology if U(w, r, δ1, q1) > U(w, r, δ2, q2),

Adopt old technology if U(w, r, δ1, q1) < U(w, r, δ2, q2),

Adopt either technology if U(w, r, δ1, q1) = U(w, r, δ2, q2).

Lemma 6 When capital and labor are Edgeworth-Pareto substitutes in household production
(0 < κ ≤ 1), the adoption of a new household technology will be associated with a decline in
the amount of time spent on housework.

Proof. From equation (45) it is easy to calculate that

dh

dq
= − h[θδκ + (1− θ)hκ]

{(1− q)[θδκ + (1− θ)hκ]− κ(1− h− q)θδκ} < 0,

where again the denominator is positive since κ ≤ 1 and (1−q) ≥ (1−h−q). Second, it was

already established in Lemma 5 that sign(dh/dδ) = −sign(κ). The result is now immediate

since q1 > q2 and δ1 > δ2.

Often new technologies are prohibitively expensive when they are first introduced. Hence,

they aren’t adopted initially. It’s clear that there exists some threshold price, q∗, at which the

household is indifferent between adopting the new technology or not. This price is defined

by the equation

U(w, r, δ1, q∗) = U(w, r, δ2, q2).

Lemma 7 The threshold price q∗ exists and is unique. Above the price q∗ the household will
prefer to use the old technology while below it they will adopt the new one.
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Figure 11: The Determination of the Threshold Price, q∗

Proof. It’s easy to deduce from (40) that

dU/dq = −µw/cy < 0, (47)

and

dU/dδ = (1− µ)θδκ−1{1/ [θδκ + (1− θ)hκ] + β/ [θδκ + (1− θ)]} > 0. (48)

Equation (47) implies that the threshold price must be unique and that the household

will use the new technology for any price q1 < q∗ and the old one for any price q1 > q∗.

It is also easy to establish that the price q∗ exits. Clearly when q1 = q2 the household

will choose the new technology, since U(w, r, δ1, q2) > U(w, r, δ2, q2) by (48). Likewise,

U(w, r, δ1, q1 ' 1) < U(w, r, δ2, q2) for q1 sufficiently close to one, since at this high price

there will be no resources left over for market consumption. Hence, by the Intermediate

Value Theorem the threshold price q∗ must exist.

The situation described by the lemma is portrayed in Figure 11. So long as the price for

the new technology declines over time to the point q∗ households will eventually adopt it.

5.3 Analysis with Nondurable Household Products and Services
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Over the last 100 years or so there has been a dramatic rise in the number of labor-saving

nondurable household products and services. These goods and services economize on the

need for housework. For example, in 1900 the bulk of baked goods, or 92 percent, was made

at home.20 The average housewife is said to have baked more than 1/2 ton of bread a year.

She spent over 2 hours a week baking goods.21 By 1965 this had dropped to 22 percent.

Similarly, 96 percent of vegetables purchased were unprocessed in 1900, as opposed to 30

percent in 1965.22 Per-capita consumption of canned fruits rose from 3.6 pounds in 1910

to 21.6 pounds in 1950.23 Think of the time saved cleaning, pealing, canning, or otherwise

preparing fruits and vegetables. There were about 2,100 packaged food products available

in 1980, compared with 10,800 today.24 Last, in 1900 only 5 percent of food expenditure

was on meals away from home. This had risen to 30 percent by 1987.25 To explore how

the introduction of new household products and services may promote female labor-force

participation, a static model of the household will be presented.

Setup: For tastes take a static version of (39), so that utility is given by

µ ln c+ (1− µ) lnn, (49)

where c and n represent the individual’s consumption of market and home goods, respec-

tively. As before, the individual is endowed with one unit of time that he can use either

for market work, 1− h, or housework, h. Market work is compensated at the wage rate w.

Home goods are produced in line with the household production function given below

n = [θ
NX
i

(di)
κ + (1− θ)hκ]1/κ, for κ ≤ 1, (50)

20 Source: Lebergott (1976, Table 1, p. 105).

21 Lebergott (1993, p. 81)

22 Again, see Lebergott (1976, Table 1, p. 105).

23 Source: Historical Statistics of the United States: Colonial Times to 1970 (1975, Series G 893).

24 Source: Federal Reserve Bank of Dallas (1998, Exhibit 3, p. 6).

25 Lebergott (1993, p.77).
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where di denotes the agent’s purchases of the i-th household product. Let the i-th household

product sell at price pi. There are N products available.

The Household’s Choice Problem: The household’s maximization problem is

max
c,{di}Ni=1,h,n

[µ ln c+ (1− µ) lnn],

subject to (50) and

c+
NX
i

pidi = w(1− h). (51)

The first-order conditions for di and h can be written as

µpi
c
= (1− µ)[θ

NX
i

(di)
κ + (1− θ)hκ]−1θdκ−1i , for i = 1, · · · , N, (52)

and
µw

c
= (1− µ)[θ

NX
i

(di)
κ + (1− θ)hκ]−1(1− θ)hκ−1. (53)

It is immediate from (52) and (53) that

θ

(1− θ)
(
di
h
)κ−1 =

pi
w
,

so that

di = [
(1− θ)pi

θw
]1/(κ−1)h ≡ Hih.

Using this in (53), in conjunction with (51), yields a closed-form solution for h:

h =
(1− µ)(1− θ)

µ[θ
PN

i=1(Hi)κ + (1− θ)] + (1− µ)(1− θ)(1 +
PN

i=1(pi/w)Hi)
. (54)

Analysis: The upshot of the above discussion is now within easy grasp.

Lemma 8 An expansion in the number of household products and services, N , will cause
housework, h, to decrease and market work, 1− h, to increase.

Proof. It is trivial to see that (54) is decreasing in N .
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Lemma 9 A decline in the time price of the i-th household product, pi/w, will
(a) cause housework, h, to decline when intermediates goods and labor are Edgeworth-Pareto
substitutes (or when κ > 0),
(b) cause housework, h, to increase when intermediates goods and labor are Edgeworth-Pareto
complements (or when κ < 0),
(c) have no effect on housework, h, when intermediates goods and labor are neither Edgeworth-
Pareto substitutes or complements (or when κ = 0).

Proof. Observe that Hκ
i and (pi/w)Hi are both decreasing or increasing in pi/w de-

pending on whether κ > 0 or κ < 0. The results follow.

Given the form of tastes (49) and the household production function (50), an increase in

the number of household products reduces the marginal product of housework (measured in

utility terms).26 Hence, housework declines. Likewise, a decline in time price of household

product i will lead to its increased use. When intermediates goods and housework are

Edgeworth-Pareto substitutes (complements) in utility this causes a fall (rise) in the marginal

product of housework (again denoted in utility terms). Housework again drops.

6 Conclusion

Technological progress has profoundly reshaped the economic landscape over the last 200

years. It’s easy to understand how the emergence of Watt’s steam engine, Crompton’s

cotton spinning mule, and Cort’s puddling and rolling process for iron transformed the

industrial landscape during the 1800’s. Likewise, it’s easy to appreciate how the introduction

of electricity, petrochemicals, and the internal combustion engine changed manufacturing in

the 1900’s. Less well understood, however, is the impact that technological advance has had

on the household sector. In 1800 the typical women labored in a rural home with 7, largely

uneducated, kids. Today she is almost certain to live in an urban area, likely to work in the

market sector, and have only two children who on average get 13 years of formal schooling.

Times have changed, and a little growth theory can go a long way toward understanding

this process.

26 I.e., the marginal product of housework multiplied by the marginal utility of home goods.
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7 Literature Review

7.1 Fertility

The economics literature on fertility starts with Malthus (1798). He believed that an econ-

omy’s population had a natural size. This size was limited by the economy’s fixed factors,

in particular land. A society’s population would increase, until its standard of living fell

down to a subsistence level, reigning in further expansion. When an economy’s population

exceeded its natural size either poverty stricken parents would voluntarily reduce their family

size or their family size would involuntarily decline due to famine induced disease.

Two classic papers on fertility in modern macroeconomics are by Razin and Ben-Zion

(1975) and Becker and Barro (1988). The Razin and Ben-Zion (1975) model is similar to the

setup presented in Section 2. They develop a small-open-economy overlapping-generations

model of fertility where kids simply enter their parents’ utility function in the same way

as other goods — say as in (1). The Becker and Barro (1988) model is more sophisticated,

but harder to work with. It’s an overlapping generations model, too, but now parents care

about the utility of their children in addition to the number of kids. Since a parent cares

about the happiness of his child who will in turn cares about happiness of his child (and

so on ad nauseam), the Becker and Barro (1988) model reformulates as an infinitely-lived

representative agent model.

A milestone in the demographic transitions literature is a paper by Galor and Weil

(2000). Over the epochs of European history, fertility has followed a ∩-shaped pattern.

Galor and Weil (2000) develop a model of this pattern by combining elements of Malthus

(1798) and Razin and Ben-Zion (1975). They also allow for a human capital decision in

the spirit of Becker and Tomes (1986). In addition they make two key assumptions: first,

technological progress is an increasing function of population size, and second, the return

on education rises with the rate of technological advance. In their framework, the world

rests in a Malthusian equilibrium for a long time. Per capita income remains more or less

constant over time. All increases in aggregate income induced by technological progress are
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absorbed by expansions in the population. As the population slowly grows bigger, the pace

of technological progress begins to pick up and the economy exits the Malthusian regime.

At first parents use the extra income generated by technological advance to have more kids,

since the return on education is still low. As the rate of technological progress accelerates the

return to education rises, and parents choose to have fewer kids but invest more in them.27

A calibrated model that delivers a transition from Malthusian stagnation to growth,

accompanied by a demographic transition from high to low fertility is presented in Doepke

(2001). The engine in his analysis is a Becker and Barro (1988) style model modified to

allow for parental human capital investment in children. He uses the model to study the role

of social policies in shaping the demographic transition of a country — more on this below.

Fernandez-Villaverde (2001) examines the ability of technological advance to explain,

quantitatively, the fall in British fertility. He uses a variant of the Becker and Barro (1988)

and Becker and Tomes (1986) frameworks to do this. In his analysis capital and skilled

labor are complements in the production. As the capital stock rises with economic develop-

ment, this creates an impetus for parents to substitute away from having a large number of

uneducated children toward having a small number of educated ones.

Little work has been done on the underlying cause of the baby boom. The best known

hypothesis is by Easterlin (1987). The generation that spawned the baby boom grew up

during the hard times of the Great Depression and World War II. As a result, this generation

had low material aspirations. They then entered the work force in the 1940’s and 1950’s,

a good time economically speaking. Given their low material aspirations, they used family

formation as an outlet for their earnings. This hypothesis is empirically flawed on several

grounds.28 First, there was no break in the trend for fertility during the Great Depression.

Second, fertility in many OECD countries started to rise before the start of World War II.

27 Often the drop in fertility is attributed to a decline in child mortality. In some countries, such as the
France and the U.S., the decline in fertility proceeded the drop in child mortality. Doepke (2002) argues
within the context of a sequential fertility model with uncertainty about child mortality that the impact of
a decline in child mortality is likely to be small. That is, if the issue is child mortality, why would a woman
who already has some surviving children give birth to yet more children as is observed in the data.

28 The Easterlin hypothesis is critiqued in Greenwood, Seshadri and Vandenbroucke (2002).
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Third, at the peak of the baby boom (1960) the most fertile cohort of women (those in the

20 to 24 year old age group) were simply too young for either the Great Depression or World

War II or to have had much of an impact on them — they were not alive during the Great

Depression and were less than 9 years old at the end of World War II.

7.2 The Economics of Household Production

The economic importance of household production was probably first recognized in a classic

book by Reid (1934). Reid (1934, p. v) felt “that the productive work of the household

has been overlooked, even though more workers are engaged in it than any other single

industry.” She carefully reported and analyzed the uses of time and capital by households

of the era. The data was fragmentary then, and sadly still is. Reid (1934) knew in theory

that labor-saving household capital could reduce the amount of time spent on housework,

but the just emerging evidence at the time suggested that this effect was modest (see Table

XIII, p. 91).

In a famous paper Becker (1965) develops the modern approach to household production:

the treatment of the household as a small factory or plant using inputs, such as labor, capital

and raw materials, to produce some sort of home goods. This is the notion underlying the

household production functions (2) and (42) used in Sections 2 and 5. Benhabib, Rogerson

andWright (1991) introduce household production theory into a dynamic general equilibrium

model in order to study the movement of labor over the business cycle. The idea is that

in favorable economic times households may temporarily move labor out of the home sector

to take advantage of good market opportunities, thereby increasing the elasticity of labor

supply. Parente, Rogerson and Wright (2000) use a similar framework to investigate whether

household production can explain cross-country income differentials. This is very much in

the spirit of Reid (1934, p. 165), who observed that the “(g)oods resulting from household

production receive no market valuation ... .” She reports (p. 167) an estimate placing the

value of housewives’ services at $15.3 billion in 1918 compared with a national income of $61

billion. Last, Rios-Rull (1993) inserts household production into an overlapping generations
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model to examine its impact on the time allocations of skilled versus unskilled labor. In his

framework, skilled labor (relative to unskilled labor) will tend to substitute market goods or

services for labor in household production.

7.3 Structural Change

Two well-known models of structural change have been developed by Echevarria (1997)

and Laitner (2000). Laitner (2000) presents a closed-economy model with two sectors, viz

agriculture and manufacturing. Two key features of the analysis are that the demand for

agricultural goods has a zero income elasticity after a certain consumption level, and that

production in the agricultural sector is subject to technological progress. As the state of tech-

nology advances in the agricultural sector less labor is required to satisfy the fixed demand

for agricultural goods. Echevarria (1997) develops a more general three-sector model, which

she solves numerically. Restrictions on tastes and technologies that allow for tractable solu-

tions to models with structural change are developed in Kongsamut, Rebelo and Xie (2001).

Caselli and Coleman (2001) study the process of regional convergence in the U.S. between

the agricultural South and manufacturing North. They argue that declining costs of edu-

cation, which allow the skills essential for manufacturing to be picked up more easily, play

an important role in explaining the pattern of convergence in wages between the South and

North. In particular, this latter feature allows convergence to obtain without a fall (in fact

with a rise) in farm, relative to nonfarm, wages. Last, in Western economies there has been

a secular shift in employment out of manufacturing into services. The growth of the service

sector in several European countries, however, has been encumbered by institutional rigidi-

ties. These services have been provided by the household sector instead. This phenomena

is analyzed by Rogerson (2002).

Now, the model presented in Section 3 has a single good that can be produced by one or

both of two sectors, interpreted as agriculture and manufacturing. The pace of technological

progress is assumed to be faster in the latter sector. This draws labor into manufacturing.

A similar assumption is made in Hansen and Prescott (2002) who model the transition from
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the pre-industrial to the modern era. Grafted onto the model developed in Section 3 is a

fertility decision à la Razin and Ben-Zion (1975). Also overlaid onto the framework is a

human capital decision along the lines of Becker and Tomes (1986). Here parents care about

the earnings that their kids will make, as in the Galor and Weil (2000) framework, however;

as opposed to the level of their human capital — see (17).

It’s easy to modify the framework developed in Section 3 to allow for two types of goods in

tastes, agricultural and manufactured. By endowing agricultural goods with a lower income

elasticity than manufactured ones an extra channel for structural change can be added.29

In fact, a similar device is already employed in the model of the baby bust and baby boom

in Section 2. Observe that the term c > 0 in (1) operates to lower the income elasticity of

children relative to market goods. As income rises a parent switches resources away from

children toward the consumption of market goods. [Interestingly, Jones (2001) sets c < 0.

This raises the income elasticity of children relative to market goods. Hence, fertility will

be low when a person is poor. Jones (2001) uses this to generate the lefthand side of the

∩-shaped pattern in fertility. The righthand side obtains by assuming an isoelastic utility

function in consumption, (c + c)ρ/ρ (for ρ ≤ 1), that is less curved than ln(c + c) in c + c;

i.e., by picking ρ > 0.30 Therefore, at high levels of income, as income rises the marginal

utility of consumption falls slower than the marginal utility of kids. This generates a decline

in fertility.]

7.4 Child Labor

Both demographers and economists have long stressed the economic value of children in

societies. Adam Smith (1973, p. 173) said, when speaking of colonial America,

“Labour there is so well rewarded that a numerous family of children, instead

of being a burden, is a source of opulence and prosperity to the parents. The

29 The interested reader can see Greenwood and Seshadri (2002).

30 See also Greenwood and Seshadri (2002).
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labour of each child, before it can leave their house, is computed to be worth a

hundred pounds clear gain to them.”

Likewise Gary Becker (1960, p. 213) states

“It is possible that in the mid-nineteenth century children were a net producer’s

good, providing rather than using income.”

Noted demographer John Caldwell (1982) has argued that there are two types of societies:

pre-transitional and post-transitional. The former are characterized by net flows from chil-

dren to parents while the latter are characterized by net flows in the opposite direction —

some of the flows from children to parents may be in the form old-age support for the latter.

[For an application of the Caldwell hypothesis to the demographic transition literature, see

Boldrin and Jones (2002)].

Now suppose that the net present value of a kid is positive and that the prime motivation

for having children is wealth maximization. Then fertility rates should be close then to their

biological maximum. This doesn’t seem to have been observed. While children undoubtedly

made important contributions to the family income, as these quotes attest, most historical

research suggests that it would have been very unlikely that the net present value of children

could have been positive. Economic historian Nardinelli (1990) presents a comprehensive

review of the literature on the cost of children and argues that it is extremely unlikely that

children were capital goods. Economic demographer Mueller (1976) has shown that even

under the most plausible assumptions, the net worth of children in peasant societies is nega-

tive and concludes “(i)n sum, the aggregate model and the life-cycle model agree in showing

that children have negative economic value in peasant agriculture" (p. 145). The huge liter-

ature on slavery provides a clearer picture on the productivity of child labor in preindustrial

societies. Fogel and Engerman (1974, p. 153) report that “prior to age twenty-six, the

accumulated expenditures by planters on slaves were greater than the average accumulated

income which they took from them.” While critics have questioned their estimated rates of

return, even higher estimates do not make children profitable in the short run. And surely
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if slave children had negative net worth, it seems likely that free children in agricultural

societies would have had negative value. The basic problem is that children can earn very

little for the first decade or so of their lives. Yet, they must be maintained. Discounting

makes it difficult to overcome the front-end costs of raising children.31

Now, even if the net-present value of a child’s earnings to his parents is negative the

possibility of child labor may significantly defray the cost of bearing him or increase the

cost of educating him — as is evident from the first-order condition (34). As such, it can

still have a big influence on an adult’s fertility decision, as well as on a parent’s decision

about educating his child. Doepke (2001) examines the impact that child labor laws and

educational subsidies may have on fertility and growth — note that compulsory schooling

laws can effectively limit child labor as well as subsidize schooling. Both policies operate to

promote a higher level of human capital investment and faster fertility decline. Surprisingly,

ruling out child labor turns out to be much more effective than subsidizing education in

speeding up the demographic transition from high to low fertility. Hazan and Berdugo

(2002) also argue that outlawing child labor expedites this transition process.

Last, in the model presented in Section 4 a rise in the demand for skilled labor leads to

a decline in the use of child labor. If family size was variable, as in Section 3, then smaller

families would result too. Doepke and Zilibotti (2003) use this mechanism to model the

enactment of child labor laws as a country develops. Child labor substitutes in production

for unskilled adult labor. Therefore, on this hand, unskilled adult labor gains from outlawing

child labor. On the other hand, unskilled adults will earn income by letting their children

work. At early stages of economic development most adults will be unskilled and families

will be large. There will not be much support for child labor laws. Now, suppose that the

return to skill rises over time due to economic development. As more and more unskilled

families choose to have fewer children, and to educate them, the political equilibrium shifts

to favoring a ban on child labor.

31 Still, if there is no good abode for savings in a society, then children may be better than nothing in
providing for old age.
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7.5 Female Labor-force Participation

The economic analysis of female labor-force participation began with the pioneering works

of Mincer (1962) and Cain (1966). The massive rise in female labor-force participation

over the course of the 20th century has attracted a lot of notice from labor economists.

Much attention has been devoted to examining the extent to which the rise in real wages

and the narrowing of the gender gap can account for the rise in labor-force participation.

The narrowing of the gender gap has been analyzed by Blau and Kahn (2000) and Goldin

(1990). Galor and Weil (1996) provide an interesting general equilibrium model in which

the increase in women’s wages and labor-force participation is a by-product of the process of

development where capital accumulation raises women’s wages relative to men’s wages. The

underlying mechanism is that capital is more complementary to women’s labor than it is to

men’s labor. Consequently capital accumulation will lead to greater increases in women’s

wages than men’s wages. In a similar vein, Jones, Manuelli and McGrattan (2003) argue

that decreases in the gender wage gap can account for increases in average hours worked by

married females for the time period between 1950 and 1990.

It is easy to introduce the gender gap in the framework developed in Section 5. Recall

that the model implies that a general increase in wages will have no effect on labor-force

participation. This is proved in Lemma 5 and is easy to see from equations (43) and (44).

A rise in w will lead to an equiproportionate increase in cy and hence will have no impact

on h. Now suppose equation (41) is changed to read

cy +
co0

r
= 0.5w + φw(0.5− h)− wq.

Here φ represents the gender gap, or the ratio of female to male wages. Males and females

each have a time endowment of 0.5. Males are presumed always to work full time. Females

can vary their market labor supply, 0.5−h. The efficiency condition for h will once again be

given by (43), but now the lefthand side will be multiplied by φ. It is easy to deduce that
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an increase in φ will lead to an increase in h, since cy will rise by less than φ.32 Observe

that unlike the Galor and Weil (1996) setup, but like the Jones, Manuelli and McGrattan

(2003) one, the gender gap is taken to be exogenous.

Empirically speaking, the gender gap did not move much between 1930 and 1980. More

specifically, data from Blau and Kahn (2000) suggest that between 1955 and 1980, the period

associated with enormous increases in the labor force participation rate, the gap remained

almost constant.33 In 1969, the female-to-male weekly wage ratio was 0.56 and this number

rose to merely 0.58 by 1979 [see Blau (1998, Table 4, p. 129)]. Unless labor supply elasticities

for women are quite high, the narrowing down of the gender gap can only be a small part of

the explanation. Additionally, the gender gap may have narrowed dramatically between 1820

and 1880 [Goldin (1987, Figure 3, p. 215)] with probably little rise in married female labor-

force participation (given the very low rate in 1890). All of this suggests that something else

was going on, in addition to the narrowing of the gender gap, which led women to enter the

labor force, such as the introduction of labor-saving household goods. On this, perhaps the

introduction of such goods increased the elasticity of female labor supply. Intriguingly, the

data suggest that for the 1900-1930 period married women’s uncompensated wage elasticities

of labor-force participation were close to zero, while in the middle of the century women’s

uncompensated wage elasticities were quite high - as high as 1.5 in some studies.34

An interesting and related development fact is that female labor-force participation is U-

shaped over the course of economic development — see Goldin (1995). The U-shaped pattern

is very prominent in the cross-section. She believes that the trough of the U for the U.S. was

reached around 1920. A simple modification of the model introduced in Section 5 can be used

32 Note that equation (44) will change to

cy =
w[0.5 + φ(0.5− h)− q]

1 + β
.

33 In fact the gender pay gap increased between 1955 and 1968 [see Blau and Kahn (2000, Figure 1, p.
76]. The gender gap did narrow considerably in the period after 1980.

34 See Goldin (1990, Table 5.2, p. 132).
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to account for the U shape. Imagine adding a subsistence consumption constraint. When

incomes are very low and consumption is below subsistence, women go out to work in order

to achieve the subsistence level of consumption. As incomes rise with technological advance

in the market sector, the income effect associated with easing the subsistence constraint

dominates the substitution effect (holding fixed the household production function) and

time spent in the paid labor force decreases. In other words, the declining portion of the

U associated with the pre-1920 era can be accounted for. After 1920 the introduction of

labor-saving appliances associated with technological progress in the home sector could have

led to more women entering into the workforce. Thus, growth theory can go a long way

toward accounting for the entire time path of married female labor-force participation over

the course of economic development.

There are other explanations of the rise in female labor-force participation. The effect of

World War II has received some attention, for instance. Goldin (1991) investigates the effects

of WWII on women’s labor-force participation and finds that a little over half of the women

who entered the labor market during the War years exited by 1950. Another possibility is

that attitudes toward working women might have changed considerably and this encouraged

women to enter into the paid labor force. While this is hard to know, one can look at

social surveys across time to gain a better understanding. After reviewing public opinion

poll evidence, Oppenheimer (1970, p. 51) concludes “it seems unlikely that we can attribute

much of the enormous postwar increases in married women’s labor force participation to a

change in attitudes about the propriety of their working.” On this, Fernandez, Fogli and

Olivetti (2004) present evidence suggesting that a man is more likely to have a working

wife if his own mother worked than if she didn’t. In particular, men who had mothers who

worked in World War II had a higher likelihood of marrying working women than those

who didn’t. They development a model where attitudes toward working women become

more receptive over time. This idea complements those set out in Section 5. The famous

sociologist William F. Ogburn hypothesized that culture and social institutions evolve, often

with a lag, to technological progress in the economy (or presumably to other events such as
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wars). Ogburn (1964, p. 85) said

"Unlike the natural environment, the technological environment is a huge

mass in rapid motion. It is no wonder then that our society with its numerous

institutions and organizations has an almost impossible task in adjusting to this

whirling technological environment. It should be no surprise to sociologists that

the various forms and shapes which our social institutions take and the many

shifts in their function are the result of adjustments — not to a changing natural

environment, not to a changing biological heritage — but to adaptations to a

changing technology."
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8 Appendix

8.1 Supporting calculations for Lemmas 2 and 4

∂n
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χ

ψ + χ
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ω(z/x)1/(σ−1)−1(1/(σ − 1))
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}
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8.2 Supporting calculations for Lemmas 5 and 6

Write equation (45) as

1 = Ψ
(1− h)− q

[θδκ + (1− θ)hκ]
hκ−1,

where

Ψ =
(1− θ)(1− µ)

µ(1 + β)
.

From this it’s easy to compute that

dh

dδ
= −κΨ (1− h)− q

[θδκ + (1− θ)hκ]2
hκ−1θδκ−1 ÷

{Ψ 1

[θδκ + (1− θ)hκ]
hκ−1 +Ψ

(1− h)− q

[θδκ + (1− θ)hκ]2
κhκ−1(1− θ)hκ−1

−Ψ (1− h)− q

[θδκ + (1− θ)hκ]
(κ− 1)hκ−2}

= −κ[(1− h)− q]hκ−1θδκ−1 ÷

{[θδκ + (1− θ)hκ]hκ−1 + [(1− h)− q]κhκ−1(1− θ)hκ−1

−[(1− h)− q][θδκ + (1− θ)hκ](κ− 1)hκ−2}

= −κ[(1− h)− q]hκ−1θδκ−1 ÷

{[θδκ + (1− θ)hκ]hκ−1 − [(1− h)− q]θδκ(κ− 1)hκ−2

+[(1− h)− q](1− θ)h2κ−2}

= −κ [(1− h)− q]hθδκ−1

{[θδκ + (1− θ)hκ]h+ [(1− h)− q]θδκ(1− κ) + [(1− h)− q](1− θ)hκ}

= −κ [(1− h)− q]hθδκ−1

{(1− q)[θδκ + (1− θ)hκ]− κ(1− h− q)θδκ} .

Clearly, the denominator of the above expression is always positive, since 1− q ≥ 1− h− q

and κ ≤ 1. Therefore

sign(
dh

dδ
) = −sign(κ).

Likewise, it’s easy to calculate that

dh

dq
= − h[θδκ + (1− θ)hκ]

{(1− q)[θδκ + (1− θ)hκ]− κ(1− h− q)θδκ} < 0,

where again the denominator of the above expression is always positive, since 1−q ≥ 1−h−q

and κ ≤ 1.

58




