
NBER WORKING PAPER SERIES

ASSESSING THE RISK IN SAMPLE MINIMUM RISK PORTFOLIOS

Gopal K. Basak
Ravi Jagannathan

Tongshu Ma

Working Paper 10447
http://www.nber.org/papers/w10447

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
April 2004

We thank the helpful comments and suggestions of seminar participants at CIRANO, Harvard Business
School, Norwegian School of Management BI, NHH: Norwegian School of Economics and Business
Administration, and the University of North Carolina. We are responsible for any errors and omissions. The
views expressed herein are those of the author(s) and not necessarily those of the National Bureau of
Economic Research.

©2004 by Gopal K. Basak, Ravi Jagannathan, and Tongshu Ma. All rights reserved. Short sections of text,
not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including
© notice, is given to the source. 



Assessing the Risk in Sample Minimum Risk Portfolios
Gopal K. Basak, Ravi Jagannathan, and Tongshu Ma
NBER Working Paper No. 10447
April 2004
JEL No. G11, G12

ABSTRACT

We show that the in-sample estimate of the variance of a global minimum risk portfolio

constructed using an estimated covariance matrix of returns will on average be strictly smaller than

its true variance. Scaling the in-sample estimate upward by a standard degrees-of-freedom related

factor or using the Bayes covariance matrix estimator can be inadequate; the correction is likely to

be twice as large as the standard correction when returns are i.i.d. multivariate Normal. We develop

a Jackknife-type estimator of the optimal portfolio's variance that is valid when returns are i.i.d.; and

a variation that may be better when returns exhibit volatility persistence.

We empirically demonstrate the need to correct for in-sample optimism by considering an

optimal portfolio of 200 stocks that has the lowest tracking error when the S&P500 is the benchmark

and three years of daily return data are used for estimating covariances. When the optimal portfolio

is constructed using the sample covariance matrix, the standard deviation of the tracking error is

1.46 percent whereas its in-sample estimate is 0.94 percent. Standard degrees of freedom correction

gives an estimate of 1.10 percent; our correction, 1.24 percent; and the weighted Jackknife, 1.36

percent.
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I. Introduction

While mean variance portfolio theory has been around for nearly 50 years, its use has become

widespread mostly during the past decade. This is primarily due to the decline in the cost of

acquiring and processing financial market data. The decline in the cost of computing has also

made large-scale optimization feasible for most investors, making it possible to work directly with

returns on individual securities when constructing efficient portfolios instead of first grouping them

into asset classes.

The use of a large collection of primitive securities has the advantage of helping construct more

efficient portfolios. The disadvantage is that it becomes more difficult to assess the true variance

of those portfolios when covariances of asset returns are not known and their estimates are used

as inputs to the optimizer. It has been observed in the literature that the in-sample value of the

variance of an optimal portfolio constructed using historical return data is an optimistic estimate

of the portfolio’s true variance,1 hereafter referred to as the out-of-sample variance. This bias,

commonly referred to as in-sample optimism, increases with the number of assets used to construct

mean-variance efficient portfolios.

In this paper we identify the reason for this in-sample optimism and suggest methods for

correcting for it. Since our focus is in assessing the risk of an efficient portfolio and not its mean, we

focus on the global minimum variance and minimum benchmark tracking-error variance portfolios

constructed using an estimated covariance matrix. We refer such portfolios as sample minimum risk

portfolios (SMRPs) in this paper. We demonstrate that the in-sample optimism can be substantial

in certain situations.

It might be argued that by suitably scaling up the in-sample variance by a factor that is related

to the degree-of-freedom of the distribution of the estimated covariance matrix, we may be able

to correct for in-sample optimism. When returns over time are drawn from an i.i.d. multivariate

Normal distribution, we show that scaling up the in-sample variance by a degrees-of-freedom related

factor provides an unbiased estimate of the variance of the true global minimum variance portfolio.

Since the out-of-sample variance of the sample minimum risk portfolio is strictly larger on average,
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this procedure does not adequately correct for the in-sample optimism.

The example in Table I, Panel D, illustrates the inadequacy of the standard degrees-of-freedom

correction. There we report the properties of the minimum tracking-error variance portfolio con-

structed using the 200 largest stocks on the NYSE/AMEX/NASDAQ, with the S&P 500 as the

benchmark. The covariance matrices are estimated using three years daily return. (So the sample

size T is approximately 750.) When the sample covariance matrix is used to construct the SMRP,

the average out-of-sample standard deviation is 1.46 percent whereas the corresponding in-sample

number is 0.94 percent, i.e., the ratio of the two variances is 2.41 (= (1.46
0.94)2). In contrast, as

we show later, the classical degrees-of-freedom based scaling factor is ( T−1
T−N ), which is only 1.36

(= 750−1
750−200). Even though the use of a three-factor model reduces the in-sample optimism, it still

remains large. The in-sample estimate is 1.64 percent whereas the corresponding out-of-sample

standard deviation of 1.93 percent. The ratio of the out-of-sample to in-sample variances in that

case is 1.38.

In fact, when returns are i.i.d. multivariate normal and the minimum risk portfolio is con-

structed without portfolio weight constraints, we show that it necessary to add twice the amount

of the degrees-of-freedom correction to the in-sample risk to arrive at a good estimate of of the

out-of-sample risk. For example, in the first row of Table I, Panel A, the degrees-of-freedom cor-

rection is 5.42 − 4.64 = 0.78 percent. Adding twice this amount to the in-sample risk gives us

4.64 + 2× 0.78 = 6.20 percent, which is almost the realized out-of-sample risk of 6.29 percent.

In addition to being inadequate, degrees-of-freedom based corrections are difficult to derive

in general. For example, there are no available degrees-of-freedom corrections for the shrinkage

estimator of Ledoit or the constant correlation model of Elton and Gruber (1973). Degrees-of-

freedom corrections are also unavailable when efficient portfolios are constructed subject to portfolio

weight constraints, even though portfolio managers often face such constraints, and such constraints

can improve the portfolios’ performance (Frost and Savarino (1988), Jagannathan and Ma (2003)).

It would appear that we can avoid the in-sample optimism through the use of a Bayesian

approach since it would take into account the randomness of the means and covariances used in the
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optimization procedure. However, with standard diffuse priors commonly used in empirical works,

we find that the variance of the efficient portfolio computed using the predictive distribution can also

be substantially below its true variance. This should come as no surprise since with diffuse priors,

the predictive covariance matrix is the sample covariance matrix multiplied by the factor T+1
T−N−2

(see Section III). This has two implications. First, the portfolio weights would be the same as those

obtained using the sample covariance matrix. Second, the variance of the global minimum variance

portfolio under the predictive distribution is simply T+1
T−N−2 times the in-sample variance computed

using the sample covariance matrix under the Classical method. Notice that the factor, T+1
T−N−2 , is

only slightly larger than the degrees-of-freedom correction, T−1
T−N , mentioned earlier, for the sample

covariance matrix under the Classical method. Hence the variance of the global minimum variance

portfolio computed using the predictive distribution with standard diffuse priors will be almost

the same as the degree-of-freedom adjusted in-sample variance under the Classical method. The

inadequacy of standard diffuse priors and the need for modifying them is discussed by Jacquier,

Kane and Marcus (2002) in a related context.

There is a large literature on testing the mean-variance efficiency of a given portfolio.2 These

tests can be interpreted as examining whether the distance between a given benchmark portfolio

and a particular efficient portfolio constructed using sample moments is zero after allowing for sam-

pling errors. Although these tests also involve constructing efficient portfolios based on estimated

covariance matrices, the sampling theory associated with these tests differ in important ways from

that associated with the estimate of the variance of the sample minimum risk portfolio developed

in this paper.

When there is no risk-free asset, these tests for the efficiency of a given portfolio rely on asymp-

totic theory, whereas in-sample optimism exists only in finite samples. When there is a risk-free

asset and asset returns are i.i.d. multivariate Normal, these tests3 are based on exact finite sample

distribution theory. However, these results do not readily extend to address the in-sample optimism

issue examined in this paper. In what follows we explain why.

Consider forming the global minimum variance portfolio based on S, an estimate of the unknown
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covariance matrix, Σ. The vector of portfolio weights is given by:

ws =
S−11

1′S−11
. (1)

We use 1 to denote the column vector of ones throughout the paper. The variance of this portfolio’s

return is,

w′sΣws =
1′S−1ΣS−11
(1′S−11)2

. (2)

Since Σ is unknown, the variance of ws is also unknown and has to be estimated.

In MacKinlay (1987) and Gibbons, Ross, and Shanken (1989), the test statistic—which provides

a measure of the distance between the given benchmark portfolio and a particular sample efficient

portfolio—also involves the unknown covariance matrix of returns, Σ. However, when we replace the

unknown Σ with the sample covariance matrix S, the test statistic still has a known finite sample

distribution when returns are i.i.d multivariate Normal. In contrast, if we replace the unknown Σ

with its estimate S in (2), we just get the in-sample variance,

w′sSws =
1

1′S−11
.

This does not help since the in-sample variance provides a downward biased estimate of the popu-

lation variance.

We therefore propose a jackknife-type method for estimating the risk in sample minimum risk

portfolios. We show that this estimator is valid when returns are i.i.d. or satisfy the exchangeability

condition. Simulation results indicate that this method gives more precise estimates of the sample

minimum risk portfolio’s risk than the in-sample estimate, the degree-of-freedom adjusted in-sample

estimate, and the Bayesian estimate under diffuse priors.

There is general agreement that variances of returns and covariances among returns vary in a

systematic stochastic fashion over time. To account for this persistence we consider two approaches.

The first is a variation of the jackknife-type estimator for the out-of-sample variance of SMRPs that

weights recent observations more heavily than those in the distant past.4 We find that this approach

provides a more precise estimate of the out-of-sample risk of the SMRPs. The second approach is

based on the Dynamic Conditional Correlation Model of Engle (2002). This approach provides an
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accurate estimate of risks in the SMRPs constructed using one- and three-factor models. However,

in our sample, SMRPs constructed using one- and three-factor models have a significantly higher

risk when compared to SMRPs constructed using the sample covariance matrix. This suggests

that three factors are insufficient to account for the correlation among returns, and futher work

is needed to model the block diagonal structure of the correlation matrix of residual returns in a

three-factor model.

II. Relation Between In-sample and Out-of-sample Variances

of Minimum Risk Portfolios Constructed Using

Estimated Covariance Matrices

We use the following notation: Rt is the N × 1 vector of date t returns (or returns in excess

of some benchmark return when the objective is to minimize the tracking-error variance) on N

primitive assets; µ = E(Rt), Σ = Cov(Rt), and S and µ̂ are unbiased estimates of Σ and µ based

on T observations on returns, {R1, R2, . . . , RT }. With these notations, our analysis applied to

both portfolio variance minimization and tracking-error variance minimization. For brevity, we

will use the term “return” to mean both raw return and excess return in excess of the bentchmark,

and the term “portfolio variance minimization” to mean both portfolio variance minimization and

tracking-error variance minimization in our analysis.

We use ws to denote a minimum variance portfolio constructed using sample moments of the

returns. That is, ws is a sample minimum risk portfolio. We use wp to denote a efficient portfolio

constructed from the population moments of the returns. That is, wp is a population minimum risk

portfolio. Then the in-sample variance of ws is w′sSws, and its out-of-sample variance is w′sΣws.

w′pΣwp is the variance of the population minimum risk portfolio.

Let wp be the population minimum risk portfolio with an expected return of ν, i.e., w = wp
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solves the following problem:

min
w
{w′Σw} (3)

subject to w′µ = ν

w′1 = 1, wi ≤ wi ≤ w̄i,

for some constants wi, w̄i, i = 1, . . . , N

The Lagrangian function of the above minimization problem is:

fp(w) =
1
2
w′Σw − δ1(w′µ− ν)− δ2(w′1− 1)− (w − w)′θ1 + (w − w̄)′θ2 (4)

where δ1 and δ2 are nonnegative constants and θ1 and θ2 are nonnegative vectors. Since Σ is a

positive definite matrix, the Lagrangian function is strictly convex with a unique minimum. Let

w = wp along with (δ1 = δp
1 , δ2 = δp

2 , θ1 = θp
1, θ2 = θp

2) solve the minimization problem given in (3).

Then w ≤ wp ≤ w̄; (wp,i − wi)θ
p
1,i = 0, i = 1 . . . N ; (w̄i − wp,i)θ

p
2,i = 0, i = 1 . . . N ; (wp

′µ − ν) = 0;

and (w′p1− 1) = 0, by the complimentary slackness condition for constrained minimization.

Now consider the sample analogue of the minimization problem given in equation (3) obtained

by replacing Σ and µ with their sample counterparts, S and µ̂. The Lagrangian function of this

minimization problem is:

fs(w) =
1
2
w′Sω − δ1(w′µ̂− ν)− δ2(w′1− 1)− (w − w)′θ1 + (w − w̄)′θ2. (5)

Let ws, together with the auxiliary parameters (δs
1, δs

2, θs
1, θs

2), minimize the sample Lagrangian

function, fs(w).

We have the following relation about the in-sample variance of ws and the population variances

of ws and wp :

Lemma 1: The following inequality relations hold:

E(w′sSws) < w′pΣwp < E(w′sΣws)− 2E(δs
1(w

′
sµ− ν)). (6)

Proof: See Appendix A.
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This lemma says that the in-sample variance would on average under-estimate the true variance

of a sample minimum risk portfolio whenever E[δs
1(w

′
sµ− ν)] is positive. Our simulations indicate

that for parameter values typically encountered in practice E[δs
1(w

′
sµ − ν)] is likely to be small.

Hence there is likely to be in-sample optimism for most sample minimum risk portfolios.

For the special case of the global minimum variance portfolio, the constraint that the expected

return on the portfolio should equal some target value in the minimization problems does not apply

and the last term in (6) drops out. This gives us the following proposition.

Proposition 1: Let SMRP denote the global minimum variance portfolio constructed using an

unbiased estimate of the covariance matrix. Then, the in-sample estimate of the variance of SMRP

will on average be strictly smaller than the variance of the true global minimum variance portfolio,

which on average will be strictly smaller than the out-of-sample variance of the SMRP. That is,

E(w′sSws) < w′pΣwp < E(w′sΣws). (7)

We now characterize the difference between the first two terms and the difference between the

last two terms of the above inequality when there are no portfolio weight constraints. For that

purpose, let q1 denote the difference between the middle term and the left-most term in the above

inequality; and q2 denote the difference between the right-most term and the middle term; i.e.,

q1 = w′pΣwp −E(w′sSws) and q2 = E(w′sΣws)− w′pΣwp.

Proposition 2: Let SMRP denote the global minimum variance portfolio constructed using an

unbiased estimate of the covariance matrix with no portfolio weight constraints. Then on average

the out-of-sample variances of SMRP equals its in-sample variance plus two strictly positive terms

as given below.

E(w′sΣws) = E(w′sSws) + q1 + q2, (8)

where

q1 ≡ w′pΣwp − E(w′sSws) = E[(wp − ws)′S(wp − ws)], (9)

q2 ≡ E(w′sΣws)− w′pΣwp = E[(wp − ws)′Σ(wp − ws)], (10)

are two positive numbers.
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Proof: Equation (8) and the first part of eqs.(9) and (10) are obvious from Proposition 1. So we

only need to prove the second part of (9) and (10).

With no portfolio weight constraints, the sample minimum risk portfolio, ws, is given by (1).

The out-of-sample variance of this portfolio, w′sΣws, can be written as:

w′sΣws = w′pΣwp + 2(w′pΣ)(ws − wp) + (ws − wp)′Σ(ws − wp).

Notice that,

w′pΣws =
1′Σ−1

1′Σ−11
Σ

S−11
1′S−11

=
1′

1′Σ−11
S−11

1′S−11
=

1
1′Σ−11

= w′pΣwp.

Hence we get:

w′sΣws = w′pΣwp + (ws − wp)′Σ(ws − wp).

Taking expectation on both sides, we get:

E(w′sΣws) = w′pΣwp + E[(ws − wp)′Σ(ws − wp)]. (11)

Using the same logic as before, we can write

w′pSwp = w′sSws + 2(w′sS)(wp − ws) + (wp − ws)′S(wp − ws).

Notice that

w′sSwp =
1′S−1

1′S−11
S

Σ−11
1′Σ−11

=
1′

1′S−11
Σ−11

1′Σ−11
=

1
1′S−11

= w′sSws.

This means

w′pSwp = w′sSws + (wp − ws)′S(wp − ws)

Taking expectations, we get

w′pΣwp = E(w′pSwp) = E(w′sSws) + E[(wp − ws)′S(wp − ws)]. (12)

The Proposition follows from combining (11) and (12). ¤

Both q1 and q2 involve the unknown covariance matrix Σ, and therefore are unknown. We now

derive an unbiased estimate of q1 under the additional assumption that the returns are drawn from

an i.i.d. multivariance Normal distribution. After that, we will say something about q2 also.
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Proposition 3: Assume that returns are drawn from an i.i.d. multivariate Normal distribution.

Let SMRP denote the global minimum variance portfolio constructed using an unbiased estimate of

the covariance matrix with no portfolio weight constraints. Then the quantity q1 in Proposition 2

is

q1 =
N − 1
T −N

E(w′sSws). (13)

Proof: With no portfolio weight constraints, the in-sample variance of ws is 1
1′S−11

. The average

in-sample variance of this portfolio is

E
(
w′sSws

)
= E

(
1

1′S−11

)
.

We know that (T −1)S is a N dimensional Wishart distribution with degree of freedom (T −N)

and parameter matrix Σ. That is,

(T − 1)S ∼ WN (T −N, Σ).

[Here we follow the notation of Muirhead (1982)]. From Theorem 3.2.11 of Muirhead (1982), we

know that

{1′[(T − 1)S]−11}−1 ∼ W1

(
T −N, (1′Σ−11)−1

)
.

Now if a scalar random variable x has a Wishart(T−N, σ2) distribution then x
σ2 is χ2

T−N distributed

(Muirhead (1982), p. 87). Since the expectation of the χ2
T−N is (T −N), we get,

E

(
(1′[(T − 1)S]−11)−1

(1′Σ−11)−1

)
= T −N,

i.e.,

E

(
T − 1
T −N

1
1′S−11

)
=

1
1′Σ−11

= w′pΣwp. (14)

This implies that

q1 = w′pΣwp −E(w′sSws) =
N − 1
T −N

E(w′sSws).

¤

The above equation suggests a degrees-of-freedom adjusted in-sample variance as

(1 + q1)× (in-sample variance) =
T − 1
T −N

× (in-sample variance). (15)
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This degrees-of-freedom adjusted in-sample variance gives an unbiased estimate of the variance

of the population minimum risk portfolio, which is still smaller than the variance of the sample

minimum variance portfolio.

Remark: Notice that the quantities q1 and q2 in Proposition 2 are likely to be close when the

number of observations is reasonably large. Hence the in-sample estimate of the variance plus 2q1

is likely to provide a more precise estimate of the out-of-sample variance.

A natural question that arises at this stage is whether the use of Bayesian covariance matrix

estimator would provide an unbiased estimate of the out-of-sample variance of minimum variance

portfolios. In the next section we show that this is unlikely to be the case.

III. In-sample Optimism with Bayes Estimator

of the Covariance Matrix

The setup of the problem and the notation are the same as described at the beginning of Section

II. In addition, we assume that returns are i.i.d. multivariate Normal.

Diffuse priors are often used in empirical studies in finance. Therefore, we assume the portfolio

manager has the standard diffuse prior about µ and Σ, the vector of expected returns and return

covariance matrix, given by:

p(µ,Σ) ∝ |Σ|−(N+1)/2.

We assume that the Bayesian portfolio manager’s objective is to choose a portfolio w to minimize

the variance of the portfolio’s return in the next period,

var(w′RT+1),

where RT+1 is the next period’s return, and var(·) is the variance under the predictive distribution.

We have the following result.

Proposition 4: Let returns be drawn from an i.i.d. multivariate Normal distribution and S be

the sample covariance matrix. Let wsB be the portfolio that minimizes var(w′RT+1). Then:
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1. wsB is the same as ws, the global minimum variance portfolio constructed using the sample

covariance matrix;

2. var(w′sBRT+1) = (T−1)(T+1)
T (T−N−2) w′sSws.

The proof is in Appendix B.

It is worth noting that the right side of the above equation is very close to the degree-of-freedom

(DF) adjusted in-sample variance in (15). In fact, comparing with (15), we see that

w′svar(RT+1)ws =
(

T + 1
T

)(
T −N

T −N − 2

)

× (DF adjusted in-sample variance) (16)

The factor T+1
T

T−N
T−N−2 is very close to 1 since in practice the N and T are usually quite large.

Hence, the variance of the global minimum variance portfolio under the predictive distribution will

be very close in magnitude to the degree-of-freedom adjusted in-sample variance.

The fact that the Bayesian estimate is very close to the degree-of-freedom adjusted in-sample

estimate implies there is still in-sample optimism using the Bayes estimates with the standard

diffuse priors.

When the covariance matrix has a factor structure, we can also examine the estimation of the

covariance matrix and the out-of-sample variance of the optimal portfolio under the predictive

distribution. The details are in Appendix C.

IV. Jackknife-type Estimator of the Out-of-sample Variance

A. Portfolio Holding Period and Return Observation Interval Are the Same

For expositional convenience, we first consider the special case where the portfolio manager

estimates covariance matrices and computes optimal portfolilo weights at the end of each period,

and the manager’s investment horizon is also one period. As before we assume that the portfolio

manager has time series data for T periods in the immediate past, and estimates the return covari-

ance matrix using these T observations. Let ST denote this estimate and wT denote the portfolio
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weights formed using ST . The return on this portfolio during period T + 1 is w′T RT+1. Consider

the following estimator of V ar(w′T RT+1).

We first drop the i′th return observation, for an arbitrary i in the interval [1, T ], and esti-

mate the return covariance matrix. Let S(T−1, i) denote the covariance matrix estimate so ob-

tained using the data {R1, . . . , Ri−1, Ri+1, . . . , RT }. We then construct the global minimum vari-

ance portfolio using S(T−1,i). Denote the resulting portfolio as w(T−1,i). Note that the portfolio

returns, w′(T−1,i)Ri and w′T RT+1, have approximately the same distribution for large enough T ,

if the time series of returns on the primitive assets are i.i.d. Hence a natural estimator of the

out-of-sample variance, V ar (w′T RT+1) , would be the sample variance of the T portfolio returns,

[w′(T−1, 1)R1, w′(T−1, 2)R2, ..., w′(T−1, T )RT ]. With daily data, we can ignore the effect of sample

mean return on the calculation of the sample variance, and hence the jackknife estimator is

q̂JK =
1
T

T∑

i=1

(w′(T−1,i)Ri)2. (17)

While the validity of the jackknife also requires T to be large, it need not be as large as what

may be required for the standard central limit theorem. This is because we only need w′T−1,iRi

and w′T RT+1 to have approximately the same distribution.

We can relax the i.i.d. assumption with the assumption that returns have the exchangeability

property, i.e., for any fixed positive integer k, the joint density of {R1, . . . , Rk}, say f(r1, . . . , rk),

is the same as f(rσ(1), . . . , rσ(k)) for all permutations σ : {1, . . . , k} → {1, . . . , k}.

Jagannathan and Ma (2003) show that using daily return data instead of monthly return data

improves the performance of minimum risk portfolios. The empirical findings reported in Liu (2003)

suggest that there may not be much advantage to using higher-frequency return data (higher than

daily) if the holding period is one month or longer, when a year or more of historical daily return

data are available. In view of this, in our empirical analysis we form minimum risk portfolios

based on covariance matrices estimated using the past three years of daily return data and hold

the portfolio for one month. At the end of each month, we recompute the portfolio weights based

on the most recent three years of historical daily returns. Monthly instead of daily rebalancing of

portfolio weights is justified in the presence of transactions costs. For risk management and portfolio
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performance evaluation purposes, examine the portfolios’ performance in the month ahead is also

more relevant. In what follows we therefore modify the estimator of the out-of-sample variance

we discussed to allow for the holding period to be longer than the interval over which returns are

measured.

B. Portfolio Holding Period Is Longer Than Return Observation Interval

We now consider the case where returns are measured more frequently, say once a day, but the

portfolio manager revises the holdings once every few days, say once a month, with there being

l days in a month. Let T denote the number of days of daily return data used to estimate the

covariance matrix, ST , and the efficient portfolio weights, wT ; and m = T/l denote the number of

months of observation. Let qT,l denote the sample variance of the l post-formation daily returns

on the efficient portfolio, i.e., the sample variance of (w′T RT+1, . . . , w
′
T RT+l). Our objective is to

estimate qT,l.

We assume that monthly returns (i.e., blocks of l returns) satisfy the exchangeability property.

Then, for each month 1 ≤ i ≤ m, we estimate the covariance matrix S(T−l,i) by deleting the return

data for the l days in month i and construct the global minimum variance portfolio using S(T−l,i).

Let the resulting portfolio be w(T−l,i). Compute the sample variance of the sequence of l returns on

the efficient portfolio,
(
w′T−l,i R(i−1)l+1, . . . , w

′
T−l,i Ril

)
. Let qT,l(i) denote this sample variance.

Note that S(T−l, i) will have approximately the same distribution as ST , for moderately large T ,

and so each w(T−1, i) will have approximately the same distribution as wT . Hence, each sequence,
(
w′T−l,i R(i−1)l+1, . . . , w

′
T−l,i Ril

)
, will have approximately the same distribution as the sequence

(w′T RT+1, . . . , w
′
T RT+l). Since qT,l(i) will have approximately the same distribution as qT,l, the

average of the m such variances, qT,l(i), i = 1, 2, . . . , m, provides a consistent estimate of qT,l, the

object of our interest. This gives us the following jackknife-type estimator:

q̂T,l
JK =

1
m

m∑

i=1

qT,l(i). (18)

14



V. Assessing the Optimal Portfolio’s Risk

When the Covariance Structure Is Time-varying

In Section IV, our jackknife method of assessing the sample optimal portfolio’s risk is based on

the assumption that the time series of returns satisfy the exchangeability property. However, there

is ample evidence in the literature that the first and second moments of returns vary over time in

a systematic stochastic fashion, violating the exchangeability condition. We therefore consider the

following two additional estimators for assessing the out-of-sample variance of SMRPs.

A. Method Based on the Multivariate GARCH Model

For computational feasibility and statistical reliability we assume that the stock returns have a

k factor structure:

Rt = α0 + a1Dt + β0Ft + β1Ft−1 + β2Ft−2 + εt, (19)

where Rt is defined before, Ft is the column-vector of returns of k factors in period t, the β’s are

N×k matrices of factor loadings, and εt is the residual vector and is assumed to be i.i.d. over time.

Because we are using daily returns, we allow the lagged factor returns to affect the current asset

returns. In addition to the factors, we also allow a weekend-and-holiday dummy, Dt, which is one

if the previous day has no trading and zero otherwise. We use this dummy variable to catch the

weekend and holiday effect in daily stock returns. In our empirical work, we will use a one-factor

model and a three-factor model. (That is, k is either 1 or 3.) In the former, the daily market excess

return is the factor; in the latter, the daily returns of the Fama-French three-factors are the factors.

We model the evolution of the factor returns using a VAR model with error terms follow the

DCC multivariate GARCH:

Ft = φ0 + φ1Dt +
p∑

k=1

ΦkFt−k + δt, (20)

δt ∼ DCC multivariate GARCH, (21)

where φ0 and φ1 are k vectors, the Φk’s are k × k matrices, δt is a k vector of error term and

DCC multivariate GARCH denotes the Dynamic Conditional Correlation multivariate GARCH
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model developed in Engle (2002) and Tse and Tsui (2002). Details of this model are described

in Appendix D.

We use daily data, with optimal portfolios balanced every month. Assume that the optimal

portfolio weight, wT , is already constructed. So our task is to estimate the sample variance of the

optimal portfolio’s returns in the l days of the next month:

Sample V ariance of (w′T RT+1, w
′
T RT+2, ..., w

′
T RT+l). (22)

To do that we can simulate forward the sample paths of FT+1, ..., FT+l. Then we use (19)

to generate the sample path of future returns, RT+1, RT+2, ..., RT+l, and calculate (22). When

generating the future factor returns, the standardized residuals in the multivariate GARCH model

are drawn from i.i.d. standard normal distributions. When generating the future asset returns

from factor returns, the error terms in (19) are generated using the bootstrap method. Specifically,

given the parameter estimates of (19), we calculate the realized residuals, ε̂1, ..., ε̂T . When we use

(19) to forecast the returns from the factors, the error terms εT+1, ..., εT+l are randomly drawn

(with replacement) from these T realized residuals. We use this bootstrap method to catch any

nonnormality and any covariance structure in the asset returns that is left out of the factor model.

We repeat this procedure M times and use the average of the M estimates of (22) as our final

estimate of the optimal portfolio’s out-of-sample variance.

When choosing the number of lags for the VAR model in (20), we first did some experiments

using the AIC and BIC criteria. With the Fama-French three factors, we found that over the sample

period, the AIC tended to choose the maximum lag length of 20, while the BIC tended to choose

very low lag lengths such as one, two, and at most four. With only the market factor, the results

are qualitatively similar. Therefore, we decided to choose the order of the VAR (or AR when using

only one factor) to be five as a compromise. We allow for five lags also because there are usually

as many trading days in a week, and we hope five lags will be sufficient to catch the dynamics of

the daily factor returns while avoiding the use of too many parameters.5

B. The Weighted Jackknife Method
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In this subsection, we modify the jackknife estimator in Section IV to take into account the

persistence in the covariance structure.

Recall that when the interval over which returns are measured and the holding period match,

the jackknife estimator for i.i.d. data is given by equation (17). If returns do not satisfy the

exchangeability condition, specifically, if returns have persistent covariance structure, it would

make intuitive sense to use a weighted average instead of straight average in (17), giving more

weight to the recent observations. One such estimator is given by:

q̂JK =

∑T
i=1 eαi(w′(T−1,i)Ri)2

∑T
i=1 eαi

, (23)

for some positive α.

When the efficient portfolio weights are recomputed once every month using historical daily

returns data, the jackknife estimator under the i.i.d. assumption is given by (18). When variances

and covariances vary over time in a systematic stochastic fashion, we modify the average in (18)

into a weighted average, yielding the weighted jackknife estimate of the out-of-sample variance:

q̂T,l
JK =

∑m
i=1 eαiqT,l(i)∑m

i=1 eαi
, (24)

for some positive α. The motivation for using exponentially declining weights comes from the results

in Foster and Nelson (1996).

VI. Empirical Evaluation of the Estimators

A. Data and Methodology

We evaluate the performance of the jackknife and other estimators by examining the mean and

standard deviation of the forecast errors as well as the mean absolute forecast error over a large

number of out-of-sample holding periods, as in Chan, Karceski, and Lakonishok (1999), Ledoit and

Wolf (2003a, 2003b) and Jagannathan and Ma (2003). These papers compare the out-of-sample

risks of SMRPs constructed from different covariance matrix estimators. In contrast, we compare

how well the jackknife, the in-sample variance, and other estimators perform in estimating the

out-of-sample risk of the SMRPs.
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At the end of April 1967, we choose 200 stocks with the largest market capitalization from all

common domestic stocks traded on the NYSE, the AMEX and NASDAQ, and with monthly return

data for all the immediately preceeding 36 months. We estimate the covariance matrix of the 200

stocks using daily return of the preceeding 36 months, and form the global minimum variance and

minimum tracking-error variance portfolios. When a daily return is missing, the equally weighted

market return of that day is used instead.

When portfolio variance minimization is the objective, we form two global minimum variance

portfolios using each covariance matrix estimator. The first portfolio is constructed without im-

posing any restrictions on portfolio weights, the second is subject to the constraint that portfolio

weights should be nonnegative.6 We then compute estimates of the out-of-sample variance of these

portfolios using the jackknife and other estimators. The optimal portfolios are held for one month.

Their daily returns are recorded, and the daily return sample standard deviations within that month

are calculated.7 At the end of the next month, the same process is repeated. This gives a time

series of post-formation daily return standard deviations for each of the 396 nonoverlapping one

month intervals during the period May 1967 to April 2000 for each portfolio, as well as estimates

of these out-of-sample standard deviations according to the different estimators.

For tracking-error minimization, following Chan, Karceski, and Lakonishok (1999), we assume

the investor is trying to track the return of the S&P 500 index. We construct two tracking-error

minimizing portfolios for each covariance matrix estimator in the same manner as the case of

portfolio variance minimization. Notice that constructing the minimum tracking-error variance

portfolio is the same as constructing the minimum variance portfolio using returns in excess of the

benchmark.

B. Covariance Matrix Estimators

The first estimator is the sample covariance matrix:

SN =
1

T − 1

T∑

t=1

(Rt − µ̄)(Rt − µ̄)′,

where T is the sample size, Rt is a N vector of stock returns in period t, and µ̄ is the vector of
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average returns.

The second estimator assumes that returns are generated according to Sharpe’s (1963) one-

factor model:

rit = αi + βirmt + εit,

where rmt is the period t return on the value-weighted portfolio of stocks traded on the NYSE,

AMEX, and Nasdaq. Then the covariance estimator is

S1 = s2
mBB′ + D. (25)

Here B is the N ×1 vector of β’s, s2
m is the sample variance of rmt, and D has the sample variances

of the residuals in its diagonal, and zeros elsewhere.

The third estimator is the Fama and French (1993) three-factor model, which is similar to the

one-factor model.

We also examined the shrinkage estimator proposed by Ledoit (1996). The Ledoit covariance

matrix is a weighted average of the sample covariance matrix and the one-factor model based

covariance matrix. With three years of daily return data we find that the optimal weight assigned

to the sample covariance matrix is in excess of 0.95. Hence the results for the Ledoit covariance

matrix are almost the same as those for the sample covariance matrix and therefore not reported.

C. Examining the Performance of the Estimators Using Simulated Data

In order to examine how the different estimators of out-of-sample risks would perform when

returns are i.i.d. multivariate Normal, we generate return data using Monte Carlo methods. For

that purpose, every time we read in the returns (or excess returns for the case of tracking error

minimization) on the 200 stocks over the three-year estimation period, we also read in the corre-

sponding three Fama and French (1993) factors. We then estimate the betas for all the 200 stocks

with respect to the factors, calculate the residual variances and the covariance matrix of the factors.

Using the betas, the residual variances, and the covariance matrix of the factors, we generate the

stock returns and factor returns for each day in the three years and one month period (the total
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time length of in-sample and out-of-sample) from an i.i.d. multivariate Normal distribution and

assuming an exact three-factor structure. Then we apply the same procedure to the simulated data

as to the real data. This gives one out-of-sample variance and one set of estimates of it for each

month over the 1967/5 to 2000/4 period, just as for the real return data.

D. Empirical Results

Tables I – IV display the empirical results. Different covariance matrix estimators result in

different sample minimum risk portfolios (SMRPs). These are displayed on different rows. We also

have different estimators that estimate the SMRPs’ out-of-sample standard deviations. These are

displayed on different columns, along with the realized out-of-sample standard deviations.

Table I panels A and C give the result for the global minimum variance portfolios. The ∗’s
in the last two columns indicate whether the related numbers are significantly smaller than one.8

When returns have an exact three-factor structure and are i.i.d. multivariate Normal (Panel A),

the in-sample risk accurately reflects the out-of-sample risk provided a three-factor model is used

to estimate covariance matrices, as is to be expected. However, when the sample covariance matrix

or the one-factor model based covariance matrix estimator is used to construct the minimum risk

portfolios, the in-sample risk is substantially smaller than its out-of-sample counterpart. Neither

the use of the standard degrees of freedom based correction nor the correction based on the Bayesian

estimate leads to a sufficient reduction in the in-sample optimism. In all cases the jackknife type

estimator of the out-of-sample risk is reasonably accurate.

In Section II we showed when returns are generated from an i.i.d. multivariate Normal dis-

tribution and the optimal portfolio is constructed from the sample covariance matrix with no

portfolio weight constraints, the right correction is likely to be twice as large as the standard de-

grees of freedom based correction. In Panel A we see that the degrees-of-freedom correction in

this case is 5.42 − 4.64 = 0.78. If we add twice of this correction to the in-sample risk, we get

4.64 + 2× 0.78 = 6.20, which is almost the out-of-sample standard deviation of 6.29.

When portfolio weights are constrained to be nonnegative, the out-of-sample risks of the mini-
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mum variance portfolios associated with the three covariance matrix estimators are about the same,

as observed by Jagannathan and Ma (2003). However, the in-sample optimism comes down sub-

stantially with portfolio weight constraints. While the use of constraints imposes a penalty—the

out of sample variance goes up—the investor is able to more accurately assess the out-of-sample

risk.

Panel C of Table I gives the results when daily return data on stocks traded on NYSE, AMEX

and NASDAQ are used. The sample covariance matrix outperforms the one- and three-factor

models—the out-of-sample risk as well as the in-sample optimism are the least for the sample

covariance matrix.9 As is to be expected, with portfolio weight constraints the in-sample optimism

comes down substantially. As is the case for simulated data, neither the standard degrees-of-freedom

correction nor the use of the Bayesian estimator of the covariance matrix help much in reducing

the in-sample optimism, while the jackknife estimator performs better. In fact, t-tests show that

the average jackknife estimates are not significantly lower than the average realized out-of-sample

standard deviations (see footnote 8). However, the fact that the numbers in the last column are

all smaller than one indicates that, unlike with simulated data, the jackknife too exhibits some

in-sample optimism, suggesting the non-i.i.d. nature. The jackknife also provides a better estimate

than that obtained by adding twice the standard degrees of freedom based correction to the in-

sample estiamte. in daily returns.

Panel B gives the results for tracking-error-variance minimization with simulated data. The

patterns are similar to the variance minimization case in Panel A. The in-sample optimism is

the highest for the sample covariance matrix. Adding twice the degree of freedom correction to

the in-sample risk gives us 1.45 + 2 × (1.69 − 1.45) = 1.93, which is exactly the out-of-sample

risk!Jackknife estimates are accurate. The three-factor-model based covariance matrix estimator

performs the best in terms of both lowest out-of-sample risk and absence of no in-sample optimism.

This is probably because on the one hand, the data is simulated using a three-factor model, hence

there is no specification error when we use a three-factor model to estimate the covariance matrix

of returns. On the other hand, the sampling error is also very low when estimating a factor model,

because factor models have far less parameters than the sample covariance matrix. Unlike the
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results in Panel A, imposing portfolio weight constraints has little effect.

Panel D gives the results for tracking-error minimization with daily return data. The patterns

are quite different from what we observed when simulated data were used. The sample covariance

matrix provides the lowest out-of-sample risk as measured by the standard deviation of the tracking-

error. However, it has the most in-sample optimism. The out-of-sample risk for the three-factor

model is 1.32 (= 1.93/1.46) times that for the sample covariance matrix. Statistical tests (see

footnote 8) show that the average out-of-sample risk for the factor models are significantly higher

than that of the sample covariance matrix. Hence there is substantial benefit to using the sample

covariance matrix if tracking-error minimization is the objective. This is true with or without

portfolio weight constraints. Results in the last two columns indicate that the jackknife method

has the lowest in-sample optimism.

The results in Panels C and D show that, with real return data, adding twice the degrees of

freedom adjustment to the in-sample risk still underestimates the out-of-sample risk. For example,

in Panel C, doing that will only give us 5.56+2×(6.49−5.56) = 7.42, which is still smaller than the

out-of-sample risk of 8.44. This is because the real return data are not i.i.d. multivariate Normal.

The results in Panels C and D suggest that the Sharpe and Fama-French one- and three-factor

models do not capture the full covariance structure of the returns. Indeed, standard likelihood ratio

tests using nonoverlapping three-year periods consistently reject the hypothesis that the residuals

from the factor models have diagonal covariance matrix. Furthermore, over the sample period, for

the residuals from the one-factor model, the sum of all the variances and covariances is 2.52 times

as large as the sum of all the variances. This ratio is 1.95 for the residuals from the three-factor

model, suggesting the inadequacy of the one- and three-factor model to capture the covariance

structure of returns.

These results also suggest that although the jackknife type estimator (based on the assumption

that returns are i.i.d.) performs rather surprisingly well compared to other estimators of out-of-

sample risks, there is scope for improvement through relaxing the i.i.d. assumption.

While Table I compares the averages of various estimates of the out-of-sample standard deviation
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with the average realized out-of-sample standard deviation, Table II reports the mean absolute

difference between the various estimates of the out-of-sample standard deviation and the realized

out-of-sample standard deviation. The ∗ in the last three columns indicates the associated number

is significantly larger than the corresponding number in the first column (see footnote 8 for test

method). Similar to Table I, there are four panels in Table II: the first two panels are for the

simulated return data, and the last two panels are for the real return data. Panel A indicates

that the jackknife method often leads to significant improvement compared to the in-sample and

other alternatives when there are no portfolio weight constraints. As is to be expected, when the

covariance matrix is estimated using a three-factor model, there is little difference between the in-

sample and jackknife estimates, since the simulated data indeed has an exact three-factor structure.

Panel B, which reports the tracking-error variance minimization results using simulated data, has

essentially the same pattern.

Panels C and D report the results for real return data. Again, the mean absolute difference is

less for the jackknife estimator when compared to the in-sample estimator with and without the

degrees-of-freedom correction, and the differences are often statistically significant.

Note that with real data (Panels C and D), the performance becomes significantly worse when

compared to estimates made using simulated data (Panels A and B). The mean absolute difference

between the various estimates and realized out-of-sample standard deviation are much larger. This

suggests that relaxing the i.i.d. assumption may be important.

In Sections V.A and V.B, we proposed a multivariate GARCH-based method and a weighted-

jackknife method to estimate the out-of-sample standard deviations of the optimal portfolios to

allow for time variations in variances and covariances of returns. Tables III and IV report the

performance of these methods. In using the weighted-jackknife, we choose the decay rate of the

weights to be 0.01 per day and 0.21 per month (there are about 21 trading days in a month). So

α = 0.21 in eq. (24).10

The layout of Tables III and IV is similar to that of Tables I and II, except we only examine

the results with real data. This is because our purpose here is to see how these estimators perform
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when the return data has covariance structure persistence. Therefore, the results when data are

i.i.d. Normal are irrelevant.

Table III shows that the weighted-jackknife method out-performs the alternatives when the

sample covariance matrix is used to construct optimal portfolios. In all other cases, the performance

of the weighted-jackknife is about the same as the multivariate GARCH method. This suggests that

the multivariate GARCH does a good job of capturing the temporal dependence in factor return

variances and covariances. The limitation is that we cannot implement the multivariate GARCH

procedure for the sample covariance matrix because the dimensions involved are too large making

computations difficult. Since the use of the sample covariance matrix leads to lower tracking-error

variance on average, the weighted-jackknife has advantages.

Table IV reports mean absolute differences between the various estimators and the realized out-

of-sample standard deviation. As in Table II, the ∗ in the last two columns indicates the associated

number is statistically larger than the corresponding number in the first column (see footnote 8 for

test method). Under this criterion, the weighted-jackknife often gives significantly smaller mean

absolute tracking error. Considering both the unconditional bias and the mean absolute difference,

the weighted-jackknife method performs better than the other methods we considered.

VII. Conclusion

It has been observed in the literature that the in-sample variance of a minimum risk portfolio

constructed from the sample moments of returns typically understates its true variance in the

population, i.e., there is in-sample optimism. In this paper we show that this is what one should

expect to find.

We show that the in-sample estimate of the variance of a global minimum-risk portfolio con-

structed using an estimated covariance matrix of returns will, on average, be strictly smaller than

the variance of the corresponding population global minimum-risk portfolio. Scaling the in-sample

estimate upward by a standard degrees-of-freedom related factor or using the Bayes covariance

matrix estimator is inadequate. It only provides an unbiased estimate of the variance of the pop-
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ulation global minimum-risk portfolio when returns are drawn from an i.i.d. multivariate Normal

distribution, and the right amount of correction is likely to be twice as large for i.i.d. multivariate

Normal case, and will need to be larger than that for real return data. Therefore, we suggest a

jackknife-type estimator that is valid when returns are i.i.d, and a variation that may be better

when returns exhibit volatility persistence. The jackknife type estimator has the advantage that

it is widely applicable. For example, it can be readily applied to the cases when factor models or

shrinkage covariance matrix estimators are used, and when portfolios are constructed subject to

portfolio-weight constraints.

We empirically demonstrate the need to correct for in-sample optimism by considering an opti-

mal portfolio of 200 stocks that has lowest tracking error when the S&P500 is the benchmark. We

consider three covariance matrix estimators constructed using three years of historical daily return

data: the sample covariance matrix, Sharpe’s single-index model and the Fama and French (1993)

three-factor model. We find that the in-sample estimate of the tracking-error standard deviation

is only 64 percent of the out-of-sample standard deviation. The corresponding numbers are 75

percent when corrected for the degrees of freedom and 92 percent for the jackknife-type estimator.

The use of one- and three-factor models lead to increased-tracking error variance. The out-

of-sample tracking-error for the three-factor model is 1.93 percent, which is significantly higher

than the 1.46 percent associated with the sample covariance matrix. This suggests that there is

nontrivial correlation among the residuals in the three-factor model that needs to be taken into

account when the objective is to construct efficient portfolios. An alternative to increasing the

number of factors to capture the correlation structure of returns would be to identify the block

diagonal structure of the covariance matrix of the residuals in a three-factor model using cluster

analysis as in Ahn, Conrad and Dittmar (2003).

The advantage of using factor models is that they have smaller in-sample optimism when com-

pared to the sample covariance matrix. With the use of the jackknife-type estimator for assessing

the out-of-sample tracking-error variance, this advantage of the three-factor model disappears.

The performance of the jackknife-type estimator worsens when evaluated using real data instead
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of data simulated from i.i.d. multivariate Normal distribution. We show that the use of Dynamic

Conditional Correlation Model of Engle (2002) or a weighted-jackknife method to account for this

persistence leads to substantial improvement.

26



Appendix A: The Relation Between In-sample

and Out-of-sample Variance of

Sample Mean-variance Efficient Portfolios

The goal of this appendix is to prove Lemma 1. The setup and notations are described from

the beginning of Section II until Lemma 1. For brevity we do not repeat them.

When wp 6= ws we obtain the following inequalities:

1
2
w′pΣwp = fp(wp)

< fp(ws)

=
1
2
w′sΣws − δs

1(w
′
sµ− ν)− (ws − w)′θs

1 + (ws − w̄)′θs
2

=
1
2
w′sΣws − δs

1(w
′
sµ− ν). (A1)

The first (equality) follows from the definition of the Lagrangian function given in equation (4)

and the observation that (wp − w)′θp
1 = 0; (w̄i − wp,i)′θ

p
2 = 0; (wp

′µ− ν) = 0; and (wp
′1− 1) = 0.

The second (inequality) follows from the uniqueness of the minimization problem and the fact that

wp 6= ws. The third (equality) follows from the definition of the function fp(ws) and the observation

that ws
′1 = 1. The last (equality) follows from the fact (ws, δ

s
1, d

s
2, θ

s
1, θ

s
2) minimizes the Lagrangian

function fs(w) given by equation (5); and therefore both (ws − w)′θs
1 and (w̄ − ws)′θs

2 are zero by

the complementary slackness conditions.

By a similar logic, it follows that:

1
2
w′sSws = fs(ws)

< fs(wp)

=
1
2
w′pSwp − δp

1(w
′
pµ̂− ν)− (wp − w)′θp

1 + (wp − w̄)′θp
2

=
1
2
w′pSwp − δp

1(w
′
pµ̂− ν). (A2)

Since Prob{ws = wp} < 1, E(S) = Σ, and E(µ̂) = µ, taking the expectation on both sides of
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(A2) gives:

E(fs(ws)) < E(fs(wp)) =
1
2
w′pE(S)wp − δp

1(w
′
pE(µ̂)− ν))

=
1
2
w′pΣwp − δp

1(w
′
pµ)− ν)

=
1
2
w′pΣwp

= fp(wp). (A3)

Similarly, by taking the expectation of both sides of (A1) we get:

E(fp(wp)) < E(fp(ws)) =
1
2
E(w′sΣws)− E(δs

1(w
′
sµ− ν)).

Note that the expected values of the in-sample and the out-of-sample variances of the efficient

portfolio are E(w′sSws) and E(w′pΣwp), respectively. The former is also equal to 2E(fs(ws)) (see

(A2)). We are now in a position to relate the two.

From (A2) we get, 1
2E(w′sSws) = E(fs(ws)) < E(fs(wp)); from (A3) we get, E(fs(wp)) =

1
2w′pΣwpfp(wp) = E(fp(wp)); and from (A1) we get E(fp(wp)) < E(fp(ws)), which in turn equals

1
2E(w′sΣws)− E(δs

1(w
′
sµ− ν)). By combining these inequalities and equalities and multiplying by

2 we get:

E(w′sSws) < w′pΣwp < E(w′sΣws)− 2E(δs
1(w

′
sµ− ν)). (A4)

This proves Lemma 1.
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Appendix B: Proof of Proposition 4

Proof: It is well-known that the predictive distribution for RT+1 is multivariate Student t (Zellner

(1971), p.235-236) given by:

p(RT+1|R1, ..., RT )

∝
[
1 +

T

T + 1
(RT+1 − µ̂)[(T − 1)S]−1(RT+1 − µ̂)′

]−T/2

∝
[
(T −N) + (RT+1 − µ̂)

[
(T + 1)(T − 1)

T (T −N)
S

]−1

(RT+1 − µ̂)′
]−(N+(T−N))/2

.

This is a t
(
µ̂, [ (T+1)(T−1)

T (T−N) S]−1, T −N, N
)

distribution, using Zellner’s notation (Zellner (1971),

p.383). The ∝ sign means positively proportional. So the posterior covariance matrix of RT+1 is:

var(RT+1) =
T −N

T −N − 2
(T + 1)(T − 1)

T (T −N)
S =

(T + 1)(T − 1)
T (T −N − 2)

S.

Since the posterior covariance matrix is proportional to S, the global minimum portfolio weights are

the same as ws, the portfolio weights constructed using the sample covariance matrix S. Therefore,

the variance of the portfolio under the predictive distribution is:

w′svar(RT+1)ws =
(T + 1)(T − 1)
T (T −N − 2)

w′sSws =
(T − 1)(T + 1)
T (T −N − 2)

1
1′S−11

(B1)

This proves Proposition 4.
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Appendix C: Bayes Estimator of the Covariance Matrix

When Returns Follow a Factor Structure

In this appendix we derive the Bayes’ estimator of the covariance matrix when it has an exact

k factor structure. Let Rt, denote the N × 1 vector of date t returns as before, and ft, denote the

k×1 vector of date t factors. We assume that returns and factors together are drawn from an i.i.d.

multivariate Normal distribution and the manager has observations on a time series of T returns

and factors.

Let the true mean return vector be µr, the true covariance matrix of returns be Σr. We use

subscript f to denote the corresponding parameters of the vector of factors.

We assume that returns have the following factor structure:

Rt = α + βft + Ut, (C1)

where α is a N × 1, vector, β is a N × k, matrix, and Ut is N × 1 vector of residuals that have a

multivariate normal distribution with mean zero and a diagonal covariance matrix Ω.

Let R denote the T ×N matrix of returns. Then equation (C1)can be written in matrix form

as follows:

R = FB + U,

where

F =




1 f11 ... f1k

... ... ... ...

1 fT1 ... fTk




B =




α′

β′




and U is defined similarly.

As before, we assume that the Bayesian portfolio manager does not observe µf , Σf , Ω, α, and

β but believes that they are drawn from a prior distribution. From the posterior distribution
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for µf , Σf , Ω, α, and β, the portfolio manager computes Σr, the covariance matrix of Rt under

the predictive distribution. Our derivation below follows that of Wang (2000). But our prior

specifications are somewhat different, as will be pointed out below.

Let the prior be the usual diffuse prior:

p(µf ,Σf , α, β,Ω) ∝ |Ω|−1|Σf |−(k+1)/2. (C2)

Notice that since Ω is diagonal, |Ω| is the product of its diagonal elements. Therefore the prior for

|Ω| is a product of the independent priors for its diagonal elements, with the ith one given by:

p(Ωii) ∝ 1
Ωii

,

which is the commonly used diffuse prior. This prior is equivalent to the following prior for the

square roots of the diagonal elements:

p(Ω1/2
ii ) ∝ 1

Ω1/2
ii

.

In what follows we will adopt this latter parameterization for convenience.

Our prior specification (C2) differs from that of Wang’s (2000) in two aspects: First, we assume

Ω is diagonal while Wang does not. Second, we start with a diffuse prior for α, while Wang assumes

that the investor believes the asset pricing model to a certain degree, i.e., the prior for α is Normal

centered at the zero vector.

Given our prior, the posterior distributions are standard: p(Σf |F ) is inverted Wishart, p(µf |F, Σf )

is Normal, p(Ω1/2
ii |F, R) is inverted Gamma, and p(Bi|F,R,Ωii) is Normal, as given below:

p(Σf |F ) ∝ |Σf |−(T+k)/2 exp
{
−T

2
tr(Σ̂fΣ−1

f )
}

(C3)

p(µf |F, Σf ) ∝ |Σf |−1/2 exp
{
−T

2
tr(µf − µ̂f )(µf − µ̂f )′Σ−1

f

}
(C4)

p(Ω1/2
ii |F, R) ∝ Ω−(ν+1)/2

ii exp
(
−νSii

2Ωii

)
, i = 1, 2, ..., N. (C5)

p(Bi|F, R,Ωii) ∝ Ω−1/2
ii exp

(
−(Bi − B̂i)′F ′F (Bi − B̂i)

2Ωii

)
, ∀i. (C6)

where Σ̂f and µ̂f refer to the maximum likelihood estimates of the respective quantities, Bi is the

ith column of B, B̂i is the least squares estimate of Bi, Sii is the least squares estimate of the
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residual variance in the factor model regression for the return on stock i, (i.e., sum of squared

residuals divided by T − k − 1) and ν = T − k − 1.

These distribution functions imply that the posterior distribution of (B, Ω) is independent of

that of (µf ,Σf ), as pointed out by Wang (2000), with the following posterior moments:

E(Σf |F ) =
T

T − k − 2
Σ̂f ≡ Σ̃f (C7)

E(µf |F ) = µ̂f (C8)

V ar(µf |F ) =
1

T − k − 2
Σ̂f (C9)

E(Ωii|F, R) =
ν

ν − 2
Sii ≡ Ω̃ii (C10)

E(B|F, R,Ω) = B̂ (C11)

V ar(vec(B)) = Ω̃⊗ (F ′F )−1 (C12)

Since the posterior distributions of (B, Ω) and (µf , Σf ) are independent, the posterior mean of

the return covariance matrix is

E(Σr|F, R) = E(βΣfβ′|F,R) + Ω̃.

From the law of iterated expectation, we have

E(βΣfβ′|F, R) = β̂Σ̃f β̂′ + tr(GΣ̃f )Ω̃

where G is the k × k submatrix in the lower-right corner of (F ′F )−1.

From the inverse of partitioned matrices, we know that G = 1
T (Σ̂f )−1, hence the last term in

the above equation is given by k
T−k−2 Ω̃.

Hence the posterior mean of the covariance matrix of the returns is

E(Σr|F, R) = β̂Σ̃f β̂′ + (1 +
k

T − k − 2
)Ω̃ = β̂Σ̃f β̂′ +

T − 2
T − k − 2

Ω̃. (C13)

Given the posterior moments for the model parameters, we can calculate the covariance matrix

of RT+1 under the predictive distribution. From the law of iterated expectations, we have

V ar(RT+1|R, F ) = E(Σr|R,F ) + V ar(µr|R,F ). (C14)
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The first term on the RHS is given in (C13). The second term is

V ar(α + bµf |F, R)

= V ar(E[α + βµf |µf , R, F ]|R, F ) + E[V ar(α + βµf |µf , R, F )|R,F ]

=
1

T − k − 2
β̂Σ̂f β̂′ + E[V ar(α + βµf |µf , R, F )|R, F ] (C15)

Since α + βµf = (IN ⊗ (1 µ′f ))vec(B), it follows from equation (C12) that

V ar(α + βµf |µf , R, F ) (C16)

= (IN ⊗ (1 µ′f ))(Ω̃⊗ (F ′F )−1)(IN ⊗ (1 µ′f ))′ (C17)

= Ω̃⊗ [(1 µ′f )(F ′F )−1(1 µ′f )′] (C18)

= ρΩ̃ (C19)

where ρ = (1 µ′f )(F ′F )−1(1 µ′f )′. The posterior mean of ρ is,

E(ρ|F, R) = tr





(F ′F )−1




1 µ̂′f

µ̂f (T − k − 2)−1Σ̂f + µ̂f µ̂′f








.

Notice that,

F ′F = T




1 µ̂′f

µ̂f Σ̂f


 ,

and



1 µ̂′f

µ̂f (T − k − 2)−1Σ̂f + µ̂f µ̂′f


 =




1 µ̂′f

µ̂f Σ̂f


 +




0 0

0 − (T−k−3)
(T−k−2) Σ̂f + µ̂f µ̂′f


 .

Hence E(ρ|F, R) is the sum of two terms. The first term is k+1
T . To calculate the second term,

we need to get the k × k lower-right submatrix of (F ′F/T )−1. Using the inverse of partitioned

matrix, this submstrix is

(Σ̂f − µ̂f µ̂′f )−1 = Σ̂−1
f +

1
1− µ̂′f Σ̂−1

f µ̂f

Σ̂−1
f µ̂f µ̂′f Σ̂−1

f .

It can be verified that the second term in the trace is therefore,

− k(T − k − 3)
T (T − k − 2)

+
1

T (T − k − 2)

µ̂′f Σ̂−1
f µ̂f

1− µ̂′f Σ̂−1
f µ̂f

(C20)
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Combining (C13), (C14),(C15), (C19), and (C20), and adding the term k+1
T from above, we find

that the posterior variance of RT+1 is given by:

V ar(RT+1|R,F )

=
T + 1

T − k − 2
β̂Σ̂f β̂′ +

(T + 1)(T − 2)
T (T − k − 2)

Ω̃

+
1

T (T − k − 2)

µ̂′f Σ̂−1
f µ̂f

1− µ̂′f Σ̂−1
f µ̂f

Ω̃. (C21)

As observed by Wang (2000), the term µ̂′f Σ̂−1
f µ̂f is the square of the highest Sharpe ratio of the

frontier spanned by the sample mean µ̂f and variance Σ̂f . For the U.S. data, it is definitely less

than 0.5. So the last term in (C21) is less than 1
T (T−k−2) Ω̃, which is less than 0.0003Ω̃ if T ≥ 60

and k ≤ 3. Hence this term can be ignored for practical purposes.

The portfolio manager’s problem is to choose portfolio weights, w, to

min
w

var(w′RT+1).

given the predictive covariance matrix of RT+1 in (C21).

We can compare Bayes’ estimator of the covariance matrix given in equation (C21) with the

sample estimate of the covariance matrix under factor model structure. The sample estimate is

given by:

Sr = β̂Sf β̂′ + S. (C22)

The term Sf , the sample covariance matrix of the factors, differs from the first term of V ar(RT+1)

by a the scale factor, (T+1)(T−1)
T (T−k−2) . When k ≤ 3 and T ≥ 60, this scale factor is less than 1.091.

The term, S, the least-squares estimate of the (diagonal) residual covariance matrix (i.e., the sum

of squared-residuals divided by T − k − 1), differs from the second term of (C21) by the scale

factor, (T+1)(T−2)
T (T−k−2)

T−k−1
T−k−3 , which is less than 1.11 if k ≤ 3 and T ≥ 60. Therefore, it appears that the

difference may be small whether we use Bayes’ estimator or the sample covariance matrix estimator

for factor models.

Also, since the first and second terms of the RHS of the above two equations differ by different

factors, the portfolio weights constructed from the sample covariance matrix will differ from the one
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constructed using Bayes’ covariance matrix estimator. However, since the factors are very similar,

we expect the difference in the portfolio weights to be small.

Under Bayes’ estimator, the unconstrained global minimum variance portfolio will have a vari-

ance of (1′[V ar(RT+1|F,R)]−11)−1.
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Appendix D: The DCC Multivariate GARCH Model

The Dynamic Conditional Correlation (DCC) multivariate GARCH model is proposed by Engle

(2002) and Tse and Tsui (2002). Let Rt be the vector of time t returns on k assets, and Ht be the

conditional covariance matrix of rt. The model describes the evolution of Ht over time.

The covariance matrix Ht is decomposed into variances and correlations:

Ht = DtPtDt,

where Dt is the diagonal matrix of standard deviations of Rt, and Pt is the correlation matrix.

Each diagonal element of Dt is assumed to follow the well-known univariate GARCH process.

So different elements of Dt will have different persistences and unconditional means. The dynamic

correlation structure is

Qt = (1−
I∑

i=1

αi −
J∑

j=1

βj)Q̄ +
I∑

i=1

αi(εt−iε
′
t−i) +

J∑

j=1

βjQt−j (D1)

Pt = Q∗−1
t QtQ

∗−1
t . (D2)

Here εt is the vector of standardized residuals, Q̄ is the unconditional covariance of the standardized

residuals, and

Q∗
t =




√
q11 0 0 · · · 0

0
√

q22 0 · · · 0
...

...
...

...
...

0 0 0 · · · √
qkk




,

so the normalization in (D2) guarantees that Pt is a matrix of correlations.

Usually setting the lags I and J to one is a good choice.
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Footnotes

1 See Jobson and Korkie (1981).

2 The notable papers on the topic include Jobson and Korkie (1982); Gibbons (1982); Stam-

baugh (1982); Kandel (1984); Shanken (1985); Roll (1985); MacKinlay (1987); and Gibbons,

Ross, and Shanken (1989).

3 See MacKinlay (1987) and Gibbons, Ross and Shanken (1989).

4 Some theoretical support for such an approach can be found in Foster and Nelson (1996),

Flemming et al. (2003), and Liu (2003) and the mixed data sampling approach based esti-

mator in Ghysels et al. (2003, 2004a, 2004b).

5 Choosing the optimal number of lags for a VAR is described in Lütkepohl (1993). The AIC

and BIC criteria are: ln |Σ̃| + 2/T · k and ln |Σ̃| + ln(T )/T · k, where T is the number of

observations, Σ̃ is the estimated covariance matrix of the error term, k is the number of freely

estimated parameters.

6 We also formed a third global minimum variance portfolio, which also faces the restriction

that no more than five percent (i.e., 10 times of the equal weight) of the investment can be in

any one stock. But the results for this portfolio are very similar to the second one and hence

are omitted.

7 For convenience of interpretation, we work with standard deviations instead of variances in

the sequel.

8 In this section, we often report that the average of x1, x2, ..., xN is significantly smaller than

the average of y1, y2, ..., yN , where both sequences are usually measures of standard deviations.

For example, the x’s may be in-sample standard errors, and the y’s may be out-of-sample

standard deviations. N will be 396 since the various estimators are evaluated over 396 months.

To test this hypothesis, we test whether the mean of the sequence log(x1/y1), ..., log(xN/yN ) is

significantly smaller than zero using a one-tailed test. We use Newey-West standard deviations



with 6 and 12 lags for this test. Unless indicated, the use of 6 or 12 lags does not change the

conclusion.

9 Standard t test shows that the average out-of-sample standard deviation of the unconstrained

optimal portfolio from the one-factor model is significantly higher than that from the sample

covariance matrix. Or loosely speaking, the difference between the two numbers in the table,

9.16 and 8.44, is significant. See footnote 8 for the method of test used.

10 When using the optimal rolling sample variance estimators, people generally uses decay rate

between 0.01 per day to 0.05 per day ( see Flemming et al. (2003), Liu (2003), Ghysels et

al. (2003, 2004a, 2004b)). We feel numbers in the higher end of the range may be too high

for our purpose. For example, a daily decay rate of 0.04 would imply a monthly decay rate

of 0.84, meaning the second-to-the-last month is only given a weight that is 16% of the last

month in (24).
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Table II

Mean absolute difference

from out-of-sample standard deviations

Each month 200 stocks with the largest market capitalization are selected. Thirty-six months

of daily data are used to estimate the covariance matrices and form the global minimum variance

portfolios or minimum tracking error portfolios. The portfolios are rebalanced every month. Results

are based on 396 months of out-of-sample returns from 1967/5 to 2000/4. Standard deviations

are annualized and expressed in percentage points. The degrees of freedom adjustment factors are

computed using the formula in Section 2.1. The Bayesian covariance matrix estimators are described

in Section III and Appendix C. Panels A and B are for simulated i.i.d. normal data (see Section

VI.C). Panels C and D are for the real return data. The letter C after each covariance matrix

estimator denotes the optimal portfolio is constructed subject to nonnegativity constraint. The ∗
in the last three columns indicates the related number is significantly larger than the corresponding

number in the first column.

Jackknife In-sample DF adjusted Bayesian

Panel A. Global minimum variance portfolio: Simulated data

Sample covariance matrix 0.851 1.669* 1.076* 1.071*

Sample covariance matrix C 1.034 1.001

One-factor model 0.879 2.016* 2.010*

One-factor model C 1.088 1.262*

Three-factor model 0.703 0.730 0.726

Three-factor model C 1.038 1.004

Equally-weighted portfolio 1.687

Panel B. Minimum tracking error variance portfolio: Simulated data

Sample covariance matrix 0.263 0.490* 0.314* 0.313*

Sample covariance matrix C 0.258 0.432*

One-factor model 0.255 0.270* 0.269*

One-factor model C 0.255 0.270*

Three-factor model 0.235 0.224 0.225

Three-factor model C 0.236 0.224

Equally-weighted portfolio 0.291

47



Table II—continued

Jackknife In-sample DF adjusted Bayesian

Panel C. Global minimum variance portfolio: Real data

Sample covariance matrix 2.29 3.06* 2.53 2.53

Sample covariance matrix C 2.61 2.73

One-factor model 2.81 4.76* 4.76*

One-factor model C 2.87 3.22

Three-factor model 2.64 3.79* 3.78*

Three-factor model C 2.78 2.95

Equally-weighted portfolio 4.50

Panel D. Minimum tracking error variance portfolio: Real data

Sample covariance matrix 0.352 0.533* 0.421 0.420

Sample covariance matrix C 0.346 0.487*

One-factor model 0.635 0.757 0.756

One-factor model C 0.635 0.757

Three-factor model 0.536 0.550 0.550

Three-factor model C 0.536 0.550

Equally-weighted portfolio 0.740
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Table IV

Mean absolute difference from out-of-sample standard deviations

when real return data are used

Each month 200 stocks with the largest market capitalization are selected. Thirty-six months of

daily data are used to estimate the covariance matrices and form the global minimum variance

portfolios. The portfolios are rebalanced every month. Results are based on 396 months of out-

of-sample returns from 1967/5 to 2000/4. Standard deviations are annualized and expressed in

percentage points. The letter C after each covariance matrix estimator denotes the optimal portfolio

is constructed subject to nonnegativity constraint. The ∗ in the last two columns indicates the

related number is significantly larger than the corresponding number in the first column.

Weighted One-factor Three-factor

Jackknife model model

Panel A. Global minimum variance portfolio

Sample covariance matrix 2.07 3.20* 3.12*

Sample covariance matrix C 2.30 2.49 2.53

One-factor model 2.51 2.83 2.74

One-factor model C 2.50 2.72 2.80

Three-factor model 2.29 2.64* 2.62

Three-factor model C 2.42 2.64* 2.66

Panel B. Minimum tracking error variance portfolio

Sample covariance matrix 0.306 0.543* 0.548*

Sample covariance matrix C 0.302 0.497* 0.500*

One-factor model 0.488 0.639* 0.614*

One-factor model C 0.488 0.639* 0.614*

Three-factor model 0.427 0.550* 0.542*

Three-factor model C 0.426 0.550* 0.542*
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