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ABSTRACT

Recently, Imbs et. al. (2002) have claimed that much of the purchasing power parity puzzle can be

explained by “aggregation bias”. This paper re-examines aggregation bias. First, it clarifies the

meaning of aggregation bias and its applicability to the PPP puzzle. Second, the size of the “bias”

is shown to be much smaller than the simulations in Imbs et. al. (2002) suggest, if we rule out

explosive roots in the simulations. Third, we show that the presence of non-persistent measurement

error – especially in the Imbs et. al. (2002) data – can make price series appear less persistent than

they really are. Finally, it is now standard to recognize that small-sample bias plagues estimates of

speeds of convergence of PPP. After correcting small sample bias by methods proposed by Kilian

(1998) and by So and Shin (1999), the half-life estimates indicate that heterogeneity and aggregation

bias do not help to solve the PPP puzzle.
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1. Introduction 

Rogoff (1996) defines the �purchasing power parity puzzle� as:  

How can one reconcile the enormous short-term volatility of real exchange rates with the 
extremely slow rate at which shocks appear to damp out?  Most explanations of short-term 
exchange rate volatility point to financial factors such as changes in portfolio preferences, short-
term asset price bubbles, and monetary shocks.  Such shocks can have substantial effects on the 
real economy in the presence of sticky nominal wages and prices.  Consensus estimates for the 
rate at which PPP deviations damp, however, suggest a half-life of three to five years, seemingly 
far too long to be explained by nominal rigidities.  It is not difficult to rationalize slow 
adjustment if real shocks � shocks to tastes and technology � are predominant.  But existing 
models based on real shocks cannot account for short-term exchange-rate volatility.  (pp.  647-
648.)  

Algebraically, it is helpful to express this in the following terms.  Take a log-linear 

approximation of the home country and foreign country consumer price indexes: 

(1) 1 1 2 2 ...t t t N Ntp p p pα α α= + + +  * * * *
1 1 2 2 ...t t t N Ntp p p pα α α= + + + . 

tp  is the log of the home CPI, and tp∗  the log of the foreign CPI, assumed for convenience to be 

expressed in a common currency.  itp ( *
itp ) is the price of good i in the home (foreign) country.  

We will assume that the CPI weights, iα , are the same at home and abroad.  The iα  weights 

correspond to the expenditure share on good i near the point of approximation. 

To understand Rogoff�s PPP puzzle, classify the N goods into the K traded goods, and 

N K−  nontraded goods, and then note we can write the log real exchange rate, tq , as: 

(2) *
t t t t tq p p x y≡ − = + , 

where tx  is the relative traded price indexes between the home and foreign country: 

 *
t Tt Ttx p p≡ − ,  with  
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and, where ty  involves the relative price of nontraded to traded goods at home and abroad: 
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Real tastes and technology shocks drive the relative price, ty .  Since those shocks are likely to 

be very persistent, the slow adjustment of real exchange rates could be explained if the ty  were 

predominant in movements in tq .  But as Rogoff notes, the innovation variance of ty  is much 

smaller than the innovation variance of tx .  This relative price component cannot account for the 

volatility in real exchange rates. 

The tx  component of course is highly volatile.  Its volatility is easy to understand in the 

context of models in which nominal consumer prices are sticky (when expressed in their own 

currencies.)  In that case, tx  inherits the volatility of nominal exchange rates.  As Rogoff notes, 

nominal exchange rate volatility can be explained by financial factors.  But how do we explain 

the persistence of tx ?  We might hypothesize that nominal prices adjust gradually toward their 

long run mean, perhaps according to an AR(1) process: 

 1it it itx xθ ε−= + , where it it itx p p∗≡ − , and itε is ~ i.i.d., ( ) 0itE ε = , 2 2( )itE ε σ= . 

Under these assumptions, tx  itself is an AR(1) process, with first-order serial correlation given 

by θ .  But Rogoff notes that the persistence of real exchange rates (a half life of 3-5 years) is 

inconsistent with plausible estimates of the speed of nominal price adjustment. 

Imbs et. al. (2002) (hereinafter IMRR) offer a potential resolution to this puzzle.  They argue 

that the real exchange rate behavior can be reconciled with sticky-price models.  Their 

explanation involves introducing heterogeneity into the processes for itx : 

(3) 1it i it itx xθ ε−= + , where itε is ~ i.i.d, ( ) 0itE ε = , 2 2( )it iE ε σ= . 
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They argue that there is an �aggregation bias� when we use the half-life of real exchange rates to 

draw inferences about the speed of price adjustment.  When this bias is corrected, they claim that 

estimates of price adjustment drawn from real exchange rates are completely in line with models 

of slow nominal price adjustment.  They find an average half-life of price adjustment on the 

order of one year. 

Our objective is to reexamine the case for �aggregation bias�.  In section 2, we restate 

IMRR�s definition of �aggregation bias�, and examine the statistical and economic meaning of 

this bias.  Section 3 performs some simulations to assess the size of this bias.  Our simulations 

differ from those in IMRR in that we restrict itx  to be non-explosive � that is 1iθ ≤ .  In section 

4, we discuss measurement error.  In general, itx  may appear to be less persistent than it actually 

is if its measurement is marred by an additive error that is not very persistent.  Unfortunately, the 

data in IMRR has many such problems.  Finally, as is now well known, there can be severe small 

sample bias in estimating autocorrelation coefficients.  IMRR do not employ a correction for this 

bias, but we show its importance in section 5. 

All four sections point toward the same direction: that �aggregation bias� is not a likely 

solution to the PPP puzzle.  Section 2 shows that there is no general sense in which aggregation 

biases downward estimates of the speed of adjustment.  The simulations of section 3 show that in 

practice the effect of aggregation bias is very small.  Section 4 finds that when the data is 

cleaned, there is no empirical evidence of aggregation bias.  Finally, the estimates of section 5 

that correct for small sample bias imply very slow adjustment of prices � i.e., the PPP puzzle is 

worse than you think.  

   IMRR also investigate biases associated with another sort of heterogeneity.  Panel studies of 

PPP frequently impose the identical speed of adjustment across all real exchange rates, but 

IMRR argue that that assumption can bias estimates of the half-life of real exchange rates.  We 
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do not address biases in panel estimates here � there is already a large literature devoted to that 

topic.  While our empirical work replicates the panel methods of IMRR, our focus is on the 

aggregation bias. 

    

2. Heterogeneity and Aggregation Bias 

IMRR investigate the properties of tq .  In their empirical work, and their simulations, they 

make the following claim: the estimated half-life of tq  is much larger than the average estimated 

half-life of the itx , where 
1

N

t i it
i

q xα
=

=�  and 
1

1
N

i
i
α

=
=� .  Analytically, they demonstrate a different 

result: the first autocorrelation of tq  is larger than the average of the first autocorrelations of the 

itx , when the itx  follow AR(1) processes defined in equation (3).  First, we note that there is not 

necessarily a direct relationship between the size of the first autocorrelation and the half-life.  An 

average of N variables that each are AR(1) generally will be an ARMA(N,N-1) process.    The 

impulse response function for an ARMA(N,N-1) process can be  non-monotonic and is not a 

simple function of the first autocorrelation. 

Nonetheless, it is revealing to examine the expression for the first autocorrelation of tq .  It is 

not true that in general there is aggregation bias.  That is, the first autocorrelation may be greater 

or less than the average of the first autocorrelations of the itx .  We can unambiguously state there 

is aggregation bias only when the iα  (the weights in the price index) are equal for all i; 2
iσ  (the 

innovation variance for itx  as defined in equation (3)) is the same for all i; and, the cross-

correlations of all series are equal ( ( )ij i jEσ ε ε≡ , i j≠ , are all equal.)   
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Granger (1980) examines the properties of sums of AR series.  Here we make some 

observations relevant for the discussion in IMRR.   

The expression for the �aggregation bias� in the first autocorrelation is a nonlinear function 

of the autocorrelation coefficients iθ , the weights iα , the variances 2
iσ , and the covariances ijσ .  

Define 1( , )
( )

a t t

t

Cov q q
Var q

θ −≡ , which is the first autocorrelation of the real exchange rate.  The 

weighted average of the autocorrelation coefficients for the itx  is given by 

1

N

i i
i

θ α θ
=

≡� . 

As shown by Imbs, Mumtaz, Ravn and Rey (2003), the first order autocorrelation of the real 

exchange rate is given by:1 

(4) 
1

( )
N

a
i i

i
θ θ λ θ θ

=
= + −� , 

2 2 2 2

2 2
1, 1 1

2
1 11 1

N N N N
i j ij i j iji i i i

i
i j i jj j i i i j ii i

α α σ α α σα σ α σλ
θ θ θ θθ θ= ≠ = = >

� � � �
= + +� � � �

− −− −� � � �� � � �
� � �� . 

�Aggregation bias � is defined as aθ θ− .  Aggregation bias may be positive or negative.  

There is upward aggregation bias, as IMRR assert, if the higher values of iθ  get higher weights, 

iλ , so that 
1

( )
N

i i
i
λ θ θ

=
−�  is positive. 

The first issue to address is the fact that the consumer price indexes are not simple 

unweighted averages of prices.  The IMRR methodology imposes the assumption that the price 

                                                 
1  This equation is essentially the same as the one derived in Imbs et. al. (2003) for equal weights.  We have 
followed their nice derivation in Appendix A.  As Imbs et. al. (2003) note, their version of equation (4) for N prices 
was derived in response to correspondence from one of the authors of this paper, which outlined the effects of non-
zero correlation and different variances on aggregation bias that we describe here. 
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index is equally weighted.2  Even if the aggregation bias (as defined here) is zero, aθ  does not 

necessarily equal the unweighted average of the iθ . 

This alone could lead IMRR to overstate aggregation bias.  Rogers and Jenkins (1995) found 

that they were only able to reject the null that itx  has a unit root for specific fresh food items � 

eggs, oranges, apples, bananas, chuck roast, and a few others.  But fresh food has a low weight in 

the overall CPI.  Simply taking an unweighted average of speeds of adjustment gives too much 

weight to these goods, and makes the unweighted average of the iθ  lower than the weighted 

average, θ .   

In the special case in which the weights are all equal ( 1
i Nα −= ), the innovation variances for 

all itx  are equal ( 2 2
iσ σ= ), and all of the covariances of innovations are equal ( 2

ijσ ρσ= ), Imbs 

et. al. (2003) show that aggregation bias is positive.   

In general, however, aggregation bias could be positive or negative.  We can write: 

1

1

( , )
( , )

( ) ( )

N

i it j jt
ji it t

i N
t

j jt
j

Cov x x
Cov x q

Var q Var x
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α

=

=

= =
�

�

. 

For example, if the series were uncorrelated and weights were equal, 

1

( )

( )

it
i N

jt
j

Var x

Var x
λ

=

=

�

.  If the 

variance of itx  is large relative to the average variance, then iθ  will be disproportionately 

weighted in aθ .  But that could cause aθ  to be too large (if iθ  is larger than θ ) or too small  (if 

iθ  is smaller than θ ).   

                                                 
2   For example, their RCM estimator (discussed below) has the mean speed of adjustment as an unweighted average 
of the iθ . 
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More generally, if the series are correlated but the weights are equal, ( , )
( )

it t
i

t

Cov x q
N Var q

λ =
⋅

.  

Allowing for non-zero correlation could push the aggregation bias in any direction.  Consider 

this simple example.  Suppose 3N = , weights are equal, and there is perfect negative correlation 

between 1tx  and 2tx : specifically, 1 2t tx x= − .  Then 1
33t tq x= .  The persistence of the real 

exchange rate is the same as the persistence of 3tx . 

The aggregation bias is a nonlinear function of the parameter vectorsθ
�

, α� , and the variance-

covariance matrix, Σ .  That is, ( , , )a fθ θ α= Σ
�

� .  Take a first-order Taylor series approximation 

of ( , , )f θ α Σ
�

� , around a point of iθ θ=  for all i.  It follows from (4) that  

1
( )

N
a

i i
i

θ θ λ θ θ
=

= + −� , 

where iλ  is the value of iλ  evaluated at the point of expansion.  There are two special cases to 

consider.  First, suppose we evaluate ( , , )f θ α Σ
�

�  at a point where all weights are equal, all 

variances are equal, and all covariances are equal.  We find (see Appendix A): 

 
1

1 N
a

i
iN

θ θ
=

= � . 

That is, near the point of expansion, there is no aggregation bias.  Alternatively, if we evaluate at 

a point where the weights are not equal, but the variances of the innovations are equal and they 

are perfectly correlated, we find 

1

N
a

i i
i

θ α θ θ
=

= =� . 

Again, there is no aggregation bias.  In the data, the innovations in the itx  are all highly 

correlated with the innovations in the nominal exchange rate. 
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In other words, aggregation bias is second order.  Unless there are very large differences in 

speeds of adjustment, large differences in innovation variances, big differences in weights, and 

low correlation, aggregation bias will not be large.  

In the next section, we consider simulations to gauge the size of the aggregation bias. 

 

3.  Simulations 

We first examine aggregation bias in simple OLS simulations. An example of the type of 

simulation we perform is: generate N AR(1) series with sample size T = 50, 100, 150, 200, 250, 

300 and 500. The AR(1) coefficients in these series are drawn from a uniform distribution on the 

range of 0.881 to 0.999 with mean 0.94θ = . We note that if a series has an AR(1) coefficient of 

0.94, its half life is 11.2 periods. We choose 0.94θ =  to match the baseline simulations in 

IMRR. 

More precisely, the data generating processes is: 

1it i i it itx xς θ ε−= + + , 

with two different specifications: 

1. DGP1: 0iς = , i iθ θ µ= + , 0.94θ = , . . .~ [ 0.059,0.059]i i d
i uniformµ − , 

2. DGP2: . . .~ (0,1)i i d
i Nς , i iθ θ µ= + , 0.94θ = , . . .~ [ 0.059,0.059]i i d

i uniformµ − . 

Then average the N series and estimate an AR(1) on the average series.  Let aθ  be the 

autoregressive coefficient for the average of the itx .  To calibrate the aggregation bias per se, we 

average the estimates of the iθ  from the N series and compare it to the estimated aθ , which we 

call �aθ .  Each experiment is conducted with 2500 draws.  

These experiments are designed to meet the criterion of the theorem of Imbs et. al. (2003) 

that guarantees that aggregation bias will make the autoregressive coefficient of the average 
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series greater than the average of the autoregressive coefficients from the individual series.  That 

is, each series is weighted equally in the average, the innovation variances are equal, and the 

cross-correlations are all equal (set equal to zero.) 

Table 1 reports results with N = 100.  We first direct attention to the column labeled �Bias 

Uncorrected�.  Perhaps surprisingly, the estimated AR(1) coefficient on the average price is 

usually less than the mean θ  from the individual series.  There does not appear to be aggregation 

bias unless we allow for a very long sample period.  Otherwise, the bias goes the other direction. 

The reason for the downward bias is the familiar problem of small-sample bias.  The small 

sample bias trumps the aggregation bias unless the series is very long.  (This matches the finding 

of Choi, Mark, and Sul (2003) with similar simulations.) 

Next, we investigate if the number of individual price series affects our results. We thus 

increase the number of AR(1) series from 100 to 500. Clearly, Table 2 indicates that the results 

are similar even when we aggregate more individual series. 

We then consider a new DGP with higher persistence (θ =0.98) and present the results in  

Table 3. 3  The estimated coefficient on the average series is almost always less than 0.98. 

In Table 4, we examine how the degree of cross-sectional heterogeneity in persistence affects 

the magnitude of aggregation bias.  We set the number of sectors equal to 100, sample size equal 

to 300, and θ =0.94. iµ is assumed to be distributed uniformly in the ranges of [-0.009,0.009], [-

0.019,0.019], [-0.039,0.039] and the benchmark case: [-0.059,0.059].  Aggregation bias is larger 

when the degree of heterogeneity is higher.   

In each table, we also attempt to separate out the effects of small-sample bias from 

aggregation bias.  There is no aggregation bias if iθ θ=  for all i.  So for each table, we redo all 

                                                 
3 We need to assume iµ ~uniform[-0.019,0.019] to keep iθ <1.   
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simulations imposing iθ θ=  for all i.  Call this estimate �θ .  That gives us an estimate of the 

small sample bias as simply �θ θ− .  We then subtract the small sample bias from our estimate of  

�aθ  (the autoregressive coefficient of the average series) to get our Bias Corrected estimate,  

� � �( )a a
bcθ θ θ θ= − − .  We report these bias corrected estimates of the autoregressive coefficient in 

columns 5-8 of each table.  Comparing these to the true θ  used to generate the data gives us a 

measure of the aggregation bias that is unpolluted by small-sample bias. 

We find that there is some aggregation bias, but it is not nearly so dramatic as the simulations 

of IMRR indicate.  For example, consider our base simulations in Table 1.  With 0.94θ = , 

(implying a half-life of 11.2 months), we find that � 0.956a
bcθ ≅  when the sample size is 250.  This 

implies a half-life of 15.4 months.  In the empirical work of IMRR, the sample sizes closer to 

150 months for most of the series.  Then we find � 0.952a
bcθ ≅ , implying a half-life of 14.1 

months.  None of the simulations show a very large aggregation bias. 

Aggregation bias appears not to be a major problem in this case at least in part because we 

know that the first-order serial correlation of the aggregated series is so large in the data.  Since 

the autocorrelations of the individual series are bounded above by one, we cannot observe a great 

deal of heterogeneity among these correlations and still generate an aggregate with a serial 

correlation of 0.94.  The aggregation bias in this case is not large because there is not much 

heterogeneity to be aggregated. 

Why do we find that aggregation bias is so small in our simulations (and almost always 

dominated by small-sample bias) while the simulations in IMRR indicate a strikingly larger 

aggregation bias?  In generating the AR(1) random variables with a distribution of first-order 

autoregressive coefficients, the simulations in the IMRR fail to put an upper bound of one on that 

coefficient.  That is, they use series that are explosive, which is an inappropriate representation 
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for the log of real exchange rates.  (Granger (1980) states explosive roots are �generally 

considered to be inappropriate for economic variables.�)  The problem this causes is clear.  For 

example, if there is one series with a root of 1.08 (which is the upper bound in some of the 

simulations in IMRR), and that runs for 100 observations, it will explode to such a degree that 

when it is averaged in with the stationary and unit root series, it will completely dominate the 

average.  (1.08 to the 100th power equals around 2200.)  The average will look a lot like an 

AR(1) with a root of 1.08. 

 

4.  Data and Measurement Error 

In order to investigate the importance of parameter heterogeneity, we use relative prices of 

goods at the sectoral level for 16 categories of goods for the United States and 9 European 

countries: Belgium, Denmark, Germany, Spain, France, Italy, Netherlands, Portugal, and the 

United Kingdom. Our monthly price data is obtained from Eurostat and is the data that was used 

in Engel (2000), although we have updated the cleaned-up data to 1996:12 to match the IMRR 

data set.  The length of each series varies.  The longest runs from 1981:1 to 1996:12 while the 

shortest runs from 1981:1 to 1994:9.  The nominal exchange rate data is collected from the 

International Financial Statistics (IFS) database.  A comprehensive description of data is 

provided in Appendix C. 

   Comparing our data set with what was used in IMRR, there are some issues worth noting:  

First, an odd thing about the IMRR data set is that it is missing data on nominal exchange rates 

from 1976-1991 or 1993 for six countries: Denmark, Finland, Greece, Ireland, Portugal, and the 

Netherlands.  Simply by using a widely available source for exchange rates � the IFS database � 

their data sample can be considerably enlarged.  The IFS data on exchange rates is virtually 

identical to the data IMRR use for those data points that are in both data sets.  Second, our 
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cleaned up price data only starts in 1981:1, while the IMRR uncorrected data starts in 1975:1.  

However, that data has few observations before 1981:1; that is, there are mostly missing 

observations from 1975:1-1980:12 in their uncorrected data.  

Figures 1 and 2 in Appendix D compare a few of the series used by IMRR with our cleaned 

data.  We follow Engel (2000) in cleaning the data.  As the figures indicate, in many of the series 

there are a very small number of observations that apparently have very large errors.  Almost all 

the data we use, and all the corrections, coincide with the data in Engel (2000).  That paper (fn. 

1, p. 1453) describes the data-cleaning process: �In cases where there were more than a few 

errors in one series, the series was dropped. Hence, there is not data for all nine countries for all 

of the goods. In cases where data entry errors were near the beginning or end of the series, the 

series were truncated. In some cases, the data was corrected from other sources. In some cases 

the entry error involved a transposition of digits which was corrected. In the remaining cases, the 

data points were replaced using interpolation from adjacent data points. The total number of data 

points used in the tables that are corrected data is 99 (out of a total of approximately 40,000 data 

points.)� 

Measurement error will reduce the measured persistence of a stationary series if the 

measurement error is less persistent than the series itself, assuming the measurement error is 

uncorrelated with the true series.  That is, let t t ty q z= + , where tq  is the series whose 

persistence we would like to measure, and tz  is measurement error.  If we measure persistence 

by the first autocorrelation, then 

1 1 1cov( , ) cov( , ) cov( , )
var( ) var( ) var( )

t t t t t t

t t t

y y q q z z
y q z

− − −+=
+

, 
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assuming independence of tq  and tz .  But then, if 1 1cov( , ) cov( , )
var( ) var( )

t t t t

t t

q q z z
q z

− −> , we conclude that 

the measured series is less persistent than the true series: 1 1cov( , ) cov( , )
var( ) var( )

t t t t

t t

y y q q
y q

− −< .  On the 

other hand, the average price series will be plagued less by the bias introduced by measurement 

error, if the measurement error is independent across prices (but innovations in prices are 

correlated.) 

The data from IMRR plotted in Figures 1 and 2 (more plots are available from the authors on 

request) appear to have very large, very transitory measurement error.  In some cases, the 

corrections made by Engel (2000) may smooth the data too much (when the bad data were 

corrected by interpolation.)  But the number of data points smoothed in this way � indeed, the 

number of foul data points altogether � is small.  It is unlikely that the cleaning process has much 

of an effect in making the data appear more persistent than it is.  But clearly the uncleaned data 

could make the series appear much less persistent � even a small number of errors of the size 

evident in Figure 1 and 2 can have a big impact on the estimates of the autoregressive 

coefficients.  

  

5.  Empirical Estimates 

5.a.  Correcting small-sample bias 

Small sample bias will lead to underestimation of half-life of deviations from PPP. 

Murray and Papell (2002a, 2002b, and 2003) address the problem of small sample bias in both 

univariate time series and panel data. Applying the median-unbiased estimation methods 

proposed by Andrews (1993) and Andrews and Chen (1994), they demonstrate that most recent 

studies which report shorter half-lives than the consensus in long-horizon data or panel data 

underestimate the half-lives of PPP deviations, and thus overestimate the speed of mean 
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reversion. Most of the unbiased point estimates of half-lives lie within the 3-5 year range and in 

some cases, even longer. They conclude that �panels do not help solve the purchasing power 

parity puzzle,� and �the purchasing power parity puzzle is worse than you think�.  

Cashin and McDermott (2003) also calculate the median-unbiased half-lives of parity 

deviations in three different models, Dickey-Fuller regression, Augmented Dickey-Fuller 

regression, and Phillips-Perron regression to investigate the real effective exchange rate for 22 

industrial countries. Their findings come to the same conclusions as in Murray and Papell 

(2002a, 2002b): after removing the downward bias of standard autoregressive estimators, the 

cross-country average of half-lives of deviations from parity range between 4-15 years.     

Many different approaches have been suggested to correct for small sample bias. The first 

one is the median-unbiased estimator proposed by Andrews (1993) and Andrews and Chen 

(1994). Andrews (1993) shows how to obtain the exactly median-unbiased estimates and exact 

confidence intervals of half-lives in a AR(1) model. For autoregressive model with higher order, 

Andrews and Chen (1994) demonstrate how to perform approximately median-unbiased 

estimation of AR coefficients. The efficiency of this method relies on the availability of the 

known median function and precise distribution assumptions. Moreover, median function does 

not work well if the true AR(1) coefficient is near unity, which is the case when studying PPP 

since real exchange rates exhibit very high persistence. 

   A second approach is mean-unbiased estimates, proposed by Kilian (1998). This method uses a 

sample reuse procedure based on a bootstrap. The bias-corrected AR coefficients and confidence 

intervals for impulse response function are obtained by using a bootstrap-after-bootstrap method. 

Since Kilian�s bias-corrected percentile method is designed and motivated for stationary 

autoregressions, it may perform worse when the process is near nonstationary.     
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   A third approach relies on recursive demeaning procedures, which is introduced by So and 

Shin (1999) and has be applied in Sul, Phillips and Choi (2003) and Choi, Mark and Sul (2003). 

The idea of this method is that the recursive demeaning reduces the bias from the correlation 

between residuals and the lagged dependent variables when fitting an intercept. The advantage of 

this method over the other two methods mentioned above is that it is simple to apply. The 

correction procedure only requires the sample mean to be replaced by the partial sample mean 

(the average of data up to the time point) when conducting estimations. Since the approximately 

median-unbiased estimators proposed by Andrews and Chen (1994) are computationally intense, 

it is less feasible for our purpose to correct the small sample bias in a large panel data set with 

number of group (N) being about 130. We will apply the second and third bias correction 

methods (i.e. the Kilian (1998)�s method and So and Shin (1999)�s method) to correct the small 

sample bias in the group mean estimations. The details of group mean estimators (random 

coefficients model and mean group estimator) and the bias correcting procedures are presented in 

Appendix B.   

5.b.  Empirical Results 

In this section, we present our empirical results of the random-coefficient (RCM) and mean-

group (MG) estimations under bias corrections.  In order to compare with the estimates in IMRR, 

we also conduct the estimations without bias correction.  The half-lives are obtained from 

impulse response functions and the 95% confidence intervals for the half-lives are calculated 

using nonparametric bootstrap with 1000 replications.  The orders of autoregression are chosen 

to be 5 to match those repored in IMRR.4  Our estimation results are reported in Table 5.  

First, consider column (1), which contains the sum of AR coefficients, half-life, and 95% 

confidence interval for the half-life in the bias-uncorrected RCM and MG estimations. The bias-

                                                 
4  Our persistence results are nearly identical when we use 4, 5, or 6 lags. 
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uncorrected estimates of MG estimator suggest a range of the half-lives around 25-26 months, 

which is below Rogoff�s 36 to 60 months consensus. The half-life estimates from RCM model, 

however, are very close to the consensus.  

We note that we are able to replicate IMRR empirical results using their uncorrected data set 

quite closely.  Our point estimates of the sums of the autoregressive parameters are very similar. 

In the RCM model, our point estimate is 0.9311, which compares to a point estimate of 0.9481 

reported in IMRR for the RCM estimator.  We find a half-life of 12 months compared to 

IMMR�s 14 months.  So, though our dataset has dropped a few of the prices used in IMRR, when 

we use the uncorrected data, we find the very low half-lives that they do.  (Indeed our data 

exhibit slightly shorter half-lives.)  But these short half-lives disappear entirely when we use the 

corrected data.5  

As mentioned above, these GLS weighted/simple weighted least squares estimators of AR 

coefficients are underestimated because of downward small sample bias.  We now report the 

bias-corrected estimates using the correcting procedure suggested by Kilian (1998) and So and 

Shin (1999) in columns (2) and (3). The results in column (2) or (3) suggest that correcting the 

small sample bias raise the point estimates of the half-lives in both RCM and MG estimations. 

They are well above 3 years.  When So and Shin�s (1999) method is used, the half-life estimates 

of PPP deviations are about 17 years for RCM and are about 13 years for MG.  These results are 

consistent with a much slower rate of convergence to PPP as found in Murray and Papell (2002b) 

and Choi, Mark and Sul (2003).    

5.c.  Country-by-country study     

                                                 
5  Our longer half-lives are coming both because we correct the data errors, and because we supply the missing 
exchange rate data.   With our exchange rates, but the uncorrected price data, we find the sum of the AR coefficients 
to be .9662, and a half-life of 21 months.  
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It may not be appropriate to do panel estimates across countries if the main concern is the 

magnitude of aggregation bias.  Aggregation bias means that aggregating the goods into 

aggregated price indices causes a bias in estimates of the speed of adjustment of the real 

exchange rate when the individual goods adjust at different speeds.  However, the other well-

known problem in panel estimations is that estimating in a panel a single mean speed of 

adjustment for different countries may cause bias as well. A panel study across countries mixes 

the two problems, which means that we really cannot tell how much of the problem comes from 

the price indexes aggregation versus the problem arising from imposing the same mean speed of 

adjustment for each country.  To concentrate on the aggregation problem, we investigate the 

country-by-country estimates of the bias-corrected speed of adjustment of real exchange rates in 

both aggregated and disaggregated level.  We can then measure the aggregation bias more 

precisely than a cross-country panel study.  The results are presented in Table 6.  Here we report 

the results after correcting small sample bias by So and Shin (1999)�s method with 5 lags.  Using 

Kilian (1998)'s method and different lag lengths gives us similar results.   

   The first two columns are results using aggregated data.  Column 1 (AGG-CPI) simply uses 

consumer price index (CPI) data while column 2 (AGG-TCPI) contains the results from equally 

weighted aggregation of our cross-sectional price data.  There is only a slight difference between 

the point estimates of persistence from different measures of aggregation. Columns 3 and 4 use 

disaggregated price data with MG estimation (column 3) and RCM estimation (column 4).  

Clearly, by comparing columns 1 and 2 with columns 3 and 4, it can be found that aggregation 

bias is small in most countries.  Furthermore, in the case of the RCM estimator, there is no 

aggregation bias, no matter which method of aggregation is used (AGG-CPI vs. AGG-TCPI).   
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6.  Concluding Remarks 

According to Rogoff (1996), the consensus of empirical studies is that half-life deviations 

from purchasing power parity are between 3 and 5 years. The documented low convergence 

speed in real exchange rates induces a purchasing power puzzle since the half-lives of PPP 

deviations seem too long to be justified by models with nominal rigidities. 

   IMRR (2002) demonstrate the importance of the role of heterogeneity and aggregation bias in 

explaining the PPP puzzle. Based on 2-digit sub-sectional price data from 19 categories of goods 

and 13 countries, they find much faster mean reversion of the real exchange rate than the 

consensus view. They claim that considering aggregation bias solves the PPP puzzle. 

   In this paper, we have re-examined the claim in IMRR. We investigate the same data set in 

IMRR with corrections of a few entry errors in the data and additions of the missing nominal 

exchange rate data in their study. Using the cleaned data set, we find half-life estimates in line 

with Rogoff�s consensus.  Further, using two different bias-correcting methods proposed by 

Kilian (1998) and So and Shin (1999), we find that the point estimates of half-life deviations 

from PPP are even higher than Rogoff�s consensus.  We cast doubt on the claim that aggregation 

bias can account for the PPP puzzle.  

Moreover, we argue based on theory and simulations, that aggregation bias is unlikely to be 

large.   

The finding that aggregation bias is not large should be no surprise to readers of the literature.    

Engel (2000) uses the same data source as IMRR (but with cleaned data) and concludes that for 

most goods adjustment is slow.  That paper concludes, �for most categories of goods, there is not 

even evidence that deviations from the law of one price tend to be eliminated.�  This is also 

similar to the conclusion reached by Rogers and Jenkins (1995), examining the behavior of 

relative prices between the U.S. and Canada for a long list of narrowly defined goods.  In very 
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few cases could they even reject the null of a unit root in the deviations from the law of one 

price.   Crucini and Shintani (2002), using a large worldwide cross-section of goods prices from 

the  Economics Intelligence Unit, do find rapid convergence to deviations from the law of one 

price (half-lives of 9 to 12 months.) But they explicitly find no aggregation bias.  The rate of 

convergence of the average of their prices is very similar to the average of the rates of 

convergence of their individual prices. 

Aggregation bias does not seem to explain the PPP puzzle. 
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For Tables 1-4: The �Bias Corrected� for AGG (columns 5 and 7) is computed as (1) column 1 + 
small sample bias and (2) column 3 + small sample bias. The small sample bias is obtained as 
follows (1) generating series from the DGP with all of the θ s are the same (no aggregation bias); 
(2) aggregating these series; (3) estimating the aggregated series; (4) small sample bias is the 
difference between the estimate of θ  and the true θ . 
  
 
 
Table 1: Simulation Results (Number of individual price series = 100, θ =0.94) 

 Bias Uncorrected Bias Corrected 
 DGP1 DGP2 DGP1 DGP2 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Sample Size AGG TRUE AGG TRUE AGG TRUE AGG TRUE 

50 0.8574 0.9398 0.8573 0.9400 0.9457 0.9398 0.9458 0.9400
100 0.9065 0.9399 0.9071 0.9401 0.9483 0.9399 0.9502 0.9401
150 0.9240 0.9401 0.9248 0.9401 0.9520 0.9401 0.9527 0.9401
200 0.9342 0.9400 0.9339 0.9400 0.9541 0.9400 0.9555 0.9400
250 0.9402 0.9400 0.9410 0.9399 0.9562 0.9400 0.9565 0.9399
300 0.9445 0.9400 0.9446 0.9401 0.9581 0.9400 0.9585 0.9401
500 0.9541 0.9399 0.9540 0.9399 0.9615 0.9399 0.9613 0.9399

Note: AGG is the average AR(1) coefficient estimated from average price. TRUE is the true 
average AR(1) coefficient. 
 
 
 
 
Table 2: Simulation Results (Number of individual price series = 500, θ =0.94) 

 Bias Uncorrected Bias Corrected 
 DGP1 DGP2 DGP1 DGP2 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Sample Size AGG TRUE AGG TRUE AGG TRUE AGG TRUE 

50 0.8537 0.9400 0.8566 0.9400 0.9434 0.9400 0.9432 0.9400
100 0.9078 0.9400 0.9074 0.9399 0.9502 0.9400 0.9501 0.9399
150 0.9246 0.9400 0.9251 0.9400 0.9524 0.9400 0.9527 0.9400
200 0.9361 0.9400 0.9351 0.9401 0.9554 0.9400 0.9553 0.9401
250 0.9410 0.9400 0.9412 0.9400 0.9574 0.9400 0.9570 0.9400
300 0.9445 0.9400 0.9448 0.9400 0.9582 0.9400 0.9578 0.9400
500 0.9542 0.9400 0.9540 0.9400 0.9619 0.9400 0.9615 0.9400

Note: AGG is the average AR(1) coefficient estimated from average price. TRUE is the true 
average AR(1) coefficient. 
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Table 3: Simulation Results (Number of individual price series = 100, θ =0.98) 
 Bias Uncorrected Bias Corrected 
 DGP1 DGP2 DGP1 DGP2 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Sample Size AGG TRUE AGG TRUE AGG TRUE AGG TRUE 

50 0.8858 0.9800 0.8813 0.9800 0.9802 0.9800 0.9806 0.9800
100 0.9341 0.9800 0.9345 0.9800 0.9806 0.9800 0.9810 0.9800
150 0.9492 0.9800 0.9490 0.9800 0.9810 0.9800 0.9813 0.9800
200 0.9590 0.9800 0.9584 0.9800 0.9818 0.9800 0.9817 0.9800
250 0.9647 0.9800 0.9643 0.9800 0.9826 0.9800 0.9820 0.9800
300 0.9678 0.9800 0.9681 0.9800 0.9834 0.9800 0.9834 0.9800
500 0.9752 0.9800 0.9757 0.9800 0.9842 0.9800 0.9842 0.9800

Note: AGG is the average AR(1) coefficient estimated from average price. TRUE is the true 
average AR(1) coefficient. 
 
 
 
Table 4: Simulation Results (Number of individual price series = 100, θ =0.94, Sample Size = 
300) 

 Bias Uncorrected Bias Corrected 
 DGP1 DGP2 DGP1 DGP2 

 (1) (2) (3) (4) (5) (6) (7) (8) 
iµ ~uniform[-a,a] AGG TRUE AGG TRUE AGG TRUE AGG TRUE 

[-0.009,0.009] 0.9268 0.9400 0.9275 0.9400 0.9403 0.9400 0.9403 0.9400
[-0.019,0.019] 0.9281 0.9400 0.9284 0.9400 0.9415 0.9400 0.9417 0.9400
[-0.039,0.039] 0.9334 0.9401 0.9332 0.9401 0.9470 0.9401 0.9468 0.9401
[-0.059,0.059] 0.9439 0.9399 0.9442 0.9400 0.9578 0.9399 0.9577 0.9400

Note: AGG is the average AR(1) coefficient estimated from average price. TRUE is the true 
average AR(1) coefficient. 
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Table 5: Half-life Estimations. Monthly data from 1981:1 to 1996:12.  

1
K

it i ik it k itkx xς θ ν−=
= + +�  with 1ik k iθ θ ξ= +  and 2i iς ς ξ= + . 

 
 (1) Bias-Uncorrected (2) Bias-Corrected, 

Kilian (1998) 
(3) Bias-Corrected,      
So and Shin (1999) 

 

1

K

k
k
θ

=
�  

HL 95%CI 

1

K

k
k
θ

=
�  

HL 95%CI 

1

K

k
k
θ

=
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HL 95%CI 

RCM 0.9783 34 [20,118] 0.9832 43 [12,∞] 0.9966 215 [111, ∞] 
MG 0.9706 26 [20,142] 0.9836 44 [13,∞] 0.9955 161 [112, ∞] 

 
 
Table 6: Country-by-Country Half-life Estimations. Monthly data from 1981:1 to 1996:12.  
 

 CPI TCPI MG RCM 
 

1
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[95%CI] 

1
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Belgium 0.9825 0.9804 0.9702 1.0190 
  

42 
[32,63]  

38 
[31,56]  

26 
[24,31]  

∞ 
[13, ∞] 

Denmark 0.9859 0.9805 0.9766 0.9900 
  

52 
[35,96]  

38 
[28,61]  

31 
[23, ∞]  

73 
[12, ∞] 

Germany 0.9820 0.9729 0.9686 0.9734 28 
  

41 
[19,120]  

28 
[17,49]  

24 
[20,55]  [17, ∞] 

Spain 0.9886 0.9843 0.9852 0.9904 
  

63 
[47,100]  

46 
[36,67]  

47 
[30, ∞]  

74 
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36 
[26,57]  

29 
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31 
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42 
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25 
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Netherlands 0.9770 0.9601 0.9730 0.9850 
  

32 
[18,77]  

19 
[14,32]  

28 
[21,780]  

49 
[17, ∞] 

Portugal 0.9909 0.9903 0.9841 1.0173 
  

81 
[62,140]  

76 
[58,130]  

44 
[39,71]  

∞ 
[13, ∞] 

UK 0.9660 0.9306 0.9614 0.9653 
  

23 
[14,40]  

13 
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20 
[18,38]  

22 
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APPENDIX A 

1. Derivation of Equation (4):6  
 
Equation (A1) and (A2) represent our model: 
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Hence, it follows that:  

                                                 
6  The derivation follows that of Imbs. et. al. (2003), allowing for different weights in the price index. 



  26 
 

.)(

1
2

1

11

1
2

1

]
1

)(
1

)[(
1

)(

1
2

1

1
)(

1

1
2

1

1
)(

1

1

1 2

2
2

,12

2
2

1 2

2
2

1 2

2
2

1
2

2
2

1
2

2
2

1
2

2
2

1
2

2
2

�

� �

�

� �

� �

� �

� �

� �

� �

=

= >

≠=

= >

= >

= >

= >

= >

= >

−

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�

	





�

�

−
+

−

−
+

−
+=

�
�
�

	





�

�

−
+

−

�
�
�

	





�

�

−
−+

−
−+

−
−

+=

�
�
�

	





�

�

−
+

−

�
�
�

	





�

�

−
++

−
+−=

�
�
�

	





�

�

−
+

−

�
�
�

	





�

�

−
++

−
=

N

i i
N

i

N

ij
ji

ij
ji

i

i
i

N

ijj
ji

ij
ji

i

i
i

N

i

N

ij
ji

ij
ji

i

i
i

N

i

N

ij
ji

ij
jij

ji

ij
jii

i

i
ii

N

i

N

ij ji

ij
ji

i

i
i

N

i

N

ij ji

ij
jiji

i

i
ii

N

i

N

ij ji

ij
ji

i

i
i

N

i

N

ij ji

ij
jiji

i

i
ii

a

θθ

θθ
σ

αα
θ

σα

θθ
σ

αα
θ

σα
θ

θθ
σ

αα
θ

σα

θθ
σ

ααθθ
θθ

σ
ααθθ

θ
σαθθ

θ

θθ
σ

αα
θ

σα

θθ
σ

ααθθ
θ

σαθ

θθ

θθ
σ

αα
θ

σα

θθ
σ

ααθθ
θ

σαθ

θ

 

 
 
Define iλ  as 
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we can get equation (4) in page 6: 
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2. First-Order Taylor Series Approximation of aθ  
 
From equation (4), 
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Thus, take a first-order Taylor series approximation around a point of θθ =i  for all i : 
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Where we use the fact that 
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and the definition of iλ : 
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2.1 Case 1: αα =i , 22 σσ =i , and 2ρσσ =ij  
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Thus, as claimed, 
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2.2 Case 2: 22 σσσ == iji  
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APPENDIX B 

B.1 Group Mean Estimators 
Consider the following heterogeneous dynamic model of disaggregated real exchange rate: 

it
K

k kitikiit qq νρα ++= � = −1
, ),0(~ 2

iit σν  

ikik 1ξρρ += , 

ii 2ξαα += . 
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We can rewrite the model as 

jjjj Xq νβ +=  

where ),...,,( ,2,1, Tjjjj qqqvecq = , 

�
�
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�
�
�
�
�
�

�

�

=

−−−

+−−−

+−

−−

kTjTjTj
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,2,1,
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1,0,1,

,1,0,

1
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�

�

�����

�

�

 , 

and ),...,,( ,2,1, Tjjjj vec νννν = . 

Assume that 

jj τββ += , 

and 

0)( =jE τ , Γ=)( '
jjE ττ . 

Let jΒ  be the j-th ordinary least squares coefficient vector, the mean group estimator MGβ�  is 

simply given by 

�
=

Β=
N

j
jMG

1

�β . 

 

 

 

Further, the random coefficient estimator RCMβ�  is given by 

j

N

j
jRCM W Β=�

=1

�β , 

where 
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B.2 Bias Correcting Methods 

B.2.1 Kilian (1998) 

Given a covariance stationary AR(p) process, 

tptpttt uyyyy +++++= −−− βββα �2211 , 

where ),0(~ ...
u

dii
tu Σ .  

Step 1a: Estimate the AR(p) model and obtain the estimates )�,�,�(�
21 pvec βββ �=Β . Generate 

1000 bootstrap replications *�Β from 

***
22

*
11

* ���� tptpttt uyyyy +++++= −−− βββα � ,          (*) 

using standard nonparametric bootstrap procedures. Then approximate the bias term 

)�( Β−Β=Ψ E  by )��( *** Β−Β=Ψ E ; this suggests the bias estimate Β−Β=Ψ ��� *  

Step 1b: Calculate the modulus of the largest root of the companion matrix associated with Β�  as 

)�(Βm . If 1)�( ≥Βm , set Β=Β �~ . If  1)�( <Βm , construct the bias-corrected coefficient estimate 

Ψ−Β=Β ��~ . Plug Β~  into )(⋅m . If 1)~( ≥Βm , let Ψ=Ψ ��
1 and 11 =δ . Define iii Ψ=Ψ+

��
1 δ  and 

01.01 −=+ ii δδ . Set iΒ=Β ~~  after iterating on =Ψ−Β=Β iii ,��~ 1, 2,�, until 1)~( <Β im . 

Step 2a: Substitute Β~  for Β�  in equation (*) and generate 2000 new bootstrap replications *�Β  

using standard nonparametric bootstrap procedures. In order to reduce the computational 
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requirements, we follow Kilian�s (1998) suggestion that use the first-stage bias estimate Ψ� as a 

proxy for *�Ψ .  

Step 2b: Calculate *~Β  from *�Β  and *�Ψ , following the same procedures in step 1b with obvious 

changes in notation. 

Step 3: Calculate the 25 and 75 percentile interval endpoints of the distribution of impulse 

response function.  

B.2.2 So and Shin (1999) 

Consider the following simple AR(1) model as an example, the extension to higher order AR(p) 

model is straightforward. Assume 

ttt uyy ++= −1ρα , 

the bias-corrected estimate of ρ  by recursive demeaning method proposed by So and Shin 

(1999) is given by 

�

�
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= −−−

−
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yyyy
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APPENDIX C 
 
Table C1: Data Source. Price data for European countries is obtained from Eurostat. Most U.S. 
price data comes from BLS with some exceptions collected from Eurostat due to unavailability. 
Codes of data are provided in brackets.  
 

 Variable European Countries U.S. 
1 BC Bread and Cereals (1111) CEREALS & BAKERY PRODUCTS (USCPFCB.F) 
2 Meat Meat (1112) MEATS (USCPFAM.F) 
3 Dairy Dairy Products (1114) DAIRY & RELATED PRODUCTS (USCPFDY.F) 
4 Fru Fruit (1116) FRESH FRUITS (USCPFFF.F) 
5 Alco Alcoholic and non-alcoholic drinks (1150) 0.57*(ALCOHOLIC 

BEVERAGES)+0.43*(NONALCOHOLIC 
BEVERAGES & BEVERAGE MATERIALS) 
 
a) ALCOHOLIC BEVERAGES (USCPBAL.E) 
b) NONALCOHOLIC BEVERAGES & BEVERAGE 
MATERIALS (USCPBNA.E) 

6 Clot Clothing (1210) APPAREL (USCPAPPLE) 
7 Foot Footwear (1220) FOOTWEAR (USCPAS..E) 
8 Fuel Fuel and Energy (1330) FUEL & UTILITIES (USCPHUT.E) 
9 Furn Furniture (1410) FURNITURE & BEDDING (USCPHGF.F) 

10 Dapp Domestic Appliances (1420) Domestic Appliances (1420) – Eurostat 
11 Vehl Vehicles (1610) NEW VEHICLES (USCPTVN.E) 
12 Ptran Public Transport (1630) PUBLIC TRANSPORTATION (USCPTB..F) 
13 Sound Sound and photo equipment (1710) Sound and photo equipment (1710) – Eurostat 
14 Book Books (1730) Books (1730) – Eurostat 

15 Lei Lei (1720) Lei (1720) – Eurostat 
16 Hotl Hotels (1830) LODGING AWAY FROM HOME INCLUDING 

HOTELS (USCPHST.F) 
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Table C2: Data Availability for Each Country 
 
 Belgium Denmark Germany Spain France 
Bread and Cereals 
(1111) 

81:01-96:11 81:01-96:09 81:01-95:07 81:01-96:10 81:01-96:10 

Meat (1112) 81:01-96:11 81:01-96:09 81:01-95:07 81:01-96:10 81:01-96:10 
Dairy Products (1114) 81:01-96:11 81:01-96:09 81:01-95:07 81:01-96:10 81:01-96:10 
Fruit (1116) 81:01-96:11 81:01-96:09 81:01-95:07 81:01-96:10 81:01-96:10 
Alcoholic and non-
alcoholic drinks (1150) 

81:01-96:11 NA 81:01-95:07 81:01-96:10 81:01-96:10 

Clothing (1210) 81:01-96:11 NA 81:01-95:07 81:01-96:10 81:01-96:10 
Footwear (1220) 81:01-96:11 81:01-96:09 81:01-95:07 81:01-96:10 81:01-96:10 
Fuel and Energy (1330) 81:01-96:03 81:01-95:10 81:01-95:07 81:01-96:10 81:01-96:10 
Furniture (1410) 81:01-94:10 81:01-94:10 81:01-94:10 81:01-94:10 81:01-94:10 
Domestic Appliances 
(1420) 

81:01-94:10 NA 81:01-94:10 81:01-94:10 81:01-94:10 

Vehicles (1610) 81:01-96:11 NA 81:01-95:07 81:01-96:10 81:01-96:10 
Public Transport (1630) NA 82:04-96:09 82:04-95:07 82:04-96:10 82:04-96:10 
Sound and photo 
equipment (1710) 

81:01-96:11 NA 81:01-95:07 81:01-96:10 81:01-96:10 

Leisure (1720)  81:01-96:11 NA NA 81:01-96:10 81:01-96:10 
Books (1730) 81:01-96:11 81:01-96:09 81:01-95:07 NA 81:01-96:10 
Hotels (1830) 81:01-96:11 81:01-96:09 81:01-95:07 81:01-96:10 81:01-96:10 
Total # of sectors 15 10 15 15 16 
 
 Italy Netherlands Portugal U.K. U.S. 
Bread and Cereals 
(1111) 

81:01-95:12 NA 81:01-96:02 81:01-96:10 81:01-96:12 

Meat (1112) 81:01-95:12 81:01-96:10 81:01-96:02 81:01-96:10 81:01-96:12 
Dairy Products (1114) 81:01-95:12 81:01-96:10 NA 81:01-96:10 81:01-96:12 
Fruit (1116) 81:01-95:12 81:01-96:10 NA 81:01-96:10 81:01-96:12 
Alcoholic and non-
alcoholic drinks (1150) 

81:01-95:12 81:01-96:10 81:01-95:11 81:01-96:10 81:01-96:12 

Clothing (1210) 81:01-95:12 81:01-96:10 81:01-96:02 81:01-96:10 81:01-96:12 
Footwear (1220) 81:01-95:12 81:01-96:10 81:01-96:02 81:01-96:10 81:01-96:12 
Fuel and Energy (1330) 81:01-95:12 81:01-96:10 81:01-96:02 81:01-96:10 81:01-96:12 
Furniture (1410) 81:01-94:09 81:01-94:10 81:01-94:10 81:01-94:10 81:01-96:12 
Domestic Appliances 
(1420) 

81:01-94:09 81:01-94:10 81:01-94:10 81:01-94:10 81:01-94:10 

Vehicles (1610) 81:01-95:12 81:01-96:10 NA 81:01-96:10 81:01-96:12 
Public Transport (1630) 82:04-95:12 82:04-96:10 NA 82:04-96:10 81:01-96:12 
Sound and photo 
equipment (1710) 

81:01-95:12 81:01-96:10 NA 81:01-96:10 81:01-95:09 

Leisure (1720)  NA 81:01-96:10 81:01-96:02 81:01-96:10 81:01-95:09 
Books (1730) 81:01-95:12 81:01-96:10 NA 81:01-96:10 81:01-95:09 
Hotels (1830) 81:01-95:12 81:01-96:10 81:01-96:02 81:01-96:10 81:01-96:12 
Total # of sectors 15 15 10 16 16 
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APPENDIX D  
Figure 1: Prices: Imbs et al. (2002) vs. Corrected Data 
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Figure 2: Prices: Imbs et al. (2002) vs. Corrected Data (continued) 
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