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kink points. With errors in the estimated labor supply equation, the new choice is uncertain, and so

the welfare effects of a tax change are uncertain. We propose a simulation-based method to compute

expected welfare effects that is easy to implement and that fully accounts for uncertainties about

choices around kink points. Our method also provides information about expected changes in

working hours.
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1 Introduction

Graduated income tax rates and income transfer programs create piecewise-linear bud-

get constraints that are composed of a collection of budget segments and kink points. A

considerable body of work estimates labor supply under such budget sets.1 Key insights in

this literature are that the consumer may choose a budget segment or a kink, whichever

provides maximum utility, and that this behavior is estimated with error.

Economists also calculate welfare loss due to taxation of labor supply. Many use labor

supply estimates to calculate average and marginal welfare loss, and many evaluate the

economic effects of proposed and real tax reforms. As reviewed below, however, existing

welfare cost calculations often do not fully account for the errors of estimation and their

interaction with the nonlinear budget constraint for each individual. In particular, with

a change of tax schedule, the stochastic specification means that each individual has a

distribution of possible outcomes: she may switch to another budget segment, switch to

a kink point, or even switch to or from participating in the labor force. In general, each

different budget segment produces a different net wage and a different virtual income.

In this paper, we develop a method to calculate welfare cost that employs the full

stochastic specification of any estimated labor supply model. In particular, we account

for uncertainties that arise from estimating errors by using Monte Carlo simulation across

heterogeneous individuals. For each individual, this method uses the estimated probabilities

of switching from each segment or kink point to another to calculate “expected” welfare

loss for each individual. This method also identifies the expected change of working hours.

Moreover, it provides a natural way to aggregate welfare loss and the change in working

hours for various types of heterogeneous individuals. We then illustrate this method using

three existing samples of individuals and estimates of labor supply behavior.

The problem of welfare loss from labor taxes under piecewise-linear budget constraints

is essentially the same problem as calculating consumer surplus or willingness-to-pay in

discrete choice models where choices are mutually exclusive. Similarly, in the labor supply

1For surveys, see Hausman (1985), Moffit (1990, 2002), and Blundell and MaCurdy (1999).
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model, a worker may choose only one budget segment or kink point. Small and Rosen

(1981) were among the first to study systematically the effect of a price change on wel-

fare for discrete choice models. However, their study did not account for the possibility

of changing income. McFadden (1999) thoroughly discusses a willingness-to-pay problem

in discrete choice models by explicitly comparing the choices that yield maximum utilities

before and after changes in some specific attributes of arguments in the utility function.

Possible changes in income, prices or attributes may change the choice that maximizes

utility and hence affect the values of the compensating variation (CV) and equivalent vari-

ation (EV). While his study concerns fishing,2 other examples concern housing 3 or wealth

accumulation.4

Previous literature on calculating welfare loss of labor taxation with piecewise bud-

get constraints is based on analytical solutions. Examples include Hausman (1983) and

Blomquist (1983). In order to allow for this analytical solution in his study of the change

from one piecewise-linear budget constraint to another, Hausman assumes that each per-

son’s new optimal choice is on a segment of the new budget constraint. Blomquist allows for

kinks in the existing tax system, but calculates the welfare gains of moving to a proportional

tax system (with no kinks). By using a simulation approach, we can allow for changes to

or from a kink.

The framework we adopt here is pioneered by various studies of Hausman in the 1980’s

2In McFadden’s example, evaluating environmental damages at various fishing sites, the attributes include

the quality and quantity of fish at each site. The CV or EV are those that equalize the maximum utilities

before and after some change in fishing quality.
3 In a study of housing and taxes, Berkovec and Fullerton (1992) use a simulation approach to calculate

welfare loss. They employ eight mutually exclusive regimes, with discrete choices about whether to hold

owner housing, rental housing, and corporate equity. For each household, they compare the utility levels

in each regime before the tax change, and again after the tax change. Within each regime, they consider

what tax bracket the person would face. Since they study housing choice, however, they ignore the choice

of working hours. The implicit assumption is that hours do not change in response to a change in tax rate.
4Hubbard, Skinner and Zeldes (1995) show that the often-assumed monotonic relationship between wealth

and consumption may not be valid anymore due to piecewise-linear budget constraints. Also, the breakdown

of this monotonic relationship may have important effects on wealth accumulation and life-cycle behavior.
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(Hausman, 1981b, 1983, 1985). Blundell and MaCurdy (1999) discuss several attractive

features of this framework: it explicitly recognizes the institutional features of the tax

system, and it readily incorporates the fixed cost of holding a job. However, some concerns

on how to estimate labor supply in this framework have also emerged. The most notable

concern is of Heckman (1983), that the budget set for each individual often cannot be

accurately determined and that a special type of errors-in-variable bias results.5 Yet a recent

paper by Gan and Stahl (2002) shows that the Heckman concern can indeed be addressed in

the Hausman framework by introducing measurement error in non-labor income, because it

creates a random budget set. Such a labor supply equation can be estimated in a framework

of piecewise-linear budget constraints without suffering from the Heckman concern.

This paper does not provide any assistance in estimating labor supply functions. Rather,

the point is to employ the stochastic specifications of such models along with their parameter

estimates when calculating welfare effects of tax changes. It is to be consistent with those

labor supply models that we suggest a Monte Carlo method. These models often have

multiple random errors, and they have no closed-form solution for welfare cost. Our method

yields strikingly different results compared to use of point estimates in a simple welfare cost

formula. Then, once the Monte Carlo method is employed, several other complications can

easily be incorporated as well.

In particular, this paper makes several contributions relative to existing welfare cost

calculations. First, we calculate welfare cost using labor supply estimates that account

for the Heckman concern. Second, earlier analytical approaches had to assume that each

person’s new indifference curve is tangent to a line segment on the new budget, while our

approach allows movement to or from a kink point. Third, we account for the fact that the

EV or CV itself is a transfer that may also affect the person’s choice. Fourth, our simulation

5Also, MaCurdy, Green and Paarsch (1990) argue that the likelihood setup in Hausman’s framework

may create artificial constraints on the parameter values. Blundell and MaCurdy (1999) suggest that the

Triest (1990) dual random error model is not subject to this problem. In fact, however, Hausman’s random

coefficient model is not subject this problem since the Triest model is a special case of Hausman’s model.

See Gan and Stahl (2002) for a detailed discussion on this point.
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method is easy to implement and to calculate, with no additional difficulty for a non-convex

budget set. Finally, earlier analytical approaches could not employ the entire estimated

distributions of multiple error terms. For example, Hausman (1983) allows for measurement

error and for heterogeneity in one of the preference parameters. To get a probability-

weighted choice of hours, one needs to integrate over both distributions. To simplify, one

might use just the mean of each distribution. Later we call this the simple “Harberger”

method (Harberger, 1964), because the person’s choice is only one point. Instead, Hausman

uses an approximation, evaluating the distribution at the means of intervals. Here, we

employ the entire estimated distributions of both error terms. For each individual in the

data set, our Monte Carlo simulation takes a large number of random drawings from the

two estimated distributions. For each drawing, it calculates the chosen segment or kink,

and the resulting welfare cost. We then have a probability distribution of the welfare cost.

Because welfare cost increases with the square of the tax rate, the expected welfare cost

exceeds the welfare cost at the expected point. Compared to the simple Harberger method,

this procedure might be important, especially if the errors are large and the tax system is

steeply graduated.6

Indeed, we find larger welfare effects in each of our three illustrations. In one calculation,

Harberger’s welfare cost is 26% of tax revenue, Hausman finds 58%, and we find 75%. For

the rate reduction of the Tax Reform Act of 1986, Harberger’s gain is 6% of tax revenue,

and ours is 35%. In a final example where the point estimate of the compensated labor

supply elasticity is near zero, the Harberger-type welfare cost is near zero but ours is not:

the elasticity is estimated with error, and the possibility of a positive elasticity implies

positive expected welfare cost.

In Section 2, we define and provide a framework to estimate the CV and EV under

budget constraints that are piecewise linear. These budget constraints are discussed in

6Suppose, for example, that the mean of the distribution places the person in the 20% tax bracket but

that the person actually has a 40% probability of being in the 30% bracket. The simple welfare cost is

some constant times .2 squared (which is .04), while the true welfare cost involves the same constant times

[(.6)(.2)(.2) + (.4)(.3)(.3)], which is .06. In this simple example, the welfare cost measure is raised by 50%.
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Section 2.1, while the issues related to CV and EV under piecewise budget constraints are

in Section 2.2. Then Section 3 provides a framework to calculate welfare loss using the

simulation method. Section 4 offers three empirical examples to compare the values of

welfare loss derived from alternative methods. Section 5 concludes the paper.

2 A Basic Framework

In this study, we consider a static partial equilibrium labor supply model. The before-tax

wage is constant, with no inter-temporal optimization of labor supply. All of the following

variables are individual-specific, but we suppress the index for notational convenience.

We begin with a typical labor supply model of utility maximization with respect to

choices about leisure and other consumption goods x. The hours of work are defined to be

h, so −h is leisure. With no taxes, the person’s non-labor income is y, and the real wage is
w. The indirect utility v(w, y) is the maximum value of the direct utility u(x, h) that can

be obtained when facing the budget constraint:

v(w, y) = maxx,h u(x, h)

s.t. x− wh = y
(1)

where the price of x is normalized to 1, and the cost of leisure is the wage rate w.

2.1 Budget segments and tax revenues

Graduated tax rates and income transfers imply different combinations of real wage

rates and incomes in Equation (1). Let a tax bracket be represented by {tj;Yj−1, Yj}, where
tj is the marginal tax rate for a person whose before-tax income lies within the interval

[Yj−1, Yj]. Information about {tj ;Yj−1, Yj} can often be found from tax tables. Note that
the relevant budget set is based on after-tax income. Let the end points of the segment in a

budget set that corresponds to bracket {Yj−1, Yj} be {yaj−1, yaj }, where ya refers to after-tax
income. A complete characterization of budget segments requires information on working

hours that correspond to the set [yaj−1, yaj ], and we denote these hours as as [Hj−1,Hj ]. To
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calculate the location of each budget segment, we start with the first budget segment and

proceed through all budget segments. Besides the before-tax wage rate w, another critical

piece of information necessary is Y n, the non-labor income this person may have. Let yn

be after-tax non-labor income, where the tax is calculated as if the person had no labor

income. Then labor income pushes the person into successively higher tax brackets. We

summarize information on budget segments in Table 1.

One interesting observation from Table 1 is that non-labor income affects the location

of the budget segments for each individual, since the end points of a budget segment are

functions of Y n or yn:

Hj = (Yj − Y n)/w
yaj = yn +

∑j
k=2(1− tk)(Yk − Yk−1)

(2)

A change in non-labor income Y n will lead to a change of the whole budget set. If Y n is

measured with error, the whole budget set will be measured with error. This point is used

by Gan and Stahl (2002) as a way to resolve the critique that Heckman (1983) raises with

respect to the Hausman labor supply estimates.

It is well known in the literature that a person’s optimal hours may be at a kink point

instead of being on the interior of a segment, in the framework of piecewise-linear budget

constraints. Define

Sj ≡


1 if on the interior of segment j,

0 otherwise;

Kj ≡


1 if at kink j,

0 otherwise.

(3)

The conditions determining the values of Sj and Kj require knowledge of the labor

supply function. For example, consider a commonly estimated linear labor supply function

h =



αwj + βy

v
j + s, if positive

0 otherwise
(4)
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where wj ≡ w(1−tj) and where s includes zγ (the effect of other socio-demographic variables
z) and the statistical error. In this equation, yvj is virtual income, defined as the intercept

of the line that extends budget segment j to the zero-hours axis. Given that labor supply

function, the conditions for Sj = 1 or Kj = 1 are:

Sj = 1 if Hj−1 < αwj + βyvj + s < Hj

Kj = 1 if αwj+1 + βy
v
j+1 + s ≤ Hj ≤ αwj + βyvj + s

(5)

If a budget set is globally convex, the highest indifference curve must either touch a single

kink point or be tangent to a single segment. Only one of Sj or Kj will be 1. However,

often a budget set is not convex due to the fixed cost of working or some income transfer

program (such as AFDC or TANF).7 A possibility then arises that more than one of the

Sj and/or Kj is 1. In this case, we must compare the utility levels for for all Sj = 1 and

Kj = 1 and pick the segment or kink point that yields the highest utility level.

Another key variable in the calculation of welfare cost is the tax revenue from this

person, which can be obtained based on the information in Table 1. Let working hours be

h ∈ [Hj−1,Hj) as in the table. Then the tax revenue R for this individual is:

R = Rn +
j−1∑
k=1

(Hk −Hk−1)wtk + (h−Hj−1)wtj
= Rj−1 + (h−Hj−1)wtj (6)

where Rn is the tax revenue from non-labor income, and Rj−1 is defined as the tax revenue

if the working hours were h = Hj−1 (which may be obtained from the tax table and Table

1 when the wage rate w is given).

2.2 CV and EV under piecewise budget constraints

The welfare cost of the tax may be based on either the compensating variation (CV)

or the equivalent variation (EV). In a simple proportional tax system, consider the case

7Aid to Families with Dependent Children (AFDC) was replaced in 1996 by Temporary Assistance for

Needy Families (TANF).

7



where a change in tax moves the pair of after-tax wage and virtual income from (w0, y0) to

(w′, y′). The CV and EV may be formally defined as:

u0 = v(w0, y0) = v(w′, y′ + CV )

v(w0, y0 − EV ) = v(w′, y′) = u′
(7)

Calculating welfare cost in the framework of piecewise-linear budget constraints is sim-

ilar to the problem of calculating willingness-to-pay in a discrete choice model. After a tax

change, when a utility-maximizing individual chooses new working hours on a budget seg-

ment that provides the highest utility, the chosen segment or kink point has likely changed.

We then compare the difference between the old and new utility levels and find a CV or

EV value to equalize them. This basic idea is in McFadden (1999), but in our case the CV

or EV is a transfer that may itself affect the person’s choice of kink point or segment.

At any kink point whereKj = 1, we use the direct utility function u(x, h), where x = y
a
j ,

and h = Hj. A person whose optimal hours are zero or negative does not participate in the

labor force. The utility level of this person is u(ya0 , 0), where y
a
0 = y

v
0 = y

n.

Suppose k0 and k′ are the total numbers of segments before and after the tax change.

For a convex budget set, since only one of the Sjs and Kjs is 1, we can find the utility levels

before and after a tax change as:

u0 =
∑k0
j=1 S

0
j v(w

0
j , y
v0
j ) +

∑k0
j=0K

0
j u(y

a0
j ,H

0
j )

u′ =
∑k′
j=1 S

′
jv(w

′
j , y
v
j
′) +

∑k′
j=0K

′
ju(y

a
j
′,H ′j)

(8)

Note, in general, that S0j 6= S′j and K0j 6= K ′j . Under the new tax regime, a person may
switch to a different kink point or segment.

When the budget set is not convex, we must consider the possibility that more than one

of the Sjs and/or Kjs is one (while other segments and kinks are not relevant). Define

vj ≡ v(wj , y
v
j )Sj + (1− Sj)m

uj ≡ u(yaj ,Hj)Kj + (1−Kj)m
(9)

where m is a large negative number used to represent a floor under all possible utility

evaluations: m < minj{v(wj , yvj ), u(yaj ,Hj)}. The utility levels before and after a change in
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tax can be written as

u0 = maxj{v0j , u0j ; j = 1, · · · , k0}
u′ = maxj{v′j , u′j ; j = 1, · · · , k′}

(10)

where vj and uj are defined in (9).
8

Additional complications arise because a lump-sum transfer of CV or EV may change

a person’s entire budget set. The new budget set is still piecewise linear, in a way that

corresponds to tax rules, but the extra transfer means that the person can buy more leisure

(as well as other goods). For the end point of budget segment j, Hj does not change, but y
a
j

and virtual income yvj do change – by the amount of lump sum transfer. As a consequence,

the optimal working hours change. Therefore, it is entirely possible that a person moves

to a different segment or kink point. Let ′′ represent variables after the person is given the

EV:

v′′j = v(w0j , y
v0
j − EV )S′′j + (1− S′′j )m

u′′j = u(ya0j − EV,H0j )K ′′j + (1−K ′′j )m
(11)

In (11), the values of S′′j and K ′′j are functions of the unknown EV, and m is the same as in

(9). A correct measure of EV must take this complication into account, as the solution to:

EV : u′ = max
j
{v′′j , u′′j ; j = 0, · · · , k0} (12)

where u′ is defined in Equation (10). Because Sj and Kj depend on the unknown EV , a

solution to (12) must be obtained iteratively. A similar calculation can be undertaken for

CV.

In order to compare these procedures to those suggested in Hausman (1983), we first

rewrite Hausman’s methods in our notation. In particular, consider the expenditure func-

tion, Equation (2.4) in Hausman (1983). The calculation of EV based on such an expendi-

ture function depends on the condition that a person must fall on a particular segment. In

8The purpose of introducing m is to compare utility levels vj and uj only at the relevant segments and

kinks. Equations (9) assign this large negative number m to the segments and kinks that are not relevant.
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our notation, suppose j0 is the segment chosen under old tax rules, such that:

let u0j0 ≡ maxj{v(w0j , yv0j ); j = 1, · · · , k0},
then v(wj0 , y

v
j0 −EV ) = u′ ≡ maxj{v(w′j , yvj ′); j = 1, · · · , k′}

(13)

Equation (13) can be compared to (11)-(12), revealing two differences: first, (13) does

not consider a kink point, and second, it does not consider the case that a transfer of EV may

further change the chosen segment. Also, Hausman (1983) mentions that calculation of (13)

by integration over the error terms’ distributions is numerically difficult when the budget set

is non-convex. Therefore, he uses various simplifications to calculate a good approximate

solution. Because we use Monte Carlo simulations, however, these simplifications are no

longer necessary. Finally, note that the simulation method based on (11)-(12) is not affected

by whether the budget set is convex or non-convex.

3 Welfare Loss Based on Stochastic Simulations

In this section, we introduce a stochastic specification into the model of the previous

section, and we provide a simulation-based method to calculate expected welfare loss for

each individual.

3.1 Specifying the utility function

Calculations based on Equation (10) require complete knowledge of a person’s direct and

indirect utility functions. Two approaches have been proposed in the literature. In the first

approach, one may start with an assumed utility specification and then solve for demand

functions including leisure demand (labor supply). For example, Dickens and Lundberg

(1993) use a CES-type of utility function. After estimating the corresponding demand

function, they can use the parameters to calculate welfare loss. In the second approach,

introduced in Hausman (1981a), one starts with and estimates a specification of the demand

function, such as a linear specification, and “recovers” the utility function for that demand
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function by using Roy’s identity. That is, using

∂v(w, y)/∂w

∂v(w, y)/∂y
= h, (14)

one can solve a differential equation to get v(w, y). Although Slesnick (1998) points out

that closed-form solutions to Equation (14) can only be obtained for a limited class of

demand functions, Hausman and Newey (1995) show that a relatively simple algorithm can

numerically solve the differential equation. Thus, more general functional forms could be

used for labor supply.

Nevertheless, we adopt the second approach and use labor supply functions that yield

closed-form solutions. In particular, we consider a linear labor supply function as in (4).

Following Hausman (1981a), when h > 0, the corresponding indirect utility function is:

v(yvj , wj) = e
βwj

(
yvj +

α

β
wj − α

β2
+
s

β

)
(15)

When a person is at a kink point, the indifference curve is not tangent to the budget

set, so the utility level can only be obtained from the direct utility function. At kink point

j, the direct utility function corresponding to the labor supply function in (4) is:

u(yaj ,Hj) = exp

(
βyaj + s−Hj
Hj − α/β

)(
Hj − α/β
β

)
(16)

3.2 A stochastic specification and simulation procedures

So far, we have discussed how to obtain utility functions from empirically estimated labor

supply functions, but these functions are estimated with stochastic error. Part of this error

may represent the deviation between actual hours and desired hours (which econometricians

do not observe). Another part may be a deliberate effort by the econometrician to represent

the heterogeneity of preferences or to represent specification errors. A typical example is

in a random coefficient model where a parameter of the model is assumed to be randomly

distributed, and where the task of the estimation is to obtain the parameters of that random

distribution.

When the stochastic errors enter into an objective function linearly, they tend to cancel

out. In that case, a non-stochastic calculation might be sufficient. In our case, however,
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the welfare loss is a non-linear function of the stochastic errors. Comparing a stochastically

specified model and a non-stochastic one, the welfare loss calculation may be significantly

different. We show this difference below.

Researchers may obtain information from a stochastic model that would be difficult or

impossible to obtain from a non-stochastic model. For example, if one is interested in the

probability of switching segments, or of switching from participating in the labor force to

non-participation, one can acquire this information rather easily in a stochastically-specified

model. That information may be very hard to obtain from a non-stochastic model.

In this section, we consider a stochastic specification based on empirically estimated

labor supply equations. The stochastic errors in different specifications of labor supply

have different forms. In Hausman (1981b), for example, the labor supply equation is:

h = αwj + (β + η)y
v
j + zγ + ζ (17)

where β is the mean value of β, the coefficient on virtual income yvj . Equation (17) has two

errors: η represents heterogeneity of preferences, and ζ is the error in measuring working

hours. Another example is in Triest (1990), where the labor supply equation is:

h = αwj + βy
v
j + zγ + η + ζ (18)

In this equation, η is an optimization error. It is not observed by the econometrician

but only observed by the individual to determine her segment or kink point. Again, ζ serves

as measurement error for working hours. At a kink point in this model, we only have error

η, but both η and ζ are present when a person is on a line segment.

For both (17) and (18), the indirect and direct utility functions are given in (15) and

(16), respectively. Often, when labor supply equations are estimated, the density forms

of η and ζ are assumed, and the parameters of the density functions are estimated. Our

simulation procedure is based on random draws of η and ζ from the estimated densities.

We now describe the basic procedure of this simulation method.

We start with the choice of estimated labor supply equation (17) or (18), and then

for each worker we take I = 1, 000 draws of the error term ε ≡ (η, ζ). The draws may

12



come from a “known” parametric distribution specified and estimated for the labor supply

function. Alternatively, it may come from the empirical distribution of the residuals of the

labor supply function.9

For the ith random draw, εi = (ηi, ζi), we find the values of S
0
ij, S

′
ij ,K

0
ij andK

′
ij from (5).

Then from (9) and (10), we find the optimal segment or kink point in each of the two tax

regimes, given εi. This procedure applies whether the budget set is convex or non-convex.

Let j0i and j
′
i be the optimal choice of segment or kink in the two tax regimes, given

the ith draw of ε, and let u0i be the optimal utility in the old tax regime given εi. We can

obtain the EVi, given εi, and u
′
i, using (11) and (12). Note that the chosen segment or kink

point reflects the transfer of EVi. Solving (12) requires numerical iteration.

For any individual worker, we know the j0i and j
′
i for the ith draw, so it is easy to obtain

the tax revenues in the two tax regimes R0i and R
′
i (and ∆Ri ≡ R′i−R0i ). One definition of

deadweight loss (DWL) for this person, just for the ith drawing from the whole distribution

of ε is:10

DWLi ≡ − (EVi −∆Ri) . (19)

Naturally, the mean of all these DWLi can be made arbitrarily close to the expectation

of DWL by increasing the number of draws I (and similarly for ∆Ri):

E(DWL) =
∫
DWLidF (εi) ≈ 1

I

∑
DWLi,

E(∆R) =
∫
∆RidF (εi) ≈ 1

I

∑
∆Ri.

(20)

The mean square error of the simulation is proportional to 1/I (see Geweke and Keane,

2001). One may also calculate the probability of moving from segment j0 to segment j′.

Prob(segment j0 ⇒ segment j′) = 1
I

I∑
i=1

Sj0i
× Sj′i ,

9In principle, using this kind of simulation method, one could also introduce errors on parameters to

account for standard errors of parameter estimates.
10See Mohring (1971) and Auerbach (1985). Since EV < 0 for a gain, we take the negative of (EV −∆R)
in order to show a positive number for a welfare gain from removing the tax (loss from having the tax).
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or the probability of moving from segment j0 to kink j′:

Prob(segment j0 ⇒ kink j′) = 1
I

I∑
i=1

Sj0i
×Kj′i

In addition, we can calculate the change of working hours. If labor supply is estimated

using (18), for example, and if j0i and j
′
i are chosen segments, for each random draw εi, then

working hours can be calculated as:

h′i = α̂wj′i + β̂y
v
j′i
+ zγ̂ + ηi + ζi

h0i = α̂wj0i
+ β̂yvj0i

+ zγ̂ + ηi + ζi

The difference between h0i and h
′
i is the change in labor supply, ∆hi. The average from

all random draws provides a number that converges to the expected value of the change in

working hours:

E(∆h) =

∫
∆hidF (εi) ≈ 1

I

I∑
i=1

(
h′i − h0i

)

All the estimated factors are calculated conditional on the wage rate w, virtual income

yv, and other socio-demographic variables z. We can then integrate over these factors to get

the population average. In practice, we just repeat the previous process for each successive

individual in the sample and take the average of all individuals (applying sample weights,

if available).

4 Examples

This section provides three illustrations of the procedures just described.

Example 1: The welfare loss of taxation for a married woman.

As in Hausman (1981b), we consider a married woman whose wage rate is $4.15 an

hour, and whose husband is earning a fixed $10,000 (both in 1975 dollars). She works full

time (1,925 hours per year) and files a joint return. The tax regime she faces is shown

in Table 2, the federal tax brackets of 1975 (the sample year for Hausman, 1981b). The

“new tax” regime is no tax at all. We choose this example for several reasons: First, this
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example is considered in Hausman (1981b), where he estimates labor supply using data

from the Panel Study of Income Dynamics (PSID) and applies the estimates to calculate

welfare loss. Second, the standard deduction for a married couple filing a joint return in

1975 creates a non-convex budget set.11 Third, this example has only one person, so it

can be used to illustrate how the stochastic specification yields various possibilities for the

chosen segment or kink point. It is also easy to compare the results with a traditional

welfare cost calculation such as the Harberger triangle.

The estimated hours equation is given by

h = αwj + β(y
v
j − FC) + zγ + ζ (21)

where h is in thousands of hours, yvj is in thousands of dollars, wj is in dollars per hour, and

FC is the fixed cost of working (1.26 thousand dollars per year). Hausman estimates that

α̂ = 0.4608, with a standard error .106, and β is a random coefficient representing variations

in taste, with a truncated normal distribution (i.e., β = βk where βk ∼ N(2.0216, 0.52622)
and βk < 0). The mean of this truncated normal is E(β) = −.123. Also, ζ ∼ N(0, 0.28012).
Then we obtain zγ = 0.2595, from the equation

zγ = h− α̂wj + E(β)(yvj − F̂C) (22)

where h = 1.925 thousand hours, and j is the chosen segment. At the means of the

parameters and of the error distribution, the marginal tax rate for this woman is 28%.

The random draws represent both the preference heterogeneity and measurement errors

of working hours among all those married women who have exactly the same observed set

of characteristics as this woman (working full time at 1,925 hours per year, filing joint tax

returns, having non-labor income of $10,000, and earning $4.15 per hour). Therefore, our

simulation results can be said to estimate welfare effects for a subset of the population that

has the observed characteristics of the woman in this example.

11In 1975, for income below $11,800, the standard deduction for a married couple filing a joint return was

$1,900. Then, when total income is between $11,800 and $16,250, the true marginal tax rate falls because

the standard deduction is $1,900 plus 16% of the income that exceeds $11,800.
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Table 3 first shows that the DWL estimate is $471 per year for this person using a

simple Harberger triangle approximation.12 Our stochastic specification not only yields an

expected DWL that is substantially larger ($1,401), but it also provides an estimate of

the standard error for DWL ($716). The welfare loss based on the Harberger triangle is

about 26.0% of tax revenue for this woman, but the expected DWL over expected revenue

is 75.5%. The estimate by Hausman is in between, at 58.1% of tax revenue. All of these

numbers are large because of the large compensated elasticity from the Hausman estimates.

In the stochastic specification, this person has probabilities of being on different segments

or kink points, as shown in Table 4. The probability that this working woman chooses the

segment with the 28% tax rate (segment 5) is 47.2%. The sum of the probabilities of choosing

kink points is 13.1%. Generally speaking, segments or kink points closer to segment 5 have

higher probabilities, with two exceptions. First, kink points 1 and 2 have zero probabilities,

since the budget set is non-convex around these two kink points. Second, the probability of

being at kink point 0 (not working) is positive (.032) because of the fixed cost of working

in this model. Not working yields highest utility for some random draws where the optimal

working hours are relatively small. In the new tax regime with no tax at all, the person has

96% probability of working, and 4% chance of not working.

The simple Harberger calculation is possible when the individual switches from an ob-

served segment of a non-linear budget constraint to a known segment after the tax change

(such as the zero tax rate in the example above). With a switch from one non-linear tax

system to another, however, the simulation of the new tax regime may place the individ-

ual on a number of possible segments or kinks. Thus, no direct Harberger calculation is

feasible for our next two examples, the Tax Reform Act of 1986 and the Bush tax cut of

2001. Instead, for comparison, we use the results of our simulations to calculate the income-

weighted average of marginal tax rates before and after reform, and use those to calculate

a Harberger-type DWL before and after reform – a calculation that would not be possible

12For this purpose, we use Equation (4) in Browning (1987) for DWL as a function of the compensated

labor supply elasticity, the fixed gross wage rate, labor hours, and the marginal tax rate.
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without our model.

Example 2: The Tax Reform Act of 1986 for married women.

The parameter estimates used in this example are from Triest (1990), and they are

applied to a cross-section of married women extracted from the 1983 PSID.13 Table 5 lists

the tax rates and income brackets for both tax regimes. We assume all individuals take the

standard deduction and file jointly.14

The basic labor supply function in Triest (1990) appears above as Equation (18). In our

data set, we observe each woman’s working hours and wage rate in 1983. The non-labor

income is calculated from the husband’s income and other family income. We can therefore

derive the budget constraint for each woman, and determine her chosen segment or kink

point. Triest assumes no fixed cost of working. If the chosen segment is j, with observed

net wage wj and virtual income y
v
j , then we can use Triest’s parameter estimates α̂ = .235

and β̂ = −.022 to calculate for each observation:

zγ = h− α̂wj − β̂yvj

The random errors ηi and ζi are distributed as η ∼ N(0, 0.672) and ζ ∼ N(0, 0.772).
Since the mean of the observed workings hours is 1.074 thousand hours in a year, the

standard deviations of the random errors η (0.67 thousand hours) and ζ (0.77 thousand

hours) represent substantial variations in working hours.

For each individual, we take 1,000 random draws from the joint distribution of (η, ζ).15

13We extract data from the 1983 PSID following the procedures described in Triest (1990), but some

differences appear between our data and the Triest data. Our data set has 1,136 observations, while Triest

has only 978 observations, but the summary statistics for our data and the Triest data are very close. One

possible explanation is that the new version of the PSID has fewer missing values.
14We model only the reduced rates of the 1986 Act, not the redefinition of taxable income to broaden the

tax base, so we probably overestimate tax rate reduction for women whose loss of tax deductions push them

back into higher brackets.
15The errors are large enough, however, that a few extreme drawings yield implausible results. To avoid

unreasonably large EV, we constrain the absolute value of EV to be smaller than before-tax total family

income. The EV hits this constraint for .43% of all individuals at all random draws.
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We first calculate EV, working hours, and taxes for each random draw, and then we average

over 1,000 random draws to get this individual’s EV, working hours and taxes. Each random

draw can be considered to represent a different person with the same observed variables

as the current individual. Different random draws yield different initial working hours,

although averaging over 1,000 random draws yields working hours very close to the observed

working hours of the individual. Together, the 1,000 random draws represent a subset of

population that shares the same observed variables as this individual. By averaging over all

random draws, we get the average welfare effect for that subset of the population. Since we

have a representative sample of married women, averaging over all 1,136 individuals yields

estimates for the population of married women.16

Table 6 shows the change in tax revenue, the change in working hours, the equivalent

variation, and the net welfare gain from this tax reform for the population represented by

our sample. Interestingly, even though the tax reform generally reduces tax rates, it slightly

reduces average working hours. This “backward bending” labor supply behavior indicates

that the income effect dominates. The income-weighted average of marginal tax rates is

reduced from 33.9% to 28.7%.17 Tax revenue in the new regime falls by 37.7%. Since

marginal tax rates are reduced more for initial brackets, the percentage fall is larger for tax

revenue than for the average of all marginal tax rates.

Since EV on average is negative, the utility level in the new tax regime is higher. Because

of the large standard deviations of the random errors (η, ζ), the EV in Table 6 also has a

large standard deviation. The expected net welfare effect is $1,790 per family, or 34.9% of

old tax revenue.

If Triest’s estimates are evaluated at the mean wage and mean marginal tax rate of

his sample, the compensated labor supply elasticity is .686 for a full time worker.18 This

16We did not consider the fact that the PSID oversamples minorities.
17This summary statistic is used only in the simple Harberger formula, and it reflects the fact that a

higher income person contributes more to tax revenue (and aggregate DWL) than a lower income person.
18To compare the Triest and Hausman estimates, we can apply the Triest estimates to the woman in the

first example above. Her compensated elasticity would then be only .430 instead of 1.084.
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elasticity could be used in a simple Harberger formula to calculate DWL of the old tax,

compared to no tax system. When the new marginal tax rate is unknown, however, the

new DWL is not so simple. Our method is useful to predict the new marginal tax rate of

each person. When we employ the predicted rates in the Harberger formula, before and

after reform, Table 6 shows that the change in DWL is only 5.7% of old tax revenue.

Example 3: The tax change of 2001 for married women.

In this example, we apply the parameter estimates of Gan and Stahl (2002) to the

Economic Growth and Tax Reconciliation Act of 2001 (the Bush tax cut). Their model

assumes measurement error in non-labor income Y n,

Y n = Y n∗ − η (23)

where Y n is observed non-labor income, and Y n∗ is the true non-labor income (known to the

individual herself but not to the econometrician). The measurement error, η ∼ N(0, σ2η), in
non-labor income produces a random budget set: the end points of each segment are random

variables. Such a model is not subject to the Heckman critique. In fact, it conforms to the

insights in Heckman (1983). Gan and Stahl show that such a model yields very different

parameter estimates and performs better statistically. Given the error in Y n, which affects

yvj , the estimated labor supply equation is:

h = αwj + βy
v
j + zγ + ζ (24)

Here, we use the same data set as in Gan and Stahl (2002): married women in the

Current Population Survey (CPS) of March 2001 between the ages of 25 and 55. This

data set has 16,829 observations. The parameter estimates and summary statistics are

listed in Table 7. One interesting aspect of the parameter estimates is the large standard

deviation of the measurement error in nonlabor income (ση = 1.33, where income is in

thousands of dollars). Another interesting aspect is that the income elasticity is very small

(the compensated wage elasticity and the uncompensated wage elasticity are both .012).19

19We recognize that these low elasticity estimates may be controversial. The purpose here is not to endorse
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Their estimates are used here to evaluate the effect of the Economic Growth and Tax

Relief Reconciliation Act of 2001, or simply the “Bush tax cut.” We consider only the

changes in marginal tax rates, and since the changes are phased in, we use only the rates

after 2006 when all changes are fully implemented. Table 8 compares the regimes before

and after the Bush tax cut. Again, we assume that all of these married women take the

standard deduction and file jointly.

We take 50 random draws of the error in equation (24), ζ ∼ N(0, 0.652), where hours
are in thousands, and for each ζ, we take 50 random draws of the error in Equation (23),

η ∼ N(0, 1.332). Note that each different η yields a different budget constraint.
Averaging the 16,829 individuals, Table 9 shows the change in tax revenue, the change

in working hours, the equivalent variation, and the welfare gain from this tax reform. The

net result is almost no change in expected working hours. The tax revenue is lowered by

an average of $843 per person, and the expected welfare gain is $357 per person. This

number has a large error, but the point estimate is 3.5% of revenue in the old tax regime.

In contrast, using the point estimate of the compensated labor supply elasticity (.012) yields

a change in Harberger DWL that is $.40, or zero percent of old tax revenue.

5 Conclusion

The calculation of welfare loss suggested in this paper depends on estimates of labor supply.

An ongoing debate concerns how to estimate the labor supply function under piecewise-

linear budget constraints, but recent estimates are able to address the Heckman concern

within Hausman’s framework. The first contribution of this paper, relative to existing

literature, is to calculate the welfare cost of labor taxes using labor supply estimates that

address this concern. Second, we allow each individual to move from any kink or linear

segment of the original budget constraint to any kink or linear segment of the new budget

their method, or even to repeat discussion of it, but just to show that the simulation method described here

is applicable to any estimated model. This example also is useful to show that the expected welfare effect

may still be positive even when the point estimate of the labor supply elasticity is near zero.
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constraint. Third, we account for the fact that the equivalent variation is a transfer that

itself would change the choice of each individual. Fourth, the method we propose is relatively

easy to implement and to calculate. Finally, our method uses Monte Carlo simulation in

order to employ the entire estimated distribution of each error term. Thus, we need not

assume that the person chooses one particular point, which would ignore the fact that labor

supply is estimated with error.

Using this new method, we calculate the welfare effect of three illustrative labor tax

changes. First, we employ the example of Hausman (1981b) with one married woman who

works full time. We show that the welfare effect of eliminating the tax system in this

example using the stochastic evaluation is significantly larger than when using a simple

Harberger triangle approximation. Second, we employ Triest’s (1990) estimates to consider

1,136 married women in the 1983 PSID data. In this case, we show that the mean welfare

gain from the tax rate reduction of Tax Reform Act of 1986 is 34.9% of the original tax

revenue. In the third case, we apply the estimates from Gan and Stahl (2002) to a recent

data set from the CPS (March, 2001) to investigate the welfare gains of the Bush tax cut of

2001. We find almost no change in working hours for these married women. Even though

the point estimate of the labor supply elasticity is near zero, the use of all error distributions

yields an expected welfare gain that is 3.5% of the old tax revenue.
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Table 1: Summary of budget segments

Budget Budget
segment 1 segment j > 1

Function for after-tax
income ya ya = yn + w(1− t1)h ya = yaj−1 + w(1 − tj)(h−Hj−1)

Kink points for ya0 = y
n yaj = y

a
j−1 + w(1 − tj)(Hj −Hj−1)

income ya = yn +
∑j
k=2(1− tk)(Yk − Yk−1)

Kink points for H0 = 0 Hj = (Yj − Y n)/w
working hours h H1 = (Y1 − Y n)/w

Virtual income yv yv1 = y
n yvj = y

a
j−1 − w(1− tj)Hj−1

= Y n(2− t1 − tj)− Yj(1− tj)
+
∑j
k=1(1− tk)(Yk − Yk−1)

We define t1 as the first tax rate applied to labor income of this person (after taxation of

non-labor income). Using the person’s non-labor income, tj and Yj are also individual-specific,

but can be found from the tax table.
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Table 2: Tax schedule for example 1

(married woman filing a joint 1975 tax return)

Income Rates

0 – $1,900 .0

$1,900 – $2,900 .14

$2,900 – $5,900 .16

$5,900 – $9,900 .19

$9,900 – $11,800 .22

$11,800 – $13,900 .185

$13,900 – $16,250 .21

$16,250 – $17,900 .25

$17,900 – $21,900 .28

$21,900 – $25,900 .32

$25,900 – $29,900 .36

$29,900 – $33,900 .39

$33,900 – $37,900 .42

$37,900 – $41,900 .45

$41,900 – $45,900 .48

$45,900 + .50
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Table 3: Welfare effect in example 1 with the 1975 tax system

before-tax wage = 4.15; before-tax non-labor income = $10,000

Deterministic evaluation
Working hours 1,925

Marginal tax rate .28

Compensated elasticity 1.084

Tax revenue $1,815

Harberger DWL $471

DWL as % of tax revenue 26.0%

Means using stochastic evaluationa

Old working hours (with 1975 taxes) 2,019
(753)

New working hours (with no taxes) 2,386
(943)

Change in tax revenue $1856
($187)

EVb -$3,257
($895)

DWLc $1,401
($716)

E(DWL) as % of tax revenue, E(R0) 75.5%

a. Standard errors are in parentheses.

b. EV < 0 means a gain from removal of the tax.

c. The DWL is −(EV −∆R).
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Table 4: The probability that the working woman in example 1

is on each initial budget segment or kink

Segments Kink points

Marginal

Number tax rate Probabilities Probabilities

0 .032

1 .22a .020 .0

2 .185 .042 .0

3 .21 .111 .021

4 .25 .128 .039

5 .28b .472 .039

6 .32 .086 .0

a. This woman has $10,000 of non-labor income, so the first tax rate

applied to any of her labor income is 22% (even though that

is the fifth bracket of the 1975 tax system shown in Table 2).

b. Using only the mean of the distribution, this woman would be

on segment 5 in the old tax regime.
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Table 5: Tax schedules for example 2, the Tax Reform Act of 1986
(married women filing joint 1983 tax returns)

Old tax regime New tax regime
Income Rates Income Rates

0 – $3,400 0 0 – $3,000 .11
$3,400 – $5,500 .11 $3,000 – $28,000 .15
$5,500 – $7,600 .13 $28,000 – $45,000 .28
$7,600 – $11,900 .15 $45,000 – $90,000 .35
$11,900– $16,000 .17 $90,000 – .385
$16,000 – $20,200 .19
$20,200 – $24,600 .23
$24,600 – $29,900 .26
$29,900 – $35,200 .30
$35,200 – $45,800 .35
$45,800 – $60,000 .40
$60,000 – $85,600 .44
$85,600 – $109,000 .48
$109,000 + .50
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Table 6: Welfare effect in example 2, the Tax Reform Act of 1986

Old tax New tax Difference

regime regime

Tax revenue $5,132 $3,196 -$1,936

($5,566)a ($3,693) ($1,915)

Working hours 1,230 1,170 -60

(711) (715) (410)

Marginal Tax Rates 33.9% 28.7% 5.2%

(26.1%) (25.2%) (4.1%)

EVb -$3,725

($3,706)

Welfare effectc $1,790

($3,057)

Welfare effect as a % of old tax revenue 34.9%

% with negative welfare effect 18.6%

Harberger DWLd $874 $581 $293

as % of tax revenue 17.0% 11.3% 5.7%

a. Standard errors are in parentheses.

b. EV < 0 means a gain.

c. The welfare gain is −(EV −∆R).
d. Evaluated at the mean wage and mean marginal tax rate for a full time worker.
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Table 7: Estimation results and summary statistics from the CPS (March, 2001)a

Coefficient Summary
estimates statistics

Working hours (in 1,000 hours per year) 1.353
(.954)b

Constant -.218
(.027)

Wage (in $ per hour) .00012 16.16
(0.000034) (25.5)

Non-labor income (in $1000 per year) -0.00176 58.59
(.00013) (59.3)

# kids ages 0-5 -.214 .369
(.008) (.675)

# kids ages 6-18 -.088 .880
(.0046) (1.06)

Age minus 40 -.012 .36
(.0036) (2.65)

Unemployment rate (%) -.011 4.01
(.0037) (1.61)

Education (in years) .034 10.14
(.0020) (3.14)

# of observations 16,829

% labor participation 75.2%

Std dev of measurement error (ση) 1.33
(.12)

Std dev of optimization error (σζ) .65
(.0034)

Elasticities (evaluated at means)
Uncompensated .012
Compensated .012

Source: Gan and Stahl (2002).

a. Married women between ages 25 and 55.

b. Standard errors are in parentheses.
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Table 8: Tax schedules for example 3, the Bush tax cuts of 2001
(married women filing joint 2001 tax returns)

Old tax regime New tax regimea

Income Rates Income Rates

0 – $7,600 0 0 – $7,600 0
$7,601 – $51,450 .15 $7,601 – $13,600 .10
$51,451 – $113,550 .28 $13,601 – $51,450 .15
$113,551 – $169,050 .31 $51,451 – $113,550 .25
$169,051– $295,950 .36 $113,551 –$169,050 .28
$295,951 + .396 $169,051 –$295,950 .33

$295,951 + .35

a. The new tax regime is the Bush tax cut, the Economic Growth

and Tax Reconciliation Act of 2001.
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Table 9: Welfare effect in example 3, the 2001 Bush tax cuts

Old tax New tax Difference

regime regime

Tax revenue $10,061 $9,218 -$843

($16,610)a ($15,050) ($1,568)

Working hours 1,390 1,381 -9

(340) (344) (113)

Marginal Tax Rates 27.5% 27.3% -.2%

(33.2%) (33.3%) (1.1%)

EVb -$1,200

($3,570)

Welfare effectc $357

($3,054)

Welfare effect as a % of old tax revenue 3.5%

% with negative welfare effect 31.6%

Harberger DWLd $19.50 $19.10 $.40

as % of old tax revenue .19% .19% 0.0%

a. Standard errors are in parentheses.

b. EV < 0 means a gain.

c. The welfare gain is −(EV −∆R).
d. Evaluated at mean wage and mean marginal tax rate for a full time worker.
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