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Most previous research uses average abnormal trading profits on dynamic trading strategies to test 

market efficiency and asset pricing models.  The joint hypothesis of the capital asset pricing model (CAPM) 

and market efficiency is typically rejected by these tests.  The economic significance of these rejections is 

usually evaluated based on Sharpe ratios (average return over return standard deviation) of zero-investment 

strategies that do not expose the investor to systematic risks.  The discovery of economically high Sharpe 

ratios has lead many to reject the CAPM and efficient-market hypothesis (EMH) as a good approximate 

description of the stock market.1 

We argue that asset pricing models and market efficiency should be evaluated by their ability to 

explain stock-price levels, not by their ability to explain the average returns on frequently-rebalanced 

dynamic trading strategies.  The price-level criterion is superior to the Sharpe-ratio criterion for the 

following reasons.  First, although available Sharpe ratios are clearly the main object of interest to a 

professional money manager, the level of price is more relevant to most other economic decision makers.  

For example, a corporate manager making a large long-term investment decision cannot engage in a dynamic 

trading strategy of investing or divesting a small fraction every month, depending on stock-market 

conditions.  Thus, if the price is approximately “right,” the impact of the stock market to his/her investment 

decisions is also likely to be consistent with market efficiency, and the high available Sharpe ratios only an 

interesting side show. 

Second, tests of market efficiency that are based on trading profits typically use high-frequency return 

covariances or betas to adjust for risk.  Although such a practice is consistent with jointly testing a sharp null 

                                                           
 

1 Fama (1970, 1991) surveys the empirical literature on testing market efficiency.  Daniel, Hirshleifer, and 

Subrahmanyam (1998) survey the recent evidence on trading strategies that would have produced abnormal profits and 

high Sharpe ratios.  Hansen and Jagannathan (1991) show that in a frictionless rational-expectations model, available 

Sharpe ratios are related to the variability of marginal utility.  MacKinlay (1995) argues that the Sharpe ratios of some 

trading strategies, if taken at face value, are too large to be explained by a rational multifactor model.  Shleifer (2000, p. 

8) characterizes the impact of this evidence on the views of finance academicians: “We have learned a lot, and what we 

think now is quite a bit different from what we thought we knew in 1978.  Among the many changes of views, the 

increased skepticism about market efficiency stands out.”    
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hypothesis of an asset pricing model and market efficiency, it is less appropriate for measuring the impact of 

mispricing on average returns or prices.  If markets are even slightly inefficient, mispricing may contaminate 

not only average returns but also measures of risk, as argued by Brainard, Shapiro, and Shoven (1991).  The 

price-level tests we advocate connect stock prices to covariances or betas of cash flows.  Regressing prices 

on cash-flow betas is a cleaner way to measure a model’s explanatory power than regressing average returns 

on return betas, because the cash-flow betas are less affected by mispricing. 

We test empirically the ability of the CAPM and EMH to explain the stock-price levels of low-price-

to-book “value” stocks and high-price-to-book “growth” stocks.  Our empirical tests concentrate on price-to-

book-sorted portfolios for the following reasons.  First, the average returns generated by value-minus-growth 

strategies (that buy value and short growth stocks) cannot be explained by CAPM betas measured from high-

frequency returns (Rosenberg, Reid, and Lanstein, 1985; Fama and French, 1992; and others).  Furthermore, 

the pricing errors are highly economically significant when the Sharpe-ratio criterion is used as the metric of 

economic significance (MacKinlay, 1995).  Second, Fama and French (1995) and Cohen, Polk, and 

Vuolteenaho (2002) show that a firm’s price-to-book ratio is a persistent variable that forecasts the returns 

on the firm’s stock far in the future and that the return predictability related to price-to-book ratios has a 

large price-level effect.  Thus, price-to-book-sorted portfolios have the potential of being significantly 

mispriced by the price-level criterion as well. 

Our empirical results suggest that mispricing relative to the CAPM is not an important factor in 

determining the prices of value and growth stocks.  Cash-flow betas (measured by regressing a firm’s 

profitability on the market’s profitability) essentially explain the prices of and long-horizon returns on price-

to-book-sorted portfolios, with a premium that is high but not implausible (8-12 percent per annum).  

Furthermore, the premium on cash-flow beta remains high when we include beta-sorted or size-sorted 

portfolios in the set of test assets, suggesting that the cash-flow beta is not merely proxying for the price-to-

book characteristic. 

In addition to traditional regressions of prices and long-horizon average returns on betas, we specify a 

stochastic-discount-factor present-value model that links firms’ current price-to-book ratios to expected 

future cash flows and to covariances of future cash flows with the stochastic discount factor.  If we restrict 

discount rates to be constant across firms, our present-value model allocates more than 25 percent of the 

cross-sectional price-to-book variance to mispricing.   However, if we allow the discount rates to vary as 
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predicted by the CAPM and measure risk as cash-flow covariances, the variance share of mispricing is 

reduced to near zero.  The share of mispricing is reduced because our present-value model detects more 

systematic risk in value firms’ future cash flows than in growth firms’.  

Previous results by Fama and French (1992, 1993, 1996), Lakonishok, Shleifer, and Vishny (1994), 

and others suggest that value stocks have lower, not higher, CAPM betas than growth stocks.  We thus 

expect the above seemingly contradictory results obtained with our cash-flow-beta regressions and 

stochastic-discount-factor methodology to be treated with healthy skepticism.  To reconcile our results with 

those in the previous literature, we examine the long-run and short-run behavior of the average returns on 

and stock-return betas of price-to-book-sorted portfolios.  

We form ten equal-weight portfolios by combining the same-rank value-weight deciles from N 

different sorts on t-1 to t-N price-to-book ratios.  Much as in event studies that use the calendar-time 

methodology, these portfolios approximate the N-year investor experience of investing in value and growth 

stocks, and can be used as test assets in standard Black-Jensen-Scholes (1972) or Gibbons-Ross-Shanken 

(1989) time-series asset-pricing tests.  Consistent with the results of Fama and French (1992, 1993, 1996) 

and Lakonishok, Shleifer, and Vishny (1994), we find that growth stocks have higher CAPM betas than 

value stocks during the first year after portfolio formation.  Because the betas of these portfolios are 

negatively related to their expected returns, the CAPM fails to explain the returns of value and growth stocks 

during the first year subsequent to portfolio formation.   

Our novel finding is that value stocks’ betas sharply increase and growth stocks’ betas sharply 

decrease after portfolio formation.  Within five years from portfolio formation, value stocks’ (three lowest 

price-to-book deciles) betas have increased to approximately 1.07 and growth stocks’ (three highest price-to-

book deciles) betas have declined to approximately 0.94.  Our tests detect continuation of this trend for 

fifteen years after the sort.  Thus, the lower long-run risk of growth stocks that is detected from cash flows 

by our ROE regressions and present-value model can also be detected from long-horizon stock returns. 

Are these changes in betas sufficient to explain the substantial long-run return spread, as our present-

value model suggests?  An answer from a return-based asset-pricing test is yes.  Consistent with our present-

value model’s results, the CAPM (with betas measured from stock returns over a long horizon) explains an 

awe-inspiring 70 percent of the substantial variation in average returns at the fifteen-year investment 

horizon.  Furthermore, this R2 is obtained with a reasonable beta premium estimate of 9.4 percent per year. 
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Although we do not confine ourselves to any specific model, there are a number of economic models 

that would predict that the investors’ marginal utility is strongly negatively related to news about aggregate 

cash flows.  For example, Campbell and Vuolteenaho (2003) build on our empirical findings and propose a 

version of Merton’s (1973) intertemporal asset pricing model that links expected returns to return 

covariances with market-wide cash-flow news.  In their model, controlling for the cash-flow beta, stock 

return beta has an extremely small risk price. 

Our finding that the CAPM in conjunction with market efficiency provides a good approximate 

description of the level of stock prices has important implications.  For example, our results justify 

corporations’ current use of the CAPM in capital budgeting, documented by Graham and Harvey (2001), as 

most long-term investment decisions depend upon the level of net present value instead of near-term 

expected returns.  Similarly, the higher long-run risk of value stocks also explains why low-priced value 

stocks are not immediately acquired by healthier companies, or bought out by a sophisticated buy-and-hold 

investor, such as Berkshire Hathaway or an LBO fund.   

These findings also rationalize an apparent contradiction in MBA curriculums: Investment courses 

teach that beta is dead, and then corporate finance classes proceed to use the CAPM in firm or project 

valuation.  Our price-level results justify this distinction – the CAPM fails to explain the one-period expected 

returns on some dynamic trading strategies but gets stock prices and expected long-term returns 

approximately right.  Researchers should likewise resentence beta from death row to probation in those 

analyses where firms’ stock prices (rather than returns on trading strategies) are the objects of interest. 

The remainder of the paper is organized as follows.  Section I describes the data.  Section II links 

cash-flow betas to price-to-book ratios.  Section III uses a present-value formula to test the CAPM’s ability 

to explain the cross-section of price-to-book ratios.  Section IV presents portfolio-return evidence.  Section V 

examines the robustness of our results to including risk-sorted portfolios in the set of test assets.  Section VI 

concludes. 

I. Data  

The basic U.S. data come from the merger of three databases.  The first one of these, the Center for 

Research in Securities Prices (CRSP) monthly stock file, contains monthly prices, shares outstanding, 

dividends, and returns for NYSE, AMEX, and NASDAQ stocks.  The second database, the COMPUSTAT 
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annual research file, contains the relevant accounting information for most publicly traded U.S. stocks.  The 

COMPUSTAT accounting information is supplemented by the third database, Moody’s book equity 

information collected by Davis, Fama, and French (2000).2  The basic merged data cover the period 1928-

2000. In the merged data set, the panel contains 208,804 firm-years.  Table I Panel A shows descriptive 

statistics of the data. 

Detailed data definitions are the following.  Book equity is defined as stockholders’ equity, plus 

balance sheet deferred taxes (COMPUSTAT data item 74) and investment tax credit (data item 208) (if 

available), plus post-retirement benefit liabilities (data item 330) (if available) minus the book value of 

preferred stock.  Depending on availability, we use redemption (data item 56), liquidation (data item 10), or 

par value (data item 130) (in that order) for the book value of preferred stock.   We calculate stockholders’ 

equity used in the above formula as follows.  We prefer the stockholders’ equity number reported by 

Moody’s, or COMPUSTAT (data item 216).  If neither one is available, we measure stockholders’ equity as 

the book value of common equity (data item 60) plus the par value of preferred stock.  (Note that the 

preferred stock is added at this stage because it is later subtracted in the book equity formula.)  If common 

equity is not available, we compute stockholders’ equity as the book value of assets (data item 6) minus total 

liabilities (data item 181), all from COMPUSTAT.   

The price-to-book ratio used to form portfolios in May of year t is book common equity for the fiscal 

year ending in calendar year t-1, divided by market equity at the end of May of year t.  We require the firm 

to have a valid past price-to-book ratio.  Moreover, in order to eliminate likely data errors, we discard those 

firms with price-to-book ratios less than 0.01 and greater than 100.  When using COMPUSTAT as our 

source of accounting information, we require that the firm must be on COMPUSTAT for two years.  This 

requirement alleviates most of the potential survivor bias due to COMPUSTAT backfilling data.  After 

imposing these data requirements, the cumulative number of firms sorted into portfolios is 165,945.  The 

annual panel spans the period 1928-1999; note that in our timing convention, the 1928 data is computed by 

using book values from the end of 1927 and returns through May 1929. 

                                                           
 

2 We thank Kenneth French for providing us with the data. 
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After portfolio formation, we follow the portfolios for fifteen years while holding the portfolio 

definitions constant.  Because we perform a new sort every year, our final annual data set is three 

dimensional: the number of portfolios formed in each sort times the number of years we follow the portfolios 

times the time dimension of our panel.  

Missing data are treated as follows.  If a stock was included in a portfolio but its book equity is 

temporarily unavailable at the end of some future year t, we assume that the firm’s book-to-market ratio has 

not changed from t-1 and compute the book-equity proxy from the last period’s book-to-market and this 

period’s market equity.  We treat negative or zero book-equity values as missing.  We then use this book-

equity figure in computing clean-surplus earnings.  We follow standard practice and substitute zeros for 

CRSP missing returns, as long as the firm is not delisted.  For market equity, we use the latest available 

figure. 

We deal with delisting firms as follows.  First, we compute the stock return, profitability, and the exit 

price-to-book ratio for the firm at the end of its delisting year.  We use delisting data, when available on the 

CRSP tapes, in computing the stock returns and the exit market value.  In some cases, CRSP records 

delisting prices several months after the security ceases trading and thus after a period of missing returns.  In 

these cases, we calculate the total return from the last available price to the delisting price and pro-rate this 

return over the intervening months.  If a firm is delisted but the delisting return is missing, we investigate the 

reason for disappearance.  If the delisting is performance-related, we assume a -30 percent delisting return.3  

Otherwise, we assume a zero delisting return. 

Second, we take the delisting market value of the firm and invest it in another firm that was originally 

sorted into the same portfolio as the disappearing firm.  Among the firms in the same portfolio, we pick the 

one that has a current price-to-book ratio closest to the exit price-to-book ratio of the disappearing firm. 

                                                           
 

3 The delisting-return assumptions follow Shumway’s (1997) results.  Shumway tracks a sample of firms whose 

delisting returns are missing from CRSP and finds that performance-related delistings are associated with a significant 

negative return, on average approximately -30  percent.  This assumption is unimportant to our final results, however. 
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Table I Panel B shows averages of selected variables for the price-to-book-sorted decile portfolios.  

Firms with low price-to-book ratios have on average higher subsequent stock returns than firms with high 

price-to-book ratios (Rosenberg, Reid, and Lanstein, 1985; Fama and French, 1992; and others).  For a five-

year buy-and-hold strategy, the 10-1 difference in average cumulative return is approximately 70 percent.  

Simultaneously, differences in firms’ price-to-book ratios are also related to differences in future average 

growth.  High-price-to-book firms grow faster and are persistently more profitable than low-price-to-book 

firms.  

II. Do cash-flow betas explain stock-price levels? 

Previous research finds that CAPM betas have essentially no explanatory power with respect to 

average returns generated by annually rebalanced value-minus-growth strategies, if betas are measured from 

high-frequency stock returns.  In this section, we measure CAPM betas from firms’ cash flows and find that 

these cash-flow betas largely explain the prices of and long-run average returns on value and growth stocks. 

We define the cash-flow beta as the regression coefficient of a firm’s discounted log ROE on the 

market portfolio’s discounted log ROE: 
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We set ρ  to 0.95 in our regressions. 

This measure of cash-flow risk can be motivated with the price-to-book decomposition used by 
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Above, BEME /  denotes the price-to-book ratio and R  the (net) return on a firm’s stock.   
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Over an infinite horizon, the unexpected realizations of the first (ROE) term are equal to the 

unexpected realizations of the second (stock-return) term for every sample path.  Thus measuring the risk 

from either infinite-horizon discounted log returns or profitabilities will necessarily yield the same result.  

However, if the sums in (2) are evaluated over a finite horizon, the covariances of the first and second term 

with a risk factor may be different.  Furthermore, if the stock market is potentially inefficient, mispricing 

may contaminate not only the average returns but also short-horizon return covariances.  (Alternatively, 

expected-return variation due to omitted risk factors may have a large impact on high-frequency return 

covariances and de-link the cash-flow and stock-return covariances.)  Thus, measuring CAPM risks from the 

cash-flow term of (2) instead of the return term may result in a cleaner risk measure. 

Table II Panel A measures the cash-flow betas for ten price-to-book-sorted portfolios.  The columns 

two to eleven correspond to price-to-book-sorted portfolios and rows to selected horizons N.  The 

regressions are estimated from overlapping observations using OLS.  We use Newey-West (1987) standard-

error formulas, which correct for the cross-sectional and time dependence of the residuals, with N leads and 

lags. 

The first row of Table II Panel A shows the one-year cash-flow betas of value and growth stocks 

immediately after the sort.  Apart from the highest price-to-book decile, the cash-flow betas of the stocks in 

our sample line up nicely with their price-to-book ratios: The second-highest price-to-book decile has a cash-

flow beta of 0.85 and the lowest price-to-book decile a cash-flow beta of 1.35.  The highest price-to-book 

decile has a cash-flow beta of 1.00, which is slightly higher than expected. 

Moving down the rows of Table II Panel A and increasing the horizon to five years further 

strengthens the results.  The highest price-to-book portfolio now has the lowest cash-flow beta and the 

lowest price-to-book portfolio the highest cash-flow beta for all horizons from two to fifteen years.  The 

differences are economically significant: Five-year cash-flow beta of the extreme decile of growth stocks is 

0.67 and that of the extreme decile of value stocks is 1.68.  The mean reversion and noise in covariances 

attenuates this difference in betas at the ten and fifteen-year horizons, but the spread remains economically 

significant (0.90 vs. 1.47 and 0.94 vs. 1.21, respectively).   

Columns twelve and thirteen of Table II Panel A show the cash-flow betas of “high-minus-low” 

portfolios.  Column twelve shows the difference in cash-flow betas between the highest and lowest price-to-

book deciles, and column twelve between top three and bottom three.  The difference in cash-flow betas is 
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statistically significant for both differences at all horizons, except for the one-ten difference at the one-year 

horizon.  Thus there is statistical evidence of value stocks’ cash-flow betas being higher than growth stocks’. 

Note that when measuring the cash-flow betas of price-to-book-sorted portfolios, our definition of 

cash-flow beta is likely to result in an upward bias for growth and a downward bias for value stocks.  This is 

because the book-equity data are contaminated with measurement error that affects the ROE levels, and the 

sort disproportionately selects negative-measurement-error firms to the high-price-to-book portfolio and 

positive-measurement-error firms to the low-price-to-book portfolio.  In the ROE formula, value stocks’ 

earnings are divided by an artificially high number and growth stocks’ by an artificially low number, scaling 

the covariances against our finding reported in Table II Panel A. 

To show that the cash-flows of value stocks are unarguably riskier than those of growth stocks, Table 

II Panel B shows cash-flow betas measured using beta definitions proposed in previous research.  (We only 

show the results for the five-year horizon, at which our preferred definition is most successful, to save 

space.)  Our general conclusion from the tests using alternative cash-flow-beta definitions is that our results 

are robust to variations in the cash-flow-beta definition. 

Row one of Table II Panel B shows cash-flow betas measured as in formula (1), except using ROE  in 

place of )1log( ROE+ .  Not surprisingly, the spread in cash-flow betas remains strong and statistically 

significant. 

Rows two to four use cash-flow-beta measures similar to those suggested by Ball and Brown (1969) 

and Beaver, Kettler, and Scholes (1970).  These measures normalize earnings by lagged market value instead 

of book value: 
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 (3) 

Definition (a) in equation (3) is similar to our discounted ROE formula, except that earnings are normalized 

by market value instead of book value.  Definition (b) normalizes the discounted N-year sum of earnings 

with the market value at the time of portfolio formation.  Definition (c) proxies for cash-flows with the N-
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year change in annual earnings and normalizes with the market value at the time of portfolio formation.  If 

the market is efficient, these measures in equation (3) have the advantage of normalizing with a 

measurement-error-free value metric, market capitalization, thus avoiding the bias resulting from the use of 

error-ridden book values.  However, they do have the disadvantage of containing market values, and thus 

may be influenced by mispricing.  Empirically, rows two to four show that these measures induce a large 

spread in value and growth stocks betas, and this spread is consistent with value stocks’ cash flows being 

much riskier than those of growth stocks. 

Our final cash-flow beta measure is motivated by Campbell and Shiller’s (1988) dividend-growth 

model.  This beta measure is generated by regressing the portfolio’s discounted N-year sum of log dividend 

growth rates ( d∆ ) on the market’s: 
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To mitigate potential outlier problems (some portfolios occasionally pay zero or near-zero dividends), we 

censor the log dividend growth rates to the interval )]5log(),5/1[log( .  The beta measure in equation (4) has 

the advantage of being directly related to the cash flows to investors, but the disadvantages of being 

dependent on largely arbitrary dividend policies of firms.  Furthermore, since gross dividends are never 

negative, for low values of N this risk measure is likely to be a poor one for both extreme growth stocks 

(high growth companies that currently need external financing) and extreme value stocks (distress 

companies that currently cannot afford to pay dividends).  Empirically, row five of Table II Panel B shows 

that this risk measure induces a slightly smaller but still economically significant spread in cash-flow betas.    

Columns fourteen to sixteen of Table II Panel A measure how well the cash-flow betas defined in 

equation (1) explain the prices of value and growth stocks.  The dependent variable in the pricing regressions 

is the average N-period discounted stock return and the independent variable the estimated cash-flow beta: 

 k
CF
k

N

j
jjtk

j
N
j

j
uRE ++=












∑

∑
−

=
++−

=

,110

1

0
1,,1

0

ˆˆ1 βλλρ
ρ

, (5) 

where Ê  denotes the sample mean and CF
k,1β̂  the estimated cash-flow beta.  The dependent variable of (5) 

can be motivated as a price-level measure.  Reorganizing (2) and taking conditional expectation yields: 
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The expected discounted long-horizon return equals the negative of log price (the first term) plus log book 

value adjusted for the expected cash-flow growth (second term).  The dependent variable of regression (5) 

differs from this price-level metric due to the finite horizon and choice between log and simple returns.  In 

addition, the dependent variable of (5) is normalized by ∑ −

=

1
0

N
j

jρ to annual-return units.  We use thirty 

instead of ten price-to-book-sorted portfolios as test assets in columns fourteen to sixteen, because the finer 

sort increases the statistical power of our tests that account for the estimation uncertainty due to the first-

stage regressions.   

The cross-sectional regression R2s of average discounted long-horizon returns on cash-flow betas 

stays over 50 percent for all horizons beyond one year.  At the five-year horizon, which roughly corresponds 

to the frequency of the business cycle, the regression R2 is over 75 percent. 

Are these impressive R2 obtained with implausible premia?  In Table II Panel A, the estimated 

intercepts of the regression range from 2.7 to 10.9 percent and slopes from 4.8 to 12.2 percent.  (The premia 

are statistically significant for horizons ranging from three to fifteen years.)  One way to judge whether the 

premium on cash-flow beta is reasonable is to recognize that 0λ  should equal the (nominal) risk-free rate 

and 1λ  the average discounted net return on the market portfolio less the risk-free rate.  The predicted  0λ  

and 1λ  are thus approximately 4 percent and 9.5 percent, which are close to unrestricted estimates of the 

premia.  If we restrict the premia to the values predicted by the Sharpe-Lintner CAPM (in sample means of 

the risk-free rate, 04.00 =λ , and market premium, 095.01 =λ ), the R2s of the cross-sectional regressions 

remain high (from 25 to 55 percent for horizons ranging from two to fifteen years). 

III. Evidence from a present-value model 

In this section, we use a formal present-value model to measure the relative importance of risk and 

mispricing to the cross-section of price-to-book ratios from a 1928-1999 panel of U.S. firms.  Our tests 

demonstrate that CAPM risk explains a substantial majority of the component of the dispersion in price-to-

book ratios related to predictable variation in returns, while the share of mispricing is small and statistically 

insignificant.  The market risk factor is especially successful when we measure good and bad states of the 

world based on the market portfolio’s cash flows.  Our results suggest that mispricing relative to the CAPM 

is not an important factor in determining a firm’s valuation multiple and consequently the level of a firm’s 

stock price.   
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Our test is based on a variant of the present-value formula.  We specify a stochastic-discount-factor 

present-value model that links firms’ current price-to-book ratios to expected future cash flows and to 

covariances of future cash flows with the stochastic discount factor.  If we restrict discount rates to be 

constant across firms, our decomposition allocates more than 25 percent of the cross-sectional price-to-book 

variance to mispricing.  However, if we allow the discount rates to vary as predicted by the CAPM, the 

variance share of mispricing is reduced to 20 percent in tests that use the market portfolio’s stock return as 

the risk factor and to –0.1 percent in tests that use the market portfolio’s cash flows as the factor.  The 

present-value model is a success in pricing value and growth stocks because it detects more market risk in 

value firms’ future cash flows than in growth firms’. 

A. Stochastic-discount-factor present-value framework 

Our approach is based on the stochastic-discount-factor framework that enables us to easily study the 

pricing of risk and the impact of risk on the level of the stock prices.  Ultimately, this framework leads to a 

cross-sectional variance decomposition of price-to-book ratios.  We allocate the price-to-book variance to 

predictable variation in three components: (1) a risk-adjusted present value of N-period cash flows; (2) a 

risk-adjusted present value of the N-period-ahead terminal value (capturing the effects beyond the N-period 

horizon); and (3) a pricing-error component (as assigned by a particular economic model).   

A stochastic-discount-factor present-value model equates the stock price to the stochastically 

discounted value of the asset’s payoffs.  Consider buying a stock and selling it ex dividend a year from now.  

The stochastic-discount-factor formula equates the purchase price with the expectation of the product of the 

sale price plus dividend and the one-period discount factor: 

 







+=

−
−−

1
,,11, )(

t

t
tktkttk Q

Q
DPEP , (7) 

where P  is the stock price, D  dividends, and Q  the cumulative stochastic discount factor.  Subscripts k and 

t are indices to assets and time, respectively.  We denote the one-period stochastic discount factor by 

1−tt QQ  and normalize the initial value 0Q  to one.  Our notation differs slightly from that in the previous 

literature: Cochrane (2001, p. 8) denotes the same one-period stochastic discount factor by tm  and Duffie 

(1996, p.29) by 1−tt ππ . 

In general, if the law of one price holds, we can find at least one random variable 1−tt QQ  such that 

(7) holds in population (or in sample) if we make 1−tt QQ  a function of population (or sample) moments 
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and random asset payoffs.  However, it is important to note that if we specify 1−tt QQ  based on an 

economic model, (7) need not hold even in population if the chosen economic model is not true.  To capture 

the fact that an economic model and its implied stochastic discount factor are just models, we add a pricing-

error term to (7): 
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In (8), 1−ttt QQε  denotes the realized pricing error, and )( 11 −− tttt QQE ε  the (conditional) average pricing 

error, or simply pricing error.  Economic models of equilibrium prices, since they imply a stochastic discount 

factor 1−tt QQ , are “false” if any )( 11 −− tttt QQE ε  is nonzero. 

To measure the price-level impact of pricing errors, we iterate (8) forward N  periods and use the law 

of iterated expectations to link the stock price to long-horizon sequences of stochastic discount factors and 

dividends: 

 ( ) ( ) ( )∑∑
−

=
++−

−
−+−+−

−

−

=
++−

−
−− ++==

1

0
,1

1
1,11

1

1

0
,1

1
1,1,

111 N

j
jtkjtt

t
NtkNtt

t

N

j
jtkjtt

t
tktk QE

Q
PQE

Q
DQE

Q
PME ε . (9) 

To relate the quantities in (9) to a firm, we equate P  to the market value of equity ( ME ) and D  to 

dividends net of equity issues.  The implicit assumption here is that the investor follows a strategy of holding 

the entire equity-capital stock of the firm and participating in all equity issues and share repurchases. 

Suppose that the model (7) is true, and the pricing error in equation (8) is always zero.  Clearly, 

equation (9) is derived from (8), and therefore cannot provide any new restrictions that are not implied by 

(8).  However, the real advance in moving from (8) to (9) comes from better diagnosing the model’s failure 

if the model is not true, i.e., pricing errors are nonzero.  This is because equation (9) relates prices to long-

horizon sequences of stochastic discount factors and dividends, instead of to the one-period-ahead stochastic 

discount factor and future price (which itself is potentially affected by pricing errors).  Equation (9) provides 

a price-level mispricing metric, ∑ −

= ++−−
1
0 ,11 )()/1( N

j jtkjttt QEQ ε , a diagnostic that is perhaps more 

interpretable than the one-period pricing error of (2). 

Since we are interested in the cross-section of firms, working with a dividend-based model is 

inconvenient.  Therefore, we make an innocuous substitution: We use the clean-surplus relation 

tttt DXBEBE −+= −1 , where BE  is book equity and X  clean-surplus earnings, to transform the 

dividend-discount model to an empirically more convenient abnormal-earnings valuation model: 
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(Feltham and Ohlson (1999) and Ang and Liu (2001) derive similar risk-adjusted abnormal-earnings models 

and investigate the models’ properties in more detail.)  Since we do not iterate (10) to infinity and since we 

define earnings such that it satisfies the clean-surplus relation by construction, the substitution of earnings 

and book values is truly innocuous and does not transform our paper from a finance paper to an accounting 

paper as a byproduct. 

We define the quantity in brackets in first line of equation (10) as “abnormal earnings,” A : 

 1,
1

,, 1 −
−









−−≡ tk
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t
tktk BE

Q
Q

XA  (11) 

Equation (11) defines abnormal earnings as (clean-surplus) accounting earnings less a state-dependent 

charge for the amount of book equity employed in producing those earnings.  Intuitively, the addition of risk 

to the basic abnormal-earnings formula of Edwards and Bell (1961) and Ohlson (1995) recognizes the fact 

that the cost of capital varies across states of the economy. 

Our empirical tests require stationary variables; however, stock prices are clearly nonstationary.  To 

achieve stationarity, price needs to be normalized by some variable that is cointegrated with price.  Dividing 

both sides of (11) by book equity ( 1−tBE ) yields a model for the price-to-book ratio: 
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 (12) 

For finite N, the terms of (12) can plausibly be assumed to be stationary.  In addition to the above-mentioned 

desirable statistical property, the terms of the normalized equation (12) also have economically intuitive 

interpretations.  The first term of (12) is a unit constant, defining the base case of market equity trading at the 

value of book equity.  The second term discounts the firms' future abnormal earnings over the explicit 
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forecasting period of N years, adjusting for risk: A firm’s stock deserves to trade above its book value, if the 

firm’s profitability exceeds the risk-adjusted cost of capital.4  The third term is a terminal-value term, which 

takes the value zero if the market value and book value are expected to fully converge within the explicit 

forecasting period.  If full convergence is not achieved, the terminal value captures the effect of all future 

abnormal earnings and pricing errors.  Finally, the fourth term captures the contribution of N-period 

cumulative pricing error to a firm’s price-to-book ratio. 

Equation (12) serves as the basis of our cross-sectional variance decomposition.  Following Cochrane 

(1991,1992), we multiply both sides of (6) by )/(1,1, BEMEEBEME tktk −−− , where )/( BEMEE  denotes 

the average price-to-book ratio (over time and stocks), so that )/(1,1, BEMEEBEME tktk −−−  is simply the 

demeaned price-to-book ratio.  Taking unconditional expectations of the result yields a variance 

decomposition: 

 






















×+





















 −
×+






















×=











∑

∑

−

= −

−

−

+

−

+

−

−

−

−+−+

−

−+

−

−
−

= −

+

−

+

−

−

1

0 1,

1,

1,

,

1

1,

1,

1,

1,1,

1

1

1,

1,
1

0 1,

,

11,

1,

,cov

,cov

,covvar

N

j tk

tk

tk

jtk

t

jt

tk

tk

tk

NtkNtk

t

Nt

tk

tk
N

j tk

jtk

t

jt

tk

tk

BE
ME

BEQ
Q

BE
ME

BE
BEME

Q
Q

BE
ME

BE
A

Q
Q

BE
ME

ε

 (13) 

Price-to-book ratios can vary more if price-to-book covaries strongly with future risk-adjusted abnormal 

earnings and/or pricing errors, or if the convergence of price and book value is slow. 

Dividing both sides by the variance of price-to-book ratios gives the relative variance decomposition 

in terms of three predictive regression coefficients: 

                                                           
 

4 Because E(xy) = E(x)E(y) + cov(x,y), abnormal earnings are more valuable if they covary positively with the 

stochastic discount factor (holding the expected levels constant). 
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The three regression coefficients in equation (14) can be interpreted as a percentage variance decomposition 

of firms’ price-to-book ratios.  The price-to-book ratio must predict at least some of the following three 

components: Risk-adjusted present value of cumulative N-period abnormal earnings and/or the risk-adjusted 

terminal value and/or the risk-adjusted present-value of cumulative N-period pricing errors.  We account for 

100 percent of the variance: Since the three components sum up to the t-1 price-to-book ratio, the regression 

coefficients also sum up to one. 

To make the variance decomposition (14) operational, we also need a model of priced risk, a 

stochastic discount factor.  We estimate the variance decomposition with three simple candidate discount 

factors.  The first discount factor is simply a constant δ , which we use as the benchmark case.  Because we 

specify the stochastic discount factors and their parameters in real terms, but our asset data are nominal, we 

also multiply our real discount factors by the ratio of price levels, tt ππ 1− .  The nominal “constant” 

discount factor is thus a random variable tt πδπ /1− . 

The second discount factor is a linear function of the excess return on a value-weight portfolio of all 

stocks (RMRF): 

 ttttt RMRFQQ ππγγ 1101 )(/ −− ×+=  (15) 

We dub this discount-factor model the “stock-return CAPM.”  The logic behind the second discount factor is 

the hope that priced risk is captured by a single factor prescribed by the Sharpe-Lintner-Black CAPM, in 

which the stochastic discount factor is a linear function of the return on the portfolio of aggregate wealth (the 

market portfolio).  Although the CAPM is a very simple model and thus probably a naïve description of 

reality, it has two important advantages over its competitors: First, it has only two parameters, increasing the 
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statistical power that is at a premium in our long-horizon regressions (14).  Second, because the CAPM was 

proposed before the relation between price-to-book ratios and average returns was discovered in the 

academic literature, the CAPM is largely immune to the problem termed “model-mining” bias by Fama 

(1991). 

Our third discount factor model is also motivated by the CAPM, but gets closer to the spirit of robust 

measurement of risks if stock-return covariances are potential contaminated with mispricing.  Our third risk 

factor is a linear function of the market portfolio’s log ROE: 

 tt
real

tMtt ROEggQQ ππ 1,101 )]1log([/ −− ×++= , (16) 

where real
tMROE ,  is the aggregate real clean-surplus earnings of all stocks divided by the aggregate beginning-

of-the-period real book equity.  If 1g  is negative as most asset-pricing theories would predict, the discount 

factor penalizes stocks whose profitability covaries with market-wide profitability.  We dub this discount 

factor the “cash-flow CAPM.”   

B. Estimation strategy and empirical results 

Our estimation procedure has two integrated steps. The regressions (14) assume that the stochastic-

discount-factor realizations are known and can be used to construct the dependent variables of the 

regressions.  Thus, the first necessary step is to pick the parameter values for the stochastic discount factor to 

be used in computation of the stochastic-discount-factor realizations.  The second step estimates the relative 

variance decomposition (14) by running the three regressions.  We implement both stages simultaneously 

using Hansen’s (1982) generalized method of moments (GMM) so that the standard errors of the second-step 

regressions take into account the estimation uncertainty due to the first stage. 

 The stochastic-discount-factor parameters contained in vector b  (δ  in the case of the constant 

discount rate model and 0γ , 1γ , 0g , and 1g  in the case of the CAPM) are estimated by matching the 

following set of moments: 

 

k
BE

BEME
bQ

bQ
BE

bA
bQ
bQ

BE
ME

E

bQ
bQ

RMRFE

bQ
bQ

RE

tk

NtkNtk

t

Nt
N

j tk

jtk

t

jt

tk

tk

t

t
t

t

t
trf

∀










 −
×−










−−=









=









−+=

−

−+−+

−

−+
−

= −

+

−

+

−

−

−

−

∑ ,
)(

)()(
)(
)(

10

)(
)(

0

1
)(
)(

)1(0

1,

1,1,

1

1
1

0 1,

,

11,

1,

1

1
,

 (17) 



 

 18

We omit the first moment condition when estimating the constant-discount-factor model, because it would 

be unrealistic to ask the same constant discount factor to fit the average returns on stocks and Treasury bills.  

The first and second moment conditions help in picking the stochastic-discount-factor parameters by asking 

the model to price the one-period (nominally) risk-free return and one-period excess return on the market 

portfolio, respectively.  The remaining moment conditions in (17) are restrictions on average price-to-book 

ratios relative to the present value of subsequent abnormal earnings and terminal values of the test assets, 

derived from (12) by assuming that the stochastic-discount-factor model is true and the average pricing 

errors are zero. 

We use two stages in our GMM procedure.  In the first stage, we use an identity matrix as the 

weighting matrix.  This weighting matrix is likely to produce sensible but imprecise first-stage parameter 

estimates.  We then collect the moment errors tu  and compute a Newey-West (1987) estimate of the long-

run moment-error covariance matrix, NWŜ .  We set the number of lags and leads in the Newey-West 

formula to the length of the explicit forecast horizon, N .  In the second stage, we use  
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as the GMM weighting matrix, where max  is the number of moment conditions in the system. Our 

weighting matrix 2W  recognizes the heteroskedasticity of the moment errors and places more weight on 

low-variance moments, but does not adjust the weighting to accommodate the (often spurious) correlation 

structure of the moment errors. 

Although using 1ˆ −
NWS  as the second-stage weighting matrix leads to an asymptotically efficient 

estimator (given the chosen moments), the finite-sample performance of this weighting matrix is often poor.  

Since our moment-error matrix has a low time dimension, a high cross-sectional dimension, and significant 

autocorrelation, using the asymptotically optimal weighting matrix 1ˆ −
NWS  would be a recipe for disaster, 

especially for long forecast horizons.  The peril in using 1ˆ −
NWS  in small samples stems from the matrix 

inverse being a highly nonlinear function of the estimated correlations.  Small estimation errors in the off-

diagonal elements of NWŜ  may unexpectedly result in enormous errors in 1ˆ −
NWS .  For a detailed discussion 

on the selection of a robust weighting matrix in asset-pricing applications, see Cochrane (2001, p.210-219).  
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Because we use 2W  instead of 1ˆ −
NWS  as the weighting matrix, we compute the sampling covariance matrix of 

the estimated parameters using the formulas modified by Cochrane (2001, p. 212) for the case of a 

prespecified weighting matrix. 

Each year we create ten value-weight portfolios of stocks by sorting on price-to-book and track the 

subsequent dividends, book values, and market values of these portfolios for fifteen years subsequent to the 

portfolio formation (or until the end of the sample, whichever comes first.)  All data for these portfolios are 

annual and in nominal terms.  We use this 10-by-15-by-60 data panel as our sample.  Our factor data, RMRF, 

are the same as used by Davis, Fama, and French (2000). 

We compute the clean-surplus earnings on the stocks in these portfolios using a formula 
net
tttt DBEBEX +−= −1 , where netD  is net dividends, i.e., gross dividends grossD  (from CRSP) less equity 

offerings plus share repurchase.  We use an implied figure for year t equity offerings less share repurchases: 

 1(1 ) gross
t t t tME R ME D−= + +  (19) 

The adjustment is not essential, however: Using gross instead of net dividends in the clean-surplus formula 

will yield very similar results.  

Table III shows the parameter estimates for the constant-discount-rate model and the two versions of 

the CAPM.  As listed in column one, each row in Table III corresponds to a specific horizon N of equation 

(17); for example, row three picks the parameters to match the average price-to-book ratio with the value of 

three-year cumulative abnormal earnings plus the terminal value after the three-year horizon.   

The second column of Table III shows the parameter estimates of the constant-discount-rate model.  

The estimated real constant discount rate, δ̂ , lies between 0.91 and 0.93, depending on the estimation 

horizon.  The third and fourth columns of Table III report the parameter estimates of the stock-return CAPM 

stochastic discount factor.  The intercept, 0γ̂ , ranges from 1.02 to 1.08 and the slope, 1γ̂ , from -0.90 to -

1.42, depending on the horizon.  The negative coefficient on RMRF is consistent with the theory: An asset is 

risky if it covaries negatively with the stochastic discount factor.   

The fifth and sixth columns show the implications of the estimated stock-return CAPM parameters for 

the risk-free rate and the market premium, which may be more interesting than the parameter estimates per 

se.  To evaluate whether particular parameter values of the CAPM-based stochastic discount factor are 

reasonable, we solve for the implied average risk-free rate and market premium.  The average one-period 

risk-free (in real terms) bond price is simply the expectation of the real stochastic discount factor, 
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)(10 RMRFEγγ + .  The real risk-free rate that corresponds to this average price, 1)](/[1 10 −+ RMRFEγγ , 

can be compared to historical bond-market data to judge its plausibility.  Given the second moment of the 

excess market return, our parameters also imply the average market premium: 
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We add two moment conditions to the system that measure the average excess return and average squared 

excess return on the market portfolio: 
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Adding these moment conditions allows us to compute the point estimates and standard errors of the average 

risk-free rate and market premium implied by the stock-return CAPM stochastic discount factor.   

The estimated average real risk-free one-period bond prices range from 0.94 to 0.95; these bond prices 

correspond to (net) real risk-free rates from 6 to 5 percent.  Although these estimates are higher than the 

realized real returns on one-year T-bills over our sample period, Siegel (1999) argues that values within this 

range may be reasonable estimates of the ex-ante expected real risk-free rate.  The market-premium 

estimates are also reasonable, ranging from 7 to 10 percent.  Although these estimates are high compared to 

the predictions of most economic models as well as compared to the dividend-yield-based estimates of Fama 

and French (2002), they are close to the sample means.   

The cash-flow CAPM’s estimated parameters are shown in columns seven and eight of Table III.  

Consistent with the theory, the slopes on the market’s ROE are negative and statistically significant. 

Our tests assume that the market premium does not covary systematically with betas, ruling out the 

conditional CAPM.  Instead of testing a conditional CAPM specification, we measure the price-level impact 

of the static CAPM’s pricing errors.  The approach of this paper is thus distinct from those of Jagannathan 

and Wang (1996), Lettau and Ludvigson (2001), and Santos and Veronesi (2001) who argue that conditional 

versions of the CAPM help explain the cross-section of one-period expected returns (instead of prices or 

price-to-book ratios). Our results, of course, do not contradict those of the above authors. 

The cross-sectional variance decomposition (14) is simultaneously estimated from another set of 

independent moment conditions.  Since these additional regression moment conditions are exactly identified 
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as a separate group, adding them to the system does not alter the point estimates of stochastic-discount-factor 

parameters identified from the other moment conditions. 

We mold (14) to our exact regression specification as follows.  First, we include time dummies in the 

pooled regressions, effectively running the regressions with cross-sectionally demeaned data.  This allows us 

to focus on the cross-sectional variation in firms’ price-to-book ratios.  Second, we deflate both the 

dependent and explanatory variables with the particular portfolio’s average price-to-book ratio.  This 

weighting practice can be seen as a simplified version of generalized least squares (GLS).  The regression 

residuals of (14) are much more variable for high-price-to-book portfolios than for low-price-to-book 

portfolios in our data, which is a natural consequence of high-price-to-book portfolios’ data being divided by 

very low book-equity numbers.  By placing less emphasis on data points with more variable errors, our 

weighting scheme acts much like GLS.   

 We set up the weighted least squares (WLS) regressions as:  
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where WLSβ ′  is the variance share of risk-adjusted abnormal earnings, WLSβ ′′  is the variance share of the 

terminal value, WLSβ ′′′  is the variance share of pricing error, and 1=′′′+′′+′ WLSWLSWLS βββ .  As noted before, 

the weights, 
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are the time-series averages of each portfolios price-to-book ratios.  DT  is a matrix of time dummies 

(subsuming the regression constant), and WLSWLSWLS ∆ ′′′∆ ′′∆′ and,,  are dummy coefficients which we 

subsequently ignore.  The stochastic-discount-factor realizations in the above formulas are computed using 

the parameter estimates of Table III.   

Table IV shows the results from the WLS regressions with time dummies (equation (22)).  As in 

Table III, each row of Table IV corresponds to the horizon indicated in the first column.  Columns 2-4 of the 
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table show the price-to-book variance decomposition for the constant-discount-factor model.  Moving down 

column two of the tables, the variance share of cash flows increases from 6.6 percent at the one-year horizon 

to 37.7 percent at the fifteen-year horizon.  The mispricing component of the constant-discount-factor model 

also grows as the regressions’ horizon lengthens.  Moving down column four of Table IV, the variance share 

of mispricing increases from 3.2 at the one-year horizon to 26.9 percent at the fifteen-year horizon.  

Summarizing the results, the constant-discount-rate model allocates about 40 percent of the cross-sectional 

price-to-book variance to variation in present value of future fifteen-year cash flows, about 35 percent to 

variation in fifteen-year terminal values, and about 25 percent to mispricing. 

Columns 5-7 of Table IV show the price-to-book variance decomposition for the stock-return CAPM.  

Column 5 shows that the variance share of cash flows increases from 6.7 percent at the one-year horizon to 

42.3 at the fifteen-year horizon.  The variance shares for the cash-flow CAPM are in columns 8-10.  The 

variance share of cash flows in column eight increases from 5.0 percent at the one-year horizon to 52.0 

percent at the fifteen-year horizon. 

Remarkably, the variance share of the risk-adjusted present value of cash flows is much higher for 

both the stock-return and cash-flow CAPM specifications than for the constant-discount-rate model.  In 

words, the CAPM values the long-run cash flows of growth stocks at a higher multiple than value stocks’, 

because value stocks’ long-run ability to generate cash flows covaries more strongly with the stock return 

and ROE on the market portfolio than growth stocks’.  

The mispricing share of stock-return CAPM is shown in column 7 of Table IV.  Consistent with the 

previous research by Fama and French (1992, 1993, and 1996) and Davis, Fama, and French (2000), at the 

one-year horizon the stock-return CAPM cannot price portfolios sorted on price-to-book ratios.  At the 

fifteen-year horizon, however, the stock-return CAPM allocates 20.1 percent of the variance to mispricing, 

which is less than for the constant discount rate model.   

The punch line (or column) of our paper is column ten of Table IV.  The cash-flow CAPM is our most 

successful specification.  At the fifteen-year horizon, the cash-flow CAPM allocates only -0.1 percent of the 

price-to-book variance to mispricing.  We interpret this variance share as economically and statistically 

insignificant.  Remarkably, introducing the market portfolio’s cash flow as a risk factor will move the 

component considered mispricing by the constant-discount-rate model to the risk-adjusted present value of 

cash flows, not to terminal value.  We find it comforting that our results identify systematic risk in the cash 
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flows of value stocks rather than in the fifteen-year terminal value as the former are unambiguously 

interpretable as covariance due to cash flows, not mispricing.5  

Our results that cash-flow betas explain price levels is related results by Bansal, Dittmar, and 

Lundblad (2002).  In contemporaneous research, Bansal et al. measure risks from dividend growth rates and 

find that a version of the consumption-based asset pricing model performs well in explaining average returns 

to a number of dynamic trading strategies.  While their paper and ours share the idea of measuring risks from 

cash flows, our paper focuses on buy-and-hold strategies with constant portfolio definitions and our results 

are thus easier to relate to the level of the stock price. 

 Figure 1 graphs the variance shares from Table IV’s stock-return CAPM specification as a function 

of the horizon.  The lightly colored area in the bottom represents the variance share of risk-adjusted cash 

flows, the white area in the middle the share of terminal value, and the dark area in the top the share of 

pricing error; all relative to the stock-return CAPM.  For comparison purposes, the variance shares from the 

constant-discount-rate model are plotted with bold dashed lines.  After the first year, the variance share of 

stock-return CAPM mispricing is always less than that of the constant-discount-rate model.  Consistent with 

the above-cited results in the previous literature, there is a visible pricing-error component at the one-year 

horizon.  This is what one would expect knowing that immediately after the sort value stocks’ returns 

actually have lower CAPM betas than growth stocks’ returns.  However, increasing the horizon beyond one 

year does not increase the variance share of mispricing as much as for the constant-discount-rate model. 

Figure 2 plots a similar variance-share graph for the cash-flow CAPM.  For most horizons, the pricing 

error is negatively related to the price-to-book ratios, that is, value stocks appear slightly overpriced relative 

to growth stocks.  At the fifteen-year horizon, the mispricing share ends at almost exactly zero.  

Approximately fifteen percentage points of the improvement over the constant-discount-rate model at the 

                                                           
 

5 Our cross-sectional result that the CAPM works well for the level of prices may be related to Daniel and 

Marshall’s (1997).  They document that the consumption-based habit model of Constantinides (1990) is able to match 

the mean and the variance of the observed equity premium, capture time variation in the equity premium, and can better 

match the observed risk-free rate when using long-horizon return and consumption data. 
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fifteen-year horizon comes from the cash-flow component.  Although value stocks continue to earn higher 

returns than growth stocks for the entire fifteen-year horizon, the cash-flow CAPM justifies these expected 

returns first by the riskiness of the terminal value in the shorter-horizon regressions and later by the riskiness 

of cash flows in the longer-horizon regressions. 

Our variance-decomposition results suggest that the CAPM provides a high-R2 explanation of the 

levels of stock prices for value and growth stocks.  Although the abnormal returns on a strategy of sorting 

stocks into price-to-book deciles, buying value stocks and shorting growth stocks, and turning the portfolio 

over every year cannot be explained by the stock-return CAPM, the cash-flow version of the model gets the 

levels of stock prices almost exactly “right.” 

IV. Evidence from portfolio returns 

In this section, we present more traditional evidence from portfolio returns and confirm our results 

using simple portfolio trading rules, monthly returns, and bootstrapped confidence levels.  The portfolio-

return evidence complements the above cash-flow-based results for the following reasons.  First, the cash 

flows are measured annually, while our portfolio-return tests use monthly stock returns.  Second, statistical 

inference in the previous tests relies on asymptotic Newey-West (1987) standard errors, while our return 

tests use more reliable bootstrap methods.  Third, the portfolio-return tests allow us to establish a direct link 

to the previous literature on the performance of value-minus-growth strategies.  

We first sort stocks into price-to-book deciles.  Every year, we run fifteen different sorts: Deciles 

sorted on year-t-1 price-to-book ratios, deciles sorted on year-t-2 price-to-book ratios,…, and deciles sorted 

on year-t-15 price-to-book ratios.  As a result, we have 715 months of returns on 150 portfolios for the 

period 6/1941-12/2000 (the maximum period for which our data made it possible to compute returns for the 

portfolios formed by sorting on the year-t-15 price-to-book ratios). 

We compute our measure of risk by regressing the monthly returns on the resulting 150 portfolios 

(fifteen different horizons by ten price-to-book categories) on the contemporaneous and lagged market 

returns.  We then sum up the regression coefficients into what we call “total beta,” in contrast to 

“contemporaneous beta,” i.e., beta estimated without the lagged market returns in the regression.  The logic 

underlying the inclusion of lagged returns is the following.  We argue that the betas measured based on only 

contemporaneous monthly returns may be misleading for a number of reasons.  If some price-to-book deciles 
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systematically contain illiquid securities, the measured monthly returns may be asynchronous, and some 

portfolios’ returns disproportionately so.  In addition, relatively short-horizon effects such as tax-loss 

harvesting by individual investors, window dressing by institutional investors, and/or delayed reaction to 

information for stocks that are not extensively covered by analysts may garble the relevant long-run relations 

in contemporaneous monthly returns.  The impact of asynchronous price reaction on beta estimates has been 

studied by Scholes and Williams (1977) and Dimson (1979) who propose simple techniques to measure 

market betas by utilizing summed betas from regressions of returns on both contemporaneous and lagged 

market returns.  We follow their suggestion when measuring betas, and include up to eleven lags in our 

regressions.6   

Figure 3 shows the evolution of the CAPM beta of a value-minus-growth portfolio as a function of 

years from the sort.  The dependent variables in the regressions are an equal-weight portfolio of the three 

value-weight lowest-price-to-book deciles (marked with a solid line and triangles) and an equal-weight 

portfolio of the three value-weight highest-price-to-book deciles (marked with just a solid line).  The upper-

left plot is produced with no lagged market returns in the regressions, the upper-right with one lag, the 

lower-left with five lags, and the lower-right with eleven lags.   

Figure 3 clearly illustrates how the long-horizon risks of value and growth stocks are very different 

from the risks at short horizons.  Focusing on the contemporaneous betas in the upper-left plot, growth 

stocks have much higher contemporaneous betas than value stocks immediately after the sort.  However, as 

time passes from the sort, the risk of value stocks increases while the risk of growth stocks decreases.  

Between the years five and ten, contemporaneous betas cross and value stocks reach their permanently high 

and growth stocks their permanently low contemporaneous betas.  The time pattern in total betas is very 

similar, but the total betas of growth stocks are much lower than their contemporaneous betas at all horizons, 

and the crossing takes place much earlier.  Across specifications, value stocks have statistically significantly 

                                                           
 

6 Kothari, Shanken, and Sloan (1995) as well as Handa, Kothari, and Wasley (1993) show that the CAPM 

performs better when betas are measured using annual instead of monthly returns.  Their focus is in explaining short-

horizon expected returns, differentiating our tests from theirs. 



 

 26

higher betas than growth stocks fifteen years after the sort: t-statistics of the difference in total betas are 4.9, 

5.0, 4.6, and 2.8 for regressions with zero, one, five and eleven lags, respectively.  Thus, we conclude that 

the long-run permanent level of CAPM beta is significantly higher for value stocks than for growth stocks, a 

difference as large as 0.2 for these portfolios (and larger for the extreme deciles one and ten). 

To verify that the surprising crossing pattern in Figure 3 is not an artifact of the time trend in value 

and growth stocks’ betas, in Table V we estimate a parametric specification for the betas: 
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Above, TREND is a linear time trend in centuries (month index divided by 1200), normalized to zero in the 

middle of the sample.  YEARS is the number of years from the sort divided by one hundred; or more 

informatively the number of lags we used in firms’ price-to-book ratios when sorting the portfolios into 

deciles, divided by one hundred.  Table V reports the sums of coefficients (i.e., total betas) for the value, 

growth and difference portfolios as a function of L (the number of monthly lags).  The results suggest that 

even after controlling for the time trend, growth stocks’ betas decline and value stocks’ betas increase after 

the sort.  Based on the coefficient of the interaction term, these patterns appear to be especially strong in the 

later years of the sample. 

The above results show that value stocks do have higher long-run betas than growth stocks.  The task 

remains to show that the magnitude of this difference in long-run betas is large enough to justify the 

magnitude of the long-run stock returns, which we take up below.  

We examine N-year holding-period strategies based on return series computed from the 150 portfolios 

used in the beta tests.  We define the N-year decile M as a portfolio strategy that invests equally in N 

portfolios: Decile M sorted on year-t-1 price-to-book ratios, decile M sorted on year-t-2 price-to-book 

ratios,…, and decile M sorted on year-t-N price-to-book ratios.  For example, a two-year holding-period 

strategy for the highest price-to-book portfolio (two-year decile ten) invests half in stocks that are the highest 

price-to-book stocks in the beginning of the return period and half in stocks that were the highest price-to-

book stocks a year ago.  We extend these “holding periods” out to fifteen years.  As a consequence, the 

fifteen-year decile portfolios approximate a buy-and-hold investor’s experience and allow us to examine 
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long-horizon effects at a higher frequency and with more reliable statistical tools than in the price-level 

variance-decomposition tests. 

For all of the statistics we report in Table VI, we also report standard errors (reported inside 

parentheses) as well as p-values (estimated using a bootstrap technique and reported inside braces).  The 

bootstrap procedure proceeds as follows.  First, we repeat the regression of the 150 portfolios on the market 

return and eleven lags setting the coefficient on the constant to zero.  We preserve the 12-by-1 beta vector 

and the 715-by-150 error matrix.  We demean the error matrix using the time-series mean of each column of 

errors, since under the null the mean error from the regression is zero.  We then begin 10,000 bootstrap 

iterations.  At each iteration we produce a random design matrix by sampling 715 rows from the original 

715-by-12 design matrix of market returns.  We separately randomly sample 715 rows from the demeaned 

error matrix.  All sampling is done with replacement.  We produce a new dependent-variable matrix using 

the newly selected design and error matrices in conjunction with the beta estimate (Y = X×beta + errors).  

Finally, we regress the new dependent-variable matrix on the new design matrix to get a draw of the 

intercept vector and corresponding GRS statistic (Gibbons, Ross, and Shanken (1989)) and other statistics 

under the null.  Then, we compute the percentiles of our point estimates in our sample of 10,000 bootstrap 

iterations. 

The second column of Table VI reports the GRS statistic of CAPM tests of the ten portfolios at 

different horizons, along with the asymptotic and bootstrap probability values.  For the sake of brevity, we 

only report results for one, two, three, five, ten, and 15-year deciles.  The first row reports the well-known 

result that the CAPM cannot price returns over the next year on portfolios formed by sorting on the most 

recent price-to-book ratio.  The GRS statistic is 1.9182, which rejects the null hypothesis that the one-year 

deciles’ intercepts are jointly zero at about five-percent level of significance.  This pattern holds true and 

strengthens over holding periods up to five years.  However, for ten-year and fifteen-year holding period 

returns (ten-year and fifteen-year deciles), we are unable to reject the hypothesis that the CAPM can price 

the returns on the price-to-book deciles.  Moreover, the CAPM alphas are no longer positively correlated 

with the price-to-book ratios. 

The significance of the holding period for alphas is further illustrated in Figure 4.  The top panel of 

Figure 4 shows the evolution of mean excess returns.  The price-to-book pattern in mean returns is strong 
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even at the fifteen-year holding period.  In the alphas displayed in the bottom panel, however, the pattern has 

disappeared almost completely.   

A simple back-of-the-envelope calculation demonstrates the economic importance of CAPM risk 

adjustment.  Concentrating on deciles one and ten at the fifteen year horizon (not reported in Table VI) , the 

price level impact of the difference in expected returns is approximately 44 percent (ignoring compounding 

and using the formula 12×15×(0.99%-0.75%).)  Not adjusting for risk (or assuming that the risk is equal) 

would lead to a conclusion that the highest-price-to-book decile is overpriced by almost by a factor of two 

relative to the lowest-price-to-book decile.  However, adjusting returns with their total CAPM betas leads to 

a very different conclusion: The price level impact of the difference in alphas is a statistically insignificant 

14 percent (12×15×(0.0820%-0.0018%)).)  The economic significance of the difference between 14 and 44 

percent mispricing is enormous. 

The next two columns analyze similar value-minus-growth long-short portfolios in more detail.  We 

report the mean return and alpha of a strategy that goes long the top three value-weight portfolios (low price-

to-book) and shorts the bottom three value-weights portfolios (high price-to-book) with equal weights.  Thus 

at the one-year horizon, the strategy is quite similar to Fama and French’s (1993) HML, except that there is 

no size stratification.  As Fama and French show, in the year following portfolio formation, all of the average 

return can be attributed to mispricing vis-à-vis the CAPM.  This fact is true even for the strategy that buys 

value and sells growth and holds the positions for three years.  For the three-year holding portfolio, the mean 

and CAPM alpha are both 0.0037, measured in fractions per month.  In a statistical test not reported in the 

table, we cannot reject the null that the ratio of alpha to mean is 1.0 at the five-percent level of significance. 

However, as the holding period grows beyond three years, the CAPM explains more and more of the 

average return differential.  At the ten-year horizon, the long-short portfolio generates an average return of 

0.0025.  Approximately one-third of this return is justified by the CAPM, as the alpha is only 17 basis points 

per month.  For the fifteen-year holding period strategy, the alpha is only eight basis points, though the mean 

return is still an economically important 18 basis points and marginally statistically significantly different 

from zero.  We argue that the risk of the fifteen-year holding period strategy approximates the risk relevant 

for price levels.  In a statistical test not reported, we are unable to reject the hypothesis that the ratio of alpha 

to mean is zero at the five-percent level of significance.  This result confirms the findings of the previous 

sections.   
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Recall that, for a given horizon, we have ten price-to-book-sorted portfolio returns each month.  The 

remaining columns in Table VI report results from a regression of the average return on the ten portfolios on 

the total beta of these portfolios.  Column five reports the intercept ( 0λ ) from this regression; column six 

reports the coefficient on total beta ( 1λ ), and column seven has the (unadjusted) R2. 

As in Fama and MacBeth (1973), under the null that the CAPM is true, the intercept from a regression 

of mean excess returns on betas is an estimate of the excess return on the riskless (zero-beta) portfolio.  The 

regression slope is an estimate of the market premium (premium for an additional unit of beta).  Column five 

shows that the results for short holding periods are inconsistent with the Sharpe-Lintner CAPM.  The zero-

beta premium estimated is negative; for the two- and three-year holding-period portfolios we can reject the 

hypothesis that the CAPM is true and the zero-beta premium is zero.  For the fifteen-year holding period, in 

contrast, the point estimate is about zero, consistent with the Sharpe-Lintner CAPM. 

Column six shows estimates of the market premium.  For short holding periods, the slope has a wrong 

sign and/or small magnitude.  For intermediate holding periods (3-10 years) the estimated 1λ  is far higher 

than the historical market premium, often over 20 percent per annum.  The hypothesis that the estimate 

equals the market premium is strongly rejected for holding periods from three to ten years (p-value in 

column six).  This is because the value portfolios substantially outperform the growth portfolios, but there is 

only small difference in the portfolio betas, so a large beta premium is necessary to explain differences in 

average returns.  The fifteen-year horizon portfolios, on the other hand, imply a market premium estimate of 

79 basis points, quite similar to the historical market premium.  We are unable to reject the null that the 

alphas are zero and therefore the hypothesis that the beta premium is equal to the historical average excess 

return on the market.  

Column seven of Table VI shows the R2 from the regression of means on betas.  For short holding 

periods, betas explain virtually none of the difference in mean excess returns.  For the longest-horizon 

portfolio, however, the R2 is 70.31 percent; we manifestly fail to reject the null that the R2 is equal to 100 

percent, with a bootstrap p-value of 0.4474. 

V. Risk-sorted portfolios 

We also sort firms into portfolios on firm size and stock-return beta.  The firm-size sort is analogous 

to the market-to-book sort, except the sort variable is the market value of equity.  When we sort on the 
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estimated stock-return beta, we first construct the sort variable by running firm-by-firm OLS regressions of 

firms’ monthly stock return on the CRSP value-weight index return.  We use up to five years of data and 

require at least 36 valid monthly observations for each firm. 

The logic behind including beta-sorted and size-sorted portfolios as test assets is the following. The 

evidence presented in the main body of the paper shows that there is a monotonically decreasing relationship 

between price-to-book ratios and cash-flow betas and long-run stock-return betas.  Previous research shows 

that the relationship between price-to-book ratios and average returns is also monotonically decreasing.  

Thus, given this evidence, it is not surprising that the cash-flow betas explain average returns well.   

To subject the model to a tougher test, we adapt the idea of Daniel and Titman (1996) and include 

beta-sorted and size-sorted portfolios in the test-asset sets.  Portfolios sorted on stock-return beta and firm 

size show variation in cash-flow betas which is independent from their price-to-book ratios.  If the risk 

loading (instead of the book-to-market characteristic) determines the average return, the inclusion of these 

risk-sorted portfolios should not significantly decrease the premium on cash-flow beta. 

While there exists an extensive literature on estimating and forecasting firms’ stock-return betas, the 

prediction of cash-flow betas is mostly an uncharted territory.  Sorts on firms’ or industries’ past five-year 

cash-flow betas do not induce any pattern in post-formation cash-flow betas.  When we sort stocks on size, 

the difference between the top three and bottom three deciles’ cash-flow betas is statistically significant at 

the five-percent level for horizons from two to fifteen years. When we sort stocks on estimated stock-return 

betas, the difference between the top three and bottom three deciles’ cash-flow betas is marginally 

statistically significant for the one-year horizon (t-statistic 1.85) but insignificant for horizons from two to 

fifteen years.   

Of course, because the second-stage regression uses estimated betas, it is subject to the errors-in-

variables bias.  The magnitude of the errors-in-variables bias depends on both the variance of the beta-

estimation error and the cross-sectional variance of true betas across portfolios.  The lower the estimation-

error variance and higher the cross-sectional variance of true betas (i.e., higher the signal-to-noise ratio), the 

lower the downward bias in the slope coefficient and R2 of the second-stage regression. Because the price-to-

book-sorted portfolios exhibit more spread in estimated cash-flow betas than the risk-sorted portfolios, it is 

reasonable to conjecture that including the risk-sorted portfolios as test assets will lower the cross-sectional 

variance of the true betas and thus lower the signal-to-noise ratio.  Therefore, even if the pricing model has a 
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true R2 of 100 percent when explaining population means, we would expect the estimated second-stage slope 

and R2 to decline slightly as we add the risk-sorted portfolios to the set of test assets. 

Table VII measures whether the cash-flow betas can simultaneously explain the prices of value and 

growth stocks and portfolios sorted on risk proxies.  The dependent variable in the pricing regressions is the 

average N-period discounted stock return and the independent variable the estimated cash-flow beta, as in 

Table II.  We use two test-asset sets: First, thirty price-to-book-sorted portfolios and thirty portfolios sorted 

on OLS-stock-return betas and, second, thirty price-to-book-sorted and thirty size-sorted portfolios.  

Columns two to seven of Table VII show premia and R2 estimated from these alternative asset sets.  Adding 

the stock-return-beta-sorted portfolios to the test assets lowers the beta premium estimate, but only slightly.  

For example, at the five-year horizon, price-to-book-sorted portfolios indicate a beta premium of 8.6 percent 

(Table II), and adding beta-sorted portfolios lowers the estimate to 6.9 percent (Table VII).7  Replacing the 

beta-sorted portfolios with size-sorted portfolios yields a closer beta-premium estimate of 7.5 percent.  

Additionally, the high R2s in Table II are robust to addition of risk-sorted portfolios: R2s of the cross-

sectional regressions remain high (from 23 to 63 percent for horizons from two to fifteen years).  Taking into 

account the increased attenuation bias due to lower signal-to-noise ratio, we thus conclude that our finding 

that cash-flow betas explain the level of stock prices well is robust to including risk-sorted portfolios as test 

assets. 

We also checked the robustness of the variance-decomposition results to the inclusion of risk-sorted 

portfolios as test assets.  Table VIII shows the variance decompositions estimated from two asset sets: Ten 

portfolios sorted on stock-return betas and ten portfolios sorted on price-to-book ratios (Panel A) and ten 

portfolios sorted on size and ten portfolios sorted on price-to-book ratios (Panel B).  Consistent with the 

results obtained from price-to-book-sorted portfolios alone, the pricing-error component is largest for the 

                                                           
 

7 When estimating the cash-flow betas of beta-sorted and ME/BE-sorted portfolios, we use the maximum 

number of data points available for each portfolio return series (1933-1999 for beta-sorted and 1928-1999 for price-to-

book sorted portoflios).  When computing the moment-error covariance matrix used in the GMM standard-error 

formulas, we only use the period for which the return data are available for all portfolios.  
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constant-discount-rate model and smallest for the cash-flow CAPM.  Furthermore, the cash-flow CAPM’s 

pricing-error variance fraction is statistically insignificantly different from zero. 

Finally, we also repeated the tests on monthly stock returns with the alternative test-asset sets and 

report the results in Table IX.  As evident from the table, these tests essentially break the stock-return-based 

model.  Adding beta-sorted portfolios has a particularly devastating effect on the beta premium and cross-

sectional R2 in the first four columns of Table IX: The fifteen-year-horizon beta premium (0.79 percent per 

month) obtained in Table VI drops to one sixth its previous value in column four of Table IX (0.12 percent 

month).  To summarize our results, by including risk-sorted portfolios in the analysis we are unable to break 

models that link cash-flow betas to price levels but are “successful” in breaking models that use stock-return 

betas. 

VI. Conclusions 

The goal of this paper is to evaluate the relative importance of risk and mispricing to the cross-

sectional variation in firms’ stock prices.  Our approach differs from the previous cross-sectional research in 

two important ways.  

First, unlike most previous cross-sectional studies, we follow Summers (1986) and concentrate on the 

level of the price instead of trading profits.  We argue that focusing on the level of the price has important 

advantages.  A common definition of market efficiency states that stock prices reflect information to the 

point that the marginal benefits of acquiring information and trading on it do not exceed the marginal costs 

(Jensen (1978)).  One problem in testing market efficiency is that what constitutes a reasonable level of 

information and transaction costs is ambiguous.  The interpretation of before-cost trading profits on high-

turnover investment strategies can crucially depend on the assumed level of costs.  On the contrary, the 

price-level criterion advocated by us is largely immune to this concern.  Evaluating market efficiency at the 

price level is analogous to evaluating trading profits on a simple strategy of buying or short-selling a stock 

once and holding the position forever.  Thus, the price-level criterion is clearly less sensitive to assumptions 

about reasonable trading and information costs. 

Similarly, the price-level criterion is interesting to an investor who, for some reason, is constrained to 

a long holding period.  For example, the level of price is the appropriate measure for a host of economically 
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important decisions including firms’ real investment decisions as well as merger and acquisition activity – 

endeavors essentially requiring buy-and-hold behavior. 

Second, following Brainard, Shapiro, and Shoven (1991) we measure risk by covariances of cash-

flow fundamentals instead of covariances of stock returns.  If the objective is to test the joint hypothesis of 

market efficiency and an asset pricing model being literally true, a valid test of this joint hypothesis 

examines the relation between first and second moments of high-frequency stock returns.  However, if the 

objective is to measure how well the joint hypothesis predicts stock prices, tests relying solely on the 

properties of stock returns are handicapped by the following disadvantage.  Market inefficiencies (and/or 

mispecification of the risk model) can affect not only average returns but also return covariances, and this 

problem is likely to be more severe the higher the frequency of the returns. The price-level tests we advocate 

connect stock prices to covariances or betas of cash flows.  Regressing prices on cash-flow betas is a cleaner 

way to measure a model’s explanatory power than regressing average returns on return betas, because the 

cash-flow betas are less affected by mispricing. 

We test empirically the ability of the CAPM to explain value and growth stocks’ prices.  Our 

empirical results suggest that mispricing relative to the CAPM is not an important factor in determining the 

prices of value and growth stocks.  Cash-flow betas (measured by regressing firms’ log ROEs on the 

market’s log ROE) essentially explain the prices of and long-horizon returns on price-to-book-sorted 

portfolios, with a premium consistent with the theory. 

In addition to traditional regressions of prices and long-horizon average returns on betas, we specify a 

stochastic-discount-factor present-value model that links firms’ current price-to-book ratios to expected 

future cash flows and to covariances of future cash flows with the stochastic discount factor.  Ultimately, this 

present-value framework leads us to a cross-sectional variance decomposition of price-to-book ratios.  We 

allocate the price-to-book variance to predictable variation in three components: The risk-adjusted present 

value of cash flows, the terminal value (capturing the effects beyond our fifteen-year horizon), and a pricing-

error component (as assigned by a particular economic model).   

We examine pricing errors relative to three discount-factor models, a constant discount factor and two 

implementations of the CAPM discount factor.  If we restrict discount rates to be constant across firms, our 

decomposition allocates about 27 percent of the cross-sectional price-to-book variance to mispricing.  

However, if we allow discount rates to vary as predicted by the CAPM, the variance share of mispricing is 
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reduced to –0.1 percent.  The CAPM is a success at the price level because the present-value model detects 

more market risk in value firms’ long-term cash flows than in growth firms’. 

We confirm and extend these findings with tests on stock returns.  When we sort stocks on price-to-

book ratios, immediately after the sort the low-price-to-book portfolios have lower CAPM betas than the 

high-price-to-book portfolios.  However, this lower risk of value stocks is entirely temporary: As time since 

the sort increases, the beta of the value-stock portfolio increases while the beta of the growth-stock portfolio 

decreases.  Within ten to fifteen years, the betas of these portfolios have reached their long-run permanent 

levels, and the long-run CAPM betas of value stocks are much higher that those of growth stocks.  If an 

investor has a fifteen-year buy-and-hold investment horizon, value and growth portfolios’ average returns 

line up closely with their CAPM betas. 

Of course, the CAPM cannot explain the abnormal performance of an annually rebalanced value-

minus-growth strategy.  That strategy will have a high return and low stock-return beta, irrespective of what 

happens to those stocks after they are sold (or bought back on the short side).  However, the long-run betas 

are crucial when diagnosing the economic significance of the value-minus-growth anomaly.  We argue that, 

for many purposes, the joint hypothesis of the CAPM and market efficiency approximates the pricing of 

value and growth stocks well. 

Our results may validate what beforehand might have been seen as a common but inappropriate use of 

CAPM-based hurdle rates by firms, given the empirical evidence on the CAPM’s inability to explain one-

period expected returns.  For example, Graham and Harvey (2001) state: “It is very interesting that CFOs 

pay very little attention to risk factors based on momentum and book-to-market value.”  Our empirical 

results, like the theoretical results by Stein (1996), support the use of the CAPM in capital budgeting, as long 

as the betas are measured from cash flows or long-term stock returns.  Unlike Stein’s, however, our results 

also suggest that once a project is undertaken, the stock market values it approximately “right,” i.e., 

consistently with the model’s present-value calculation. 

Shleifer and Vishny (2001) model merger and acquisition decisions and suggest that these 

transactions are motivated by acquirers/targets being overpriced/underpriced.  Their model makes the 

implicit assumption that deviations from fundamental values are economically significant.  Our findings 

suggest that high-book-to-market “fallen angels” within industries are not necessarily obvious takeover 

targets based on their valuations alone, because the average take-over premium and other transaction costs 
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are an order of magnitude higher than the mispricing we detect (Bradley, 1980).  At minimum, our results 

suggest that empirical tests of this valuation motive should carefully estimate the risk-adjusted price-level 

impact of any return predictability assumed to be due to market inefficiencies. 

Our evidence is directly relevant to the interpretation of Baker and Wurgler’s (2002) empirical 

evidence on equity issues.  Based on their finding that the historical sequence of past book-to-market ratios 

forecasts the capital structure far into the future, Baker and Wurgler argue that a firm’s long-run capital 

structure is determined by the sequence of opportunistic equity-issuance and share-repurchase decisions.  

Our finding that firms’ book-to-market ratios are associated with only modest levels of relative mispricing 

suggests that the benefits from this timing activity are small.  If the benefits are small, the costs of deviating 

from the “optimal” capital structure must also be small, and the optimal capital structure must be well 

approximated by the Modigiliani-Miller (1958) irrelevancy principle. 
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Appendix: Additional robustness checks 

A. Post-1938 period 

In unreported tests, we also examine a shorter 1938-1999 sample in tests that interpret price-to-book 

ratios on a ratio scale (e.g., regressions on the price-to-book ratios), consisting of 159,537 firm-years.  The 

logic behind this choice of periods is based on the pre-1938 level of disclosure regulation.  Before the 

Securities Exchange Act of 1934, there was essentially no regulation to ensure the flow of accurate and 

systematic accounting information.  Among other things, the act prescribes specific annual and periodic 

reporting and record-keeping requirements for publicly-traded companies.  The companies required to file 

reports with the SEC must also "make and keep books, records, and accounts, which, in reasonable detail, 

accurately and fairly reflect the transactions and disposition of the assets of the issuer.”  In addition, the 

legislation introduces the concept of “an independent public or certified accountant” to certify financial 

statements and imposes statutory liabilities on accountants.  Clearly, interpreting the book-equity predating 

the act on the same ratio scale as more recent data would be unrealistic.  

Merino and Mayper (1999) provide statistics on the enforcement of the 1934 Securities Exchange 

Act.  The SEC began 279 proceedings in the first ten years of the enforcement of the 1934 act, and 272 of 

those proceedings were begun in the 1933-37 period and only seven in the subsequent five-year period.  This 

decline in proceedings may signal increasing compliance by registrants or declining interest by the SEC in 

regulatory enforcement.  We believe the former cause was the driving force behind the reduced number of 

new proceedings.  In our opinion, it is reasonable to characterize the 1934-1937 period as an initial 

enforcement period, after which reporting conventions have converged to their steady states. 

The results for the 1938-1999 subperiod are available by request.  The cash-flow-beta regressions 

estimated from the 1938-1999 subsample are similar to those obtained from the full sample.  The main 

difference is that in the shorter subsample, the spread in cash-flow betas is stronger immediately after the 

sort but weaker at fifteen-year horizon than in the full sample.  The main difference between the 1928-1999 

and 1938-1999 variance-decomposition results is that the stock-return CAPM does slightly better at the 

fifteen-year horizon in the shorter subsample. 
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B. OLS variance decomposition 

We also estimated the regression equation (14) with OLS. Although common sense dictates some 

weighting scheme similar to ours, due to their simplicity we also present the estimated OLS regressions, 

specified exactly as in equation (14).  The OLS results are generally consistent with the WLS results.  Our 

main conclusions are also robust to omitting the time dummies from the WLS specification and thereby 

allowing the time-series variation to affect the parameter estimates, as well as to reasonable alterations of the 

WLS weighting scheme.  

The results from the simple OLS regressions (equation (14)) are available by request.  As the horizon 

increases, the variance share of cash flows increases from 2.1 percent at the one-year horizon to 12.4 percent 

at the fifteen-year horizon.  The mispricing component of the constant-discount-factor model also grows as 

the regressions’ horizon lengthens: The variance share of mispricing increases from 4.4 percent at the one-

year horizon to 48.7 percent at the fifteen-year horizon.   

The difference between the constant-discount-rate results in WLS and OLS specifications at the 

fifteen-year horizon is due to the time dummies.  From the empirical results by Vuolteenaho (2001) we know 

that the time-series variation in the aggregate book-to-market ratio is almost exclusively due to expected-

return effects.  Time dummies in Table IV suck up this aggregate time-series variation and the remaining 

cross-sectional variation is mostly due to cash-flow effects, as documented by Cohen, Polk, and Vuolteenaho 

(2002).   

For the OLS variance decomposition and the stock-return CAPM, the variance share of cash flows 

increases from 0.9 percent at the one-year horizon to 25.9 percent at the fifteen-year horizon.  The 

mispricing share of stock-return CAPM also increases: At the fifteen-year horizon, the stock-return CAPM 

allocates 28.8 percent to mispricing, which is less than for the constant discount rate model.  The cash-flow 

CAPM is our most successful specification in OLS regressions as well.  At fifteen-year horizon, the cash-

flow CAPM allocates 7.7 percent in OLS regressions to mispricing. 
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Table I: Descriptive statistics 

Panel A reports descriptive statistics of the raw data. ME  is market value of equity, BE  book 
value of equity, and D  dividends.  Data are annual, except monthly net stock returns, and in nominal 
terms.  The sample period is 1928-2000 (208,804 firm-years). 

Panel B reports descriptive statistics for price-to-book-sorted decile portfolios.  The portfolios are 
formed by sorting stocks each year on MEt-1 / BEt-1 and then following each sort for fifteen years.  
“Annual stock return” is the average one-year net stock return immediately after the sort.  “5-year stock 
return” is the average cumulative five-year net stock return to buying the portfolios and holding them for 
five years after the sort.  “15-year stock return” is the average cumulative net fifteen-year stock return to 
buying the portfolios and holding them for fifteen years after the sort.  (BEt+n - BEt-1) / BEt-1 is the average 
n-year growth in the buy-and-hold portfolios’ book values of equity.  All quantities are nominal. 

 
Panel A: Descriptive statistics of the raw data 

Variable Mean Standard 
deviation 

5th 
percentile 

25th 
percentile Median 75th 

percentile 
95th 

percentile 
Monthly stock return 0.012 0.175 -0.211 -0.063 0.000 0.070 0.258 
Annual stock return 0.155 0.709 -0.613 -0.198 0.063 0.360 1.147 

MEt-1 / BEt-1 2.884 5.917 0.393 0.836 1.417 2.664 9.147 
Dt-1 / MEt-1 0.022 0.069 0.000 0.000 0.007 0.036 0.077 

(MEt - MEt-1) / MEt-1 0.200 1.136 -0.606 -0.201 0.054 0.369 1.320 
(BEt - BEt-1) / BEt-1 0.204 1.749 -0.441 0.000 0.081 0.185 0.853 

 
  
 

Panel B: Means of selected variables for price-to-book-sorted portfolios 

Variable High 
ME/BE 2 3 4 5 6 7 8 9 

Low 
ME/BE 

MEt-1 / BEt-1 6.219 3.201 2.221 1.721 1.399 1.169 0.973 0.807 0.638 0.409 
MEt / BEt 5.306 3.080 2.131 1.716 1.410 1.181 1.009 0.845 0.693 0.475 

MEt+4 / BEt+4 4.033 2.792 1.957 1.629 1.436 1.215 1.055 0.923 0.831 0.648 
MEt+14 / BEt+14 3.002 2.339 1.715 1.588 1.398 1.302 1.155 1.140 1.063 0.914 

Annual stock return 0.125 0.148 0.125 0.135 0.143 0.146 0.178 0.175 0.215 0.217 
5-year stock return 0.738 0.871 0.771 0.861 0.908 0.989 1.051 1.087 1.379 1.419 
15-year stock return 4.397 5.154 4.563 5.228 5.553 5.92 6.148 6.563 7.004 6.700 

(BEt+1 - BEt-1) / BEt-1 0.244 0.127 0.116 0.088 0.078 0.067 0.053 0.045 0.026 -0.019 
(BEt+4 - BEt-1) / BEt-1 0.857 0.504 0.431 0.380 0.333 0.299 0.257 0.216 0.164 0.041 
(BEt+14 - BEt-1) / BEt-1 3.829 2.499 2.186 2.013 1.793 1.731 1.555 1.412 1.191 0.839 

 

 



 

 

Table II: Cash-flow betas 

The table reports the estimated cash-flow betas for value and growth stocks and the regression 
coefficients and the R2 of the regression of the expected-return component of price on cash-flow betas for 
different sets of portfolios.  The sample period is 1928-1999.  

Panel A column one shows the horizon N.  Panel A columns 2-11 report the estimated cash-flow 
betas of price-to-book sorted decile portfolios.  The cash-flow betas are the slopes of the following 
regressions: 
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where k denotes the decile portfolio, M the market portfolio, and ROE a portfolio’s aggregate clean-
surplus earnings divided by the beginning-of-the-year aggregate book equity.  ρ is a constant equal to 
0.95.  Panel A column twelve reports the cash-flow beta of decile one minus that of decile ten.  Panel A 
column thirteen reports the cash-flow beta of average of deciles one, two, and three minus that of the 
average of deciles eight, nine, and ten. 

Panel A columns 14-16 show the intercept, slope and R2 of a cross-sectional regression of the 
expected-return component of price on cash-flow betas:  
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where Rk,t,j  is the year t simple (net) return on decile portfolio k during the jth year from the sort and k,1β̂  

the estimated cash-flow beta.  Ê denotes the sample mean.  Panel A columns 14-16 use thirty price-to-
book sorted portfolios as test assets.  

Panel B column one shows the alternative cash-flow definitions used in computing cash-flow betas 
at the five-year horizon.  X is earnings, ME market value of equity, and d∆  log dividend growth rate.  
Panel B columns 2-11 correspond to price-to-book-sorted portfolios. Panel B column twelve reports the 
cash-flow beta of decile one minus that of decile ten.  Panel B column thirteen reports the cash-flow beta 
of average of deciles one, two, and three minus that of the average of deciles eight, nine, and ten.  

All regressions are estimated with OLS.  GMM standard errors computed using the Newey-West 
formula with N leads and lags (which account for both the estimation uncertainty of the cash-flow betas 
and for the cross-sectional and time-series correlation of the error terms) are reported in parentheses. 



 

 

 
Panel A: Cash-flow betas and premia 
 

N High 
ME/BE 2 3 4 5 6 7 8 9 

Low 
ME/BE 1-10 (1,2,3) - 

(8,9,10) λ0 λ1 R2 % 

1 1.00 
(0.58) 

0.85 
(0.37) 

0.72 
(0.25) 

1.13 
(0.83) 

1.03 
(0.36) 

1.07 
(0.31) 

1.08 
(0.43) 

1.02 
(0.42) 

1.28 
(0.52) 

1.35 
(0.41) 

-0.35  
(0.33) 

-0.36 
(0.12) 

0.109 
(0.059) 

0.048 
(0.036) 18.78 

2 0.79 
(0.59) 

0.93 
(0.36) 

0.80 
(0.13) 

1.05 
(0.50) 

1.00 
(0.16) 

1.08 
(0.12) 

1.14 
(0.31) 

1.20 
(0.33) 

1.29 
(0.39) 

1.42 
(0.42) 

-0.62 
(0.33) 

-0.46 
(0.12) 

0.069 
(0.085) 

0.088 
(0.072) 51.53 

3 0.73 
(0.54) 

0.90 
(0.32) 

0.90 
(0.10) 

0.89 
(0.17) 

1.11 
(0.24) 

1.05 
(0.10) 

1.04 
(0.22) 

1.28 
(0.36) 

1.42 
(0.38) 

1.50 
(0.45) 

-0.76 
(0.31) 

-0.55 
(0.10) 

0.056 
(0.053) 

0.103 
(0.050) 65.25 

5 0.67 
(0.41) 

0.86 
(0.28) 

0.95 
(0.11) 

1.04 
(0.19) 

1.00 
(0.13) 

0.99 
(0.12) 

1.03 
(0.15) 

1.20 
(0.26) 

1.39 
(0.35) 

1.68 
(0.34) 

-1.01 
(0.18) 

-0.60 
(0.08) 

0.077 
(0.046) 

0.086 
(0.042) 75.80 

10 0.90 
(0.26) 

0.90 
(0.17) 

0.99 
(0.09) 

1.04 
(0.10) 

1.05 
(0.17) 

1.09 
(0.10) 

1.03 
(0.12) 

1.18 
(0.17) 

1.24 
(0.20) 

1.47 
(0.35) 

-0.59 
(0.19) 

-0.38 
(0.12) 

0.037 
(0.052) 

0.113 
(0.051) 73.74 

15 0.94 
(0.15) 

0.96 
(0.16) 

1.02 
(0.14) 

1.05 
(0.09) 

1.10 
(0.12) 

1.14 
(0.07) 

1.06 
(0.17) 

1.10 
(0.17) 

1.17 
(0.11) 

1.21 
(0.18) 

-0.31 
(0.13) 

-0.21 
(0.09) 

0.027 
(0.042) 

0.122 
(0.039) 56.03 

 

 

Panel B: Alternative cash-flow definitions 
 

Alternative cash-flow 
definition (N = 5) 

High 
ME/BE 2 3 4 5 6 7 8 9 

Low 
ME/BE 1-10 (1,2,3) - 

(8,9,10) 

∑
−

=
++

1

0
1,,

N

j
jjtk

j ROEρ  0.72 
(0.52) 

0.91 
(0.31) 

0.94 
(0.12) 

0.95 
(0.25) 

0.96 
(0.14) 

0.97 
(0.12) 

0.98 
(0.14) 

1.12 
(0.25) 

1.28 
(0.32) 

1.51 
(0.29) 

-0.80 
(0.22) 

-0.45 
(0.10) 

∑
−

= −+

++
1

0 ,1,

1,,
N

j jjtk

jjtkj

ME
X

ρ  0.35 
(0.31) 

0.65 
(0.31) 

0.92 
(0.17) 

1.17 
(0.16) 

1.26 
(0.28) 

1.63 
(0.69) 

1.93 
(1.01) 

2.97 
(2.26) 

4.15 
(3.26) 

11.26 
(10.76) 

-10.91 
(4.24) 

-5.49 
(2.15) 

0,1,

1
0 1,,

−

−

= ++∑
tk

N
j jjtk

j

ME

Xρ
 0.48 

(0.19) 
0.71 

(0.19) 
0.95 

(0.18) 
1.12 

(0.14) 
1.23 

(0.19) 
1.41 

(0.36) 
1.52 

(0.44) 
2.05 

(1.27) 
3.20 

(2.20) 
7.91 

(9.31) 
-7.44 
(3.63) 

-3.68 
(1.68) 

0,1,

0,1,,1,

−

−+−+ −

tk

tkNjNtk

ME
XX

 0.21 
(0.19) 

0.66 
(0.08) 

1.46 
(0.52) 

1.61 
(0.28) 

0.24 
(0.61) 

1.83 
(0.60) 

2.74 
(1.24) 

5.50 
(2.69) 

2.38 
(0.60) 

2.64 
(1.65) 

-2.43 
(0.57) 

-2.73 
(0.22) 

∑
−

=
++∆

1

0
1,,

N

j
jjtk

j dρ  0.79 
(0.19) 

0.90 
(0.13) 

0.96 
(0.10) 

1.03 
(0.13) 

1.34 
(0.28) 

1.44 
(0.46) 

1.14 
(0.31) 

1.44 
(0.88) 

1.39 
(0.77) 

1.28 
(0.91) 

-0.49 
(0.41) 

-0.49 
(0.33) 

 



 

 

Table III: Estimated parameters of stochastic discount factors 

This table reports the estimated parameters of three stochastic-discount-factor models.  The first 
model, tttt QQ πδπ // 11 −− = , is a constant real discount factor, δ , times the ratio of price levels, tt ππ /1− .  
The parameter estimates with standard errors for the constant-discount-rate model are reported in second 
column of the table.   

The second model is the stock-return CAPM: ttttt RMRFQQ ππγγ /)(/ 1101 −− += . This stochastic 
discount factor is a linear function of the excess stock return on the value-weight market portfolio 

)( 10 tRMRFγγ +  times the ratio of price levels.  The third and fourth columns report the parameter 
estimates with standard errors. 

The fifth and sixth columns show some implications of the stock-return CAPM parameter 
estimates.  The fifth column shows the implied average price of a real risk-free one-period discount bond, 
and the sixth column the implied average RMRF.  These implied statistics are computed by adding two 
additional moment conditions (one for mean RMRF and another for mean squared RMRF) to the system 
and using the formulas )(10 RMRFEγγ +  and )](/[)var( 101 RMRFERMRF γγγ +− .   

The seventh and eight columns show the parameter estimates of the third model, the cash-flow 
CAPM: tt

real
tMtt ROEggQQ ππ /)]1log([/ 1,101 −− ++= , where real

tMROE ,  is the market portfolio’s aggregate 
real clean-surplus earnings for year t divided by the beginning of the year t aggregate real book equity.  

The parameters are estimated using GMM based on the following moment conditions: 
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The moment condition (1) is omitted from the system used to estimate the constant-discount-rate model.  
Above, rfR  is the net nominally risk-free interest rate, ME  is market value of equity, A  abnormal 
earnings, BE  book equity, and Q  the cumulative stochastic discount factor.  Subscripts k and t are 
indices to portfolios and time, respectively.   b  denotes the generic stochastic-discount-factor parameter 
vector.  The first column of the table reports N , the horizon used in the price-to-book restrictions. 

The portfolios used as test assets in the price-to-book moment conditions are formed by sorting 
stocks into ten value-weight portfolios based on their price-to-book ratios.  After sorting, we follow the 
market and book values as well as abnormal earnings for the portfolios up to fifteen years after portfolio 
formation.  The sample period is 1928-1999 and all data and parameters are in annual terms.  

GMM standard errors computed using the Newey-West formula with N leads and lags, which 
account for both the estimation uncertainty of the cash-flow betas and for the cross-sectional and time-
series correlation of the error terms, are reported in parentheses. 



 

 

 
 
Horizon:  Constant 

discount rate:  Stock-return CAPM 
stochastic discount factor:  Implications of stock-return 

CAPM’s parameters:  Cash-flow CAPM 
stochastic discount factor: 

N  δ̂   0γ̂  1γ̂   
realrfR

E
,1

1
+

 )(RMRFE
  0ĝ  1ĝ  

1  0.9193 
(0.0189)  1.0703 

(0.0765) 
-1.3327 
(0.5917)  0.9436 

(0.0241) 
0.0898 

(0.0289)  2.0984 
(0.4428) 

-17.0091 
(5.7880) 

2  0.9177 
(0.0167)  1.0766 

(0.0805) 
-1.4156 
(0.6623)  0.9448 

(0.0191) 
0.0952 

(0.0295)  1.5819 
(0.2551) 

-9.5922 
(3.6484) 

3  0.9178 
(0.0159)  1.0714 

(0.0782) 
-1.3485 
(0.6577)  0.9472 

(0.0153) 
0.0919 

(0.0296)  1.8591 
(0.3991) 

-13.7438 
(5.6569) 

5  0.9171 
(0.0135)  1.0500 

(0.0612) 
-1.1680 
(0.5270)  0.9455 

(0.0126) 
0.0825 

(0.0278)  1.5401 
(0.2871) 

-9.0116 
(4.2850) 

10  0.9237 
(0.0141)  1.0309 

(0.0564) 
-1.0251 
(0.5668)  0.9360 

(0.0149) 
0.0794 

(0.0296)  1.9781 
(0.3181) 

-15.1786 
(4.1686) 

15  0.9272  
(0.0131)  1.0167 

(0.0493) 
-0.9020 
(0.5091)  0.9355 

(0.0163) 
0.0746 

(0.0336)  1.2956 
(0.1954) 

-5.1805 
(2.8265) 

 



 

 

 Table IV: Cross-sectional WLS variance decomposition of price-to-book ratios 

This table reports three sets of variance-decomposition regressions.  The variance-decomposition 
regressions are estimated by separately regressing the three components of the price-to-book ratios on the 
price-to-book ratios and time dummies: 
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Above, ME  is the market value of equity, Â  estimated abnormal earnings, BE  book equity, DT  matrix 
of time dummies, Q̂  cumulative stochastic discount factor, and ε̂  estimated realized pricing error.  

∑ = −−= t
t tktkk BEMETw 1 1,1, )/()/1( .  Q̂  and ε̂  are computed using the parameter estimates from Table 

III.  Subscripts k and t are indices to portfolios and time, respectively. 
The first column of the table shows N , the horizon used in computing the dependent variables of 

the regressions.  The columns 2-4 show the WLS regression coefficients for the dependent variables 
constructed using the constant discount factor.  The columns 5-7 show the results for the stock-return 
CAPM, ttttt RMRFQQ ππγγ /)ˆˆ(ˆ/ˆ

1101 −− += , where RMRF is the excess return on the value-weight 
market portfolio.  Columns 8-10 show the results for the cash-flow CAPM, 

tt
real

tMtt ROEggQQ ππ /)]1log([/ 1,101 −− ++= , where real
tMROE ,  is the market portfolio’s real ROE. 

The portfolios used as test assets are formed by sorting stocks into ten value-weight portfolios 
based on the price-to-book ratios and cover the period 1928-1999.  After sorting, we follow the market 
and book values as well as abnormal earnings for the portfolios up to fifteen years after the portfolio 
formation.  Standard errors (in parentheses) account for both the estimation uncertainty of the stochastic-
discount-factor parameters and for the cross-sectional and time-series correlation of the errors. 
 

 Constant real discount factor Stock-return CAPM: Cash-flow CAPM: 

N 
β ′  

Cash 
flows 

β ′′  
Terminal 

value 

β ′′′  
Mispricing 

β ′  
Cash 
flows 

β ′′  
Terminal 

value 

β ′′′  
Mispricing 

β ′  
Cash 
flows 

β ′′  
Terminal 

value 

β ′′′  
Mispricing 

1 0.066 
(0.009) 

0.902 
(0.023) 

0.032 
(0.019) 

0.067 
(0.010) 

0.880 
(0.020) 

0.053 
(0.018) 

0.050 
(0.027) 

1.061 
(0.097) 

-0.111 
(0.080) 

2 0.119 
(0.016) 

0.824 
(0.044) 

0.057 
(0.035) 

0.125 
(0.018) 

0.844 
(0.037) 

0.031 
(0.031) 

0.112 
(0.027) 

0.937 
(0.056) 

-0.049 
(0.047) 

3 0.159 
(0.023) 

0.780 
(0.067) 

0.061 
(0.051) 

0.173 
(0.027) 

0.808 
(0.056) 

0.019 
(0.046) 

0.146 
(0.038) 

0.994 
(0.119) 

-0.141 
(0.103) 

5 0.224 
(0.025) 

0.659 
(0.074) 

0.117 
(0.062) 

0.231 
(0.028) 

0.712 
(0.074) 

0.057 
(0.067) 

0.231 
(0.039) 

0.857 
(0.102) 

-0.088 
(0.092) 

10 0.313 
(0.035) 

0.493 
(0.116) 

0.194 
(0.099) 

0.335 
(0.036) 

0.569 
(0.141) 

0.096 
(0.121) 

0.446 
(0.086) 

0.693 
(0.192) 

-0.139 
(0.247) 

15 0.377 
(0.049) 

0.354 
(0.091) 

0.269 
(0.059) 

0.423 
(0.056) 

0.376 
(0.075) 

0.201 
(0.062) 

0.520 
(0.131) 

0.480 
(0.103) 

-0.001 
(0.121) 



 

 

Table V: Parametric model of beta evolution 

This table shows an estimated parametric specification for betas: 
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TREND is a linear time trend in centuries (month index divided by 1200), normalized to zero in the 
middle of the sample.  YEARS is the number of years from the sort divided by one hundred, or more 
accurately the number of lags we used in firms’ price-to-book ratios when sorting the portfolios into 
deciles divided by one hundred.  RMRF is the excess return on the market portfolio.  L is the number of 
monthly RMRF lags included in the regressions.  The table reports the sums of coefficients for value, 
growth and value-minus-growth portfolios: 

∑∑∑∑
=

×

===

====
L

l
l

L

l
l

L

l
l

L

l
l

0
,3 trend)sort  from (years

0
,2sort) from (years

0
,1(trend)

0
,0)(intercept b,b,b,b ββββ  

The dependent variables are constructed as follows.  We first sort stocks into price-to-book deciles.  
Every year, we run fifteen different sorts: Deciles sorted on year-t-1 price-to-book ratios, deciles sorted 
on year-t-2 price-to-book ratios,…, and deciles sorted on year-t-15 price-to-book ratios.  As a result, we 
have 715 months of returns on 150 portfolios for the period 6/1941-12/2000 (the maximum period for 
which our data made it possible to compute the fifteen-years-from-the-sort portfolio). The dependent 
variables in the regressions are an equal-weight portfolio of the three value-weight lowest-price-to-book 
deciles (Panel A), an equal-weight portfolio of the three value-weight highest-price-to-book deciles 
(Panel B), and the difference of the two (Panel C). 



 

 

 
Panel A: Value 

Lags of RMRF (L): 0 1 2 5 11 
b(intercept) 1.03 1.03 1.04 1.04 1.01 
standard error 0.02 0.02 0.03 0.04 0.05 
t-statistic 62.79 46.28 38.65 28.11 19.06 
b(trend) -1.01 -1.08 -1.19 -0.95 -0.96 
standard error 0.09 0.13 0.15 0.20 0.26 
t-statistic -10.76 -8.62 -8.00 -4.77 -3.74 
b(time from sort) 0.50 0.55 0.56 0.79 0.78 
standard error 0.11 0.14 0.17 0.24 0.34 
t-statistic 4.68 3.80 3.24 3.28 2.26 
b(time from sort * trend) 1.51 2.60 3.01 3.03 3.86 
standard error 0.61 0.81 0.96 1.29 1.66 
t-statistic 2.49 3.21 3.15 2.35 2.33 

 
Panel B: Growth 

Lags of RMRF (L): 0 1 2 5 11 
b(intercept) 1.05 1.05 1.04 1.01 0.99 
standard error 0.01 0.01 0.01 0.02 0.03 
t-statistic 115.82 85.30 69.91 49.43 33.71 
b(trend) 0.28 0.38 0.48 0.55 0.68 
standard error 0.05 0.07 0.08 0.11 0.14 
t-statistic 5.38 5.47 5.92 4.97 4.83 
b(time from sort) -0.62 -0.79 -0.80 -0.69 -0.54 
standard error 0.07 0.09 0.11 0.15 0.22 
t-statistic -9.22 -8.66 -7.23 -4.52 -2.47 
b(time from sort * trend) -1.63 -2.01 -2.28 -2.14 -1.07 
standard error 0.39 0.52 0.61 0.82 1.05 
t-statistic -4.21 -3.89 -3.75 -2.60 -1.02 

 
Panel C: Difference (value minus growth) 

Lags of RMRF (L): 0 1 2 5 11 
b(intercept) -0.02 -0.02 0.01 0.03 0.02 
standard error 0.02 0.03 0.04 0.05 0.07 
t-statistic -0.93 -0.57 0.18 0.63 0.34 
b(trend) -1.29 -1.46 -1.67 -1.50 -1.64 
standard error 0.13 0.17 0.20 0.27 0.34 
t-statistic -10.22 -8.67 -8.40 -5.58 -4.75 
b(time from sort) 1.12 1.34 1.36 1.48 1.31 
standard error 0.14 0.18 0.22 0.31 0.44 
t-statistic 8.27 7.30 6.15 4.83 3.01 
b(time from sort * trend) 3.13 4.61 5.30 5.17 4.93 
standard error 0.77 1.03 1.22 1.65 2.11 
t-statistic 4.05 4.46 4.34 3.14 2.34 

 



 

 

Table VI: Calendar-time portfolio returns 

This table reports stock-return-based tests for different investment horizons.  We first sort stocks 
into price-to-book deciles and then calculate the value-weight monthly returns on each decile over the 
next fifteen years (without re-sorting the stocks).  We define the N-year decile M as a portfolio strategy 
that invests equally in N portfolios: Decile M sorted on year-t-1 price-to-book ratios, decile M sorted on 
year-t-2 price-to-book ratios,…, and decile M sorted on year-t-N price-to-book ratios. We extend the 
“holding periods” (i.e., N) out to fifteen years.  The final sample has 715 months of returns on 150 
portfolios for the period 6/1941-12/2000. 

Column two reports the GRS statistic testing the intercepts in regressions of the monthly excess 
returns on these ten N-year deciles on the excess market stock return and eleven lags of the excess market 
stock return.  Column three reports the mean of a strategy that goes long the top three decile portfolios 
(low price-to-book) and shorts the bottom three decile portfolios (high price-to-book).  Column four 
reports the alpha in regressions of this portfolio on the excess market return and eleven lags.  Columns 
five and six report the intercept and coefficient of a cross-sectional regression of the average returns on 
the ten N-year decile portfolios on the total betas of those portfolios.  We construct total betas by 
summing the individual partial betas on the excess market return and eleven lags of the excess market 
return.  Column seven reports the (unadjusted) R2 from that cross-sectional regression.   

Standard errors are in parentheses except in column two where we report the probability value 
associated with the GRS statistic in brackets.  We provide bootstrapped probability values in braces under 
the null hypothesis that the Sharpe-Lintner CAPM is true except in column three where the null 
hypothesis is a mean return on the value-minus-growth portfolio of zero. 

 

N 
GRS 

[asympt. pval.] 
{bootstrap pval.} 

µ 
(asympt std. err.) 
{bootstrap pval.} 

α 
(asympt std. err.) 
{bootstrap pval.} 

λ0 
(asympt std. err.) 
{bootstrap pval.} 

λ1 
(asympt std. err.) 
{bootstrap pval.} 

R2 % 
(asympt std. err.) 
{bootstrap pval.} 

1 
1.9182 
[0.0399] 
{0.0524} 

0.0037 
[0.0011] 
{0.0015} 

0.0042 
[0.0013] 
{0.0014} 

0.0091 
[0.0087] 
{0.0397} 

-0.0007 
[0.0088] 
{0.0525} 

0.08 
[2.19] 

{0.0117} 

2 
2.3707 
[0.0092] 
{0.0122} 

0.0040 
[0.0010] 
{0.0009} 

0.0042 
[0.0012] 
{0.0004} 

0.0052 
[0.0099] 
{0.2007} 

0.0034 
[0.0099] 
{0.3112} 

1.44 
[10.03] 

{0.0302} 

3 
2.2770 
[0.0126] 
{0.0127} 

0.0037 
[0.0010] 
{0.0015} 

0.0037 
[0.0011] 
{0.0014} 

-0.0017 
[0.0086] 
{0.5235} 

0.0103 
[0.0085] 
{0.3153} 

15.52  
[28.13]  

{0.0839} 

5 
2.4368 
[0.0074] 
{0.0095} 

0.0034 
[0.0010] 
{0.0025} 

0.0031 
[0.0011] 
{0.0036} 

-0.0066 
[0.0061] 
{0.0609} 

0.0151 
[0.0060] 
{0.0241} 

44.07 
[32.47]  

{0.1568} 

10 
1.2411 
[0.2609] 
{0.2727} 

0.0025 
[0.0009] 
{0.0316} 

0.0017 
[0.0010] 
{0.0972} 

-0.0031 
[0.0028] 
{0.2866} 

0.0113 
[0.0028] 
{0.1869} 

67.36 
[19.66]  

{0.3307} 

15 
1.1113 
[0.3507] 
{0.3699} 

0.0018 
[0.0009] 
{0.1436} 

0.0008 
[0.0010] 
{0.3808} 

0.0003 
[0.0018] 
{0.8005} 

0.0079 
[0.0018] 
{0.6476} 

70.31 
[16.53]  

{0.4474} 
 

  
  



 

 

Table VII: Premium on cash-flow beta estimated from alternative test assets 

The table reports the regression coefficients and the R2 of the regression of the expected-return 
component of price on cash-flow betas for different sets of portfolios.  Columns 2-4 use thirty price-to-
book-sorted portfolios and thirty portfolios sorted on five-year OLS stock-return betas.  Columns 5-7 use 
thirty price-to-book-sorted portfolios and thirty size-sorted portfolios.  Betas are estimated from the full 
1928-1999 sample, except for the beta-sorted portfolios, for which the cash-flow beta estimation period is 
1933-1999.  Footnotes in Table II apply. 

 
 30 ME/BE-sorted portfolios and  

30 beta-sorted portfolios 
30 ME/BE-sorted portfolios and  

30 size-sorted portfolios 
N λ0 λ1 R2 % λ0 λ1 R2 % 

1 0.130 
(0.028) 

0.024 
(0.013) 12.10 0.139 

(0.041) 
0.029 

(0.017) 5.15 

2 0.113 
(0.023) 

0.042 
(0.017) 27.77 0.086 

(0.044) 
0.079 

(0.038) 39.10 

3 0.101 
(0.019) 

0.057 
(0.019) 36.65 0.078 

(0.031) 
0.087 

(0.036) 51.65 

5 0.090 
(0.022) 

0.069 
(0.022) 54.09 0.094 

(0.029) 
0.075 

(0.031) 62.54 

10 0.079 
(0.018) 

0.073 
(0.018) 51.21 0.079 

(0.034) 
0.076 

(0.036) 60.40 

15 0.104 
(0.020) 

0.047 
(0.021) 23.17 0.073 

(0.031) 
0.081 

(0.036) 51.49 

 



 

 

Table VIII: Present-value tests with alternative test assets 

The table reports the WLS variance decompositions for different sets of portfolios.  Panel A uses 
ten price-to-book-sorted portfolios and ten portfolios sorted on five-year OLS stock-return betas (period 
1933-1999).  Panel B uses thirty price-to-book-sorted portfolios and thirty size-sorted portfolios (period 
1928-1999).  Footnotes in Table IV apply. 

 
Panel A: Ten ME/BE-sorted portfolios and ten beta-sorted portfolios 
 

 Constant discount factor Stock-return CAPM: Cash-flow CAPM: 

N β ′  
Cash flows 

β ′′  
Term. value 

β ′′′  
Mispricing 

β ′  
Cash flows 

β ′′  
Term. value 

β ′′′  
Mispricing 

β ′  
Cash flows 

β ′′  
Term. value 

β ′′′  
Mispricing 

1 0.057 
(0.009) 

0.924 
(0.025) 

0.019 
(0.019) 

0.057 
(0.009) 

0.899 
(0.019) 

0.044 
(0.017) 

0.054 
(0.011) 

0.960 
(0.029) 

-0.014 
(0.023) 

2 0.105 
(0.015) 

0.859 
(0.044) 

0.037 
(0.033) 

0.106 
(0.015) 

0.866 
(0.028) 

0.028 
(0.020) 

0.100 
(0.021) 

0.923 
(0.045) 

-0.023 
(0.035) 

3 0.143 
(0.019) 

0.810 
(0.058) 

0.047 
(0.044) 

0.146 
(0.019) 

0.821 
(0.043) 

0.034 
(0.032) 

0.141 
(0.024) 

0.867 
(0.049) 

-0.008 
(0.035) 

5 0.207 
(0.024) 

0.691 
(0.062) 

0.103 
(0.052) 

0.209 
(0.031) 

0.696 
(0.106) 

0.096 
(0.098) 

0.213 
(0.030) 

0.759 
(0.042) 

0.028 
(0.035) 

10 0.301 
(0.031) 

0.516 
(0.088) 

0.183 
(0.076) 

0.321 
(0.025) 

0.542 
(0.101) 

0.138 
(0.091) 

0.343 
(0.047) 

0.591 
(0.103) 

0.066 
(0.093) 

15 0.371 
(0.045) 

0.379 
(0.059) 

0.250 
(0.043) 

0.431 
(0.032) 

0.401 
(0.053) 

0.169 
(0.053) 

0.486 
(0.093) 

0.439 
(0.069) 

0.075 
(0.086) 

 
 
Panel B: Ten ME/BE-sorted portfolios and ten size-sorted portfolios 
 

 Constant discount factor Stock-return CAPM: Cash-flow CAPM: 

N β ′  
Cash flows 

β ′′  
Term. value 

β ′′′  
Mispricing 

β ′  
Cash flows 

β ′′  
Term. value 

β ′′′  
Mispricing 

β ′  
Cash flows 

β ′′  
Term. value 

β ′′′  
Mispricing 

1 0.076 
(0.009) 

0.886 
(0.021) 

0.038 
(0.017) 

0.076 
(0.009) 

0.863 
(0.017) 

0.062 
(0.015) 

0.075 
(0.010) 

0.913 
(0.019) 

0.012 
(0.016) 

2 0.141 
(0.018) 

0.790 
(0.042) 

0.068 
(0.032) 

0.145 
(0.019) 

0.800 
(0.036) 

0.056 
(0.027) 

0.141 
(0.021) 

0.844 
(0.041) 

0.016 
(0.035) 

3 0.196 
(0.024) 

0.718 
(0.059) 

0.085 
(0.048) 

0.205 
(0.029) 

0.735 
(0.049) 

0.059 
(0.040) 

0.194 
(0.027) 

0.793 
(0.058) 

0.013 
(0.048) 

5 0.277 
(0.035) 

0.588 
(0.061) 

0.135 
(0.061) 

0.284 
(0.038) 

0.610 
(0.055) 

0.106 
(0.060) 

0.280 
(0.047) 

0.694 
(0.069) 

0.027 
(0.062) 

10 0.400 
(0.057) 

0.396 
(0.055) 

0.203 
(0.083) 

0.400 
(0.050) 

0.435 
(0.081) 

0.166 
(0.104) 

0.503 
(0.088) 

0.470 
(0.065) 

0.026 
(0.127) 

15 0.397 
(0.061) 

0.328 
(0.062) 

0.275 
(0.030) 

0.418 
(0.064) 

0.392 
(0.076) 

0.191 
(0.086) 

0.445 
(0.103) 

0.393 
(0.063) 

0.163 
(0.108) 

 
 
 



 

 

 Table IX: Calendar-time portfolio-return tests with alternative test assets 

This table reports stock-return-based tests for different investment horizons and for different test-
asset sets.  We first sort stocks into deciles (based on ME/BE, size, or estimated stock-return beta) and 
then calculate the value-weight monthly returns on each decile over the next fifteen years (without re-
sorting the stocks).  We define the N-year decile M as a portfolio strategy that invests equally in N 
portfolios: Decile M sorted on year-t-1 characteristic, decile M sorted on year-t-2 characteristic,…, and 
decile M sorted on year-t-N characteristic. We extend the “holding periods” (i.e., N) out to fifteen years. 
The final sample has 655 months of returns on 300 portfolios in each panel (450 in total) for the period 
6/1946-12/2000. 

The GRS column reports the GRS-statistic testing the intercepts in regressions of the monthly 
excess returns on these ten N-year deciles on the excess market stock return and eleven lags of the excess 
market stock return.  Columns 0λ  and 1λ  report the intercept and coefficient of a cross-sectional 
regression of the average returns on the total betas of the portfolios.  We construct total betas by summing 
the individual partial betas on the excess market return and eleven lags of the excess market return.  
Column labeled 2R  reports the (unadjusted) regression R2 from that cross-sectional regression.   

Standard errors are in parentheses except in the GRS column where we report the probability value 
associated with the GRS statistic in brackets.  We provide bootstrapped probability values in braces under 
the null hypothesis that the Sharpe-Lintner CAPM is true. 

 

 Ten  ME/BE-sorted portfolios  
and ten beta-sorted portfolios 

Ten ME/BE-sorted portfolios  
and ten size-sorted portfolios 

N 
GRS 

[asympt. pval.] 
{bootstrap pval.} 

λ0 
(asympt std. err.) 
{bootstrap pval.} 

λ1 
(asympt std. err.) 
{bootstrap pval.} 

R2 % 
(asympt std. err.) 
{bootstrap pval.} 

GRS 
[asympt. pval.] 

{bootstrap pval.} 

λ0 
(asympt std. err.) 
{bootstrap pval.} 

λ1 
(asympt std. err.) 
{bootstrap pval.} 

R2 % 
(asympt std. err.) 
{bootstrap pval.} 

1 
2.1064 
[0.0034] 
{0.0042} 

0.0079 
[0.0011] 
{0.0000} 

-0.0007 
[0.0011] 
{0.0102} 

1.97 
[4.25] 

{0.0058} 

2.2459 
[0.0015] 
{0.0023} 

0.0049 
[0.0019] 
{0.1971} 

0.0033 
[0.0017] 
{0.2621} 

17.56  
[18.58] 

{0.0315} 

2 
2.4469 
[0.0005] 
{0.0005} 

0.0076 
[0.0012] 
{0.0003} 

-0.0003 
[0.0012] 
{0.0149} 

0.43 
[2.04] 

{0.0027} 

2.3783 
[0.0007] 
{0.0006} 

0.0051 
[0.0018] 
{0.1797} 

0.0033 
[0.0016] 
{0.2747} 

19.05  
[16.30] 

{0.0330} 

3 
2.3381 
[0.0009] 
{0.0007} 

0.0070 
[0.0012] 
{0.0010} 

0.0004 
[0.0013] 
{0.0292} 

0.53 
[2.46] 

{0.0035} 

2.0603 
[0.0043] 
{0.0053} 

0.0055 
[0.0017] 
{0.1448} 

0.0029 
[0.0015] 
{0.2368} 

18.30  
[12.53] 

{0.0318} 

5 
2.5985 
[0.0002] 
{0.0001} 

0.0060 
[0.0013] 
{0.0041} 

0.0015 
[0.0013] 
{0.0692} 

6.99 
[9.08] 

{0.0095} 

2.1726 
[0.0023] 
{0.0030} 

0.0059 
[0.0016] 
{0.1271} 

0.0025 
[0.0014] 
{0.2162} 

15.40  
[8.54] 

{0.0344} 

10 
2.4672 
[0.0004] 
{0.0007} 

0.0055 
[0.0009] 
{0.0096} 

0.0019 
[0.0009] 
{0.0927} 

19.83 
[15.85] 

{0.0188} 

1.3470 
[0.1419] 
{0.1499} 

0.0061 
[0.0012] 
{0.1289} 

0.0021 
[0.0011] 
{0.1926} 

16.49  
[12.43] 

{0.0519} 

15 
1.9251 
[0.0091] 
{0.0095} 

0.0061 
[0.0006] 
{0.0144} 

0.0012 
[0.0006] 
{0.0825} 

18.21 
[18.31] 

{0.0299} 

1.1788 
[0.2657] 
{0.2711} 

0.0065 
[0.0009] 
{0.3036} 

0.0016 
[0.0008] 
{0.3266} 

19.17  
[12.56] 

{0.1851} 
 

  
  



 

 

Figure 1: Variance shares for the stock-return CAPM 

This figure graphs the variance shares from Table IV columns 5-7 as a function of the horizon N.  
The lightly colored area in the bottom represents the variance share of risk-adjusted cash flows, the white 
area in the middle the share of the terminal value, and the dark area in the top the share of pricing errors; 
all relative to the stock-return CAPM.  The thin dashed lines denote +/- one-standard-error bounds.  For 
comparison purposes, the variance shares from the constant-discount-rate model (Table IV columns 2-4) 
are plotted with bold dashed lines.   

The portfolios used as test assets are formed by sorting stocks into ten value-weight portfolios 
based on their price-to-book ratios.  After sorting, we follow the market and book values as well as 
abnormal earnings for the portfolios up to fifteen years after the portfolio formation.  The sample period 
is 1928-1999 and all data are annual.   

 

Figure 2: Variance shares for the cash-flow CAPM 

This figure graphs the variance shares from Table IV columns 8-10 as a function of the horizon N.  
The lightly colored area in the bottom represents the variance share of risk-adjusted cash flows, the white 
area in the middle the share of the terminal value, and the dark area in the top the share of pricing errors; 
all relative to the cash-flow CAPM.  The thin dashed lines denote +/- one-standard-error bounds.  For 
comparison purposes, the variance shares from the constant-discount-rate model (Table IV columns 2-4) 
are plotted with bold dashed lines.   

The portfolios used as test assets are formed by sorting stocks into ten value-weight portfolios 
based on their price-to-book ratios.  After sorting, we follow the market and book values as well as 
abnormal earnings for the portfolios up to fifteen years after the portfolio formation.  The sample period 
is 1928-1999 and all data are annual.   

 

Figure 3: Evolution of the CAPM beta after portfolio formation 

This figure shows the evolution of the total CAPM beta for value and growth stocks after portfolio 
formation.  We first sort stocks into price-to-book deciles.  Every year, we run fifteen different sorts: 
Deciles sorted on year-t-1 price-to-book ratios, deciles sorted on year-t-2 price-to-book ratios,…, and 
deciles sorted on year-t-15 price-to-book ratios.  As a result, we have 715 months of returns on 150 
portfolios for the period 6/1941-12/2000 (the maximum period for which our data made it possible to 
compute the fifteen-years-from-the-sort portfolio). 

We compute our measure of risk by regressing the monthly returns on the portfolios on the 
contemporaneous and lagged market returns.  We then sum the regression coefficients for each dependent 
variable to obtain what we call “total beta.”  The upper-left plot is produced with no lagged market 
returns in the regressions, the upper-right with one lag, the lower-left with five lags, and the lower-right 
with eleven lags.  The dependent variables in the regressions are an equal-weight portfolio of the three 
value-weight lowest-price-to-book deciles and an equal-weight portfolio of the three value-weight 
highest-price-to-book deciles.  The total beta of value stocks is plotted with a solid line and triangles and 
the total beta of growth stocks with just a solid line.  The dashed lines show one-standard-error bounds. 

 

Figure 4: Mean excess returns and alphas for different holding periods 

This figure shows annualized average excess returns (top graph) and alphas (bottom graph) on 
deciles for up to N-year holding period.  We first sort stocks into price-to-book deciles.  Every year, we 
run fifteen different sorts: Deciles sorted on year-t-1 price-to-book ratios, deciles sorted on year-t-2 price-
to-book ratios,…, and deciles sorted on year-t-15 price-to-book ratios.  As a result, we have 715 months 
of returns on 150 portfolios for the period 6/1941-12/2000.  We define the N-year decile M as a portfolio 
strategy that invests equally in N portfolios: Decile M sorted on year-t-1 price-to-book ratios, decile M 



 

 

sorted on year-t-2 price-to-book ratios,…, and decile M sorted on year-t-N price-to-book ratios.  The 
height of the column corresponds to 1200 times the mean excess return in the top graph and to 1200 times 
the intercept of a regression of the monthly excess returns on the contemporaneous excess market return 
and eleven lags of the excess market return in the bottom graph. 

 



Figure 1: Variance shares for the stock-return CAPM
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Figure 2: Variance shares for the cash-flow CAPM
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Figure 3: Evolution of CAPM beta after portfolio formation
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Figure 4: Mean excess returns and alphas for different holding periods
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