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ABSTRACT

If stocks go up, investors may want to rebalance their portfolios. But investors cannot all rebalance.

Expected returns may need to change so that the average investor is still happy to hold the market

portfolio despite its changed composition. In this way, simple market clearing can give rise to

complex asset market dynamics. We study this phenomenon in a very simple model. Our model has

two “Lucas trees.” Each tree has i.i.d.dividend growth, and the representative investor has log utility.

We are able to give analytical solutions to the model. Despite this simple setup, price-dividend

ratios, expected returns, and return variances vary through time. A dividend shock leads to

“underreaction” in some states, as expected returns rise and prices slowly adjust, and “overreaction”

in others. Expected returns and excess returns are predictable by price-dividend ratios in the time

series and in the cross section, roughly matching value e.ects and return forecasting regressions.

Returns generally display positive serial correlation and negative cross-serial correlation, leading

to “momentum,” but the opposite signs are possible as well. A shock to one asset’s dividend a.ects

the price and expected return of the other asset, leading to substantial correlation of returns even

when there is no correlation of cash flows and giving the appearance of “contagion.” Market

clearing allows the “inverse portfolio” problem to be solved, in which the weights of the assets in

the market portfolio are “inverted” to solve for the parameters of the assets’ return generating

process.
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1. INTRODUCTION

When stocks do better than bonds, growth stocks do better than value stocks, or the Nasdaq does better
than the S&P 500, there is much talk about rebalancing portfolios. But everyone cannot rebalance.
Expected returns must adjust, or other moments must change, so that the average investor is still happy
to hold the market portfolio, despite its larger weight in the asset that has gone up. In this way, the
market-clearing condition can induce dynamics in stock prices and returns, even when the underlying
preferences are stable and the underlying cash flows are i.i.d.

To characterize dynamics induced by market clearing, we examine a simple model with two “Lucas
trees.” Each tree gives a dividend stream that follows a geometric Brownian motion. The representative
investor has log utility and consumes the sum of the trees’ dividends. We obtain explicit closed-form
solutions for prices and expected returns.

With one tree, of course, this model leads to a constant price-dividend ratio, a constant interest
rate, and i.i.d. returns. With two trees, price and return dynamics emerge. Aggregate consumption
diversifies across the two trees, so it is more volatile when dividend shares are near zero or one than
when the shares are more equal. This time-varying volatility of consumption growth, and therefore of
the discount factor, generates time-varying expected returns and volatility for the market, the individual
assets, and a time-varying riskless rate.

Why is this new? In traditional finance models such as the CAPM or ICAPM, the rate of re-
turn is exogenous and independent of the scale of investment. These models implicitly assume linear
technologies — output is a linear function of capital — with no adjustment costs or irreversibilities. In
these models, we can all rebalance, by instantly and costlessly transferring capital to other production
technologies or to consumption; we can all leave portfolio weights constant in the face of return shocks.
In reality, however, market portfolio weights do change over time (e.g. stocks vs. bonds). Thus, any
realistic model, with at least short-run adjustment costs, irreversibilities, and other impediments to
aggregate rebalancing, will contain some market-clearing induced dynamics of the sort we isolate and
study in a pure exchange economy.

The asset price and return dynamics of the two-tree model are similar to those found in the empirical
asset pricing literature. First, we find that a positive dividend shock, which increases current prices
and returns, also typically raises subsequent expected returns and excess returns, as the intuition of
the first paragraph suggests. Thus, returns typically display positive autocorrelation or “momentum,”
prices typically seem to “underreact” or not to “fully adjust” to dividend news, and to “drift” upwards
for some time after that news. Interestingly, however, there are also parameters, horizons, and regions
of the state space that give the opposite signs, leading to “mean-reversion,” price “overreaction,” and
“downward drift,” such as that found after IPOs, and “excess volatility” of prices and returns.

Second, when one asset has a positive dividend shock, the expected return of the other asset
typically declines. We see a negative cross-serial correlation, which Lo and MacKinlay (1990) and
Lewellen (2002) argue is an important part of the momentum effect. We see movements in an asset’s
price even with no news about that asset’s dividends, another source and form of apparent “excess
volatility.” Finally, we see that asset returns can be highly correlated with each other even when their
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underlying dividends are independent. A “common factor” or “contagion” emerges in returns even
though there is no common factor in cash flows.

Third, since price-dividend ratios vary despite i.i.d. dividend growth, price-dividend ratios forecast
returns in the time series and in the cross section, i.e. we see value and growth effects. Thus, simple
market-clearing mechanics generate simultaneously short-run momentum (positive autocorrelation) and
long-run mean reversion (valuation ratios forecast returns) in individual stocks and in the stock market
as a whole.

While these asset price and return dynamics are qualitatively similar to the stylized facts of the
empirical literature, our two-tree log utility model does not typically offer a quantitatively compelling
match. In our informal calibration, typical statistics such as autocorrelations are between a factor of
two and an order of magnitude smaller than their counterparts in the empirical literature. Any log
utility model will of course not match the large mean and volatility of returns with the low volatility
of aggregate consumption and dividend growth. Also, none of our dynamic effects are pricing puzzles,
as all expected returns are explained by the consumption-based model or the CAPM in a log utility
model. (The CAPM in our model does require properly measured conditional betas, a time-varying
market premium, and use of the entire consumption claim as a reference return rather than just the stock
portfolio. Puzzles would still be generated by the failure to incorporate any of these side conditions.)

The point of this paper, however, is not to provide a quantitatively convincing match to a wide
range of asset pricing puzzles. Rather, it is to show how market-clearing logic, a heretofore ignored
source of asset pricing dynamics, can produce interesting dynamics even in a very stylized model — two
geometric Brownian trees and log utility. This mechanism will be an important part of more complex
and realistic (but also less transparent) models. Put another way, the one-tree model with log utility
is a workhorse, despite its obvious unrealism, since it is simple to solve and it illustrates so many of
the economic principles that underlie more quantitatively realistic models. Our two-tree model fills a
similar niche. Many of its predictions, while matching the signs reported in the empirical literature,
do not match the magnitudes. Yet it is a simple, tractable model with closed-form solutions, which
captures and clearly displays interesting economic effects which will also be present in more complex
models.

Market clearing has not played a central role in traditional dynamic models of asset pricing. Models
with exchange economies typically assume a single asset in nonzero supply (Lucas (1978)). Production
economies sidestep the issue by allowing the supply of assets to change elastically with investor demand
(Cox, Ingersoll, and Ross (1985)). However, a recent literature examines and prices multiple long-lived
dividend streams in nonzero net supply, generalizing standard single-tree models. Santos and Veronesi
(2001), Bansal, Dittmar, and Lundblat (2002), and Menzly, Santos, and Veronesi (2003) offer Lucas-type
models with multiple assets. Their models have interesting dynamics for dividend shares, interesting
preferences (e.g. habits), and they are designed to address quantitatively a variety of stylized facts.

The paper closest to ours is Santos and Veronesi (2001). They specify log utility and two “trees,”
which they interpret as assets and labor income. Like ours, their model predicts that expected returns,
price-dividend ratios, betas, and so forth should vary as functions of the dividend share. They reproduce
and extend a number of empirical facts involving asset price dynamics. In particular, they show how
the share of labor income in total consumption performs well in forecasting stock returns. The main
difference is that they specify the share process to be mean reverting, which exogenously builds dynamics
into the dividend processes. This ingredient is potentially an additional source of asset price dynamics.
We focus on a model with a simpler ingredient, i.i.d. dividend growth, in order to focus on the question:
what dynamics come from the simple logic of market clearing alone?

To provide additional perspective on the role of the market-clearing condition, we show that it
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enables the solution of the inverse portfolio-choice problem. In the usual portfolio-choice problem, we
are given the return process and then solve for the optimal portfolio. In the inverse portfolio-choice
problem, we are given the optimal portfolio and then solve for the moments of returns that support
those holdings. We verify that the solution to the inverse portfolio-choice problem gives the same results
as our endowment economy calculations.1

The conundrum that we cannot all rebalance, so returns cannot in general be i.i.d. shows up several
places in finance. Rosenberg and Ohlson (1976) and Cheng and Grauer (1980) note that relative prices
and returns cannot vary ex-post if one pairs the CAPM with constant share supply.

2. THE SINGLE-ASSET BENCHMARK

To provide a benchmark for comparison, we begin by reviewing the traditional single-asset model. The
asset pays a dividend stream

dD

D
= µ dt + σ dZ, (1)

with constant coefficients µ and σ, and where Z is a standard Brownian motion. Unless necessary for
clarity, we suppress time indices, e.g. dD ≡ dDt, etc. The representative investor has log utility,

Ut = Et

} 8 ∞
0

e−δτ ln (Ct+τ ) dτ
]
. (2)

This is an endowment economy, so prices adjust until consumption equals the dividend, C = D. The
investor’s first-order condition implies that marginal utility is a discount factor that prices assets,

Mt =
e−δt

Dt
. (3)

The price Pt of the asset, which is the “market portfolio” claim to aggregate consumption, is given by

Pt
Ct

=
1

Dt
Et

} 8 ∞
0

Mt+τ

Mt
Dt+τ dτ

]
= Et

} 8 ∞
0

e−δτ
Dt+τ
Dt+τ

dτ

]
=

1

δ
. (4)

Since prices are proportional to consumption (which equals the dividend), price appreciation is the same
as dividend growth,

dP

P
=
dC

C
=
dD

D
, (5)

1Black and Litterman (1990) use the market-clearing condition to back out expected returns from
knowledge of the covariance matrix and the market capitalization weights of the different assets. He
and Leland (1993) impose a market-clearing condition to derive dynamics of asset prices that are
consistent with equilibrium.
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so that the total instantaneous return Rt is

Rt =
dPt
Pt

+
Dt
Pt

dt = (µ + δ) dt + σ dZ. (6)

The expected return and return variance are constant,

Et[ Rt ] = (µ + δ) dt, (7)

Vart[ Rt ] = σ2 dt. (8)

Thus, dividend growth rates and stock returns are i.i.d. through time in this single-asset model.

The instantaneous interest rate is given by

r dt = −Et
}
dMt

Mt

]
= δ dt + Et

}
dDt
Dt

]
− Vart

}
dDt
Dt

]
= (δ + µ − σ2) dt. (9)

The riskless asset is in zero net supply. We see the standard discount rate (δ), consumption growth (µ),
and precautionary savings (σ2) effects. Since the riskless rate is constant, the entire term structure is
constant and flat.

3. THE TWO-ASSET MODEL

Now consider the same economy with two assets but no other modifications. As before, dividends follow
simple geometric Brownian motions,

dDi
Di

= µi dt + σi dZi, (10)

where i = 1, 2, and the correlation between dZ1 and dZ2 is ρ dt. Aggregate consumption is the sum of
the two dividends C = D1 +D2. The investor has log utility as in Equation (2).

The dividend share,

s =
D1

D1 +D2
, (11)

is a natural state variable for the two-tree model. We first derive the dynamics of the dividend share.
We then find the interest rate and price the market portfolio from the aggregate consumption process.
Finally, we price the individual assets and find returns, expected returns, and variances of returns.
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3.1 Dividend Share Dynamics.

An application of Itô’s Lemma to Equations (10) and (11) gives the dynamics of the dividend share,2

ds = s(1− s) Jµ1 − µ2 − sσ21 + (1− s)σ22 + (2s− 1)ρσ1σ2o dt+ s(1− s)(σ1 dZ1 − σ2 dZ2). (12)

The drift of the dividend share process in (12) is zero when s = 0, κ, or 1, where

κ =
µ1 − µ2 + σ22 − ρσ1σ2
σ21 + σ22 − 2ρσ1σ2

. (13)

When κ lies between zero and one, the drift is positive from zero to κ, bringing the share up towards κ,
and negative from κ to one, bringing the share down towards κ. The top left panel of Figure 1 illustrates
the drift process for a case in which dividend dynamics are symmetric; the bottom left panel of Figure
1 illustrates the drift process for a case in which the dividends for the first asset are more volatile than
for the second asset. Thus, the drift term can induce patterns of mean reversion in the dividend share
that are not present in the underlying dividend processes.3 The diffusion coefficient in Equation (12) is
quadratic, implying that changes in the dividend share are most volatile when s = 1/2. Initially, it may
seem surprising that simple geometric Brownian dividends give rise to a complex share process with a
cubic drift and a quadratic diffusion. However, these properties of share dynamics result directly from
the nonlinearity of the share as a function of the dividends.

The density f(sτ | s) of the dividend share τ periods ahead conditional on its current value s is
given by4

f(sτ | s) = 1

sτ (1− sτ )
0
2πη2τ

exp

l
− [ln (s/(1− s))− ln (sτ/(1− sτ ))− ντ ]

2

2η2τ

M
, (14)

where

2The stochastic process for the share s is a member of the important class of Wright-Fisher diffusions.
In an interesting parallel to our two-asset model, these types of diffusions are often applied in genetic
theory to characterize the evolution of genes in a population of two genetic types. For example, Karlin
and Taylor (1981) Ch. 15, p. 184-188 present an example of the Wright-Fisher gene frequency diffusion
model in which the fraction of genes in a population follows a process with drift and diffusion terms
that are respectively third- and second-order polynomials in the fraction, just as in Equation (12). Also
see Crow and Kimura (1970) for other examples and a discussion of the asymptotic properties of these
models.
3The cubic drift of our share process is also closely related to that of the stochastic Ginzburg-Landau
diffusion used in superconductivity physics to model phase transitions. See Kloeden and Platen (1992)
and Katsoulakis and Kho (2001).

4Rather than solve the Kolmogorov or Fokker-Planck equation associated with Equation (12) directly,
we express the share as an invertible function of the lognormally distributed ratio D1/D2, i.e. s =
(1 + D2/D1)

−1. Since the ratio of lognormals is lognormal, we then solve for the density using a
standard change of variables.
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ν = µ2 − µ1 − σ22/2 + σ21/2,

η2 = σ21 + σ22 − 2ρσ1σ2.

Note that ν dt = E[d ln(D2/D1)] and η
2 dt = Var[d ln(D2/D1)]. The mean and variance of log dividend

growth drive the distribution. Although the underlying dividends are lognormal, the dividend share
itself is not lognormal. From Equation (14), one can verify analytically that the distribution of sτ
can be either unimodal or bimodal, and can display either positive or negative skewness. As one might
expect of the share formed from two geometric Brownian motions, the dividend share is strictly between
zero and one for all finite horizons, provided current dividends are nonzero. An increase in the current
dividend share shifts the distribution of sτ towards larger values for all finite τ .

The right hand panels of Figure 1 plot the conditional density of the dividend share given in
Equation (14) for several horizons. In the top right panel, the dividend dynamics are symmetric and
the initial dividend share equals 50 percent. In this case, the distribution of the dividend share is
initially unimodal, but eventually spreads out and begins to look more uniformly distributed. After 50
years, the distribution becomes bimodal as the probability of being in the neighborhoods of zero and
one slowly increases.

The bottom right panel of Figure 1 shows densities for an asymmetric case in which the first asset
has a higher volatility than the second and the initial dividend share is 20 percent. Here, the distribution
of the dividend share becomes skewed toward the right, and large values for the dividend share become
more likely. The larger volatility of the smaller dividend process gives it some chance of overtaking the
initially larger dividend process. As the horizon increases further, however, the distribution tends to
shift back towards smaller values.

The dividend share is both persistent and volatile for the parameter values we examine. The
conditional mean share does not move quickly over time, as seen both in the small values of the drifts
(top panel of Figure 1) and in the means of the densities (middle and bottom panels of Figure 1). This
is persistence. However, the densities in Figure 1 spread out rapidly, so changes in the share are very
volatile.

This model does not possess a stationary share distribution. The share of one of the assets will al-
ways gradually decline to the point that the other asset becomes dominant in the market.5 A degenerate
long-run share distribution may seem counterintuitive, but it is not necessarily an unrealistic feature
of the model. First, it may be hard to tell. Given realistic parameter values, the mean time until the
share of one firm is less than, say, five or ten percent of its initial value may be on the order of centuries.
Thus, this aspect of the cash flow stream may have little effect on its present value. Second, firms do
in fact disappear over long periods of time. As one recent example, Fama and French (2003) find that
more than 15 percent of seasoned firms are delisted from the stock market for poor performance during
a typical decade. The right generalization may be to allow the birth of new trees, not to preclude the
death of old trees.

3.2 Consumption Dynamics.

Aggregate consumption C = D1 +D2 follows

5This feature parallels the asymptotic properties of Wright-Fisher gene frequency models in which one
of the two gene types ultimately becomes fixed in the population.
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dC = dD1 + dD2,

= µ1D1 dt + µ2D2 dt + σ1D1 dZ1 + σ2D2 dZ2, (15)

so that

dC

C
=
J
µ1s + µ2(1− s)

o
dt + σ1s dZ1 + σ2(1− s) dZ2. (16)

Since the dynamics of consumption depend on the state variable s, consumption growth is no longer
i.i.d. through time. Mean consumption growth,

Et

}
dC

C

]
= [µ1s+ µ2(1− s)] dt, (17)

is the share-weighted mean of the dividend growth rates. Consumption volatility,

Vart

}
dC

C

]
= [σ21s

2 + σ22(1− s)2 + 2ρσ1σ2s(1− s)] dt, (18)

is lower for intermediate values of the dividend share, as consumption is then diversified between the
two dividends.

3.3 The Riskless Rate.

We find the instantaneous (zero net supply) interest rate as before

r dt = δ dt + Et

}
dC

C

]
− Vart

}
dC

C

]
. (19)

Substituting the moments of the consumption dynamics into Equation (19) gives

r = δ + µ1s + µ2(1− s) − σ21s
2 − σ22(1− s)2 − 2ρσ1σ2s(1− s). (20)

Thus, the riskless rate varies over time, as a quadratic function of the state variable s. The riskless rate is
lower for intermediate values of the dividend share because dividend diversification lowers consumption
volatility, which lowers the precautionary savings motive. Since the interest rate is not constant, the
term structure is not flat.

3.4 Market Price and Returns.

As is usual in log utility models, the price Pm of the aggregate consumption stream C = D1 +D2 (the
market portfolio) is given by the simple expression

Pmt
Ct

= Et

} 8 ∞
0

e−δt
Ct+τ
Ct+τ

dτ

]
=

1

δ
. (21)
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This calculation, which is the same as in the single-asset model, is valid for all consumption dynamics.
Since aggregate consumption equals aggregate dividends, Equation (21) also implies that the market
price-dividend ratio is constant. As before, the price of the market is proportional to aggregate con-
sumption which implies that the price appreciation of the market is

dPm
Pm

=
dC

C
. (22)

Since the total instantaneous return RM on the market equals price appreciation plus the dividend yield
(Rm =

dPm
Pm

+ C
Pm
dt = dC

C + δdt), Equation (15) implies

Rm = [δ + µ1s + µ2(1− s)] dt + σ1s dZ1 + σ2(1− s) dZ2. (23)

The expected market return and variance are no longer constants,

Et[ Rm ] = [δ + µ1 s + µ2 (1− s)] dt, (24)

Vart[ Rm ] =
J
σ21 s

2 + σ22 (1− s)2 + 2ρσ1σ2 s (1− s)
o
dt. (25)

The expected return equals the subjective discount rate δ plus expected consumption growth, which is
the share-weighted average of the dividend growth rates µ1 and µ2. The variance of the market return
equals the variance of consumption growth, and reflects diversification between the two assets’ cash
flows.

Finally, subtracting the expression for the riskless rate in Equation (20) from the expected return
on the market in Equation (24) indicates that the equity premium equals the variance of the market,

Et[ Rm ]− rdt = Vart[ Rm ], (26)

as usual for log utility models. From Equation (25), the variance of the market is a convex quadratic
function of the dividend share. This means that the equity premium is also time varying, and generally
increases as the market becomes more polarized.

3.5 Asset Prices.

We focus on the first asset. The second asset is symmetric. From the usual Euler condition, the price
P1 of the first asset is given by,

P1t = Et

} 8 ∞
0

e−δτ
Ct
Ct+τ

Dt+τ dτ

]
. (27)

Recalling the definition of the dividend share from Equation (11), this result can be expressed as

P1t
Ct

= Et

} 8 ∞
0

e−δτ st+τ dτ
]
. (28)
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Formally, valuing the individual asset is identical to the risk-neutral pricing of an asset that pays a
cash flow equal to the dividend share s, and with a discount rate δ. The price-consumption ratio is
thus an exponentially-weighted average of the expected dividend share. The dividend share plays a
similar role in many tractable models of long-lived cash flows, including Santos and Veronesi (2001),
Bansal, Dittmar, and Lundblad (2002), Menzly, Santos, and Veronesi (2003), and Longstaff and Piazessi
(2003). These papers, however, exogenously specify a process for s that facilitates the computation of
the expectation in Equation (28).

We solve for the asset price from Equation (28) in three ways. First, we evaluate the double
integral (expectation and time) directly, after changing the order of integration. Second, we derive
the differential equation for the price-consumption ratio that results from the standard instantaneous
pricing condition, and solve it. Third, we write the conventional log utility portfolio-choice problem,
but rather than solving for portfolio weights given asset prices and return distributions, we solve for
the asset prices that determine given portfolio weights: the inverse portfolio-choice problem. All three
solutions, of course, give the same answer. The first two approaches are presented in Sections 1 and 2
of the Appendix respectively. The third approach is discussed in Section 5.

The price of the first asset as a function of the dividend share s is

P1t
Ct

=
1

ψ(1− γ)
w

s

1− s
W
F

w
1, 1− γ; 2− γ; s

s− 1
W
+

1

ψθ
F

w
1, θ; 1 + θ;

s− 1
s

W
, (29)

where

ψ =
0
ν2 + 2δη2

γ =
ν − ψ
η2

θ =
ν + ψ

η2

and where ν and η2 are as defined in Equation (14). F (α,β; γ; z) is the standard hypergeometric
function (see Abramowitz and Stegum (1970) Chapter 15). The hypergeometric function is defined by
the power series

F (α,β; γ; z) = 1 +
α · β
γ · 1 z +

α(α+ 1) · β(β + 1)
γ(γ + 1) · 1 · 2 z2 +

α(α+ 1)(α+ 2) · β(β + 1)(β + 2)
γ(γ + 1)(γ + 2) · 1 · 2 · 3 z3 + . . . (30)

The hypergeometric function has an integral representation, which can be used for numerical evaluation
and as an analytic continuation beyond ,z, < 1,

F (α,β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)
8 1

0

wβ−1(1− w)γ−β−1(1− wz)−α dw; Re(γ) > Re(β) > 0. (31)

The derivative of the hypergeometric function, needed for Itô’s lemma calculations, has the simple form
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d

dz
F (α,β; γ; z) =

αβ

γ
F (α+ 1,β + 1; γ + 1; z). (32)

This formula can be derived by differentiating the terms of the power series in Equation (30) (see also
Gradshteyn and Ryzhik (2000), 9.100, 9.111). The price P2 of the second asset is symmetric to that of
the first,

P2t
Ct

=
1

ψ(1 + θ)

w
1− s
s

W
F

w
1, 1 + θ; 2 + θ;

s− 1
s

W
− 1

ψγ
F

w
1, −γ; 1− γ; s

s− 1
W
. (33)

3.6 Asset Returns.

Let R1 denote the instantaneous return on the first asset. Given the explicit price function in Equation
(29), the functional form of its derivatives from Equation (32), and the share process in Equation (12),
R1 is given by a direct application of Itô’s Lemma,

R1 =
J
δ + µ1s+ µ2(1− s) + (ρσ1σ2 − σ22 + η2s) Φ(s)

o
dt

+σ1[s+ Φ(s)] dZ1 − σ2[s− 1 + Φ(s)] dZ2, (34)

where

Φ(s) =
A(s)

B(s)
,

A(s) =
1

1− γ
w

s

1− s
W
F

w
1, 1− γ; 2− γ; s

s− 1
W

− 1

2− γ
w

s

1− s
W2

F

w
2, 2− γ; 3− γ; s

s− 1
W

+
1

1 + θ

w
1− s
s

W
F

w
2, 1 + θ; 2 + θ;

s− 1
s

W
,

B(s) =
1

1− γ
w

s

1− s
W
F

w
1, 1− γ; 2− γ, s

s− 1
W

+
1

θ
F

w
1, θ; 1 + θ;

s− 1
s

W
.

From this equation, it follows that both the mean return and return volatility vary with the state
variable s, but in a more complex way than is the case for the market:

Et[ R1 ] =
J
δ + µ1s+ µ2(1− s) + (ρσ1σ2 − σ22 + η2s) Φ(s)

o
dt, (35)

Vart[ R1 ] =
\
σ21 [s+ Φ(s)]

2 + σ22[s− 1 + Φ(s)]2 − 2ρσ1σ2[s+ Φ(s)][s− 1 + Φ(s)]
�
dt. (36)
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Section 3 of the Appendix shows that the limit of Φ(s) as s → 0 is either 1 or θ, depending on
whether θ is greater than or less than one. Using this result, it follows that the expected excess return
of the first asset need not converge to zero as s→ 0. Similarly, the volatility of the first asset’s returns
need not converge to the volatility of its cash flows as s→ 0. As s→ 1, however, the first asset becomes
the market and its expected return and variance converge to the values given in Equations (24) and
(25).

4. ASSET-PRICING IMPLICATIONS

In this section we characterize the model solution by plotting price-dividend ratios, expected returns,
return volatility, etc. as a function of the single state variable: the dividend share of the first asset.
To illustrate and quantitatively evaluate the model, we present specific numerical examples based on
three cases. Throughout these examples, we fix the subjective discount factor δ to 0.10, and we set the
correlation between the dividend processes to zero. The three cases are:

The Symmetric Case. In this scenario, dividends for the two assets follow identical geometric Brownian
motions, µ1 = µ2 = 0.02, and σ1 = σ2 = 0.20. This is the natural simplest case to start with. We
can also view this case as a market in which there are two large primary sectors, such as financials and
industrials.

The Asymmetric Case. In this scenario, dividend volatility for the first asset is higher than for the
second asset, µ1 = µ2 = 0.02, σ1 = 0.40, and σ2 = 0.20. We can view the first asset as an individual
firm or a small sector and the second asset as the rest of the market. For this interpretation, the region
of the state space with a low dividend share is the most interesting. We can also think of the second
asset as a firm with unusually low cash flow volatility, such as a regulated utility. For this interpretation,
high values of the first asset’s share (low values of the second asset’s share) are the most interesting.
Finally, we can think of the first asset as relatively volatile traded securities, and the second asset as
relatively safe but less liquid securities such as human capital, real estate, etc.

The Stock-Bond Case. In this scenario, we specify µ1 = 0.03, µ2 = 0.00, σ1 = 0.20, and σ2 = 0.00.
The second tree is a level perpetuity (in positive net supply) with no dividend risk. We allow the first
tree higher mean dividend growth, as stock dividends typically grow over time while bond (perpetuity)
coupons do not. Dividend growth of three percent rather than two percent as in the other cases
produces clearer plots. This parameterization allows us to address what is perhaps the most important
rebalancing and portfolio issue of all, that of stocks vs. bonds. It also allows us to address “stock”
market dynamics that come from market clearing in the overall market for capital, while the returns
on the overall wealth portfolio remain i.i.d.

In each plot, the top panel presents the symmetric case; the middle panel, the asymmetric case; and
the bottom panel, the stock-bond case.

4.1 Expected Returns and Excess Returns.

Figure 2 plots expected returns and the riskless rate. Figure 3 plots expected excess returns. The often
strong dependence of expected returns on the dividend share shown in these figures implies that both
expected returns and excess returns can display a great deal of time variation even though expected
dividend growth rates are constant.

As we expect from Equation (20), the riskless rate in Figure 2 is a quadratic function of the dividend
share. The symmetric case in the top panel shows that the riskless rate is higher for intermediate shares,
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where dividends are better diversified, consumption volatility is lower, and thus the precautionary
savings motive is lower. In the asymmetric case in the middle panel, the quadratic riskless rate is
shifted to the left, as the first asset is more volatile. There is still some diversification effect, however,
as the maximum riskless rate is interior. In the stock-bond case of the bottom panel, consumption
growth is also zero and risk free when the risky asset share is zero, so the interest rate equals the
discount rate, ten percent. The interest rate rises to an interior maximum, first following the greater
mean consumption growth due to the greater mean dividend growth of the first asset, but then falling
as that assets’ greater volatility induces precautionary saving.

The market expected return in the top two panels of Figure 2 is a constant, as the market price-
dividend ratio and mean consumption growth rate are constants. In the bottom panel, the market
expected return rises with mean consumption growth as a linear function of the share.

The market expected excess return in Figure 3 is then the mirror image of the quadratic riskless
rate. Also, the market expected excess return is proportional to consumption volatility in any log utility
model, and consumption volatility is lower for intermediate shares.

The expected excess returns for the two individual assets in the symmetric case (Figure 3, top) are
monotonic and approximately linear in the dividend share. To understand this behavior, recall that
expected excess returns represent risk premia, reflecting the covariance of returns with the discount
factor. With log utility,

Et[ R1 ] − r dt = Covt

}
R1,

dC

C

]
. (37)

Now, return shocks come from dividend growth shocks and shocks to the valuation of dividends,6

R1 =
dP1
P1

+
D1
P1

dt =
D1
P1

dt+
dD1
D1

+
d(P1/D1)

P1/D1
+
dD1
D1

d(P1/D1)

P1/D1
. (38)

Thus, we can express the covariance of returns with consumption growth as

Et[ R1 ] − r dt = Covt

}
dD1
D1

,
dC

C

]
+Covt

}
d(P1/D1)

P1/D1
,
dC

C

]
. (39)

Since consumption growth is the share-weighted sum of dividend growth rates, the first term is linear
in the dividend share,

Covt

}
dD1
D1

,
dC

C

]
= s σ21. (40)

6To derive Equation (38), express P1 as D1 · (P1/D1) and apply Itô’s Lemma. Since dividend growth
is i.i.d., the first two terms on the right hand side of Equation (38) describe the effects on returns
of current and expected future changes in cash flows. The remaining terms, and especially the third,
capture discount rate effects, the effects on returns of changes in the discount rate applied to future cash
flows. The first two terms also describe returns with no change in the state variable, and the P1/D1
terms describe the effect of the changing state variable on returns.
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When the first asset has a share of zero, the covariance of its dividend growth with that of aggregate
consumption — composed entirely of the uncorrelated dividends of the other asset — is zero. As the share
increases, the covariance of the first asset’s dividends with aggregate consumption increases linearly.

In this way, the approximate linearity of expected excess returns in Figure 3 is natural, and it
shows that “cash-flow betas” linear in s dominate the covariance of returns with consumption growth
in these cases. The deviations from linearity seen in Figure 3 represent the usually smaller effects of
“valuation betas,” expected returns corresponding to covariance of the change in the price-dividend
ratio with aggregate consumption. These deviations from linearity are perhaps the most interesting
part of the model.

In the asymmetric case, the valuation effects are larger. As shown in the middle panel of Figure 3,
the expected excess return of the first asset is no longer monotonic, as it declines slightly near a share
of one. The left-hand scale of the middle panel is larger, reflecting much larger variation in expected
excess returns. This comes from the larger variance of dividends and hence consumption growth.

More dramatically, the expected excess return of the second asset declines with its share through
much of the range. The expected excess return no longer declines to zero as its share declines to zero,
on the right hand side of the lower panel. Here, the entire expected excess return is driven by “valuation
risk,” the covariance of the price-dividend ratio with aggregate consumption, even though the “dividend
risk,” covariance of dividend growth with aggregate consumption, vanishes.

In the stock-bond case of the lower panel, the expected excess return of the stock shows the usual
near-linearity. The long-term bond now also shows a varying expected excess return, despite a riskless
cash flow. This result is driven entirely by discount rate effects of course. The expected excess long-term
bond return — the term premium — can be both positive and negative, as found in bond data by Fama
and Bliss (1987). As in reality, term premia are much smaller than expected excess stock returns, since
there is no premium for cash-flow risk.

The individual-asset expected returns in Figure 2 show a roughly quadratic pattern. We can now
most easily understand this pattern as the nearly linear expected excess returns of Figure 3 plus the
quadratic riskless rate.

The behavior of expected returns drives many of the results that follow. A positive shock to the
first asset’s dividends has an immediate effect on the asset’s price. However, this shock also changes
the dividend share, and hence, affects the asset’s expected return. Where expected excess returns rise
in their dividend share, we expect to see positive autocorrelation and momentum of returns. Where
expected returns decline in the dividend share, we expect to see negative autocorrelation and mean-
reversion. The plots are not monotonic, so both signs are possible. We calculate autocorrelations below,
and find this intuition is roughly correct. (It’s not exactly correct since shocks to the second asset’s
dividends affect the prices and returns of the first asset.)

Changing expected returns take the form of further expected changes in prices, since dividend
growth is i.i.d. Thus, dividend shocks may have long-lasting price and return effects. Where expected
returns increase in the share, prices will seem initially to “underreact” and “slowly” to incorporate
dividend news. Where expected returns decline, prices will seem to “overreact.”

4.2 Price-Dividend Ratios.

Figure 4 plots price-dividend ratios as a function of the dividend share of the first asset. From Equation
(21), the price-dividend ratio for the market is constant, and equals ten in all three cases. Price-dividend
ratios for the individual assets vary widely, however, and need not be monotonic in the share.
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Since dividend growth is i.i.d., price-dividend ratios are driven entirely by expected returns. Since
the share is highly autocorrelated, today’s expected returns capture a great deal of the future expected
returns that drive price-dividend ratios. Hence, the price-dividend ratios in Figure 4 are essentially the
inverse of the expected returns of Figure 2, and can be understood as such.

In the upper panel of Figure 4, the limit of the price-dividend ratio for the first asset is 16.67 at
zero, and then declines as the share increases. Past a share of 1/2, it becomes even less than the market
price-dividend ratio of ten, and then rises slightly to finish at ten when the first asset becomes the entire
market. In the asymmetric case of the middle panel, the shapes are the same, but the magnitudes are
quite different. Interestingly, the price-dividend ratio for the second asset increases without bound as
the share approaches one. The stock-bond case shows variation in the bond price-dividend ratio (the
inverse of the coupon yield), despite no cash flow uncertainty.

In each scenario, assets have lower expected returns and higher price-dividend ratios when their
share of the total dividends approaches zero than otherwise. Assets are more highly valued when
they represent a small share of total dividends, and hence, are more valuable from a diversification
perspective. Thus, “small” firms are “growth” firms, in the sense of having high valuations and low
expected returns. This phenomenon is particularly strong for a small firm with lower dividend volatility,
such as the second asset in the asymmetric case in Figure 2, whose expected return is small and whose
price-dividend ratio goes to infinity as its share goes to zero.

Our calibrations of the model do not display a separate small firm effect. We do not have separate
“size” and “value” dimensions to the cross section. In our calibrations, small firms generate low average
returns and excess returns, whether “small” refers to the dividend share (as seen in Figures 2 and 3),
or to market value (not shown). Of course, it is likely in reality that small firms have cash flows that
are sensitive to aggregate conditions, rather than the uncorrelated cash flows we have specified. This
additional ingredient can easily produce high average returns.

The decline of the price-dividend ratio with size is not monotonic however, and we see interior
minima in the price-dividend ratio plots. The price-dividend ratio of the first asset must be below the
price-dividend ratio of the market when the ratio of the second asset is above the ratio of the market,
since the share-weighted average price-dividend ratio equals that of the market. As its share approaches
one, however, the price-dividend ratio of an asset must converge to the market price-dividend ratio.

The price-dividend ratio of the second asset in the middle panel of Figure 4 gives some insight into
the strange behavior of that asset’s expected excess return in Figure 3. In the far right region, where
the low-volatility second asset is a small fraction of the market, its price-dividend ratio is a strongly
sloped and nonlinear function of the share. Thus, small changes in the share result in large changes in
the assets’ valuation, which is why the valuation covariance term in Equation (39) is so important.

By taking limits of the hypergeometric function, we show in Section 3 of the Appendix that

lim
s→0

P1
D1

=
1

δ + ν − η2/2 . (41)

This expression holds for θ > 1, which implies that the denominator is positive. If θ ≤ 1, the limit is
∞. For the cases with ρ = 0 and µ1 = µ2, this expression simplifies to

lim
s→0

P1
D1

=
1

δ − σ22
. (42)
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Thus, the price-dividend ratio of the first asset diverges to ∞ if the variance of the second asset is
greater than the discount factor, and vice versa. Given δ = 0.1, the cutoff is σ2 =

√
0.1 = 0.316. Our

asymmetric case with σ1 = 0.4 is well above that cutoff, so the second price-dividend ratio does go to
∞ as Figure 2 suggests. The price-dividend ratio increases at a rate less than or equal to 1/s, however,
since the share-weighted average of the price-dividend ratios must equal the market price-dividend ratio
of ten, and the market value must decline to zero as s→ 0.

To provide some intuition for why the price-dividend ratio can become infinite in this model,
recall from Equation (28) that the price-consumption ratio is an exponentially-weighted average of
the expected dividend share. Since D1 = sC, the price-dividend ratio is simply 1/s times the price-
consumption ratio, and we can write

P1
D1

= Et

}8 ∞
0

e−δτ
st+τ
st

dτ

]
. (43)

Thus, the price-dividend ratio can be expressed as an exponentially-weighted average of expected divi-
dend share growth rates. When the dividend share of an asset is expected to grow at a rate faster than
eδτ , the integral in Equation (43), and hence the price-dividend ratio, can diverge. This feature parallels
the result from the classical Gordon growth model in which the price-dividend ratio for a stream of
dividends can be infinite if the dividend growth rate exceeds the discount rate. Now, since 0 ≤ s ≤ 1,
s cannot growth faster than eδτ forever, for any finite initial s. Hence, the price-dividend ratio is finite
for any finite s. In the limit as s→ 0, however, we also have st+τ → 0, but the latter occurs at a slower
rate, so that the share does grow sufficiently fast to give an infinite price-dividend ratio.

4.3 Price-Dividend Ratios and Expected Returns.

Comparing expected returns and excess returns in Figures 2 and 3 with price-dividend ratios in Figure
4, one suspects that price-dividend ratios forecast expected returns and excess returns, since they vary
in inverse ways with the dividend share. Following up on this intuition, Figure 5 plots expected returns
and excess returns versus the dividend-price ratios. In all three cases, expected returns are not far
from a linear function of the dividend-price ratio. The quadratic shape of expected returns and the
quadratic shape of price-dividend ratios as functions of the share about offset. Expected excess returns
show interesting nonlinearities at high dividend-price ratios, corresponding to low price-dividend ratios
at high dividend shares. The price-dividend ratio is not a monotonic function of the share (Figure
4). Hence, even when the expected excess return is a monotonic function of the share, we will see the
interesting nonlinear relations shown in Figure 5.

The asymmetric calibration in the middle panel is useful for thinking about individual firms vs. the
market, and hence in considering cross-sectional relations from the empirical literature. We see here that
“value” firms with high dividend-price ratios also have high average returns and excess returns. The
stock-bond calibration in the lower panel allows us to compare the model to regressions of stock market
returns on dividend yields, following Fama and French (1988). Both calibrations give a reasonable
quantitative as well as qualitative fit. In each case, the slope is about one — a one percentage point
increase in the dividend-price ratio corresponds to a one percentage point increase in expected return
and excess return. This is about the magnitude suggested by both investigations of the cross section of
stocks and time series regressions of returns on dividend-price ratios for the stock market as a whole.

For a cross-sectional example, Cohen, Polk, and Vuolteenaho (2003, Table 1, p. 619) report a
regression coefficient of log one-year return on log book-market ratio of 0.027, where the regression is
taken across book-market sorted portfolios. The coefficient of about one for returns on the dividend-
price ratio in Figure 5 corresponds to a coefficient of about 0.04 for log returns on the log dividend-price
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ratio, linearizing around a typical four percent dividend-price ratio. Since price rather than book or
dividend is the important right-hand-side variable in these regressions, these coefficients are comparable.
The model thus produces if anything a slightly stronger regression than found by Cohen, Polk, and
Vuolteenaho.

Fama and French (1992, Table IV, p. 442) sort firms by book-market and report average returns of
the book-market sorted portfolios. A regression of Fama and French’s average monthly percent return
on their log book-market ratios across their 13 portfolios gives a coefficient of 0.50, and a plot shows
a reasonably linear relation. One can also see this result in the simple spreads: Fama and French’s
average returns vary from 0.3 percent to 1.83 percent across portfolios, and log book-market varies
from −2.22 to 1.02, giving a slope of about 0.5. Converting to annual net (not percent) returns, Fama
and French’s evidence implies a coefficient of about 12 × 0.005 = 0.06, a little higher this time than
the 0.04 suggested by Figure 5.

In time-series regressions for overall stock market indices, Fama and French (1988, Table III, p.
12) report coefficients between 2.35 and 5.37 in the full sample. However, the high returns of the 1990s
despite ever lower dividend-price ratios has brought down the estimate somewhat. Cochrane (2001, Ch.
20) surveys the evidence and argues for a coefficient of about two. Others express even lower views. As
in the empirical literature, the return regression and the excess return plots of Figure 5 produce quite
similar coefficients. Variation in price-dividend ratios is driven by variation in risk premia more than
by variation in the riskless rate.

The stock-bond calibration contrasts starkly to results we would obtain with the total market, i.e.
wealth portfolio or consumption claim. In this model, the total market price-dividend ratio is constant.
It cannot forecast the equally constant market expected return, nor the time-varying market expected
excess return. However, Fama and French’s (1988) regressions apply to the stock market only. We
see in the bottom panel of Figure 5 that the stock portion of the market may be forecastable from
its price-dividend ratio, even when the total market is not. In this case, the stock market is subject
to market-clearing induced dynamics: as its share gets larger, its expected return rises (Figures 2 and
3) to induce investors to keep holding the larger share. The price-dividend ratio falls, reflecting and
forecasting that higher expected return.

In sum, simple market-clearing mechanics generate both short-run continuation and momentum
in stocks, and simultaneously long-run mean reversion as evidenced by dividend-yield predictability in
both individual stocks and in the stock market as a whole.

4.4 Return Volatility.

Figure 6 plots the standard deviation of market and individual-asset returns as a function of the div-
idend share. In the one-tree model, return volatility is constant and equals dividend volatility. Here,
market return volatility mirrors consumption growth volatility. Market volatility is generally lower for
intermediate values of the dividend share where the market diversifies between the two securities.

In the symmetric case (top panel of Figure 6), return volatility starts at the 0.20 volatility of the
dividend process when the share is zero, but then varies as an S−shaped function of the dividend
share. For dividend shares greater than about 0.8, the volatility of asset returns exceeds the volatility
of the underlying cash flows or dividends. This result implies “excess volatility” in the sense that return
volatility is higher than the volatility of the fundamental cash flows. There are two forces at work here.
First, this is the region in which expected returns in Figure 2 are a declining function of the share, so
prices “overreact” to dividends. A positive shock to the first asset’s dividends thus raises the price of
the first asset by more than the dividend shock. Second, shocks to the second asset’s dividends affect
the price of the first asset even with no news about the first asset’s dividends.
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For shares below 0.8, return volatility is less than dividend growth volatility. Here, expected returns
are a positive function of the share in Figure 2, so prices “underreact” to dividend news. In this region,
this effect is large enough to overwhelm volatility in the first asset’s returns induced by shocks to the
second asset’s dividends.

In the asymmetric case (the middle panel of Figure 6), the first asset’s return volatility follows a
similar S−shaped function of the share. The second asset displays about the same volatility as that
of the assets in the top panel, though it’s harder to see in the necessarily larger scale of the middle
panel. Interestingly, the second asset’s return volatility is less than its dividend volatility even in the
limit as its share goes to zero, on the right hand side of the bottom panel. This result again reflects the
explosive behavior of its price-dividend ratio in this region. In this region, a small increase in dividends
brings a much lower price-dividend ratio, so the return is less than the dividend increase.

The volatility of the first asset in the stock-bond case is similar to the above cases. However, there
is only a very small and barely visible region of “excess volatility,” where return volatility is larger than
dividend growth volatility. This occurs for two reasons. First, there is only a small region in Figure 3
where expected excess returns decline in the share, where a shock to the first asset’s dividends causes
prices to rise more than dividends. Second, there are no shocks to the second asset’s dividends to move
the price of the first asset in the absence of news about its dividends.

In the stock-bond case, the second asset shows an interesting volatility pattern with two lobes. The
price-dividend ratio in Figure 4 is a non-monotonic function of the share, and there are no shocks to the
bond’s dividends. Thus, where the bond’s price-dividend ratio is declining, bond returns are negatively
correlated with stock dividends and aggregate consumption growth. Where the bond price-dividend
ratio is rising, bond returns are positively correlated with aggregate consumption growth. Where the
bond price-dividend ratio is flat, bond returns are riskless, as neither the price nor the dividend can
change. For this reason there are two humps and a zero in the plot of the standard deviation of bond
returns.

The volatility of the stock is larger than the volatility of the total market, which here equals
consumption growth. This is an important feature of the data. If we think of the total market as
including bonds, so a typical stock share is 0.6, this effect is not a quantitative match, however, as the
model’s consumption growth volatility is still 12 percent. If we think of the total market as including
all wealth, such as real estate, human capital, etc., then a reasonable share is 0.2 or less, and the model
does begin to capture the fact that stock returns with σ = 18 percent are much more volatile than
consumption growth with σ < 4 percent. However, this result is fairly mechanical in this calibration
of the model, as the price effects are small. Stock return volatility is driven here primarily by the
volatility of its dividend stream, where actual aggregate stock market return volatility of about 16
percent is substantially higher than (and less correlated with) its roughly 11 percent dividend growth
volatility. Comparing the expected excess returns in Figure 3 with the return volatility in Figure 6, we
see that Sharpe ratios vary considerably over time as the dividend share varies.

4.5 Market Betas.

With log utility, expected returns follow a conditional CAPM and consumption CAPM. Figure 7 plots
the instantaneous betas. Of course, betas are implied by the expected excess return plots of Figure 3.
However, it’s still worthwhile to consider betas directly. The strong variation of betas with share in
Figure 7 shows that betas will vary over time for individual stocks and portfolios.

For the symmetric case in the top panel, the beta for the first asset is zero when the share is zero.
As we have seen, the return covariance is equal to the dividend covariance here, and the first asset’s
dividends are uncorrelated with those of the second asset, which is now the entire market. As the share
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increases, however, the first asset contributes more to the total market return and its beta increases
correspondingly. The beta eventually becomes greater than one for values of the share above 50 percent.
As the share approaches one, the beta begins to decrease and eventually converges to one. When the
share is one, the first asset is the entire market and its beta with itself has to equal one. The nearly
linear expected excess return plot of Figure 3 is thus composed of this interesting nonlinear beta and
the quadratic market expected excess return of Figure 4.

It’s initially puzzling that the beta can be greater than one. However, the share-weighted average
beta must be one. Thus, if the beta of the second asset is less than one, the beta of the first asset
must be greater than one. More generally, a regression of x on sx+ (1− s)y with x, y independent and
identically distributed gives a coefficient s

s2+(1−s)2 , which exceeds one for s > 1/2, so a beta greater

than one is not unexpected.

The asymmetric case in the middle panel of Figure 7 is similar, but as usual shifted to the left.
The first asset’s beta increases more rapidly and reaches a maximum of about 1.50 near a 50 percent
share. Interestingly, the beta for the second asset remains well above zero even in the right-hand limit
as the second asset’s share approaches zero. This mirrors the behavior found in the previous graphs:
the expected excess return approaches a nonzero limit, and the price-dividend ratio explodes. Although
the dividend stream becomes riskless and uncorrelated with aggregate consumption, changes in the
valuation of that stream are not riskless, and remain correlated with aggregate consumption. There is
no contradiction here with the identity that share averaged betas must equal one, as the share of the
second asset approaches zero.

The stock-bond case in the bottom panel shows substantially different behavior. As the share
approaches one, the stock beta approaches one and the bond beta approaches zero, since the stock
becomes the entire wealth portfolio. For lower shares, the stock beta increases dramatically while the
bond beta passes through zero and becomes negative. In this calibration, the only shocks are shocks to
the stock’s (the first asset’s) dividends. Figure 4 shows that the bond price-dividend ratio is a declining
function of the share to about s = 0.35 and a rising function thereafter. Hence, we expect a negative
beta for the second asset on the first asset’s dividends below s = 0.35 and a positive beta thereafter, as
we see in Figure 7. The large magnitude of the first asset’s beta also follows. When the share is small,
a one percent market return requires a change in the first asset’s dividend of about one percent of total
market wealth. Such a change is a large proportional change, implying a huge return for the first asset.
Beta is the change in the asset’s return corresponding to a one percentage point change in the market
return, and it will hence be a large number in this region. Interestingly, the beta of the second asset
does not have to converge to one as the second asset becomes the whole market, since the whole market
becomes riskless in that limit.

4.6 Serial Correlation of Returns.

Figure 8 graphs the conditional serial correlation of one-year asset returns as a function of the initial
dividend share, Corrt [Rt,t+1, Rt+1,t+2 | st = s] , where Rt,t+1 denotes the discrete-time return from
time t to time t+1. To calculate this correlation, we simulate 10,000,000 paths using the same random
number generator seed for each initial value of the dividend share. We use the initial value of the
dividend throughout the year. As before, since the share does not have a well-defined unconditional
density, we cannot present the unconditional correlation and other moments, so we present correlations
conditional on the current state st.

Asset returns are serially correlated in all cases. In the symmetric case shown in the top panel,
the serial correlations are generally positive, indicating positive momentum. The serial correlations are
generally largest in the region where expected returns rise with the dividend share, as one would expect.
However, nonlinearities in the share process and the fact that the first asset’s returns are also driven
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by shocks to the second asset’s dividends mean that this is not a perfect correspondence.

In the asymmetric scenario shown in the middle panel of Figure 8, the first asset displays a similar
pattern. However, the magnitude of the serial correlation for the first asset is about twice as large.
Interestingly, the second asset — the “rest of the market” — is now generally negatively serially correlated,
showing “mean-reversion” rather than “momentum.” This calibration is consistent with the general
finding that momentum is a feature of individual stocks, not of the market as a whole.

Finally, in the stock-bond case shown in Figure 1, the serial correlation for the first asset is slightly
positive for almost all values of the dividend share. In contrast, the serial correlation of the second
asset is negative and large for all values of the dividend share, reaching a value of about −0.17 when
the dividend share is around 0.85. The negative value is what one expects of bonds: when ex-post bond
returns are large, prices rise, and yields and subsequent returns fall. Furthermore, since bonds only
move on discount rate news and not on cashflow news, the current bond return is a purer signal of a
change in subsequent expected returns.

Although not shown, simulations also indicate that there is a horizon-dependent component to the
serial correlations of return. For example, the serial correlation of short-horizon returns for an asset
can have a different sign than the serial correlation of long-horizon returns for that asset.

Figure 9 graphs the cross-serial correlations for the three scenarios. In the top panel for the
symmetric case, the curve labeled asset one designates the correlation between the return over the next
year for the first asset and return over the subsequent year for the second asset, and vice versa for the
curve titled second asset.

As shown, the cross-serial correlations in the symmetric case are generally negative and roughly
of the same order of magnitude of the serial correlations. They are similarly related to the expected
return plots. A high return to the second asset lowers the share of the first asset, lowering the expected
return of the first asset. The cross-serial correlation from the second asset to the first asset is strongest
and negative where the first asset has the steepest plot of expected return vs. the share.

In the asymmetric case, the cross-serial correlation can attain large negative values. In particular,
the cross-serial correlation for the return on the first asset and the subsequent return on the second
asset is nearly −0.06 when the dividend share is about 70 percent. This fact implies that returns on
the more volatile first asset have considerable predictive power for the subsequent returns on the “rest
of the market.”

Finally, in the stock-bond scenario, the cross-serial correlations patterns are again similar to those
of the serial correlations shown in Figure 8. The bottom panel of Figure 9 shows that returns on the
bond have strong predictive ability for the subsequent returns on the stock. Again, bond returns only
move on discount rate effects.

The size as well as the signs of the autocorrelations and cross-serial correlations are about what
one would expect from the expected return plots in Figure 2. For example, in the symmetric case, the
expected return rises about 4 percentage points as the share rises from 0 to 1. Now, a one percent
dividend shock is about a one percent return shock, and it changes the share by s(1− s)× 1 percentage
points. Thus, in the middle, we expect to see a 4 × s(1 − s)/100 = 0.01 autocorrelation coefficient.
Where the slope of expected return as a function of share is lower or negative, we expect to see a
corresponding autocorrelation, multiplied by the quadratic term s(1− s). This reasoning well describes
the shape and magnitude of the autocorrelation and cross-serial correlation plots.

The size of momentum effects reported in the literature requires autocorrelations and cross-serial
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correlations somewhat larger than these values. Typical estimates are consistent with a forecast R2 of
0.01 and thus autocorrelations on the order of 0.10. For example, Fama and French (1986) report 1.5
percent per month return from a strategy that goes long the past year winners and short the past year
losers. The average return of the top decile of a normal distribution is 1.76 standard deviations above
the mean. Therefore, using a 50 percent standard deviation of individual stock returns and a ten percent
average stock return, the winning decile typically earned 10+ 1.76× 50 = 100 percent in the past year,
and the losing decile lost 10− 1.76× 50 = 80 percent. A serial correlation (or regression) coefficient of
ten percent then implies that the long-short strategy is expected to earn (100 + 80)× 0.1 = 18 percent
in the following year, or 1.5 percent per month. Negative cross-serial correlation helps of course; a 0.05
own-serial correlation and 0.05 cross-serial correlation coefficient will have the same effect. Still, these
numbers are a factor of five larger than what we see. Again, our model provides a qualitative but not
a quantitative match to the data.

The autocorrelations die to zero as the share declines to zero. Even a doubling of value by a small
firm has a small total impact on the share. Since expected returns are roughly linear in the share, this
event has a small effect on subsequent expected returns. Thus, market-clearing mechanics can shed
insight on momentum in portfolios, such as the industry portfolios in Grinblatt and Moskowitz (1999),
but market-clearing mechanics will not deliver much insight into momentum driven by autocorrelation
and cross-serial correlation of small individual stock returns.

4.7 Return Correlations.

There can be significant correlation between the two asset returns, even when the underlying dividend
processes are uncorrelated as in our scenarios. A shock to the first asset affects the discount factor for
the second asset.

Figure 10 plots the conditional correlation coefficient between the instantaneous returns of the
two assets as a function of the dividend share, Corrt [R1,t, R2,t | st = s] . We calculate this correlation
directly from the volatility terms in the instantaneous return formula, Equation (34).

In the symmetric case shown in the top panel, the correlation is equal to zero when the share is
near the endpoints. As we have seen above, return variation is dominated by dividend variation here,
and the dividends are uncorrelated with each other. For intermediate values of the share, however,
the return correlation rises to nearly 14 percent. A “common factor” or “contagion effect” appears in
returns, even though there is none in cash flows.

The mechanism for correlation, as usual, traces back to expected returns as a function of the share.
When the dividend of the second asset increases, the share of the first asset decreases, decreasing the
expected return of the first asset. Lower expected return means higher prices, and a positive ex-post
return on the first asset. Shocks to the first asset affect the second asset’s returns in the same way, and
the correlation represents the sum of the two effects.

The return correlation can be significantly higher, and it is so in the asymmetric case. In this case,
the correlation between asset returns is greater than 70 percent for large shares. For a large share of
the volatile asset, consumption growth becomes very volatile. This large volatility gives large discount
rate effects to the second asset’s price, overwhelming its smaller cash flow effects. A firm (the second
asset) whose cash flows are much less volatile than those of the rest of the market will have returns that
are much more influenced by market movements than those of other firms.

In the stock-bond case, the first asset’s dividends are the only shock, so returns are perfectly
correlated. The sign of the correlation switches from −1 to +1 as the slope of the bond price-dividend
ratio as a function of share, and thus the beta, switches sign from negative to positive.
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The difference in the pattern of correlation between the cases shows that the cross-sectional struc-
ture of the market, in terms of dividend shares and volatilities, can have a large effect on the joint
distribution and factor structure of asset returns.

5. THE INVERSE PORTFOLIO CHOICE PROBLEM

One of the most familiar paradigms in finance is the traditional dynamic portfolio-choice problem of
Merton (1971, 1973), Cox, Ingersoll, and Ross (1985), and many others. In this paradigm, investors
choose optimal portfolios given the exogenously specified dynamics of prices of assets in the investment
opportunity set. To provide additional insight into the role of the market-clearing condition in the
two-asset model, we illustrate that this condition enables the solution of the inverse portfolio problem,
defined as the problem of inferring the dynamics of asset prices given the composition and optimality
of a specific portfolio.

To illustrate the inverse problem as clearly as possible, we assume that there is an agent with log
utility for whom an optimal portfolio over time consists of holding a constant number of shares each
of assets one and two (the market-clearing condition). Without loss of generality, we assume that the
investor holds one share each of the two assets. Thus, the vector of optimal portfolio weights w is given
by,

w =

 P1
P1+P2

P2
P1+P2

 . (44)

From Merton (1971) Equation (104), however, the first-order conditions for the optimality of the in-
vestor’s portfolio imply,

w = Σ−1(α− r1), (45)

where 1 is the unit vector, α is the vector of expected asset returns, and Σ is the covariance matrix of
returns for the two assets. Rearranging these first-order conditions gives,

α = r1 + Σw. (46)

Furthermore, from Merton Equation (102), the envelope condition equating the marginal utilities of the
investor’s consumption and wealth implies,

1

C
=

1

δW
, (47)

or C = δW . Because of the “buy-and-hold” condition, however, optimal consumption must also equal
the total dividends received by the investor, C = D1 +D2, which, in turn, implies,

W =
D1 +D2

δ
. (48)
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Having now expressed the value of the investor’s as an explicit function of the dividends, we can
apply Itô’s Lemma directly to Equation (48) to obtain the moments of the investor’s portfolio,

wIα = δ + µ1

w
D1

D1 +D2

W
+ µ2

w
D2

D1 +D2

W
, (49)

wIΣw = σ21

w
D1

D1 +D2

W2
+ σ22

w
D1

D1 +D2

W2
+ 2ρσ1σ2

w
D1

D1 +D2

Ww
D2

D1 +D2

W
. (50)

Now rearranging Equation (46), premultiplying by wI, and using the fact that the investor’s portfolio
weights sum to one gives,

r = wIα− wIΣw. (51)

Thus, the riskless rate can be expressed as an explicit function of the dividends after substituting in
from Equations (49) and (50).

With these results, we now demonstrate how the inverse problem can be solved. We express the
prices of the first and second assets as P1(D1, D2) and P2(D1, D2) to denote their functional dependence
on the dividends explicitly. An application of Itô’s Lemma gives,

dP1 =

w
µ1D1

∂P1
∂D1

+ µ2D2
∂P1
∂D2

+

w
σ21D

2
1

∂2P1
∂D2

1

+ 2ρσ1σ2D1D2
∂2P1

∂D1∂D2
+ σ22D

2
2

∂2P1
∂D2

2

W
/2

W
dt

+ σ1D1
∂P1
∂D1

dZ1 + σ2D2
∂P1
∂D2

dZ2, (52)

dP2 =

w
µ1D1

∂P2
∂D1

+ µ2D2
∂P2
∂D2

+

w
σ21D

2
1

∂2P2
∂D2

2

+ 2ρσ1σ2D1D2
∂2P2

∂D1∂D2
+ σ22D

2
2

∂2P2
∂D2

2

W
/2

W
dt

+ σ1D1
∂P2
∂D1

dZ1 + σ2D2
∂P2
∂D2

dZ2. (53)

Taking the appropriate expectations gives the following expression for α (recalling that the total ex-
pected return includes the dividend yield),

α =


p
µ1D1

∂P1
∂D1

+ µ2D2
∂P1
∂D2

+
p
σ21D

2
1
∂2P1
∂D2

1
+ 2ρσ1σ2D1D2

∂2P1
∂D1∂D2

+ σ22D
2
2
∂2P1
∂D2

2

Q
/2 +D1

Q
/P1p

µ1D1
∂P2
∂D1

+ µ2D2
∂P2
∂D2

+
p
σ21D

2
1
∂2P2
∂D2

2
+ 2ρσ1σ2D1D2

∂2P2
∂D1∂D2

+ σ22D
2
2
∂2P2
∂D2

2

Q
/2 +D2

Q
/P2


(54)

Similarly, the elements of the covariance matrix Σ of returns for the two assets are,
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Σ11 =
1

P 21

w
σ21D

2
1

∂P1
∂D1

2

+ 2ρσ1σ2D1D2
∂P1
∂D1

∂P1
∂D2

+ σ22D
2
2

∂P1
∂D2

2W
(55)

Σ12 = Σ21 =
1

P1P2

w
σ21D

2
1

∂P1
∂D1

∂P2
∂D1

+ ρσ1σ2D1D2

w
∂P1
∂D1

∂P2
∂D2

+
∂P1
∂D2

∂P2
∂D1

W
+ σ22D

2
2

∂P1
∂D2

∂P2
∂D2

W
(56)

Σ22 =
1

P 22

w
σ21D

2
1

∂P2
∂D1

2

+ 2ρσ1σ2D1D2
∂P2
∂D1

∂P2
∂D2

+ σ22D
2
2

∂P2
∂D2

2W
(57)

Finally, equating the value of α in Equation (46) with the value of α in Equation (54) results in the
following system of equations,

σ21D
2
1

∂2P1
∂D2

1

/2 + ρσ1σ2D1D2
∂2P1

∂D1∂D2
+ σ22D

2
2

∂2P1
∂D2

2

/2 + µ1D1
∂P1
∂D1

+ µ2D2
∂P1
∂D2

− (r + Σ11w1 + Σ12w2)P1 +D1 = 0, (58)

σ21D
2
1

∂2P2
∂D2

2

/2 + ρσ1σ2D1D2
∂2P2

∂D1∂D2
+ σ22D

2
2

∂2P2
∂D2

2

/2 + µ1D1
∂P2
∂D1

+ µ2D2
∂P2
∂D2

− (r + Σ21w1 + Σ22w2)P2 +D2 = 0. (59)

However, since r, Σ, and w are given as explicit functions of the dividends, asset prices, and derivatives
of the asset prices, Equations (58) and (59) constitute a system of coupled nonlinear elliptic partial
differential equations. Given appropriate boundary conditions, these equations can be solved for the
values of P1 and P2 as functions of the underlying dividends D1 and D2. The appendix shows that the
functions P1 and P2 that solve Equations (58) and (59) are identical to the expressions for P1 and P2
given earlier in Section 3. Once the functions P1 and P2 are obtained, α and Σ are given by simply
taking the appropriate derivatives and substituting into Equations (54) through (57), thereby providing
a complete solution to the inverse portfolio problem.

To summarize, the key feature that allows for a solution to the inverse problem is that the investor
optimally chooses a fully-invested buy-and-hold portfolio through time. This feature implies that the
riskless rate and the moments of his portfolio return can be expressed as explicit functions of the
underlying dividends. In turn, this allows α to be eliminated between Equations (46) and (54). Thus,
it is the equilibrium market-clearing condition, which requires the representative agent to be a fully-
invested buy-and-hold investor, that provides the identification condition allowing the inverse problem
to be solved.

6. EXTENSIONS AND CONCLUDING REMARKS

Our two-tree model has the simplest ingredients, log utility and i.i.d. normal dividend growth. Nonethe-
less, market-clearing logic and a fixed share supply generate interesting and complex patterns of time-
varying asset prices, expected returns, risk premia, variances, covariances, and correlations. The pat-
terns of these time-varying conditional moments are similar to many of those in the empirical asset
pricing literature, including momentum, mean-reversion, price over-reaction and under-reaction to divi-
dend news, excess volatility, value and growth effects (expected returns that vary across assets sorted on
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valuation ratios), return and excess return forecasts from price-dividend ratios, and return correlation
despite uncorrelated cash flows.

The fact that our two-tree model does not give rise to a stable distribution of shares is an important
point that distinguishes our model from other recent multi-asset models. It is a direct implication of
dividend processes that follow geometric Brownian motions. Thus, to construct a model of firm cash
flows with a stable unconditional distribution, one must specify something else. One route, followed for
example by Menzly, Santos, and Veronesi (2003) is to specify dividend processes (or, equivalently share
processes) in which a dividend lower than the others drifts up, and a dividend higher than the others
drifts down. While the empirical literature finds that dividend growth rates are predictable rather
than i.i.d. (Cohen, Polk, and Vuolteenaho (2003), Menzly, Santos and Veronesi (2003)), the economic
mechanism by which one industry’s cash flows depend on those of another is not specified in these
endowment economies. Alternatively, a model that couples short run fixity of capital like ours, but
allows investment and disinvestment in the longer run (e.g. after paying adjustment costs or waiting
out irreversibilities) will allow investors to reallocate physical capital towards smaller firms, giving rise
endogenously to mean-reversion or cointegration of cash flows. Finally, of course, birth and death of
firms is a time-tested way to generate a stable distribution out of inherently unstable dynamics. On
the other hand, little is really known about firm or industry level cash flows. The car industry did end
up dominating the buggy-whip industry. Perhaps a long-run stable distribution of shares flows is not a
desirable component of an asset pricing model.
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APPENDIX

1. Derivation of Asset Prices — The Integral Approach.

The price-consumption ratio of the first asset is given by

P1t
Ct

= Et

}8 ∞
0

e−δτ
Dt+τ
Ct+τ

dτ

]
= Et

8 ∞
0

e−δτ
1

1 +
D2,t+τ

D1,t+τ

dτ

 = Et }8 ∞
0

e−δτ
1

1 + qeu
dτ

]
, (A1)

where q is the initial dividend ratio D2,t/D1,t and u is a normally distributed random variate with mean
ντ and variance η2τ , and where,

ν = µ2 − µ1 − σ22/2 + σ21/2,

η2 = σ21 + σ22 − 2ρσ1σ2.

Note that ν dt = E[ln(D2/D1)] and η
2 dt = Var[ln(D2/D1)]. Introducing the density for u into the last

integral gives

P1t
Ct

=

8 ∞
0

8 ∞
−∞

e−δτ
10
2πη2τ

1

1 + qeu
exp

w−(u− ντ)2
2η2τ

W
du dτ. (A2)

Interchanging the order of integration and collecting terms in τ gives,

P1t
Ct

=

8 ∞
−∞

10
2πη2

1

1 + qeu
exp

w
νu

η2

W8 ∞
0

τ−1/2 exp
w
− u2

2η2
1

τ
− ν2 + 2δη2

2η2
τ

W
dτ du. (A3)

From Equation (3.471.9) of Gradshteyn and Ryzhik (2000), this expression becomes,

P1t
Ct

=

8 ∞
−∞

20
2πη2

1

1 + qeu
exp

w
νu

η2

Ww
u2

ν2 + 2δη2

W1/4
K1/2

X
2

�
u2(ν2 + 2δη2)

4η4

~
du, (A4)

where K1/2(·) is the modified Bessel function of order 1/2 (see Abramowitz and Stegum (1970) Chapter
9). From the identity relations for Bessel functions of order equal to an integer plus one half given in
Gradshteyn and Ryzhik Equation (8.469.3), however, the above expression can be expressed as,

P1t
Ct

=
1

ψ

8 ∞
−∞

1

1 + qeu
exp

w
νu

η2

W
exp

w
− ψ

η2
| u |
W
du, (A5)
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where

ψ =
0
ν2 + 2δη2.

In turn, Equation (A5) can be written

P1t
Ct

=
1

ψ

8 ∞
0

1

1 + qeu
exp (γu) du +

1

ψ

8 0

−∞

1

1 + qeu
exp (θu) du. (A6)

where

γ =
ν − ψ
η2

,

θ =
ν + ψ

η2
.

Define w = e−u. By a change of variables Equation (A6) can be written

P1t
Ct

=
1

qψ

8 1

0

1

1 + w/q
w−γ dw +

1

ψ

8 1

0

1

1 + qw
wθ−1 dw, (A7)

From Abramowitz and Stegum Equation (15.3.1), this expression becomes

P1t
Ct

=
1

qψ(1− γ) F (1, 1− γ; 2− γ; −1/q) +
1

ψθ
F (1, θ; 1 + θ; −q). (A8)

Finally, substituting q = (1− s)/s into Equation (A8) gives the price of the first asset,

P1t
Ct

=
1

ψ(1− γ)
w

s

1− s
W
F

w
1, 1− γ, 2− γ; s

1− s
W
+

1

ψθ
F

w
1, θ; 1 + θ;

s− 1
s

W
, (A9)

which is Equation (29).

The same approach can be used to solve for the price of the second asset,

P2t
Ct

=
1

ψ(1 + θ)

w
1− s
s

W
F

w
1, 1 + θ; 2 + θ;

s− 1
s

W
− 1

ψγ
F

w
1, −γ; 1− γ; s

s− 1
W
. (A10)

Applying the recurrence relations for contiguous hypergeometric functions presented in Abramowitz
and Stegum (1970) Equations (15.2.18) and (15.2.20) gives the result
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P1 + P2 =
C

δ
=
D1 +D2

δ
= Pm. (A11)

2. Derivation of Asset Prices — The Differential Equation Approach.

For additional perspective, we provide an alternative derivation that parallels the well-known Feynman-
Kac approach for solving differential equations. Rewrite the last term in Equation (A1) as,

Et

}8 ∞
0

e−δτ
1

1 + e−xt+τ
dτ

]
, (A12)

where the log dividend ratio x = ln(D1/D2) is now a state variable. To find the differential equation for
the price-consumption ratio, we can either differentiate Equation (A12) explicitly or note the analogy
to risk-neutral pricing of a security paying a dividend (1 + e−x)−1, resulting in

0 = Et

}
d

w
P1t
Ct

W]
+

1

1 + e−xt
dt− δ P1t

Ct
dt. (A13)

The price-consumption ratio is a function of the state variable,

y(xt) ≡ P1t
Ct
(xt). (A14)

Applying Itô’s Lemma to Equation (A14) and substituting into Equation (A13),

yI(x) Et[dx] +
1

2
yII(x) Et[dx2] +

1

1 + e−xt
dt − δ y(x) dt = 0. (A15)

The dynamics of x are given by

dx = d(lnD1 − lnD2) =
}
µ1 − µ2 − 1

2

D
σ21 − σ22

i]
dt+ σ1dZ1 − σ2dZ2, (A16)

or, more simply by

dx = −ν dt + η dZ. (A17)

Using these dynamics in Equation (A15), we obtain a differential equation for y(x),

η2yII(x)/2− νyI(x)− δy(x) + 1

1 + e−x
= 0. (A18)

This is a linear second-order differential equation with an inhomogeneous term. The general solution
to an inhomogeneous linear second-order equation,
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yII(x) + ayI(x) + by(x)− h(x) = 0, (A19)

is given by an application of the variation of parameters technique,

y =

}
c1 +

1

λ2 − λ1

8 x

0

h(ξ)e−λ1ξdξ
]
eλ1x +

}
c2 +

1

λ1 − λ2

8 x

0

h(ξ)e−λ2ξdξ
]
eλ2x, (A20)

λi =
−a±√a2 − 4b

2
,

where c1 and c2 are constants and provided λi are real and distinct.

Applying this result to our case, we have

λ1 = θ, λ2 = γ, (A21)

One root is positive and one is negative. Substituting into Equation (A20) gives,

y(x) = c1e
θx + c2e

γx +
eγx

ψ

8 x

0

1

1 + e−ξ
e−γξ dξ − e

θx

ψ

8 x

0

1

1 + e−ξ
e−θξ dξ. (A22)

Changing variables to w = e−ξ gives,

y(x) = c1e
θx + c2e

γx +
eγx

ψ

8 1

e−x

1

1 + w
wγ−1 dw − e

θx

ψ

8 1

e−x

1

1 + w
wθ−1 dw. (A23)

From Gradshteyn and Ryzhik (2000) Equations (3.194.2), (3.194.5) and (9.14.2) (and see also Equation
(31)), the integrals in the above equation can be solved in terms of the hypergeometric function. This
gives the general solution,

y(x) = d1e
θx + d2e

γx +
1

ψ

}
ex

1− γ F (1, 1− γ; 2− γ; −e
x) +

1

θ
F (1, θ; 1 + θ; −e−x)

]
, (A24)

where d1 and d2 are new constants. Imposing the boundary condition that y(x) be bounded as x
approaches zero and infinity implies d1 = d2 = 0. Finally, making a change of variables from x to s
gives the price of the first asset Equation (29).

3. Limits.

In this section, we derive limits for price-dividend ratios as s→ 0 and s→ 1. Also, we derive limits for
the function Φ(s) that figures prominently in the asset price dynamics in Equation (34). We focus on
the first asset, as the second is symmetric. Start with the price-dividend ratio. By definition,
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P1
D1

=
C

D1

P1
C
=
1

s

P1
C
. (A25)

From Equations (28) and (A5), this implies,

P1
D1

=
1

ψ(1− γ)
w

1

1− s
W
F

w
1, 1− γ, 2− γ; s

s− 1
W
+

1

ψθ

w
1

s

W
F

w
1, θ, 1 + θ;

s− 1
s

W
. (A26)

From the power series expression for the hypergeometric function, F (a, b; c; 0) = 1. Because of this
result, it is useful to apply the linear transformation formula given in Abramowitz and Stegum Equation
(15.3.7) so that the argument of the hypergeometric function goes to zero at the limit being evaluated,

F (α,β; γ; z) =
Γ(γ)Γ(β − α)
Γ(β)Γ(γ − α) (−z)

−αF (α, 1− γ + α; 1− β + α; 1/z)

+
Γ(γ)Γ(α− β)
Γ(α)Γ(γ − β) (−z)

−βF (β, 1− γ + β; 1− α+ β; 1/z) (A27)

To obtain the limit of the price-dividend ratio as s→ 0, we use the linear transformation formula
to rewrite Equation (A26) as,

P1
D1

=
1

ψ(1− γ)
w

1

1− s
W
F

w
1, 1− γ, 2− γ; s

s− 1
W

+
1

ψθ

w
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1
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F
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W
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ψθ
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1

s

W
Γ(θ + 1) Γ(1− θ)

w
s

1− s
Wθ
F
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θ, 0; θ;

s

s− 1
W

(A28)

From this expression, it is readily seen that

lim
s→0

P1
D1

=


∞, if θ ≤ 1;

1
δ+ν−η2/2 , if θ > 1.

(A29)

To obtain the limit of the price-dividend ratio as s→ 1, we again use the linear transformation formula
and rewrite Equation (A26) as,

P1
D1

= − 1

ψ(1− γ)
w
1− γ
γ

W w
1

s

W
F

w
1, γ; 1− γ; s− 1

s

W
+

1
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s

W
. (A30)
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From this, it follows immediately that

lim
s→1

P1
D1

=
1

δ
. (A31)

A similar approach can be used to show that

lim
s→0

P2
D2

=
1

δ
, (A32)

and that,

lim
s→1

P2
D2

=


1

δ−ν−η2/2 , if γ < −1;

∞, if γ ≥ −1.
(A33)

Finally, the use of l’Hopital’s rule and the repeated application of the linear transformation formula
gives,

lim
s→0

Φ(s) =

l
θ, if θ ≤ 1;

1, if θ > 1.
(A34)

and
lim
s→1

Φ(s) = 0. (A35)

Substituting the limiting values of Φ(s) into the asset price dynamics in Equation (34) allows us to fully
characterize the properties of these price dynamics as s→ 0 and s→ 1.

4. Solution to the Inverse Problem.

Since the “buy-and-hold” investor’s total wealth equals the sum of the two asset values over time,
W = P1 + P2, Equation (48) implies,

P2 =
D1 +D2

δ
− P1. (A36)

Differentiating this expression gives,

∂P2
∂D1

=
1

δ
− ∂P1
∂D1

, (A37)

∂P2
∂D2

=
1

δ
− ∂P1
∂D2

, (A38)

Using the definition of s, the riskless rate in Equation (51) can be written,
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r = δ + µ1s+ µ2(1− s)− σ21s2 − 2ρσ1σ2s(1− s)− σ22(1− s)2. (A39)

Similarly, substituting in from Equations (A36) through (A38) and expressing in terms of s throughout,

Σ11w1 + Σ12w2 =
D1 +D2
P1

w
σ21s

2 ∂P1
∂D1

+ ρσ1σ2s(1− s)
w
∂P1
∂D1

+
∂P1
∂D2

W
+ σ22(1− s)2

∂P1
∂D2

W
. (A40)

Substituting these last two expressions into the partial differential equation in Equation (58) and writing
the equation in terms of s where possible,

w
σ21s

2 ∂
2P1
∂D2

1

/2 + ρσ1σ2s(1− s) ∂2P1
∂D1∂D2

+ σ22(1− s)2
∂2P1
∂D2

2

/2

W
(D1 +D2)

2

+

w
µ1s

∂P1
∂D1

+ µ2(1− s) ∂P1
∂D2

W
(D1 +D2)

− (δ + µ1s+ µ2(1− s)− σ21s2 − 2ρσ1σ2s(1− s)− σ22(1− s)2)P1
−
w
σ21s

2 ∂P1
∂D1

+ ρσ1σ2s(1− s)
w
∂P1
∂D1

+
∂P1
∂D2

W
+ σ22(1− s)2

∂P1
∂D2

− s
W
(D1 +D2) = 0 (A41)

Now, we conjecture (and later verify) that the asset price can be represented as

P1 = (D1 +D2)g(s). (A42)

This result implies

∂P1
∂D1

= g(s) + (1− s)gI(s), (A43)

∂P1
∂D2

= g(s)− sgI(s), (A44)

∂2P1
∂D2

1

= (1− s)2gII(s)/(D1 +D2), (A45)

∂2P1
∂D1∂D2

= −s(1− s)gII(s)/(D1 +D2), (A46)

∂2P1
∂D2

2

= s2gII(s)/(D1 +D2), (A47)

Substituting these terms into Equation (A41), dividing through by (D1 + D2), and collecting terms
gives
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η2s2(1−s)2gII(s)/2+Dµ1 − µ2 − σ21s− ρσ1σ2(1− 2s) + σ22(1− s)
i
s(1−s)gI(s)−δg(s)+s = 0, (A48)

Next, we change variables from s to x, where

x = ln

w
s

1− s
W
, (A49)

and g(s) = y(x), implying

gI(s) =
1

s(1− s)y
I(x), (A50)

gII(s) =
1

s2(1− s)2 (y
II(x)− (1− 2s)yI(x)), (A51)

Substituting these terms into (A48) and simplifying gives

η2yII(x)/2− νyI(x)− δy(x) + 1

1 + e−x
= 0. (A52)

which verifies our conjecture. However, Equation (A52) is identical to Equation (A18) which we have
already shown gives the solution for P1 reported in the paper. The solution for P2 follows immediately
from Equation (A36). Thus, we have demonstrated by construction that the functions P1 and P2 that
satisfy the system of nonlinear elliptic partial differential equations in Equations (58) and (59) are
the same as the asset prices P1 and P2 reported earlier in the paper. Differentiating the closed-form
solutions for P1 and P2 and substituting the corresponding derivatives into Equations (54) through
(57) completes the solution for α and Σ. Thus, the inverse problem has a solution, and this solution is
identical to that implied by the other approaches.
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Figure 1: Share Drift and Conditional Density
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The left panels plot the drift of the dividend share process in Equation (12). The right panels plot the
conditional density of the dividend share for different horizons τ in years, starting at an initial share s = 0.5,
Equation (14). The top panels present the symmetric case; and the bottom panels present the asymmetric
case.



Figure 2: Expected Returns
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This figure plots the risk-free rate, and expected returns of the individual assets and the market portfolio.
The top panel presents the symmetric case; the middle panel presents the asymmetric case; and the bottom
panel presents the stock-bond case.



Figure 3: Expected Excess Returns

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
E

xc
es

s 
R

et
ur

n 
(%

)
Symmetric Case

Asset 1 Asset 2

Market

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

E
xc

es
s 

R
et

ur
n,

 1
 a

nd
 M

kt
. (

%
) Asymmetric Case

Asset 1Asset 2

Market

0 0.2 0.4 0.6 0.8 1
0

5

10

E
xc

es
s 

R
et

ur
n,

 2
 (

%
)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

E
xc

es
s 

R
et

ur
n,

 1
 a

nd
 M

kt
. (

%
) Stock−Bond Case

Asset 1

Asset 2

Market

Dividend Share of Asset 1
0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

E
xc

es
s 

R
et

ur
n,

 2
 (

%
)

This figure plots the expected excess returns of the individual assets and of the market portfolio. The top
panel presents the symmetric case; the middle panel presents the asymmetric case; and the bottom panel
presents the stock-bond case.



Figure 4: Price-Dividend Ratios
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This figure plots the price-dividend ratios of the individual assets and the market. The top panel presents
the symmetric case; the middle panel presents the asymmetric case; and the bottom panel presents the
stock-bond case.



Figure 5: Returns vs. Dividend-Price Ratio
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This figure plots expected instantaneous returns and excess returns of asset 1 versus its dividend-price ratio.
The top panel presents the symmetric case; the middle panel presents the asymmetric case; and the bottom
panel presents the stock-bond case.



Figure 6: Return Volatility
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This figure plots the volatility (standard deviation) of the individual asset returns and of the market return.
The top panel presents the symmetric case; the middle panel presents the asymmetric case; and the bottom
panel presents the stock-bond case.



Figure 7: CAPM Betas
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This figure plots the betas relative to the market of the individual assets. The top panel presents the
symmetric case; the middle panel presents the asymmetric case; and the bottom panel presents the stock-
bond case.



Figure 8: Own Serial Correlation
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This figure plots the conditional one-year serial correlation of the individual asset returns. The top panel
presents the symmetric case; the middle panel presents the asymmetric case; and the bottom panel presents
the stock-bond case.



Figure 9: Cross Serial Correlation
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This figure plots the conditional one-year cross serial correlation of the individual asset returns. The top
panel presents the symmetric case; the middle panel presents the asymmetric case; and the bottom panel
presents the stock-bond case.



Figure 10: Contemporaneous Correlation
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This figure plots the correlation between the instantaneous returns of assets 1 and 2. The top panel presents
the symmetric case; the middle panel presents the asymmetric case; and the bottom panel presents the
stock-bond case.




