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explaining the observed variation in governance mode, and in particular the widespread occurrence
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is that there is no external enforcement mechanism: each country is sovereign and cannot be forced

to follow the collective decision, or in other words, the voting system must be self-enforcing. The

model yields unanimity as the optimal system for a wide range of parameters, and delivers rich

predictions on the variation in the mode of governance, both across organizations and over time.
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1 Introduction

Most international organizations lack an external enforcement mechanism. In par-

ticular, if an organization relies on a voting system to make decisions, a government

cannot be forced to comply with the collective decision. It will do so only if the

short-term gain from defecting is outweighed by the future loss of cooperation. Mo-

tivated by this observation, in this paper we propose a theory of self-enforcing voting

systems.

In the real world of international organizations, there is a wide variation in

the mode of governance, both across organizations and over time. We distinguish

between two types of governance mode: unanimity systems and majority systems.

Some organizations, such as NATO and WTO, are governed by unanimity rule.1

Others, such as most United Nations agencies, are governed by some form of majority

rule. Still others have seen important changes of governance mode over time: for

example, the European Union has recently switched from unanimity to majority

in several policy areas, and the International Standards Organization has switched

from unanimity to a majority rule in the 1970s.2

There is a vast theoretical literature on voting systems, but most of the existing

models share the assumption that the outcome of the vote can be perfectly en-

forced. These enforceable-voting models have a difficult time explaining the above-

mentioned variation in governance mode, and in particular the frequent occurrence

of the unanimity system. We will present a simple framework whose main departure

from standard voting models is the presence of a self-enforcement constraint. This

model yields unanimity as the optimal system for a wide range of parameters, and

yields rich predictions on the determinants of the cross-organization and over-time

variation in the mode of governance.

Next we preview the structure of the model and the main results.

We consider an infinite-horizon game where, at the outset, governments antic-

ipate that there will be a sequence of binary collective choices. In each instance,

one alternative will be the status quo and the other will be some change (collec-

1For the WTO, of course this statement applies only to rule-making activities, not to the dispute

settlement system, which is concerned with the enforcement of the agreed-upon rules. We note also

that MERCOSUR and NAFTA are governed by unanimity as well.
2We emphasize that a unanimity system is qualitatively different from a majority system: the

former requires only coordination ; the latter requires also enforcement, in order to keep in check the

minority members’ temptation to defect. For this reason, in the notion of “majority” we include

both the simple majority rule and supermajority rules.

2



tive action). The collective action is effective only if all members participate. Ex

ante, each member attaches some probability to the event that she will be in favor

or against changing the status quo for each future issue. Members’ preferences on

future issues can be correlated.

The voting rule is chosen ex ante, under a veil of ignorance about future issues.

Thus the optimal voting rule maximizes the ex-ante expected utility of the repre-

sentative member subject to a self-enforcement constraint: a government must have

incentive to comply with the collective decision, even if it happens to be in the mi-

nority. This requires that the future gains from cooperation outweigh the one-time

gain from defecting.

A key parameter in the model is the governments’ discount factor. We show

that, if the discount factor is higher than some critical level, the best self-enforcing

governance mode is the first-best voting rule, which in this context is typically some

majority quota. But if the discount factor is lower than this critical level, the best

self-enforcing governance mode is the unanimity system. The discount factor can

be interpreted as capturing not only the players’ pure time preferences, but also the

probability that a player will still be in the game next period, and the frequency with

which the organization makes decisions. Thus, our model predicts that a majority

rule is more likely to be adopted in organizations where governments are more stable,

and in “busier” organizations.

Another important parameter in the model is the correlation among members’

preferences, that is the likelihood that members will agree on future issues. One

might expect that higher correlation favors unanimity over majority, but we find

that the opposite is true: a higher degree of correlation expands the range of dis-

count factors for which the optimal self-enforcing institution is a majority system.

The model thus predicts that a majority rule is more likely to be adopted in more

homogeneous organizations.

In reality, a number of international organizations have different voting rules for

different types of issues. For example, the European Union applies the unanimity

rule for particularly sensitive issues, and a majority rule for more “technical” issues.

Our model suggests a theoretical explanation for this kind of dual decision making

systems. We consider an organization that expects to make decisions on two types of

issues, high-stake issues and low-stake issues, and find that for intermediate values

of the discount factor the optimal voting rule is unanimity for high-stake issues and

majority for low-stake issues.

3



Next we consider the role of international transfers. Transfers can make it easier

to satisfy the self-enforcement constraint in a majority system, because they can be

used to mitigate the minority members’ temptation to defect. We show that the

availability of transfers expands the range of discount factors for which a majority

system is sustainable. Thus the model suggests that we should be more likely

to observe a majority system in organizations that have the flexibility to enact

pure transfers between its members. However, we also find that transfers cannot

completely solve the enforceability problem: if the discount factor is low enough,

unanimity remains the best sustainable rule.

The next step of our analysis is to endogenize the organization size. When size is

endogenous, the model generates interesting predictions about the evolution of the

voting rule over time. We assume that in every period there is a random number

(possibly zero) of new candidates for membership, and current members choose

whether to admit the new candidates. We show that, for intermediate levels of

the discount factor, the optimal self-enforcing voting rule is unanimity up to some

(random) date and then switches to a majority rule. The reverse switch — from

majority to unanimity — can never happen. The model thus offers a theoretical

explanation for the “stylized fact” that international organizations tend to move

from unanimity to majority, but not viceversa.

The model also generates predictions about the organization size and how it

correlates with the mode of governance. Under some conditions we can show that,

in steady state, the organization size is a (weakly) increasing function of the discount

factor. This is a consequence of the facts that (i) a higher discount factor facilitates

enforcement of the first-best rule, and (ii) the optimal organization size conditional

on the first-best rule is larger than the optimal organization size conditional on the

unanimity rule. Thus the model generates a prediction about the co-variation of

organization size and mode of governance: if organizations are heterogenous with

respect to the discount factor, organizations governed by unanimity should tend to

be smaller than organizations governed by majority.

Our paper contributes to two literatures. The first one is the literature on self-

enforcing international agreements. To the best of our knowledge, all the models

in this class are repeated-game models where there is no scope for voting.3 Our

innovation with respect to this literature is that we consider a multilateral repeated

3For models of self-enforcing trade agreements, see for example the survey by Staiger [21]. For

models of international lending, see for example the survey by Eaton and Fernandez [11].
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game where it is efficient to make decisions by voting. This is because players have

private information about their preferences, and a voting scheme can be used to

aggregate information and make efficient collective choices.

Second, our paper contributes to the literature on social choice and voting. All

the voting models that we are aware of ignore the enforceability problem. For

this reason, these models are useful to examine issues of domestic institutions and

constitutional design, but their applicability to international organizations is limited.

In this literature, a paper that is related to ours is Barbera and Jackson [4]. They

have a binary collective choice model where members’ preferences on future issues

are uncertain,4 and each player is characterized by a distinct probability of being in

favor of the status quo. They study self-stable voting rules, i.e. voting rules such

that there is no alternative rule that would beat the given voting rule if the given

voting rule is used to choose between the rules. Our main departures from Barbera

and Jackson’s model are that (i) we examine self-enforcing voting rules, whereas

they assume perfect enforcement, and (ii) we assume that the voting rule is chosen

under a veil of ignorance, so that in our case the natural criterion to select a voting

rule is the maximization of the members’ common ex-ante utility. Another paper

that is related to ours is Ledyard and Palfrey [14]. They study a situation in which

a group of individuals must decide whether to produce a discrete public good and

how to pay for it, and each individual’s preferences may be of two types. Among

other things, they show that an efficient public good decision can be achieved by a

majority voting rule.5 They do not consider the implications of repeated interaction

for the optimal mechanism.

Our theory provides a new rationale for the unanimity rule, which is the lack

of enforceability. This is certainly not the first attempt to rationalize the use of

unanimity rule. The classic contributions by Wicksell [23] and Buchanan and Tul-

lock [6] proposed a simple argument in favor of unanimity. Their argument was

based on an ex-post Pareto-efficiency criterion: unanimity is the only rule under

which collective action is taken only if it is a Pareto-improvement over the status

quo. In contrast, we adopt an ex-ante efficiency criterion within a veil-of-ignorance

setting. In this setting, if external enforcement is available, the ex-ante efficient rule

4For early discussions and motivations of models with a binary choice between alternatives with

uncertain values in voters’ minds, see Niemi and Weisberg [18], Badger [3], and Curtis [9].
5Ledyard and Palfrey [15] show that, under plausible conditions, simple binary voting is asymp-

totically efficient, as the number of voters becomes large, even when voters’ preferences can take a

continuum of values.
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is (almost always) a majority rule, and unanimity may become optimal if there is

no external enforcement.6

Two other papers that are related to ours are Roberts [20] and Barbera, Maschler

and Shalev [5]. Both of these papers study the dynamics of an organization in

which current members have heterogeneous preferences about the admission of new

members, and vote on admissions in every period. These models differ from ours

at least in three respects. First, the voting rule in these models is exogenous, and

assumed to be a simple majority rule. Second, voting is only on admissions of new

members, not on policy issues. Third, there are no issues of enforceability.

The paper is organized as follows. In section 2 we present a static model of

collective action. First we solve for the first-best outcome, then we characterize

the equilibria of the one-shot game, with and without enforcement. In section 3

we characterize the optimal self-enforcing voting rule in the repeated version of the

game, when the size of the organization is exogenous and constant. In section 4 we

study how the optimal voting rule and the size of the organization evolve together.

In section 5 we extend the analysis to situations where the collective action may be

effective even if not all members participate (the case of “impure” collective action).

In section 6 we offer some concluding remarks.

2 The Static Model

Consider an organization with N members. Each member chooses a binary action,

ai ∈ {0, 1} (i = 1, ..., N). Taking the action (ai = 1) is interpreted as participating
in a collective action, such as going to war, or adopting a common currency, or

changing a common agricultural policy, or harmonizing a standard. Not taking the

action (ai = 0) is interpreted as preserving the status quo. In this section and the

next we assume that N is fixed, that is, we do not consider the possibility of entry

or exit. In section 4 we will extend the model to allow for endogenous N .

We assume that the collective action is effective only if all members participate,

otherwise the status quo is kept. In particular, each of the N players receives a

6Also Aghion and Bolton [1] and Guttman [13] argue that, in a veil-of-ignorance setting with

perfect enforcement, majority generally dominates unanimity from the standpoint of ex-ante effi-

ciency. These papers do not consider issues of enforceability. Other papers that provide theoretical

justifications for (simple or super) majority rules are May [16], Rae [19], Taylor [22], Caplin and

Nalebuff [7], Austen-Smith and Banks [2], Dasgupta and Maskin [10], and Messner and Polborn

[17]. All of these models assume enforceability of majority decisions.
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positive benefit B if ai = 1 for all i, and zero benefit otherwise. We will often refer

to this case as “pure” collective action. In a later section we will discuss the case

in which the collective action may be effective even if some of the members do not

participate (the case of “impure” collective action). For the moment we note that

there are situations in reality for which the assumption of pure collective action is

not unrealistic. Consider for example an economic union, where goods and factors

are free to move within the union and member countries have a harmonized set

of policies in areas such as trade, immigration and taxation. Any change in the

common policies must be decided collectively, and if any member does not go along

with the change, its benefits are compromised for the whole union. If for example

the union decides to increase the common external tariff and one member does not

go along, the effects of the tariff hike may be undone.

For each member, participating in the collective action is costly. For some mem-

bers the cost is lower than the benefit, but for others the cost exceeds the benefit.

This is a simple way of capturing situations where the members’ interests over the

collective action may diverge. Formally, we assume that player i’s cost of action

θi takes value θL or θH , with θL < B < θH . Thus, a low-θ member is in favor of

the collective action, a high-θ member is against it. The parameter θi is player i’s

private information. This can be interpreted as the economic or the political cost of

changing the status quo for country i.

To summarize, player i has the following utility function:

U(ai, n, θi) = B · I[n=N ] − aiθi (1)

where n ∈ {ai, ...,N − 1 + ai} denotes the total number of members taking action.7
What we have described so far is the ex post stage of the model. We now

step back to an ex-ante perspective. Ex ante, players are under a veil of ignorance
7We have assumed that, if member i takes action (ai = 1), he incurs cost θi regardless of the

other members’ actions. This assumption can be weakened substantially: we only need to assume

that a small fraction � > 0 of the cost is incurred regardless. More formally, we can generalize the

utility function to U = [B− (1− ε)θiai] · I[n=N]− εθiai. The interpretation is that, if the collective

action is not undertaken (n < N), member i can recover a fraction (1 − ε) of the cost, while a

fraction ε of the cost cannot be recovered. For any ε ∈ (0, 1], our results hold exactly as stated. An
alternative setting that would yield the same results is the following two-stage game. In the first

stage, players decide whether to participate in the collective action. In the second stage, each player

can confirm or reverse the decision when new information about the cost becomes available, but

in the latter case he incurs a small cost. This could be thought of as a “ratification” game, where

not ratifying the initial decision implies a small political cost. Also in this game, the status-quo

outcome (ai = 0 for all i) would be an undominated equilibrium.
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about future issues. The idea is that the nature of future issues is uncertain, and

therefore each player does not know which side of the issue she will be on. We

capture this idea by assuming that at the ex-ante stage θ = (θ1, ..., θN ) is a random

vector distributed according to the common-knowledge probability distribution P (θ)

over support Θ = {θL, θH}N . This distribution is symmetric with respect to its N
arguments, which implies that the N players are ex-ante symmetric with respect to

the future issue. We can think of θ as summarizing the relevant state of the world.

In the concluding section we will discuss more thoroughly the veil of ignorance

assumption and how results are likely to change if players are ex-ante asymmetric.

2.1 First-best Outcome

The symmetric first-best outcome is the mapping from states to actions that maxi-

mizes the members’ common expected utility, or in other words, the ex-ante Pareto-

efficient outcome that gives the same expected utility to all members. Our focus on

“egalitarian” outcomes can be justified at this stage by the assumption that players

are ex-ante symmetric, but will receive further justification in the section on self-

enforcing rules, where we will show that egalitarian rules are easier to enforce than

non-egalitarian ones. For simplicity, in what follows we will simply speak of “first

best,” omitting the qualifier “symmetric.”

It is easy to characterize the first-best outcome in this model. Given our assump-

tions on payoffs, we can focus on two vectors of actions, the one where everyone takes

the action and the one where nobody does. We can then formulate the problem as

choosing a mapping from the state of the world θ to a collective action a ∈ {0, 1}.
Given that players are ex-ante identical, we can maximize the members’ aggregate

expected utility, that is

max
a(θ)

X
θ∈Θ

P (θ)a(θ)[N1(θ)(B − θL) + (N −N1(θ))(B − θH)]

where N1(θ) is the number of members that support the collective action.

Clearly, it is optimal to take the collective action in all the states where its

aggregate benefit, B ·N , exceeds its aggregate cost, N1(θ)θL+(N−N1(θ))θH . This

implies that it is efficient to take the collective action if and only if N1 exceeds the

quota q∗ ≡ d θH−BθH−θLNe, where dxe denotes the smallest integer greater than or equal
to x.
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Proposition 1 The first-best outcome is: ai = 1 for all i if N1 ≥ q∗, ai = 0 for all
i if N1 < q∗, where q∗ = d θH−BθH−θLNe.

Note that ex-ante efficiency generally requires some players to act against their

own interest ex-post. A simple two-player example can illustrate this point. Suppose

B = 1, θL = .5 and θH = 1.2. Then, from an ex-ante point of view, it is desirable

for both players to take the action whenever one of them would like to. To see

this, recall that maximizing the players’ common ex-ante utility is equivalent to

maximizing the sum of their utilities in each state. Consider a state in which the

players disagree, that is one player has cost .5 and the other has cost 1.2. If they both

take the action, the joint payoff is (1− .5) + (1− 1.2) = .3, whereas the alternative

is zero, therefore both should take the action.

2.2 One-Shot Game without Enforcement

Let us consider the basic game in which the organization members choose their

actions ai only once, and no external enforcement is available.

Since players have private information, it is compelling to allow for communica-

tion before actions are chosen. A natural way to introduce communication in this

context is to consider the following timing: after observing her type θi, each player

simultaneously sends a public message vi ∈ {θL, θH}; then players simultaneously
choose actions. We interpret vi = θL as a vote in support of collective action (a

“yes” vote), and vi = θH as a “no” vote.

A natural equilibrium notion for this kind of game is that of Perfect Bayesian

Equilibrium. The game admits multiple equilibria. We are interested in charac-

terizing the “best” equilibrium, i.e. the one that maximizes the players’ common

ex-ante utility, and the “worst” equilibrium, i.e., the one that gives players the low-

est ex-ante utility. The best equilibrium is interesting because it represents an upper

bound to what players can accomplish without the help of external enforcement or

reputation mechanisms. The worst equilibrium will be important as a punishment

when we analyze the repeated game.

The worst equilibrium is one in which messages are ignored and the status quo is

never changed: ai = 0 for all i regardless of the state. This is clearly an equilibrium:

knowing that no one takes action, it is individually optimal not to take action. It

is also clear that there can be no worse equilibrium than this, because it holds each

player at its maximin payoff, which is zero. We will refer to this as the “status-quo

equilibrium”.
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The best equilibrium is one in which each player votes sincerely (vi = θi) and

then takes action (ai = 1) if and only if all players have voted in favor of action.

This can be viewed as a “unanimity equilibrium”: players vote (sincerely), and

then the collective action is taken if and only if all players vote in favor. To see

that this is indeed an equilibrium, note that (i) no player has incentive to take

a different action, given the other players’ actions and given that all players have

reported truthfully, and (ii) no player has incentive to lie about his preferences,

given the subgame strategies. To see that there can be no better equilibrium, note

the following: to achieve a more efficient outcome, it would be necessary for some

player to play ai = 1 when θi = θH , but this can never be individually rational,

hence there would be an incentive to deviate. The following proposition summarizes

the worst and best equilibrium outcomes:

Proposition 2 The worst equilibrium of the one shot game is: ai = 0 in all states

( status quo equilibrium). The best equilibrium of the one shot game is: each mem-

ber i votes sincerely, and takes action if and only if all members have voted “yes”

(unanimity equilibrium).

The unanimity equilibrium is more efficient than the status-quo equilibrium, be-

cause it yields the status quo for N1 < N and a more efficient outcome for N1 = N ,

but in general it does not deliver the first-best outcome. It is important to empha-

size that no external enforcement is needed to sustain the unanimity equilibrium.

However, playing this equilibrium requires a certain amount of coordination, thus

we think of this equilibrium as capturing a simple form of organization.

2.3 One-Shot Game with Enforceable Voting

We now consider the benchmark scenario in which external enforcement is avail-

able, in the sense that any contract based on verifiable information can be directly

enforced.

Since the θi values are private information, hence not verifiable, the parties

cannot write a contract that is contingent on the realizations of θ. However, it is

not hard to show that the first-best outcome can be implemented with the following

voting rule: after uncertainty is realized, each player casts a vote vi ∈ {θL, θH},
and then all members participate in the collective action if and only if at least

q∗ = d θH−BθH−θLNe members have voted in favor. The key is to note that, given the
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proposed voting rule, each player has incentive to vote sincerely.8 Sincere voting

then immediately implies the claim. Note the role of external enforcement: if the

majority of the group votes in favor of the collective action, all the members that

disagree are forced to participate. Without external enforcement, the minority could

not be forced to go along with the majority. The following proposition summarizes:

Proposition 3 If external enforcement is available, the first-best outcome can be
implemented by a voting rule with quota q∗ = d θH−BθH−θLNe.

We emphasize that the optimal enforceable voting rule is independent of the

distribution over possible states, and in particular of the degree of correlation in the

members’ preferences. We also note that, if one disregards the integer constraint,

the relative quota q∗/N is independent of the organization size N . As we will argue

later, the degree of correlation and the size of the organization will play a more

critical role in the absence of external enforcement.

It is possible that the optimal enforceable voting rule is unanimity, that is q∗ =
N. This however is a rather special case, which obtains when B is close to θL. Thus,

if external enforcement is available, unanimity is typically dominated by some other

rule. We will argue in the next section that the parameter region where unanimity

is optimal expands dramatically when collective decisions must be self-enforcing. To

focus on the interesting case, we will assume henceforth that q∗ = d θH−BθH−θLNe < N.

Under some conditions, the optimal voting rule may be submajoritarian, that is

q∗ ≤ N/2. However, as the previous literature has pointed out, submajority rules

can create instability in the decision-making process.9 Since we think of a voting

rule as a long-term decision-making procedure that must deal with many different

issues, the nature of which is uncertain ex ante, it is reasonable to suppose that the

designers of the institution would want to avoid any potential instability problem,

and would therefore rule out submajority rules. This could be captured in the model

by imposing a feasibility constraint q > N/2 on the choice of voting rule. Our results

8 It is easy to see that voting sincerely is a weakly dominant strategy for each player. Non-sincere

voting equilibria exist, but these are characterized by weakly dominated strategies. For example,

given q∗ > 1 it is an equilibrium for everyone to vote “no” independently of θi, because in this case

the probability of being pivotal for each player is zero.
9Suppose for example that half of the members support the status quo (a = 0) and half of the

members support change (a = 1). A vote under a submajority rule will result in a = 1 being the

new status quo. But then the other half of the members would support a change back to a = 0.

This can potentially give rise to cycles back and forth between a = 0 and a = 1. See Barbera and

Jackson [4] for a more thorough discussion of the problems associated with submajority rules.
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would then change in the direction of predicting a simple majority rule when the

unconstrained optimum is a submajority rule. To keep the exposition lean, however,

we will simply assume q∗ = d θH−BθH−θLNe > N/2, rather than imposing this constraint.

In sum, we will assume throughout the paper that N/2 < q∗ < N , or, in words,

that the first-best voting rule is a majority rule.

3 Self-Enforcing Voting

We now consider the case that is most relevant for an international organization,

namely the case in which no external enforcement is available. In other words, the

organization members cannot commit to give up sovereignty. Under these circum-

stances, the only way to enforce cooperation is through repeated interaction. We

follow the tradition of the literature on self-enforcing agreements by casting the

problem in a repeated-game framework.

We now suppose that the game described in section 2.2 is repeated infinitely

many times, and introduce time subscripts in the notation. In each period, each

member privately observes the realization of θit ∈ {θL, θH}, then sends a public
message vit ∈ {θL, θH}, and then chooses an action ait ∈ {0, 1}. The distribution
of the vector θt (state of the world) is symmetric with respect to its N arguments

and is iid across periods. The assumption of symmetric and iid distribution is a

simple way of extending the notion of a veil of ignorance to a repeated game setting:

players do not know which side of a future issue they will be on, and today’s issue

is no indication of what future issues will be like.

All governments have discount factor δ. This parameter can be interpreted as

capturing the governments’ degree of stability as well as the frequency with which

decisions are made within the organization. Other things equal, δ will be higher if

governments are more stable and if issues come up more frequently.

A natural equilibrium notion for this type of game is that of Public Perfect

Equilibrium.10 The first observation is that we can focus on punishment strategies

that prescribe a permanent reversion to the status-quo equilibrium following any

deviation (trigger punishment). This is because (a) the status quo equilibrium

keeps the deviator at his maxmin payoff, and (b) since there will be no punishment

episodes on the equilibrium path, it is best to punish deviations most severely. A

theoretical limitation of trigger punishments is that they are not renegotiation-proof;

10See Fudenberg and Tirole [12] for a definition and a discussion of this equilibrium notion.
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we refer the reader to the concluding section for a discussion of this issue.

Having pinned down the behavior of players off the equilibrium path, we can now

turn to the equilibrium path. We restrict our attention to symmetric and stationary

equilibrium paths, where stationary means that votes and actions at time t can

depend only on the current state of the world θt. At the end of this section we will

discuss the motivations for these restrictions.

Given our restriction to symmetric and stationary equilibrium paths, it can be

shown that there is no loss of generality in focusing on strategies where players

behave according to a simple voting rule, and vote sincerely. More precisely, we can

focus on strategies with the following structure: (i) ait = 1 ∀i if V 1t ≥ q and ait = 0

∀i if V 1t < q, where V 1t = #{j : vjt = θL} and q is some integer in {1, 2, ..., N}; (ii)
vit = θit. This class of strategies is indexed by the voting rule q. We say that a voting

rule q is self-enforcing if it is part of an equilibrium strategy. Among the set of self-

enforcing voting rules, we look for the one that maximizes the players’ common

expected payoff (or the optimal one). The optimal self-enforcing voting rule is of

particular interest because it represents the upper bound to the efficiency that can

be achieved without the help of external enforcement. The following proposition

characterizes such voting rule.

Proposition 4 There exists a critical level δ ∈ (0, 1) such that the optimal self-
enforcing voting rule is q = q∗ for δ ≥ δ and q = N for δ < δ.

Proof. The key step is to write the no-defect conditions for a given voting rule

q. The only incentive to cheat that we need to consider is for a member i that is

supposed to take action when he prefers the status quo, i.e., when θit = θH and

V 1t ≥ q. The gain from cheating is θH −B, and the discounted loss from cheating is
δ
1−δU(q), where U(q) =

1
N

P
{θ:N1(θ)≥q} P (θ)[N

1(θ)(B−θL)+(N−N1(θ))(B−θH)] is
the one-period common expected utility given voting rule q. Clearly, the unanimity

rule q = N need not satisfy any constraint, thus the problem boils down to

maxq U(q)

s.t. θH −B ≤ δ
1−δU(q) if q < N

(2)

Note that, since the RHS of (2) is maximized for q = q∗, we can restrict attention to
two voting rules, q = q∗ and q = N . If q = q∗ satisfies (2), it is also the optimal self-
enforcing voting rule. If q = q∗ does not satisfy (2) then the optimal self-enforcing
voting rule is unanimity (q = N). Clearly, there is a critical level δ ∈ (0, 1) such
that q = q∗ satisfies (2) if and only if δ ≥ δ. The claim follows. QED.
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This result suggests that a majority rule is more likely to be adopted in orga-

nizations where governments are more patient or stable, and in organizations that

make decisions with higher frequency.

Notice the bang-bang nature of the result: it is never optimal to choose a majority

quota that is intermediate between the first best q∗ and unanimity. This is because
increasing q does not reduce the gain from defecting, unless it is increased all the

way to q = N , in which case defections are no longer an issue.

Next we want to discuss our restrictions on the set of equilibria. We start

from the restriction to stationary voting rules. In principle one could also consider

non-stationary rules where today’s rule depends on the way players have voted in

the past, but extending the analysis in this way is a very difficult task.11 From a

theoretical standpoint this is a limitation, however we are somewhat comforted by

the fact that we do not observe complicated history-dependent voting rules in real

international organizations.

We have also restricted our attention to decision-making rules that give the same

expected utility to all players, or “egalitarian” rules. We have ignored for example

“dictatorial” rules that give all the decision-making power to a single player. This

restriction seems natural given the assumption that players are ex-ante symmetric.

In addition to this, egalitarian rules are easier to sustain than non-egalitarian rules,

in the sense that they are self-enforcing for a wider range of discount factors. The

reason is simple. Suppose δ = δ, so that the egalitarian first-best rule q∗ is barely
sustainable, and consider moving to a non-egalitarian rule. Since the q∗ rule is ex-
ante Pareto efficient, this move must decrease the expected payoff for some member,

thus tightening this member’s incentive constraint. Since under the q∗ rule the
incentive constraint of each member was binding, under the non-egalitarian rule

some incentive constraint will be violated, therefore this rule is not self-enforcing.

The following remark records this result:

Remark 1 The egalitarian first-best rule q∗ is self-enforcing for a strictly wider
range of δ than any non-egalitarian rule.

11For example, one could think of a weighted voting scheme with history-dependent weights of

the following type: the players who vote “no” at time t receive a higher voting weight at time

t + 1, provided they do not cheat at the action stage. Another example is a system of storable

votes as proposed by Casella [8]. These schemes might conceivably diminish the high-cost players’

temptation to cheat. But note that they would introduce incentives to vote strategically (a low-

cost player would be tempted not to support the collective action), and for this reason the analysis

becomes very complicated.
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As an example, compare the q∗ rule with a dictatorial rule that gives all the
decision-making power to player 1. Suppose that the cost levels θi are independent

across players, and let pL = Pr(θi = θL). Then it is easy to verify that the dictatorial

rule gives each player i = 2, ..., N an expected utility of U i = (pL)2(B − θL) +

pL(1 − pL)(B − θH). If pL is sufficiently high or (θH − B)/(B − θL) is sufficiently

low, the dictatorial rule gives each member a positive expected utility, so that all

ex-ante participation constraints are satisfied. However, players i = 2, ...,N get

a lower expected utility than under the egalitarian first-best rule q∗, therefore ex
post they will have a stronger incentive to defect. Note that the problem is truly

one of enforcement: in the parameter region under consideration, non-egalitarian

rules satisfy all the ex-ante participation constraints, but violate the ex-post self-

enforcement constraints.

3.1 Correlation

A natural question is how the optimal self-enforcing voting rule is affected by the

correlation among members’ preferences. As we saw in section 2.1, the optimal

enforceable voting rule does not depend on the correlation among the preference

shocks θi. However, the range of discount factors for which the first-best rule q∗

is self-enforcing does depend on such correlation. Indeed, we can show that, under

mild assumptions on the probability distribution, the range of discount factors for

which q∗ is self-enforcing expands when the correlation among members’ preferences
is increased.

We continue to assume that the joint distribution P (θ1, ..., θN) is symmetric with

respect to its N arguments, and parametrize correlation in the following way. Let

N1
−i be the number of members in favor of action excluding member i. This is a

random variable with support {0, 1, ..., N − 1}. Let P ρ(N1
−i|θi) be the probability

distribution of N1
−i conditional on θi. The superscript ρ denotes a correlation pa-

rameter. A natural assumption is that ρ affects this conditional distribution in a

first-order stochastic way. Formally, if ρ0 > ρ
00
then

P ρ0(N1
−i|θi = θL) FSD P ρ

00
(N1
−i|θi = θL)

P ρ
00
(N1
−i|θi = θH) FSD P ρ0(N1

−i|θi = θH)
(3)

It is also natural to assume that ρ does not affect the marginal probability pL =

Pr(θi = θL). We take the extreme values of ρ to be ρ = 0 (independence) and

ρ = 1 (perfect correlation). However, to simplify the statement of the next result,
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we will ignore the extreme case ρ = 1 (for which any voting rule is equivalent to the

unanimity rule and is trivially self-enforcing), and will focus on the range ρ ∈ [0, 1).

Proposition 5 Higher correlation of preferences facilitates enforcement of the first-
best rule. In particular, there exist critical levels δ

0
and δ

00
, with 0 < δ0 < δ00 < 1,

such that:

(i) If δ ≤ δ0, the optimal self-enforcing rule is q = N for all ρ;

(ii) If δ0 < δ < δ00, the optimal self-enforcing rule is q = N for low values of ρ and

q = q∗ for high values of ρ;
(iii) If δ ≥ δ00, the optimal self-enforcing rule is q = q∗ for all ρ.

Proof. The one-period expected utility given q∗ can be written as

Uρ(q∗) = pLP ρ(N1
−i ≥ q∗−1|θi = θL)(B−θL)−(1−pL)P ρ(N1

−i ≥ q∗|θi = θH)(θH−B)

Assumption (3) implies that, as ρ increases, Uρ(q∗) increases. Define δ(ρ) to be the
(unique) value of δ that solves θH − B = δ

1−δU
ρ(q∗). Clearly, δ(ρ) is decreasing in

ρ. Let δ0 ≡ δ(1) and δ00 ≡ δ(0). For δ ≤ δ0, the q∗ rule is not incentive compatible
for any ρ ∈ [0, 1); for δ0 < δ < δ00, the q∗ rule is incentive compatible if and only if
ρ ≥ δ−1(δ), where δ−1(·) is the inverse function of δ(·); and for δ ≥ δ00, the q∗ rule
is incentive compatible for all ρ. The claim follows. QED.

Intuition might have suggested that a higher degree of correlation makes unanim-

ity more attractive relative to a majority rule. The analysis however points in the

opposite direction, and the reason is the following. As ρ increases, the value of the

q∗ rule relative to unanimity (as captured for example by the ratio Uρ(q∗)/Uρ(N))

may well decrease, but what matters for the optimal self-enforcing rule is only the

absolute value of the q∗ rule. When the members of an organization are more likely
to have the same preferences regarding future collective actions, the value of the

relationship is higher, therefore the cost of defecting is higher, and hence the orga-

nization is more likely to adopt the first-best rule.12

Thus the model broadly predicts that organizations whose members have more

homogenous preferences are more likely to be governed by majority rather than by

unanimity. We emphasize that this result is due specifically to the presence of a self-

enforcement constraint, since the optimal enforceable voting rule q∗ is independent
of the degree of correlation.
12 In the extreme case of perfect correlation, of course, the q∗ rule and the unanimity rule are

equivalent, so the problem is not interesting.

16



3.2 Sensitive vs. Technical Issues

Thus far we have assumed that all the issues faced by the organization are character-

ized by similar stakes. Formally, we have assumed that the possible cost realizations

(θL, θH) and the benefit B are the same for all issues. Suppose now that there

are two types of issue: (i) high-stake (or sensitive) issues, and (ii) low-stake (or

technical) issues. Let (θ1L, θ
1
H) and (θ

2
L, θ

2
H) denote the possible cost realizations

respectively for sensitive and technical issues, and assume for simplicity that the

benefit B is the same for all issues. A sensitive issue is one that players feel more

strongly about, so we posit θ1H > θ2H and θ1L < θ2L.
13

Intuitively, under a majority system, the incentive to defect by high-cost mem-

bers is stronger for sensitive issues than for technical ones. This suggests that under

some conditions the optimal self-enforcing governance system should be one in which

sensitive issues are decided by unanimity and technical issues by majority. In what

follows we examine this intuition more rigorously.

We assume that sensitive and technical issues come up randomly over time.

Formally, we assume that in each period the cost vector θt is drawn from one of

two distributions: with probability p1 it is drawn from a distribution P1(θ), which

has support {θ1L, θ1H}N and is symmetric with respect to its N arguments; and with

probability 1−p1 it is drawn from a distribution P2(θ), which has support {θ2L, θ2H}N
and is also symmetric with respect to its N arguments. We continue to assume that

θt is iid across periods.

The individual cost realizations are private information, but the nature of the

issue (sensitive or technical) is common knowledge, thus the voting rule can be

conditioned on the nature of the issue. To focus on the interesting case, we assume

that the first-best voting rule is a majority rule for both types of issue: N/2 < q∗j <

N for j = 1, 2, where q∗j = d θ
j
H−B

θjH−θjL
Ne. All other assumptions of the model are

unchanged.

We consider decision-making systems where sensitive issues are decided by a

voting rule q1 and technical issues are decided by a (possibly different) voting rule

q2. We look for the pair (q1, q2) that maximizes the common expected utility subject

to the relevant incentive constraints. We can write the common one-period expected

13The second inequality will actually not matter for the result, so we could alternatively define a

sensitive issue simply as one for which θH is higher.
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utility given (q1, q2) as

U(q1, q2) ≡ p1U1(q1) + (1− p1)U2(q2)

where Uj(qj) is the common one-period expected utility if the issue is of type j.

The gain from defecting for a high-cost type, given an issue of type j, is θjH − B,

therefore we can write the problem as follows

maxq1,q2 U(q1, q2)

s.t. θjH −B ≤ δ
1−δU(q1, q2) if qj < N, j = 1, 2

(4)

Note that the RHS of the incentive constraint is identical across issues, whereas the

LHS is higher for sensitive issues. This implies, using the logic of Proposition 4,

that there exists an intermediate interval of δ such that the optimal pair of rules is

(N, q∗2). The following proposition records this result:

Proposition 6 If issues can be of two types, high-stake and low-stake, there is an
intermediate interval of δ for which the optimal self-enforcing rule is a majority rule

for low-stake issues and unanimity for high-stake issues.

We emphasize that this result is driven by the presence of a self-enforcement

constraint. Under perfect enforceability, both types of issue would be governed by

the first-best majority rule q∗j . In fact, it is possible that under perfect enforceability
the optimal majority quota is higher for technical issues than for sensitive issues

(q∗1 < q∗2), and introducing the self-enforcement constraint reverses this ranking.
This result suggests that enforcement considerations may contribute to explain

why, in some international organizations, some issues are decided by unanimity and

some others by majority rule. In the EU, for example, most issues are decided by

(simple or qualified) majority rule, but a number of sensitive issues are decided by

unanimity rule, for example issues of foreign policy, security policy, agreements with

external countries and accession of new members.

In the remainder of the paper we will go back to the assumption that there is

only one type of issue.

3.3 International Transfers

Thus far we have implicitly assumed that transfers are not available. This assump-

tion is realistic in some settings but not in others. For example, in the European

Union there has been an increasing use of monetary transfers over time, while in
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the WTO transfers have hardly ever been used. Suppose now that such transfers

are possible, and that they enter utility additively. Transfers may help sustain the

first-best outcome: if the majority wants to take the collective action and is will-

ing to compensate the minority, the minority might be convinced to participate.

However, the use of transfers is subject to two limitations. First, transfers have

to be self-enforcing, just as the decision to participate in the collective action: in

other words, a member may refuse to pay. Second, players will have an incentive to

vote strategically: a member who favors war may be tempted to vote against the

collective action, hoping to get compensation.

A complete characterization of the optimal self-enforcing mechanism for all val-

ues of δ when transfers are available is a very difficult task, but we will show the

following two results: (i) transfers help sustain the first-best outcome, in the sense

of expanding the range of discount factors for which the first-best majority rule

is sustainable, but (ii) for sufficiently low values of the discount factor, unanimity

remains the best possible governance mode.

Consider the following timing for the stage game. After players observe their θi

values, they vote. If the number of votes in favor of the collective action exceeds the

quota q, the collective action is taken. Then each minority member gets a transfer.14

Of course, the cost of transfers must be financed by the majority members. One

can show that there is no loss of generality in assuming that the transfer is equal for

all minority members, and the cost is split evenly among the majority members.15

Note that the transfer can depend on the number of votes in favor of action, V 1.

For this reason, we will speak of a “transfer scheme,” and denote t(V 1) the transfer

received by each minority member. Observe right away that budget balance implies

that each majority member must contribute an amount (N−V
1)t(V 1)
V 1 . Also note that,

since t(V 1) is balanced and utility is transferable, the members’ common expected

utility associated with a pair (q, t(·)) is simply U(q).
We first show that there exists a transfer scheme such that q∗ can be sustained for

a wider range of δ than in the absence of transfers, unless preferences are perfectly

correlated. Let δ be the minimum level of δ such that the first-best rule q∗ can
14 In principle one could consider the alternative sequence in which transfers are made before the

collective action is taken. However in this case transfers cannot help, because a member of the

minority will face the same temptation to cheat as in the absence of transfers.
15This is because, starting from an uneven transfer scheme, we can always redistribute from the

one that receives (pays) the most (least) to the one that receives (pays) the least (most) and still

satisfy all incentive constraints.
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be sustained in equilibrium in the game without transfers. We will construct an

equilibrium which entails the first-best rule q∗ for δ = δ − ε, where ε > 0 is a small

number. Consider a simple trigger punishment strategy whereby the organization

reverts to the worst one-shot equilibrium if anyone refuses to participate in the

collective action or to make a required transfer. The punishment is conditional only

on past actions and transfers, not on past votes. Then a pair (q, t(·)) is part of an
equilibrium if it satisfies the following incentive constraints:

max
V 1≥q

¡
θH −B − t(V 1)

¢ ≤ δ

1− δ
U(q) (5)

max
V 1≥q

µ
(N − V 1)t(V 1)

V 1

¶
≤ δ

1− δ
U(q) (6)

NX
k=q+1

µ
t(k − 1) + (N − k)t(k)

k

¶
Pr(N1 = k|θi = θL)−(B−θL) Pr(N1 = q|θi = θL) ≤ 0

(7)

The first constraint requires that a member who is against action have incentive to

participate: the one-time gain from cheating is θH − B − t(V 1), and the loss from

cheating is the future value of cooperation, δ
1−δU(q). The second condition requires

that a member who is in favor of action have incentive to contribute to the cost of

transfers. The gain from cheating here is given by the contribution, (N−V
1)t(V 1)
V 1 , and

the loss from cheating is again the future value of cooperation. The third constraint

requires that a member who is in favor of action have incentive to vote sincerely. By

voting strategically, this member gains t(V 1− 1)+ (N−V 1)t(V 1)
V 1 (he gets the transfer

and avoids the contribution) in the event that he is not pivotal, that is when N1 > q;

and loses (B − θL) in the event that he is pivotal, that is when N1 = q.

Notice that, if δ = δ, the pair (q, t(·)) = (q∗, 0) satisfies (5) with equality and the
other two constraints with slack, provided Pr(N1 = q∗|θi = θL) > 0. This condition

is generically satisfied, except if preferences are perfectly correlated. Now consider

a small constant transfer t. For t small enough, (q∗, t) satisfies all three constraints
with slack if δ = δ. But this implies that (q∗, t) satisfies the three constraints also if
δ is slightly lower than δ. This proves our first claim.

Our second claim is that, for sufficiently low values of δ, unanimity is the best

possible governance mode. To see this, note that a necessary condition for a pair

(q, t(·)) with q < N to be part of a PPE is that it satisfy constraints (5) and (6).
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Constraint (5) implies

min
V 1≥q

t(V 1) ≥ θH −B − δ

1− δ
U(q) (8)

This means that given a small value of δ, the transfer must be strictly positive

for any V 1 ≥ q. Upon inspection of (6), however, it is easy to see that if δ = 0,

maxV 1≥q t(V 1) ≤ 0. Therefore it is impossible to satisfy both (5) and (6) when δ

goes to zero. It follows that unanimity is the only sustainable outcome.

The following proposition summarizes the main insight of this section:

Proposition 7 The availability of transfers expands the range of δ for which the
first-best rule q∗ is sustainable, but for low enough values of δ unanimity remains
the optimal self-enforcing rule.

Broadly interpreted, this result suggests that an organization is more likely to

be governed by majority rather than unanimity if it has the flexibility to make pure

transfers between its members.

4 Endogenous organization size

In this section we examine how the mode of governance evolves over time when the

organization has opportunities to expand.

We think of the expansion of the organization as endogenous, in the following

sense. The initial membership, N0, is exogenously given. In each period t ≥ 1, a
random number zt ≥ 0 of new countries become candidates for membership. These
may be countries that for some reason become interested in joining the organization

at time t, or countries that become eligible for membership at time t as they meet

requirements such as a good human rights record, or a democratic system. We

assume that zt is iid across periods.

Current and potential members are all ex-ante identical. We assume that, if a

candidate is rejected at t, it is eligible again at t+ 1 (thus if the organization keeps

rejecting applicants, the pool of applicants keeps getting larger). This is a natural

assumption given that candidates are all ex-ante symmetric, so that there is no point

in selecting among candidates. Letting Zt ≡ N0 +
Pt

τ=1 zτ , the admission decision

by the Nt−1 current members boils down to choosing a number Nt ≤ Zt. We allow

the organization to reduce its size, that is Nt can be lower than Nt−1; however this
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will never happen in equilibrium, therefore for simplicity we will always talk about

admission decisions.

In this setting it is convenient to define the cost vector θt = {θit}∞i=1 as including
all potential members. We assume that θt is iid across periods. Also, in line with

the assumption that all current and potential members are ex-ante symmetric, we

assume that the distribution of θt is symmetric with respect to its components θit.

At the beginning of each period, zt is realized, then current members decide how

many of the candidates (if any) to admit. Then the state θt is realized, and the

organization votes on the “issue of the day.” Since admissions take place before θt is

realized, the current members’ preferences on admissions are homogeneous, so the

admission decision is made to maximize the current members’ common expected

utility.

We allow the benefit from collective action to depend on N , and denote it

B(N).16 Consistently with the analysis in the previous sections, we assume (i)

θL < B(N) < θH for all N ; this ensures that the collective action problem is in-

teresting for all N ; and (ii) N
2 < dθH−B(N)θH−θL Ne < N for all N ; that is, the first-best

voting rule (conditional on N) is a majority rule. We abstract from the possibility

of transfers in this section.

Let U(q,N) be the expected utility given voting rule q and organization size N ,

and let Û(N) ≡ maxq U(q,N). To rule out ties that would make the analysis more
complicated, we assume the following genericity condition: Û(N) 6= U(N 0,N 0) for
all N and N 0.

As in the case of fixed organization size, we can assume without loss of generality

that any deviation from the equilibrium path is followed by a trigger punishment

(permanent reversion to the status-quo equilibrium). We focus on equilibrium paths

where the voting rule q and the organization size N depend only on the current value

of the state variable Zt. Given this restriction, we look for the optimal equilibrium

path, that is the pair of functions (q(Zt), N(Zt)) that maximizes the members’

common expected utility. This is given by the solution to the following constrained

maximization problem:

max
q(Zt),N(Zt)

∞X
t=1

δt−1E[U(q(Zt), N(Zt))|Z1] (9)

16We could allow also the cost parameters θL and θH to depend on N , but this would make the

analysis more cumbersome without adding much to the qualitative insights.
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subject to

θH−B(N(Zt)) ≤
∞X
τ=1

δτE[U(q(Zt+τ ), N(Zt+τ ))|Zt] for all Zt such that q(Zt) < N(Zt)

(10)

N(Zt) ≤ Zt for all Zt (11)

where the expectation E is taken with respect to future values of Zt. Condition (10)

is the incentive constraint at time t; it requires that a high-cost type be willing to

participate in the collective action, given the expected future path of q and N . As

in the case of constant N , the unanimity rule (q = N) need not satisfy any incentive

constraint.

We have the following result:

Proposition 8 There exist critical levels δl and δh, with 0 < δl ≤ δh < 1, such

that:

(I) For δ < δl, the optimal self-enforcing voting rule is unanimity for all t;

(II) For δl ≤ δ < δh, the optimal self-enforcing voting rule is unanimity up to some

(random) date t̂ and then switches to a majority rule;

(III) For δ ≥ δh, the optimal self-enforcing voting rule is a majority rule for all t.

Proof. See Appendix.

Parts (I) and (III) of this proposition are quite intuitive, given the result of

proposition 4. Part (II) is more subtle. The key aspect of this result is that it

can never be optimal to switch from majority to unanimity, hence if there is any

regime switch it must be from unanimity to majority. The broad intuition for

this result is the following. The arrival of new candidates over time enlarges the

organization’s opportunity set (since candidates can be rejected), therefore the value

of the organization cannot decrease over time, and hence the right hand side of

the incentive constraint cannot decrease over time. If B(N) is increasing, the left

hand side of the incentive constraint (θH −B(N)) is decreasing in N , therefore the

incentive constraint can never get tighter over time, and the result follows right

away. If B(N) is decreasing, on the other hand, the key observation is that the

unanimity payoff U(N,N) is decreasing in N .17 This implies that it cannot be

optimal to switch from majority to unanimity at the same time as new members

17Recall that U(N,N) = (B(N)− θL)Pr(θ
1 = θ2 = ... = θN = θL) and note that Pr(θ1 = θ2 =

... = θN = θL) is nonincreasing in N .
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are admitted, because this is dominated by switching rule and keeping N constant.

But if N does not change, there is no reason to switch from majority to unanimity.

We emphasize that this result relies crucially on the presence of a self-enforcement

constraint. In a world of enforceable voting, the majority quota would not neces-

sarily go down as the organization expands: the optimal voting rule would always

be q∗, which may increase or decrease with N .

The proposition does not ensure that there exist values of δ for which a regime

switch occurs, because it may be δl = δh. When is δl < δh? This inequality will

be satisfied if B(N) is sufficiently increasing in the relevant range (more precisely,

when B(N) − B(N0) is sufficiently large for some N > N0). Intuitively, when this

is the case, new candidates will be admitted, and as the organization expands the

incentive constraint gets relaxed, because the gain from cheating decreases and the

value of the organization increases. Then there will be intermediate values of δ for

which the first-best rule is initially not sustainable but it becomes sustainable later

on.

At the outset of the paper we highlighted that some international organizations,

such as the European Union and the International Standards Organization, have

moved over time from unanimity to some type of majority rule. It is hard to think,

on the other hand, of organizations that have experienced the reverse switch, that

is from majority to unanimity. Our model offers a theoretical explanation for this

“stylized fact”.

The previous result focuses on the evolution of the voting rule. Does the model

have anything to say about the evolution of the organization size N? The path of

N in general can take many different forms, but if we are willing to impose more

structure on the problem we get interesting predictions on the steady-state level of

N .

The steady-state level of N depends on the discount factor δ. If δ is relatively

low, so that the organization is governed by unanimity, the steady-state size is

given by the level of N that maximizes expected utility conditional on unanimity, or

Ñ = argmaxN U(N,N).If δ is relatively high, so that the organization is governed

by the first-best rule, the steady-state size is given by the first-best level of N, or

N̂ = argmaxN Û(N). Intuitively, Ñ should be lower than N̂, because unanimity

tends to work better in smaller organizations. We can confirm this intuition if we

make two additional assumptions: first, θit is independent across members and has

a symmetric distribution; and second, B is nondecreasing in N. We were not able
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to dispense with these assumptions, but we conjecture that this result holds under

fairly general conditions.

Proposition 9 Suppose that θit is i.i.d. with respect to i and t, with Pr
¡
θit = θL

¢
=

Pr
¡
θit = θH

¢
, and that B(·) is nondecreasing. Then the steady-state level of N is

(weakly) increasing in δ.

Proof. See Appendix.

Thus the model predicts that organizations whose members discount the future

less heavily tend to be larger. Furthermore, Proposition 9 implies a prediction about

the co-variation of the organization size and the mode of governance. Consider a

world where organizations are heterogenous with respect to the discount factor: in

such a world, according to the model, organizations governed by unanimity tend

to be smaller than organizations governed by majority. Notice that the result of

Proposition 8, which is a “time-series” statement about a given organization, goes

in a similar direction: if δ is in the range (δl, δh), an organization is governed by

unanimity in the early stages of its expansion process (hence when it is smaller),

and it is governed by majority in the later stages of its expansion process (hence

when it is larger). Again, this suggests that organizations governed by unanimity

should tend to be smaller.

5 Impure collective action

In this section we consider situations where the collective action may be effective

even if not all members participate. We speak in this case of “impure collective

action”. We will revisit the results of the model, focusing first on the case of fixed

membership size N , and then on the case of endogenous N .

Formally, let B(n,N) denote the benefit accruing to an individual member if n

members out ofN take action. Assume B(n,N) is increasing in n, with B(0, N) = 0.

Also assume that nB(n,N) is weakly convex in n. This is a relatively mild condition,

which is satisfied for example if B has constant elasticity in n (i.e., B(n,N) =

h(N)ng(N) for arbitrary nonnegative functions h, g). We do not need to impose any

restrictions on how B depends on N .

We assume that member i has the following utility function:

U i(ai, n, θi) = ai
¡
B(n,N)− θi

¢
(12)
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All other assumptions of the model are unchanged. Note the implicit assump-

tion that the benefits from the collective action are excludable: the members who

do not participate receive no benefit from collective action. There are some situ-

ations in which this assumption is realistic: for example, when the EU decided to

adopt a common currency, the United Kingdom chose not to participate, and it

arguably did not share in the benefits from the venture. But the primary reason for

this assumption is theoretical. Our model focuses on a simple type of cooperation

problem, where there is an ex-post incentive to defect for high-cost members. If the

benefits of collective action are non-excludable, an additional cooperation problem is

introduced, that is a temptation to free ride even by low-cost types, that is members

who favor collective action ex-post. Furthermore, this could potentially introduce

incentives to vote strategically. While this might be an interesting direction for fu-

ture extensions, here we prefer to shut down this additional free-rider problem. We

also note that our results will remain unchanged if some of the benefits spill over to

non-participants, as long as this spillover is not too large; or if the benefits are fully

non-excludable but the cost of action is relatively small.18

We present our results through a series of remarks, which are all proved in

Appendix. Let us start by looking at the one-shot game without enforcement. Let

nmin denote the first integer n such that B(n,N) ≥ θL, and V 1 the number of “yes”

votes.

Remark 2 The worst equilibrium of the one-shot game is the status-quo equilibrium
(ai = 0 in all states). The best equilibrium of the one-shot game is the following:

all members vote sincerely; then, if V 1 < nmin, no one takes action; if V 1 ≥ nmin,

the members who have voted “yes” take action.

Note that, if nmin = N , this equilibrium coincides with the “unanimity” equilib-

rium that we found in the case of pure collective action. More generally, action is

taken by a “coalition of the willing.” The only difference between this equilibrium

and the simple unanimity equilibrium is that the minimum efficient size for the

coalition of the willing (nmin) may be lower than N . For this reason we feel justified

in interpreting this as a modified unanimity equilibrium.

18To see this latter point, note that a collective action problem with fully non-excludable benefits

can be captured by the utility function U = B(n,N)− aiθi. If θL is small enough, a low-cost type

internalizes enough of the benefits that she will not have incentive to free-ride on other low-cost

types.
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Next we suppose that external enforcement is available, and characterize the

first-best voting rule.

Remark 3 If external enforcement is available, the first-best outcome can be im-
plemented by a voting rule with the following structure: if V 1 < q1, no one takes

action; if q1 ≤ V 1 < q2, the members who have voted “yes” take action; if V 1 ≥ q2,

all members must take action (where 1 ≤ q1 ≤ q2 ≤ N).

This rule is similar to the first-best rule in the case of pure collective action,

except that there may be an intermediate interval of V 1 for which action is taken

only by a coalition of the willing. Note that the intermediate interval of V 1 may be

empty (q1 = q2), in which case the optimal mechanism is the same as in the case of

pure collective action.

Next we consider self-enforcing voting rules. The question is to what extent

proposition 4 is robust to situations of impure collective action. We have the fol-

lowing result.

Remark 4 There exists a critical level δ̂ such that: (i) for δ ≥ δ̂, the optimal

self-enforcing voting rule is the first-best rule described in remark 3; (ii) for δ < δ̂,

the optimal self-enforcing voting rule is the “modified unanimity” rule described in

remark 2.

This is a generalization of the bang-bang result that we obtained in the case

of pure collective action. If δ is relatively high, the first-best voting rule can be

sustained, but if δ is relatively low, the most that can be achieved is the best

equilibrium of the one-shot game. The only difference with respect to the case of

pure collective action is that, both in the first-best voting rule and in the modified-

unanimity rule, action may be taken by a “coalition of the willing” for certain

realizations of the state of the world θ.

Finally, we reconsider the case of endogenous organization size under the new

assumption of impure collective action. A similar result as proposition 8 holds:

Remark 5 Consider the model with endogenous size as in section 4, except that
the assumption of “pure” collective action is replaced by that of “impure” collective

action. Then the optimal self-enforcing rule is the modified-unanimity rule for t < t̂

and the first-best rule for t ≥ t̂ (where t̂ may be zero or infinity, in which case the

rule never changes).
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Intuitively, the same force that drives the result in the case of pure collective

action is operating here: as the organization enjoys increasing opportunities to ex-

pand over time, the value of the organization can only grow, and hence sustaining

the first-best voting rule can only get easier over time.

6 Concluding Remarks

In this paper we have argued that taking self-enforcement considerations into ac-

count can radically change the conclusions of our models on optimal voting systems.

Analyzing self-enforcing voting systems is not just an abstract theoretical exercise,

but it can help us understand important features of reality. In the world of interna-

tional organizations there is a wide variation in the mode of governance, both across

organizations and over time. Standard enforceable-voting models are not very ef-

fective in explaining this variation, and in particular the frequent occurrence of the

unanimity system. We have proposed a simple model of self-enforcing voting that

delivers interesting predictions on the occurrence of unanimity vs. majority systems,

and can contribute to explain the observed variation in the mode of governance.

In this final section we discuss the robustness of our results along two dimensions:

first, we consider the issue of renegotiation-proof punishments; second, we discuss

the implications of ex-ante asymmetries among countries.

We have focused on equilibria where deviations are punished with a permanent

reversion to the status-quo equilibrium. This type of punishment suffers from a

problem of collective credibility: once the game is in the punishment phase, there

is a strong incentive for players to collectively reconsider the plan of action. We

do not have a complete analysis of renegotiation-proof equilibria. However, we

have in mind a simple alternative punishment strategy that is much more robust to

renegotiation than the trigger punishment we considered in the previous sections:

a player that deviates could be expelled from the organization. This punishment

would give the deviator her maximin payoff, which is the same as under a trigger

punishment, and hence the incentive constraints would be exactly the same as under

a trigger punishment. At the same time, the remaining N − 1 players would suffer
only a modest reduction of utility relative to the equilibrium path, so the incentives

to renegotiate in the punishment phase would be limited. Also note that, if N

is endogenous and the organization is at steady state, then punishing a deviator

with expulsion has a second-order impact on the utility of the remaining members,
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because N is at the level that maximizes the expected payoff of the representative

member.

The reason we did not work directly with expulsion punishments is that this

would require expanding the strategy space in a way that makes the expulsion of

a member a meaningful strategy. One way of doing this would be to assume that,

for the organization to be effective, each member must be connected with all other

members (e.g., it must have an active communication line). At the beginning of

each period, each member has the option of cutting the communication line with

one or more other members. If a member is disconnected from all others, it cannot

participate in the collective action, and is effectively “expelled”. In this extended

game, after a player has deviated, it is an equilibrium for the players who have not

deviated to cut the connection with the deviator and continue cooperating among

themselves. Rather than expanding the game in this fashion and make the notation

more complicated, we opted to keep the more basic version of the game and work

with the simpler trigger punishment.

In this paper we have assumed that the organization members design the institu-

tion under a veil of ignorance. We believe that in some environments this assumption

is not unreasonable. Even if members are asymmetric at the stage in which they

negotiate the rules of the organization, this asymmetry will play a negligible role

if it is difficult to predict the exact nature of the issues that the organization will

face in the future, so that it is difficult to predict what the relevant payoff functions

will be. In this type of environment, the veil-of-ignorance assumption is a reason-

able approximation. In other environments, it may be more reasonable to assume

that members have asymmetric payoff functions at the institution-design stage and

present asymmetries are powerful predictors of future asymmetries for the issues to

come, in which case one needs to depart from the veil-of-ignorance setting.

One simple way of capturing ex-ante asymmetries of this kind would be to sup-

pose that countries have (persistently) different status quo utilities. This would also

be a way of capturing asymmetries of “power” within an organization: countries

with a higher status quo utility are more powerful in the sense that they have less

to lose from a break-up of the organization. Extending the analysis to this type of

setting is a complex task that is outside the scope of this paper, but our initial intu-

ition is that some interesting new results would arise, without upsetting the general

insights developed in this paper. A key implication of the presence of power asym-

metries would be that the self-enforcement constraint is more stringent for countries
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with higher status quo utility, because they cannot be punished as severely as the

weaker countries. This suggests that, for intermediate values of the discount factor,

the optimal self-enforcing voting system would give veto power to the more powerful

members. The main difference with respect to the case of ex-ante symmetric coun-

tries therefore would be that under some conditions the best way to cope with the

self-enforcement problem is to grant veto power to a subset of members, whereas

under ex-ante symmetry veto power is either granted to all members (unanimity)

or to none of them.
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7 Appendix

Proof of Proposition 8:

We start by proving the following

Lemma 1 Let (qo(Zt),N
o(Zt)) denote the optimal plan: (i) The value function

V (Zt) =
P∞

τ=0 δ
τE[U(qo(Zt+τ ),N

o(Zt+τ ))|Zt] is nondecreasing in Zt; (ii) The in-

stantaneous payoff U(qo(Zt),N
o(Zt)) is nondecreasing in Zt. (iii) The continuation

value
P∞

τ=1 δ
τE[U(qo(Zt+τ ),N

o(Zt+τ ))|Zt] is nondecreasing in Zt.

Proof :

(i) We can write

V (Zt) =
∞X
τ=0

δτ
Z

U(qo(Zt+τ ), N
o(Zt+τ ))dF (Zt+τ |Zt)

=
∞X
τ=0

δτ
Z

U(qo(Zt +∆t,τ ), N
o(Zt +∆t,τ ))dF (∆t,τ |Zt)

where ∆t,τ = Zt+τ −Zt and F (∆t,τ |Zt) is the c.d.f. of ∆t,τ conditional on Zt. Note

that, given the iid assumption, F (∆t,τ |Zt) is independent of Zt.

Now suppose Zt is increased to Z 0t = Zt +∆, with ∆ a positive number. Given

this change, the new (random) value of Zt+τ is Z 0t+τ = Z 0t +∆t,τ = Zt +∆+∆t,τ .

We need to show that V (Zt +∆) ≥ V (Zt). We do this by displaying a feasible

contingency plan that, when starting from state Z 0t = Zt +∆, attains value V (Zt).

Consider the following plan: (q0(Z 0t+τ ), N 0(Z 0t+τ )) = (qo(Z 0t+τ−∆), No(Z 0t+τ−∆)) =
(qo(Zt+∆t,τ ), N

o(Zt+∆t,τ )). In words, we are “ignoring” the increment ∆, so this

plan yields the same path for q and N starting from Zt+∆ as did the original plan

starting from Zt, for any realization of {∆t,τ}∞τ=1. Clearly, this plan still satisfies
(11). The value of the objective with this plan is

∞X
τ=0

δτ
Z

U(qo(Zt +∆t,τ ), N
o(Zt +∆t,τ ))dF (∆t,τ |Zt +∆)

Since F (∆t,τ |Zt + ∆) = F (∆t,τ |Zt), this value is equal to V (Zt). It remains to

argue that the proposed plan is incentive compatible at all dates. This follows

from the facts that (i) the original plan (qo(·), No(·)) is incentive compatible at all
dates, and (ii) by the iid assumption, ∆ does not affect the distribution of the

future increments ∆t,τ , τ = 1,...,∞, therefore for all s ≥ t the continuation value
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P∞
τ=1 δ

τEs[U(q
o(Zs+τ ), N

o(Zs+τ ))] is independent of ∆. We can conclude that ∆

does not affect either the LHS or the RHS of the incentive constraint at any s ≥ t.

(ii) Suppose by contradiction that there exist Zt−1 and Zt such that U(qo(Zt−1), No(Zt−1)) >
U(qo(Zt),N

o(Zt)). Now consider an alternative plan (q0(·), N 0(·)) that is identical
to (qo(·),No(·)) except that (q0(Zt), N

0(Zt)) = (qo(Zt−1), No(Zt−1)). This strictly
increases the instantaneous payoff at Zt, and hence the overall value V (Z0). The

new plan clearly satisfies (11). Since the current payoff at t is being increased, all

incentive constraints for previous dates are still satisfied. We only need to argue

that the incentive constraint at t is still satisfied. If qo(Zt−1) = No(Zt−1) (unanim-
ity) this is obvious. Focus then on the case qo(Zt−1) < No(Zt−1) and suppose the
incentive constraint at t is not satisfied. Then, since the original plan is incentive

compatible at t− 1, it must be that the continuation value for the new plan at t is
lower than the continuation value for the original plan at t− 1:
∞X
τ=1

δτE
£
U(q0(Zt+τ ), N

0(Zt+τ ))|Zt

¤
=

∞X
τ=1

δτE [U(qo(Zt+τ ), N
o(Zt+τ ))|Zt]

<
∞X
τ=1

δτE [U(qo(Zt+τ−1), No(Zt+τ−1))|Zt−1]

Since (q0(Zt), N
0(Zt)) = (q

o(Zt−1), No(Zt−1)), this in turn implies

∞X
τ=0

δτE [U(qo(Zt+τ ), N
o(Zt+τ ))|Zt] <

∞X
τ=0

δτE [U(qo(Zt+τ−1), No(Zt+τ−1))|Zt−1]

which is impossible given part (i) of this lemma. We can conclude that plan

(q0(·), N 0(·)) is incentive compatible, and hence it dominates plan (qo(·), No(·)). But
this contradicts the optimality of (qo(·),No(·)).

(iii) Given the iid assumption, increasing Zt shifts the conditional distribution of

Zt+τ in a first-order stochastic sense for all τ , that is, FZt+τ |Zt=Z0 FSD FZt+τ |Zt=Z
if and only if Z 0 ≥ Z. This, together with the fact that U(qo(Zt), N

o(Zt)) is nonde-

creasing in Zt (part (ii) of this lemma), implies the claim. QED.

We turn now to the proof of the proposition. The first remark is that we can

focus without loss of generality on two voting rules: unanimity, that is q = N , and

the first-best rule conditional on N , that is q∗(N) = dθH−B(N)θH−θL Ne. This is because
(a) if any q < N is sustainable at a given date, so is q∗(N) at that date; and (b) if
q∗(N) is incentive compatible at a given date then it is also optimal at that date.

32



The proof will proceed in five steps. We will show that: (i) for δ sufficiently low,

q(Zt) = N(Zt) for all Zt at an optimum; (ii) for δ sufficiently high, q(Zt) = q∗(N(Zt))

for all Zt at an optimum; (iii) if for δ = δ0 the optimum entails q(Zt) = N(Zt) for

all Zt, then the same is true for all δ < δ0; (iv) if for δ = δ00 the optimum entails

q(Zt) = q∗(N(Zt)) for all Zt, then the same is true for all δ > δ00; (v) it is never
optimal to switch from a majority rule to unanimity at any point in time. The claim

will then follow.

(i) If δ is sufficiently close to zero, any rule other than unanimity violates (10),

therefore permanent unanimity is the only feasible solution. This is ensured because

B(N) is bounded, hence U is bounded.

(ii) Consider the solution of the problem without constraint (10). Clearly, this

plan entails q(Zt) = q∗(N(Zt)) for all Zt. If δ is sufficiently close to one, (10) is not

binding at this plan, hence this is also the solution of the constrained problem. We

can conclude that the optimal voting rule is q(Zt) = q∗(N(Zt)) for all Zt.

(iii) Let us denote a contingency plan by S(Zt) = (q(Zt), N(Zt)) and the associ-

ated utility by eU(S(Zt)) = U(q(Zt),N(Zt)). Let us call SU (Zt) = (N
U (Zt), N

U(Zt))

the optimal plan for δ = δ0. Suppose by contradiction that there is some δ00 < δ0

such that the optimal plan — call it Sm(Zt) — entails majority for some Z0t . Because

SU (Zt) is feasible for all δ, we must have eU(Sm(Zt)) ≥ eU(SU (Zt)) for all Zt, with

strict inequality for Zt = Z0t from our genericity condition. But if Sm(.) is feasible

for δ = δ00, it remains feasible for δ = δ0 > δ00, a contradiction with SU (.) being

optimal for δ = δ0.
(iv) Suppose by contradiction that for δ = δ00 the optimal plan SM(Zt) entails

a majority rule for all Zt, and for some δ0 > δ00 the optimal plan Su(Zt) entails

unanimity for some Z0t . This implies eU(SM(Z0t )) > eU(Su(Z0t )), for otherwise we

could improve on SM(Zt) by replacing SM(Z0t ) with Su(Z0t ); this would be feasible

and would improve the value of the objective. We will now show that Su(Zt) cannot

be optimal for δ = δ0. Consider an alternative plan S
0
(.) such that S

0
(Zt) = Su(Zt)

for all Zt 6= Z0t and S
0
(Z0t ) = SM(Z0t ). Clearly, if

P∞
τ=1 δ

0τE
heU(Su(Zt+τ ))|Z0t

i
≥P∞

τ=1 δ
0τE

heU(SM(Zt+τ ))|Z0t
i
, S

0
(Z0t ) is feasible. Since for Zt < Z0t the incentive

constraint has been relaxed, S
0
(.) is feasible for δ = δ0, a contradiction. Now, ifP∞

τ=1 δ
0τE

heU(Su(Zt+τ ))|Z0t
i
<
P∞

τ=1 δ
0τE

heU(SM(Zt+τ ))|Z0t
i
, we can improve on

Su(Zt) with a plan S
00
(·) such that S00

(Zt) = SM(Zt) for Zt ≥ Z0t and S
00
(Zt) =

Su(Zt) for Zt < Z0t . Since S
M(·) is feasible for δ = δ00, it is also feasible for δ0 > δ00,

and hence S
00
(Zt) is feasible for Zt ≥ Z0t . Moreover, since the value function at Z

0
t
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has been increased, S
00
(Zt) is feasible also for Zt < Z0t . It follows that the value of

the whole program has been increased, a contradiction.

(v) Suppose by contradiction that at the optimal plan (qo(·),No(·)) there exist
Zt and Zt−1 such that qo(Zt−1) < No(Zt−1) and qo(Zt) = No(Zt). We need to

distinguish three cases:

(va) B(No(Zt)) ≥ B(No(Zt−1)). In this case we can do better with a plan
(q0(·), N 0(·)) that is identical to the original one except that q0(Zt) = q∗(No(Zt)).

This increases the instantaneous payoff at Zt and satisfies (11). We need to show that

it is incentive compatible. The fact that the instantaneous payoff at t is higher under

the new plan ensures that the incentive constraint is satisfied for all dates before t.

The new path also satisfies the incentive constraint at t. To see this, compare it with

the incentive constraint at t− 1 for the old plan: since B(No(Zt)) ≥ B(No(Zt−1)),
the left hand side is weakly lower; and by point (iii) of lemma 1, the right hand side

is weakly higher. We can conclude that the new plan dominates the original plan,

which contradicts the optimality of the latter.

(vb) B(No(Zt)) < B(No(Zt−1)) and No(Zt) > No(Zt−1). In this case we
can do better with a plan (q0(·),N 0(·)) that is identical to the original one except
that N 0(Zt) = No(Zt−1); that is, no new members are admitted at Zt. To see this,

recall that U(N,N) = PrN (θ
1 = ... = θN = θL)(B(N) − θL). The first factor

is always decreasing in N , therefore the proposed change increases instantaneous

payoff at Zt. The proposed plan clearly also satisfies all constraints, therefore the

optimality of the original plan is contradicted.

(vc) B(No(Zt)) < B(No(Zt−1)) and No(Zt) < No(Zt−1). Then it must be
that (qo(Zt−1), No(Zt−1)) implies a higher instantaneous payoff than (qo(Zt), N

o(Zt)),

for otherwise (qo(Zt), N
o(Zt)) would have been chosen already at Zt−1 (clearly all

constraints would still have been satisfied). But this contradicts part (ii) of lemma

1. QED.

Proof of Proposition 9:19

All we need to prove is N̂ > Ñ . For this purpose it suffices to show the following:

Û(N + 1)

Û(N)
≥ U(N + 1, N + 1)

U(N,N)
for all N (13)

It is not hard to see that the above condition implies the claim.

19We owe this proof to Arnaud Costinot.
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Using the definitions of Û(N) and U(N,N) and assuming w.l.o.g. θL = 0, (13)

can be rewritten as:

1
N+1

PN+1
k=q∗(N+1)

¡
N+1
k

¢
[kθH − (N + 1)(θH −B(N + 1))]

1
N

PN
k=q∗(N)

¡
N
k

¢
[kθH −N(θH −B(N))]

≥ B(N + 1)

B(N)
(14)

Let λN ≡ B(N+1)
B(N) and αN ≡ B(N)

θH
. Note that λN ≥ 1 because B(N) is nondecreasing,

and αN ∈ [ 1N , 1).20 Condition (14) can then be written as:

N+1X
k=q∗(N+1)

µ
N + 1

k

¶
[k − (1− αNλN)(N + 1)] ≥ λN (N + 1)

N

NX
k=q∗(N)

µ
N

k

¶
[k − (1− αN)N ]

(15)

Since it can be easily shown that q∗(N + 1) ≤ q∗(N) + 1, a sufficient condition
for (15) to hold is that the same condition hold when q∗(N + 1) is replaced with

q∗(N) + 1 in the LHS. After some rearranging, this can be written as:

αN(λN − 1)
PN+1

k=q∗(N)+1
¡N+1

k

¢
(N + 1)

≥ λN (N+1)
N

PN
k=q∗(N)

¡N
k

¢
[k − (1− αN)N ]−

PN+1
k=q∗(N)+1

¡N+1
k

¢
[k − (1− αN )(N + 1)]

=
h
λN (N+1)

N − 2
iPN

k=q∗(N)
¡N
k

¢
[k − (1− αN)N ]

+(1− 2αN)
PN

k=q∗(N)
¡
N
k

¢
+
¡

N
q∗(N)

¢
(q∗(N)− (1− αN )(N + 1))

(16)

where the last step follows from a simple application of Pascal’s triangle. Let us

first show that this inequality holds for λN = 1 and for all αN ∈ [ 1N , 1). We need to

proveµ
N − 1
N

¶ NX
k=q∗(N)

µ
N

k

¶
[k − (1− αN )N ] ≥ (1−2αN )

NX
k=q∗(N)

µ
N

k

¶
+

µ
N

q∗(N)

¶
(q∗(N)− (1− αN )(N + 1))

(17)

To show this, we will check that the LHS is a (weakly) steeper function of αN
compared with the RHS. Consider first the case in which αNN is not an integer, so

that q∗ = d(1− αN)Ne remains constant when αN is marginally increased. Then
∂LHS17
∂αN

≥ ∂RHS17
∂αN

is satisfied if:

µ
N − 1
N

¶
N

NX
k=q∗(N)

µ
N

k

¶
≥ −2

NX
k=q∗(N)

µ
N

k

¶
+

µ
N

q∗(N)

¶
(N + 1)

20The lower bound comes from the fact that q∗(N) can be rewritten as d(1− αN )Ne and q∗(N) <
N .
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⇔ (N − 1)
NX

k=q∗(N)+1

µ
N

k

¶
≥ −2

NX
k=q∗(N)+1

µ
N

k

¶
which is obviously true. Next consider the case in which αNN is an integer. Letting

αNN ≡ z, the condition we need is:µ
N − 1
N

¶ NX
k=N−z

µ
N

k

¶
[k − (N − z)] ≥ (N − 2z

N
)

NX
k=N−z

µ
N

k

¶
+

µ
N

N − z

¶µ
(N − z)− (N − z

N
)(N + 1)

¶

⇔
µ
N − 1
N

¶ NX
k=N−z+1

µ
N

k

¶
[k − (N − z)]− (N − 2z

N
)

NX
k=N−z+1

µ
N

k

¶
≥ (

N − 2z
N

)

µ
N

N − z

¶
− (N − z

N
)

µ
N

N − z

¶
which also clearly holds since the LHS is non-negative and the RHS is non-positive.

At this point, we have proved that (16) holds for λN = 1 and all αN . To see

that (16), and thus (14), still holds for λN > 1, one just needs to verify that the

derivative of the LHS of (16) with respect to λN is higher than the derivative of the

RHS. Formally, one can check that

∂LHS16
∂λN

= αN

N+1X
k=q∗(N)+1

µ
N + 1

k

¶
(N + 1)

≥ αN(N + 1)
NX

k=q∗(N)

µ
N

k

¶

≥ ∂RHS16
∂λN

=

µ
N + 1

N

¶ NX
k=q∗(N)

µ
N

k

¶
[k − (1− αN )N ]

QED.

Proof of Remark 2: straightforward.

Proof of Remark 3: Recall that N1 is the number of low-cost members,

and let n1 be the number of low-cost members who participate in the action. Let

N0 = N − N1 and n0 the number of high cost members who participate in the

action. Since N is fixed, in this proof and the next we will drop it as argument of

the B function, and will simply write B(n).
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In order to find the first-best mapping we need to maximize the joint surplus of

the group with respect to n0 and n1:

max
n0,n1

J(n0, n1) ≡ n1[B(n0 + n1)− θL] + n0[B(n0 + n1)− θH ] (18)

s.t. 0 ≤ n0 ≤ N −N1, 0 ≤ n1 ≤ N1 (19)

Since nB(n) is assumed to be weakly convex, it is easy to see that J is convex

in each argument. The convexity of J implies that the solution is corner.

There are only 4 candidate corners: (n0, n1) ∈ {(0, 0), (N −N1, 0), (0, N1), (N −
N1, N1)}. Clearly, (N − N1, 0) is dominated: it cannot be optimal that high cost

types act and low cost types do not. Thus we have to compare the values J(0, 0) = 0,

J(0, N1) = N1[B(N1)−θL], and J(N−N1, N1) = N1[B(N)−θL]+(N−N1)[B(N)−
θH ] = NB(N)−NθH +N1(θH − θL).

The comparison depends on the value of N1. Consider the functions of N1

g0(N1) = J(0, N1) and g1(N1) = J(N −N1, N1). Note that (I) g1(0) < 0 = g0(0);

(II) g0(N) = g1(N); (III) g0(N1) is convex and g1(N1) is linear; (IV) g0(N1) ≤ 0
for N1 < nmin and g0(N1) > 0 for N1 > nmin; (V) g1(N1) < 0 for N1 < q∗ and
g1(N1) > 0 for N1 ≥ q∗. (Note that q∗ can be higher or lower than nmin.) Using

this information we can conclude that there are three possibilities:

1. There is a quota q2 > nmin such that the optimum is (N−N1, N1) for N1 > q2,

(0, N1) for nmin < N1 < q2, and (0, 0) if N1 < nmin.

2. The optimum is (0, N1) for N1 > nmin and (0, 0) otherwise.

3. The optimum is (N −N1, N1) for N1 > q∗ and (0, 0) otherwise.

The convexity of g0, the linearity of g1, and the other boundary conditions on

these functions guarantee that there are no other possibilities. It is easy to see that

each of these cases is consistent with the statement of remark 3: in the first case,

all three intervals of the first-best schedule are non-empty; in the second case, the

upper interval is empty; and in the third case, the intermediate interval is empty.

Finally, it is easy to verify that the first-best outcome we just described can be

implemented with the voting rule proposed in remark 3.

Proof of Remark 4: The strategies on the equilibrium path can be written as

σ = {ai(θit, vt), vi(θit)}Ni=1.
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Let U i(σ) denote the one-period expected utility of member i given σ. Given

that we are restricting to strategies that give all players the same expected payoff,

we have U i(σ) = U(σ) for all i. The key is to argue that we can focus on two

profiles: (i) the profile that corresponds to the modified-unanimity rule defined in

remark 2 — let σu denote such profile; and (ii) the profile that corresponds to the

first-best voting rule defined in remark 3 — let σ∗ denote such profile.
Clearly, if σ∗ is self-enforcing, then it is optimal, since it maximizes U(σ). The

self-enforcement condition for σ∗ is

θH −B(N) ≤ δ

1− δ
U(σ∗)

The LHS is the one-period gain from cheating, which occurs when a θH type is

called to action.

An alternative profile σ can be preferred to σ∗ only if it implies a one-period
gain from cheating strictly lower than θH − B(N) for all states θ. Since B(n) is

increasing, a profile σ can satisfy this condition only if a θH type is never called to

action, for otherwise his gain from cheating would be at least θH − B(N). But if

θH types are never called to action, it is easy to see that we can do no better than

σu. It is also clear that σu implies no unilateral incentive to deviate, since it is an

equilibrium of the stage game. Therefore the only candidates for an optimum are

σu and σ∗. We can easily conclude that σ∗ is optimal if δ is higher than a critical
level, and σu is optimal otherwise. QED.

Proof of Remark 5: The proof of Proposition 8 up to point (iv) applies
identically to the case of impure collective action, provided “unanimity” rule is

replaced with “modified unanimity” rule, and the majority rule is replaced with the

first-best rule described in remark 3. As for point (v) of the proof, notice that the

relevant gain from cheating with the first-best rule is now θH − B(N,N). This is

because a high-cost type is called to action only if everyone else is called to action.

Letting B̃(N) ≡ B(N,N), part (v) of that proof can be applied simply replacing

B(N) with B̃(N). QED.
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