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ABSTRACT

In this paper we develop a rational expectations exchange rate model
which is capable of confronting explicitly agents' beliefs about a future
switch in exogenous driving processes. In our set-up the agents know with
certainty both the initial exogenous process and the new process to be
adopted when the switch occurs. However, they do not know with certainty
the timing of future switch as it depends on the path followed by the
(stochastic) exchange rate.

The model is discussed in terms of the British return to pre-war
parity, in 1925. However, our results are applicable to a variety of
situations where process switching depends on the motion of a key endogenous

variable.
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Often, a policy authority such as a central bank operates by
establishing a policy rule to set the variables under its control. Such
a rule is allowed to operate freely as long as certain endogenous variables
of interest to the authority remain within particular bounds; however,
when these endogenous variables cross their bounds, the authority switches
to a new policy rule which it had prepared to meet this contingency. Since
variables such as prices are determined partly by agents' beliefs about
future events, agents' behavior injects the probabilities that policy
switches will occur at particular future times into current price
determination,

In this paper we explore in a formal model the determination of
current prices when future policy regime switches are possible. In order
to do this we develop a new aspect of an otherwise standard exchange rate
model; this key component is the probability density function (p.d.f) for
the first passage through a barrier of the endogenous variable (the
exchange rate) which interests the policy authority. Since analytical
solutions for first passage p.d.f.'s are available for only a limited
number of stochastic processes, we are restricted to these processes in
formulating our example. However, within this class of processes, our
results are generally applicable to many different kinds of macroeconomic
probliems.

We present our ideas in the context of a model of exchange rate
determination., Our choice of a specific example is intended to add

concreteness to the analysis but should not be interpreted as scbting



limits on the applicability of the analysis. 1Indeed, the structure of
the problem at hand virtually duplicates the structures which would be
appropriate for studying problems such as a monetary authority's possible
return to an interest rate rule, the possible introduction of wage and
price controls, possible tax reform or virtually any other uncertain
future policy switch.

In the specific example we study, when agents know that at a given
future time the exchange rate will be fixed at a known level, then in
a rational expectations world the solution for the current exchange rate
assumes a form reflecting such knowledge. If the level is known while
the timing is uncertain, then, though the solution technique is analogous,
the actual solution for the current exchange rate will be a more complex
form. As an example of the latter case, our results are particularly
applicable to explaining the movements of the French and British exchange
rates in the early 1920's.

In the main body of the paper we set up the model of the exchange
rate when future fixing is possible and solve for the exchange rate.

Most mathematical derivationsare left to the appendix.

I Determining the Current Exchange Rate When Future Fixing is Likely

That the exchange rate between two currencies is allowed to float
freely means that governments do not currently intervene in exchange markeis
to set the rate. However, it is possible that under some future contigencies

a government may intervene and establish a fixed rate system; this



possibility will partly determine the current floating rate through its
effect on expectations.

The specific example that we have in mind is that of Britain in
the 1920's. The British decision to return to the gold standard at the
pre-war parity of $4.86 was announced in the Budget Speech of April
28, 1925, and effective in the exchange market the next day (Moggeridge
1969, p. 9). However, as early as 1918 the Treasury and Ministry of
Reconstruction appointed a Committee on Currency under Lord Cunliffe,
which reported in 1919 "in our opinion it is imperative that after the

war the conditions necessary to the maintenance of an effective gold

standard should be restored without delay" (Moggeridge 1969, p. 12).

Since the dollar was fixed to gold at that time, the British government

was indicating that in the future it would fix the dollar-pound exchange

rate at its pre-World War I level; the timing depended on achieving purchasing
power parity at the pre-war exchange rate. Adopting such a policy affects

the current exchange rate. Here we present a model in which this result

is explicit. Y

The basis of our analysis is the standard model for the monetary
approach to the exchange rate [see e.g. Frenkel (1978), Mussa (1978),
Bilson (1978)]; together with a semi-log form for money demand in two
councries, we include assumptions of interest parity and purchasing power
parity.

Money demand in each country can be described by

nl(e) = p(0) = oy + ayy(6) - ayi(t) + v(e) (1a)

nl(6) = B(6) = af + oyy(e) - agi(e) + (o) (15)



where i(t), md(t), p(t) and y(t) are the nominal interest rate and the
logarithms of the nominal money stock demanded, the nominal price level,
and real income, respectively, in the home country. An asterisk represents
corresponding variables in the foreign country. The a's are fixed
parameters, all of which are greater than zero; and the v(t)'s are
stochastic disturbances whose description we defer until later.

Purchasing power parity requires that
x(t) = p(t) - p(t) (2)

where x(t) is the logarithm of the exchange rate, measured as the number of
units of domestic currency per unit of foreign currency. Recent work by

Frenkel (1980a, b) indicates that equation (2) holds up reasonably well in

1
the 1920's but fails in the 1970'3.—/ Thus we feel comfortable with (2)

for studying a 1920's episode.
To form our exchange-rate equation we subtract (1b) from (la) and

substitute from (2) to derive (3)
x(t) = v, + (m(t) - n(t)) + al(§(t) - y(e))
(3)
+ o, (i(t) - 1(0) + V() - v(t)

where YO = us-—ao.

Define K(t) = v,

so that (3) can be rewritten as

F(m(e) - m(E) + o () - y(e)) + V(&) - v(e),

x(t) = K(£) + 0y (1(E) = i(e)). (%)
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. Finally, we assume open interest parity. The anticipated rate of exchange

rate depreciation, E(%(t) lIt), is thus

E(i(e)|T) = i(6) - 1%(c) (5)

where E( ]It) is the conditional mathematical expectation operator with
conditioning information set It, which includes all elements of the
model's structure and all relevant variables dated t or earlier. Substituting

in (4) yields
x(t) = K(t) + u2E(§<<t)|1t) (6)

Equation (6) is the standard sort of equation that monetary apprcach
models have produced and is a semi-reduced form which is consistent with a
wide variety of underlying model specifications.zf In order to address its
application to the problem of the future fixing of an exchange rate we
must specify both the stochastic nature of the exogenous forcing function
K(t) and the nature of the policy rule whereby the monetary authority
decides the time for fixing the exchange rate. With rational expectations,
the decision to fix the exchange rate implies a decision to change the
stochastic nature of K(t). This follows from equation (6); when x(t) is
fixed, with rational-expectations , E(i(t)[lt) must be zero, hence K(t) must
be fixed. TFor the purposes of this example we will assume that, as long
as the monetary authority does not actively fix the exchange rate, K(t)

is a random walk with drift, i.e. K(t) can be written as

K(t) = K@) +nt + e(t) (7)

. . . . ?
where n is the drift rate and e(s) is a Wiener process, i.e. e¢(s) ~ N(0O, 07s).
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In order to specify a policy rule for when the exchange rate will be
fixed, we suppose that the monetary authorities in the foreign country will
fix the exchange rate when purchasing power parity holds at some particular

;} i.e. when x = p(t) - B(t). Since (by assumption) the domestic price .

level minus the foreign price level is too low for this to obtain currently,
% -
we expect p(t) - p(t) = x(t) to make a first passage through x from below
. Vo oeaos 3/ .
at the time of the exchange rate's fixing.=' Ag any time t, the moment T
in the future at which this first passage occurs 1s random with a p.d.f.

f(T{;, x(t), K(t)), which is conditional on x(t), x, and K(t).

Taking expectations of both sides of (6) conditional on the information

set It available to agents at time t, we find
E(x(t)fIt) = E(K(t)]lt) a2E(x(t)|It). (8)

This is a differential equation in the expected exchange rate conditional

on It; rearranging, we have
EG®) 1) = - 2 B®(O|1) + L Bx(e)] 1) (9)
X t a, t o, t

Given a terminal condition we can solve (10) for the expected (and
therefore acutal) exchange rate at time t.

Suppose first that purchasing power parity at the exchange rate x
occurs at time T; then the exchange rate is fixed at x for t > T and
x(T) = x. Since x(T) is fixed at T its expected rate of change conditional
on fixing at T is zero at T and hence, from (6), X = K(T). That x(t)
makes a first passage through x at T is equivalent to K(t) making a
first passage through x at T.

Conditional on first passage at T, the current exchange rate (and

its current expectations) can be determined as



T

E(x(e)[1,, T) = % exp{=—} (10)

2
1 t T T
—exp{—1} S E(K(T)IIt, T)exp{- a”}dT
%2 “2 ¢ 2
where E(K(T)1It, T) indicates the expected path of K(t), t < 1 < T, given It
and K(T) = x for the first time. The unconditional exchange rate is then
the integral of (11) weighted by the first passage p.d.f.

x(t) = f E(x(t)lIt, TYE(T - t]x, x(t), K(t))dT (11)
t

Equation (11) is of the form of a typical solution to a rational expectations
model. The problem which remains is to express the right hand side of (11)
in terms of a finite number of (in principle) observable variables. 1In
linear rational expectations models this final step is often accomplished
by conjecturing that the solution is a linear function of the state
variables and then requiring the unknown coefficients in the conjectured
solution to obey the model at hand. This is the method of undetermined
coefficients recently popularized by Lucas (1972). Our problem, however,
is substantially more difficult because the (as yet) unknown non-linear
form of the solution wmust be constructed from first principles.

To obtain the reduced form exchange-rate equation we proceed in two
steps, first finding the density function f(T-t {;, x(t), K(t)) and second
finding E(K(T) klt, T). Analytical expressions for these two magnitudes
may then be substituted into (10) and (ll), yielding the reduced form we
seek.

The solution for the first passage p.d.f. of a Wiener process with
drift is available in standard texts (see Karlin and Taylor, p. 363). Tiw

p.-d.f. over the first passage of K(t) through ¥, given K(t) < x is
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2

- X - K(t) 1 x - R(t) - W(T - t) (12°

£(T - ¢ |%, x(t), K(t)) = =~ expl- = 7 :
o JIm(T - )32 ? oI - ©)

The derivation of E(K(T) IIt, T, t=7=T) is an exercise in
stocha;tic processes. Although there is an analytical solution for this
expectation, it is fairly complicated so we write it and its derivation
in the appendix. Although analytical expressions for f(T %It) and
E(K(T) IIt, T) exist, the integrations in (11) and (12) appear ditficult,
so after substitution of these formulas into (12), the solution of x(t)

is still expressed as a double integral.

Applications

The reduced form solution for x(t) is not displayed here but is the
nonlinear equation which results ffom substituting the appendix expression
(Al) into (10) and substituting the result into (l1) with
f(T - ¢ l;, x(t), K(t)) being replaced by the right hand side of (12).

The nonlinear exchange rate equation resulting from the above can in
principle be estimated using a combination of standard nonlinear techniques
and numerical integration sub-routines.

The unfortunate feature of our result is that it implies that an
exchange~rate equation estimated by typical linear methods during a period
when agents are anticipating stochastic process switching will be subject
to parameter drift. For example Frenkel and Clements (1980) estimmte a
US/UK exchange rate equation similar to our equation (3) over the period
February 1921 to May 1925, which encompasses a large part of the peridd
when agents may have been anticipating process switching. To allow for
the endogenity of interest rate differentials Frenkel and Clements used a
linear two stage least squares procedure. According to our results the

first stage of their procedure should have been specified in accord with
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our non-linear exchange rate equation.

It seems to us that the problem encountered in Frenkel and Clements
may be quite widespread. Indeed, whenever policy makers deliberate, they
inject into agents' forecasting problems an element of stochastic process
switching. However, it is atypical of such deliberations that they result

in a stochastic process switching problem as clearly defined as the British

return to pre-war parity,
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Appendix
The Conditional Expectation of K(t), E(K(T)[It, T)

The derivation of E(K(T)]It, T) is an exercise in stochastic processes.
In this appendix we first write out the explicit formula for this expcctation
and explain its components. Then we explain the determination of E(K(T)llt, T).
We are extremely grateful to J. H. Kemperman for showing us how to derive
the conditional expectation of K(t).

Recall that E(K(T)]It, T, t ¥ T < T) is the expectation of K(t) given

K(t) and given that at time T,K(T) = x for the first time. Let T1 =T - t,

_ % 7 1 - Tl/Tl
Tl = T~-t, Z=x - K(t) and 7 = ol T Then the explicit formula
1

for the conditional expectation is
E(K(T)]It, T) =¢C,/C, (A1)

where

T T T
c, = [1 -~ TI]{[(l - TI)Z +0 Tl]@(Z) + OZTf(l - TID o( - 2) (A2)

T T. T
2 2 2.2 % 1 L %
- exp{(1 - Tiﬁ—ig}[(l - Ti?z +0 Tl]®(— zZ) - ZTf(l -~ T%) o(-2)1}

and

T T

- 1/2 B __l 1/2 * _ __l %
6 2 (070 = D) + 20 - hed)
T L T1L o« T %
- exp{( = 5P 3ot f - D %D - 2 - e ]
1 o 1 1

2 2
In these formulas, ¢(x) = 7%F-exp {~ %f} and ¢(x) = 32%%; exp{- %—}dy.

@

To derive formulas (Al) - (A3), we must find the conditional density

of K(t), given T, the time of first passage through X, where T > t. Call



-11-

this density function h(K(t)IT). Then we need only multiply by K(t) and
integrate to determine the first moment.. We can find this density function
by first determining the joint density over (K(t), T), which we denote
by g(K(t), T). For simplicity, let us assume that we are looking forward
from time t = 0 and that K(0) = 0.

The joint density function equals the conditional density function

over K(t) multiplied by the marginal density function over T, f£(T), i.e.
g(K(t), T) = h(K(t)|T)£(T). (A4)

The joint density also equals the conditional density over T, given K(t),
which we denote by F(T]K(t)), multiplied by the marginal density over

k(t), H(K(t)), i.e.

g(K(t), T) = F(T|K(t)HXK(t)) (A5)

HkK(t)) does not depend on the time T > t at which first passage occurs,
but it is conditional on first passage not having occurred prior to t.
Since they are relatively easy to derive, we will use the density
functions in (A5) to construct the joint density g(K(t), T); then we
can determine the conditional density h(K(t)IT) from (A4). First we develop

H(K(t)).
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Since K(t) is a Wiener process with drift and with a starting value

K(0) = 0, K(t) has an unconditional p.d.f.

2
— exp{-E(K(t; = nt) }
V2Tto ot

G(KR(t)) =

(46)

K(t) - nt
oVt

- ¢ )

o1 L2 . Ny
where ¢(x) = 7EF'eXp{ sx" } (See Karlin and Taylor, p. 356). H(K(t)) is
the density of K(t) conditional on K(t)'s having remained below ;'prior to
t. Thus, from the probability weight given to K(t) by G(K(t)), we must
subtract the weight associated with all paths (like 1 in Figure 1) which

pass through K(t) at t but which also have passed through x prior to t.
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There are an infinity of paths which, like path 1, pass through X
for the first time at tl and through K(t) at time t. Given that a path
starts at x at tl’ the unconditional probability weight associated with
its passing through K(t) at time t is again given by (A6):

_ 1 K(t) - x - n(t - ty)
‘ G(K(t)]K(tl)= X) = o=

T ) (A7)

The probability weight associated with a path's passing through x for the
first time at t1 is (from equation 13).

— 2
- (x - ntl)
expl= =

—_— }
0/?%1;5/2 207t

f(cl]K(o) =0) =

B 1 (A8)

X
X
3/2¢( oVt )
ctl 1

Then the probability weight associated with the set of all paths which both

pass through x for the first time at tl and pass through K(t) at t is

G(K(t)]K(tl) = E)f(cl!K(O) =0) =
(A8)
- X - nt

X
3/2¢( oVt
1

1 1 K(t) - x - (t - t))

1 )O/t - t1¢( oVt - £y

)

gt

Therefore, the probability weight associated with all paths which both pass

through X at some time prior to t and equal K(t) at t is the integral over

tl of (A8):
t = X - nt, 1 K(t) - x - n(t - £)
S ] 3/2¢( oVt )O/t —a ovt - t )dtl (49)
ot 1 1 1

0 1
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To determine H(K(t)) up to a normalizing constant we need only subtract (A9)

from (A6)
HEK(e) = (L= €
t
t —
= - K(t) = x - n( - t,)
X X - nt 1 1 (A10)
b ( ) ——%( ydt
S Otl3/2 o/tl oV/E - £ ovt - £ 1
0

To determine the joint p.d.f. g(K(t), T) we must multiply H(K(t)) by

the conditional p.d.f. F(TlK(t)). But again from equation (13),

— — 2
- K(t) (x - K(t) = n(T - t))
F(T|K(t)) = —=— K exp{- (A1)
o/ (T - ¢)372 20T =0
x - K(t) , ,x - K(t) = (T - t)
= ( ).
o(T - t)3/2 ovVT - t
Finally,
g(K(t), T) = CH(K(t))F(T|K(t)) (Al12)

where C is a normalizing constant. h(K(t){T) is simply (Al2) divided by f£(T)

is

and evaluated at a particular value of T. In the formula (AL), Cl

simply the inverse of the normalizing constant, i.e.
x
c, = .S H(K(£))F(T|K(t))dK(t).
oo

C2 is the unnormalized first moment of (Al2) evaluated at a particular T,

i.e.
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x
C, = K(t)H(K(t))F(T]K(t))dK(t).

(e o]

The mean of K(t) conditional on K(0) = 0 and K(T) = x for the first time

is then C2/Cl' Deriving the actual formulas (A2) - (A3) requires the

cranking out of some horrendous integrals, which we avoid here.



Footnotes

1/ TFrenkel's results (1980a, p. 238) provide tests of purchasing power
parity for traded goods during the period Feb. 1921 - May 1925. Presently
we are assuming all goods to be traded and recognize that the presence of
a large nontraded goods sector would slightly modify our model.

2/ Equation (6) is of a form which is relevant to many macro-models.
In a closed economy setting, price would replace the exchange rate.

3/ 1In our example we are treating the U,S. as the home country and the
U.K. as the foreign country so that X = 1n($4.86/R).
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