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A NOTE ON THE DERIVATION OF LINEAR HOMOGENEOUS ASSET DEMAND FUNCTIONS

Benjamin M. Friedman and V. Vance Roley*

The asset demand functions used for both analytical and empirical
research, especially in the monetary economics literature, are often assumed
to exhibit the two convenient properties of wealth homogeneity and linearity
in expected asset returns.l The convenience afforded by the tractability of
the linear form is apparent enough, and the wealth homogeneity property in
particular is often especially important in empirical applications to
aggregate data.2 Despite the frequent use of linear homogeneous asset demand
functions, however, there exists (to the authors' knowledge) no readily
available source setting forth the derivation of such demands from underlying
principles of expected utility maximization.3

The object of this note is to show that, among the numerous familiar
sets of specific assumptions sufficient to derive mean-variance portfolio
behavior from more general expected utility maximization in continuous time,
the assumptions of (a) constant relative risk aversion and (b} joint normally
distributed asset return assessments are also jointly sufficient to derive
asset demand functions with the two desirable (and frequently simply assumed)
properties of wealth homogeneity and linearity in expected returns. 1In
addition, in discrete time constant relative risk aversion and joint normally
distributed asset return assessments are sufficient to yield linear

homogeneous asset demands as approximations if the time unit is small.4



Analysis in Continuous Time

To begin with expected utility maximization, the investor's objective

as of time t, given initial wealth Wt’ is
mzx E[U(ﬁt+dt)] (1)
=t

subject to
@l = 1, (2)

where E(+) is the expectation operator, U(WT) is utility as a function of

wealth, and g_ is a vector expressing the portfolio allocations in

t

proportional form
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for vector ét of asset holdings.
Assumption (a) noted above is that U(WT) is any power {(or logarithmic)
function such that the coefficient of relative risk aversion
U"(WT)

T . (4)
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is constant. Assumption (b) is that the investor perceives asset returns

R

it i=1,...,n, to be generated as Wiener processes with respective means

e . .
r. , standard deviations OiT and correlations ¢ij

iT ;, where the tilde sign

T

indicates a random variable, and the time subscript generalizes the investor's

assessments to permit variation over time. Given the assumption of Weiner
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processes for the asset yields, W is in turn generated by
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where z, is the unit normal random variable corresponding to each yield r..



Expanding U(ﬁ ) about Wt' for dt sufficiently small, and then taking

t+dt
the expectation yields a representation of the maximand in the form
1 (k)
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where the notation U (*) indicates the k-th derivative of U(°+).

Substituting from (5) and omitting terms of higher than second order in dt

vields
~ ' e
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E[UW,, )] UMW) + UM (W) » W, = a rodt
1 2 (7)
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where ) is a variance-covariance matrix consisting of elements 0, 0..6,.. .
t it jJtTiijt
Forming the Lagrangean for the maximization of (7) subject to (2), differen-

tiating with respect to gt, and equating the derivative to zero yields the

first-order condition for the solution of (1) as
@ = B_zr_ +T (8)

where the asterisk indicates the optimum allocation, and if there is no risk-
free asset (because of price inflation, for example)

B, = - =190 - ety o e (9)
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Alternatively, in the presence of a risk-free asset Qt is singular, so that it
is necessary to partition the system of demands. The resulting solution, in

. A re 2 . .
which gt, I and Qt refer to the risky assets only, is

~%k ~ A
o, = B_ro (8")

where

B = 13§ ,
By 5 (9")
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and the optimum portfolio share for the risk-free asset is just (1 - gt' 1).

It is apparent by inspection that the optimum portfolio allocations in
both (8) and (8') exhibit the two properties of wealth homogeneity and
linearity in expected returns. Moreover, since Qt (or Qt) is a variance-

covariance matrix, the Jacobean B_ (or Bt) indicates symmetrical asset

t

substitutions associated with cross-yield effects.

Analysis in Discrete Time

In the discrete-time analog to the model developed above, the investor's
single-period objective as of time t, given initial wealth Wt' is

max E[U(ﬁt+ B!

1 (11)
%
where
= . L] -

) We = @ @+ zy) (12)
and assessments of Et (i.e., asset returns between time t and time t+l) are
distributed as

r. ~ N(S, Q) (13)
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Expanding U(Wt+1) about E(W

t+1) and then taking the expectation yields a

representation of the maximand in the form

8

> _ 1, (k) =~ . ~ o X
ElU@, )1 = Tt U B )] {E[wt+ EW, )] L (14)

1 1

I t~1

k=0

It follows from the moment generating function of the normal distribution that

the term within brackets in (14) has value

k _ k! ~ (k/2)
3] S e [var(Wt+l)] (15)
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for k an even integer and
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E[wt+ - E(W )1 = 0 (16)
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for k an odd integer. Hence (14) simplifies to
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Substituting from (12) and omitting terms of higher than second order yields

)1 » W o O o (18)
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Forming the Lagrangean for the maximization of (18) subject to (2), differen-
tiating with respect to gt, and equating the derivative to zeroc yields the

first-order condition for the solution of (11) if there is no risk-free asset

as (again omitting terms of higher than second order)

*
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and Et is again as in (10). Alternatively, in the presence of a risk-free

asset the resulting solution is (for at, Bt and 5: as defined above)
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and the optimum portfolio share for the risk-free asset is again just

/\*l
(1-a' 1.

If the time unit is sufficiently small to render Wt a good approximation to

E(Wt+l) for purposes of the underlying expansion, then the scalar term within



brackets in (20) and (20') reduces to the constant coefficient of relative
risk aversion, and the discrete~time model yields the same linear homogeneous

asset demand functions developed above.

Isomorphic Assumptions

Other combinations of assumptions, if they are isomorphic to constant
relative risk aversion and joint normally distributed asset return assess-
ments, also yield linear homogeneous asset demand functions either in
continuous time or as an approximation in discrete time with small time units.
For example, the negative exponential utility function with coefficient of
absolute risk aversion inversely dependent on initial wealth yields equivalent
results.7 Alternatively, the logarithmic utility function, in conjunction
with the assumption of joint lognormally distributed returns, yields asset
demand functions that are homogeneous in wealth and log-linear in expected
returns, in either continuous or discrete time; but in this case yet a further
{(apparently reasonable) approximation is necessary, because a linear combina-

tion of lognormally distributed returns is not itself distributed lognormally.8



Footnotes
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Brainard and Tobin [1] and the voluminous work following their lead
provide numerous examples in both abstract and empirical work.

Friedman [4] and deLeeuw [3] in particular provided useful discussions
of the importance of the homogeneity property. For an alternative view,
however, see Goldfeld [6,7].

A large literature has investigated the conditions under which, in the
Presence of a risk-free asset, the ex post demands for risky assets that
emerge from the market clearing process are linear in expected returns
and linear homogeneous with respect to the total amount invested in
risky assets only; see, for example, Sharpe [16], Lintner [9], Hakansson
[8], Cass and Stiglitz [2] and Merton [12]. Nevertheless, these results
do not apply to the ex ante demand relations that are usually the focus
of analysis in the monetary economics literature, as exemplified by
Tobin {17]. Moreover, these results do not carry over in general to
cases in which there is no risk-free asset; and even when there is a
risk-free asset the homogeneity is not with respect to total wealth (as
is usually assumed in the monetary economics literature) and does not
apply to the demand for the risk-free asset.

The rationale for mean-variance analysis provided by Samuelson [15] and
Tsiang [18] suggests that mean-variance analysis per se is only an
approximation that depends on (among other factors) a small time unit.

Friend and Blume [5], who proceeded along the lines followed here (as did
Ross [14]), offered empirical evidence supporting the assumption of
constant relative risk aversion.

In the case including a risk-free asset, vector Q% expresses the mean
risky returns in excess of the risk-free return. See Roley [13]) for a

detailed treatment of the distinctions based on the pPresence or absence
of a risk~free asset.

For given initial wealth, this assumption is equivalent to expressing

utility as a function of portfolio rate of return, with constant absolute
risk aversion; see Melton [11].

See Lintner [9] for a comprehensive treatment of portfolio behavior
based on the logarithmic utility function.
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