NBER WORKING PAPER SERIES

A STATE PRICE INDEX

Victor R. Fuchs

Robert T. Michael

Sharon R. Scott

Working Paper No. 320

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge MA 02138

February 1979

This paper is an outgrowth of a study of living arrangements supported by a grant to NBER from the Alfred P. Sloan Foundation. The research assistance of David Katz is gratefully acknowledged. Any opinions expressed are those of the authors and not those of the National Bureau of Economic Research.

Abstract

A State Price Index

Victor R. Fuchs Robert T. Michael Sharon R. Scott

No cross-sectional consumer price index is currently available by <u>state</u>, and the BLS's cross-sectional "family budget" index for metropolitan areas is not well-suited for cross-state analyses. In this paper we propose an algorithm for constructing a state-specific Laspeyres price index using conveniently available information from the Census of Business and the Survey of Current Business.

The index is calculated for each state (and for Census divisions and regions) for 1967 and 1972. Its characteristics are discussed, and it is used to deflate nominal per capita income by state. Comparing "real" income by state with nominal income by state, the former has substantially less variation cross-sectionally but greater variation over time (between 1967 and 1972).

National Bureau of Economic Research 204 Junipero Serra Blvd. Stanford, Calif. 94305 (415) 326-7160 Economic analyses using cross-sectional state data are frequently hampered by the absence of a reliable, easily computed consumer price index by state. The Bureau of Labor Statistics (BLS) publishes a "family budget" for 44 metropolitan and non-metropolitan areas with a varying market bundle, and Sherwood (1975) has provided a fixed bundle price index for these same 44 areas. These indexes can be used for cross-state comparisons, but 21 states do not contain a metropolitan area for which the "family budget" is constructed, and only 7 states have as much as half their population in metropolitan areas covered by these BLS indexes.

In this note we propose a state price index which can easily be calculated for any year in which the Census of Business is conducted. The critical assumptions underlying our method are: (1) there is a composite set of goods sold at retail which has insignificant cross-state variation in price; (2) there is an insignificant amount of net cross-state buying of this set of goods; and (3) the ratio of the consumption of these goods to a composite of all other commodities including personal taxes and savings is constant across states.²

More formally, we assume that there are some consumption items for which cross-state price variation is substantial -- e.g., housing, services, food -- and that there are other items for which competition and transferability among states keeps price variation sufficiently small so that one can assume no cross-state price variation --

The BLS also publishes separate consumer price indexes for several cities, but these are not designed for cross-city comparisons.

 $^{^2}$ Sufficient conditions for this are that the two composites have unitary income elasticities and zero compensated price elasticities.

e.g., durable goods including automobiles, furniture and general merchandise, wearing apparel, drugs. Call the composite good for which prices vary across states C_1 and the other good C_2 . Our state price index for state j is a Laspeyres price index, $L_{\frac{1}{2}}$, defined as

(1)
$$L_{j} = \frac{P_{1j}C_{1} + P_{2j}C_{2}}{P_{1}C_{1} + P_{2}C_{2}}$$

where U. S. averages of prices and quantities are taken as the base. By scaling each of the goods such that its average price is unity, $P_1 = P_2 = P_{2j} = 1.0$. For each state (and for the U. S.) income I is

(2)
$$I_{j} = P_{1j}C_{1j} + P_{2j}C_{2j}$$
.

Thus:

(3)
$$P_{1j} = \frac{\left(\frac{I_{j}}{C_{2j}} - 1\right)}{\left(\frac{C_{1j}}{C_{2j}}\right)}.$$

As we have no way of measuring C_{1j} we assume that behaviorally C_{1j}/C_{2j} is constant across states, hence $C_{1j}/C_{2j} = C_1/C_2$. Substituting this term into (3) and then (3) into (1) yields our estimable index

$$L_{j} = \frac{I_{j}}{C_{2j}} \cdot \frac{C_{2}}{I} .$$

With data available in the U. S. Statistical Abstract we have used equation (4) to construct state price indexes for 1967 and, independently, for 1972. (See Table 1.) The variables are defined as follows:

I; = state j's per capita personal income 1967 or 1972;

 C_{2j} = state j's per capita retail sales 1967 or 1972 excluding sales of food stores, gasoline service stations, eating and drinking places, building materials, hardware, and farm equipment dealers; comparable definitions of I and C_2 for the U. S. are used. (Price indexes for each census division and region as well as for each state are calculated.)

To provide some assessment of the quality of the SPI, we note several of its characteristics. First, the SPI does not appear to be sensitive to moderate changes in the composition of C_2 . For instance, an alternative price series was derived from $\mathrm{C'}_2$, defined as C_2 plus sales of eating and drinking places and gasoline service stations, thus expanding the sales base by one-fourth. The coefficient of correlation between the $\mathrm{C'}_2$ and C_2 series is .97.

Second, on a priori grounds we expect relative prices across states to be fairly stable over time. The correlation between the SPI (1967) and SPI (1972) is quite high, .94.

Third, we expect an accurate state price index to be highly correlated with the residual from a wage equation which holds constant age, sex, color, education, and occupation. That residual should reflect geographic differences in nominal wages due to price difference and

³ All correlations are population-weighted.

perhaps other factors such as amenities. Fuchs (1976) constructed such an adjusted wage based price index for states in 1969, and it is quite highly correlated with SPI (1967) and SPI (1972): 0.85 and 0.83 respectively.

Finally, the BLS publishes a regional CPI of changes in prices over time based on population weighted metropolitan area price changes. If we accept that CPI measure of regional price changes as accurate, then the population weighted SPI over the same time period should show similar price movement, if the SPI is correct. We calculated such a regional SPI for the period 1967-1972, adjusted for the U. S. CPI=125.3 (1967=100). The comparison of those regional indexes is shown below:

Region	BLS	SPI
Northeast	128.5	129.0
North Central	124.0	127.7
South	124.8	122.8
West	122.1	121.4

Both indexes show a relatively rapid rise in prices in the Northeast and, relatively slow growth of prices in the West. The indexes do not conform as well for the North Central and the South.

One important application of SPI is to deflate nominal per capita income. (See Table 2.) We observe that there is much less geographical variation in "real" income than in nominal income. In 1967 the coefficient of variation across states was 10.5 percent for real income and 16.2 for nominal income. In 1972 the coefficients of variation was again lower in real terms: 8.4 percent versus 13.2 percent for nominal income. Table 2 also reveals that there is much less geographic stability in real income over time. The correlation between 1967 and 1972 across states is only

.74 for real income compared with .98 for nominal income. The correlation in income over time is exaggerated when measured in nominal terms because of the stability of geographic differences in price.

Deflating nominal income by the SPI has a strong effect on our perception of relative living standards in the Northeast compared with the South. According to the nominal measure, the average person in the Northeast had 37 percent more income than did the average person in the South in 1967 and 28 percent more in 1972. In real income, however, the difference was only 12 percent in 1967, and the regions were approximately equal in 1972.

Although no definitive test is possible, we conclude that the proposed SPI is a good index of price differences among states and probably the best one available at the present time. Using the method proposed here, further experimentation with alternative sets of commodities to measure C_2 is warranted. Since economic analyses usually assume mo money illusion, the availability of the SPI should materially improve cross-state studies of economic behavior.

References

- Fuchs, Victor R. "The Earnings of Allied Health Personnel -- Are Health Workers Underpaid?," <u>Explorations in Economic Research</u>, vol. 3, No. 3, Summer 1976.
- Sherwood, Mark K. "Family Budgets and Geographic Differences in Price Levels,"
 Monthly Labor Review, April 1975.

Table 1: State Price Index for 1967 and 1972 (also shown for Census Divisions and Regions).

Region/Division/State	Year 1967	1977	Region/Division/State	Year	
Northaget	1			1307	19/2
New England	1 05	1.12	North Central	1.01	1.03
Maine	01	70	East North Central	1.04	1.05
Z	.94	. 79	Ohio	1.05	1.06
Vt.	.85	. 84	111	1.00	1.00
Mass.	1.04	1.05	Mich:	1.04	1.07
R. I.	1.04	1.05	Wis.	1.03	1.06
Conn.	1.11	1.13	West North Central	1.03	1.04
Middle Atlantic	1.13	1.15		. 74	. 98
z. r.	1.15	1.24	Towa	90	. 98
N. J.	1.12	1.13	No.	90	
Pa.	1.03	1.03	N. Dak.	. 92	. 95 196
South	2		S. Dak.	.94	1.00
South Arlantia	.91	. 88	Neb.	.91	1.00
Del.	. 93	93	Kan.	1.02	1.07
Nd.	1.08	1.01	West	1 03	3
Va.	1.00	.98	Mountain	. 95	gg
	1.01	.98	Mont.	. 98	. 96
	888	. 87	Idaho	. 85	. 82
3 · C•	.90	. 89	Wyo:	1.06	.97
ca.	. 88	.83	Colo.	.97	. 88
Fig.	.84	.76	N. Mex.	.93	. 85 5
cast south Central	. 90	.88	Ariz.	.94	. 89
79.	.99	.98	Utah	.94	. 87
Alo.	. 80	.84	Nev.	.97	. 88
Z4.00	.90	.86	Pacific	1.05	1.03
Wast Court Control	. 07	. 83	Wash.	1.03	1.05
vest south central	. 88	. 88	Oreg.	.91	. 92
7	05	. 83	Calif.	1.05	1.04
0F1:	. 90	.93	Alaska	1,33	1.20
TO A G	. 90	.89	Hawaii	1, 17	1.13
	٠۵٥	.87			
			U.S.	1.00	1.00

Table 2: Nominal and Real Per Capita Income by Region, Division, and State, 1967 and 1972.

4480	3165	4478	3159	U. S.					
					4640	3178	4045	2704	Tex.
4439	2837	4995	3326	llawaii	4286	2901	3802	2623	Okla.
4284	2724	5162	3629	Alaska	3802	2571	3528	2445	·a·
4823	3474	5002	3660	Calif.	4025	2597	3357	2090	Ark.
4655	3364	4296	3055	Oreg.	4375	2964	3849	2606	West South Central
4273	3376	4476	3481	Wash.	3670	2184	3063	1895	
4723	3427	4880	3597	Pacific	3887	2412	STEE	2166	Ala.
5908	3724	5215	3626	Nev.	4318	2772	3640	2369	Tenn.
4325	2776	3745	2617	Utah	3687	2413	3601	2387	Ky.
4854	2867	4300	2681	Ariz.	3933	2481	3448	2241	East South Central
4281	2661	3656	2462	N. Mex.	5505	3337	4188	2796	
5060	3176	4449	3086	Colo.	4661	2847	3846	2513	Ga.
4477	2831	4345	2997	Wyo.	3854	2403	3448	2167	s. c.
4455	3062	3635	2608	Idaho	4260	2736	3721	2396	
4160	2816	3897	2759	Mont.	3632	2329	3574	2341	
4731	2969	4158	2818	Mountain	4338	2764	4258	2776	-
4725	3319	4702	3412	West	4841	3172	4897	3434	Md.
					5413	3793	4983	3700	Del.
8(5.4	2957	4593	3009	Kan.	4661	2955	4131	2749	South Atlantic
4353	3241	4341	2938	Neb.	4426	2859	3906	2599	South
3735	2701	. 3716	2550	S. Dak.					
3914	2699	3718	2485	N. Dak.	4328	3051	4447	3146	Pa.
4483	3337	4206	2993	Mo.	4538	3240	5126	3624	. Z.
4462	3448	4318	3093	Iowa	4304	3239	5319	3726	
4398	3213	4332	3111	Minn.	4357	3179	5005	3590	Middle Atlantic
4372	3215	4281	3012	West North Central	4708	3495	5342	3865	Conn.
4028	2901	4207	3153	Wis.	4184	3116	4399	3238	R. I.
4527	3226	4817	3393	Mich.	4618	3341	4870	3488	Mass.
4809	3595	5126	3725	111.	4610	3274	3865	2775	Vt.
4 392	3245	4391	3241	Ind.	5190	3294	4092	3109	z. =.
4270	3069	4512	3212	Ohio	4257	2874	3571	2620	Maine
4464	3253	4699	3389	East North Central	4612	3316	4754	3495	New England
4438	3243	4578	3280	North Central	4419	3212	4994	3567	Northeast
1972	1967	1972	1967		1972	1967	1972	1967	
-	Rea	Nominal	Nom	sion/State	1	Real	Nominal	Nom	
	C	current		Region/Divi-	•	dollars)	(current dollars)	•	sion/State
	a income	Per Capita				ta Income	Per Capita Income		Region/Divi-

Source: For nominal per capita income 1967 & 1972 (prelim.): U. S. Bureau of Economic Analysis, Survey of Current Business, April 1969 & April 1973.