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Abstract. This paper considers the problem of conducting inference on
the regression coefficient in a bivariate regression model with a highly persistent
regressor. Gaussian power envelopes are obtained for a class of testing proce-
dures satisfying a conditionality restriction. In addition, the paper proposes
feasible testing procedures that attain these Gaussian power envelopes whether
or not the innovations of the regression model are normally distributed.

1. Introduction

This paper considers the problem of conducting inference on the regression coefficient
in a bivariate regression model with a highly persistent regressor. Several papers
studying the problem of testing regression hypotheses in the presence of nearly inte-
grated regressors have pointed out its nonstandard nature and/or proposed asymp-
totically valid testing procedures.1 On the other hand, we know of only one paper,
Stock and Watson (1996), that has obtained testing procedures with demonstrable
optimality properties in a regression model with nearly integrated regressors.

Stock and Watson (1996) investigated tests maximizing a weighted average (local
asymptotic) power criterion among tests of a certain level. The functional form of
tests obtained by maximizing a weighted average power criterion depends on the
underlying weighting function, implying that no uniformly most powerful (UMP)
test exists among the class of all tests satisfying only a level restriction. It therefore

∗We are grateful to Laura Chioda, Guido Imbens, Jim Powell, Tom Rothenberg, Paul Ruud,
Jim Stock, George Tauchen, Ed Vytlacil, Mark Watson, and seminar participants at Berkeley, Iowa
State, Montréal, Princeton, Stanford, the Aarhus Econometrics conference at Svinkløv, and the 2003
NBER Summer Institute for comments.

†e-mail: mjansson@econ.berkeley.edu.
‡e-mail: moreira@kuznets.fas.harvard.edu.
1The problems caused by the presence of nearly integrated regressors have been pointed out by

Cavanagh, Elliott, and Stock (1995), Elliott (1998), Elliott and Stock (1994), Jeganathan (1997),
and Stock (1997). Inference procedures that are valid in the presence of nearly integrated regressors
have been proposed by Campbell and Dufour (1997), Campbell and Yogo (2003), Cavanagh, Elliott,
and Stock (1995), Lanne (2002), Stock and Watson (1996), and Wright (1999, 2000).
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Optimal Inference with Nearly Integrated Regressors 2

seems natural to ask whether it is possible to find “reasonable” restrictions subject
to which a UMP test (of a hypothesis on the regression coefficient in a bivariate
regression model with a nearly integrated regressor) can be derived.

In an attempt to provide an affirmative answer to that question, the present paper
develops attainable finite sample and asymptotic efficiency bounds (power envelopes)
under the assumption that the latent errors of the regression model are Gaussian
white noise. In addition, the normality assumption is shown to be least favorable
in the sense that even if this distributional assumption is dropped, it is possible to
construct testing procedures whose local asymptotic power functions coincide with
the Gaussian power envelopes.

Under the assumption of normality, the model exhibits the nonstandard feature of
having a minimal sufficient statistic whose distribution belongs to a curved exponen-
tial family [Efron (1975, 1978)]. In cross section econometrics, inference in regression
models with random, exogenous regressors is conducted conditional on the regressors.
In this paper, we adopt a similar approach, in which inference is conducted condi-
tional on some functions of the regressors. Quite remarkably, it turns out that we
can remove the statistical curvature from the inference problem by conducting the
analysis conditional on the values of statistics whose distribution does not depend on
the parameter of interest. It is this insight that enables us to develop finite sample
optimality theory and motivates our asymptotic optimality theory, the development
of which uses the theory of locally asymptotically quadratic (LAQ) likelihood ratios
[Jeganathan (1995), Le Cam and Yang (2000)] to show that the limiting experiment
associated with our regression model inherits the statistical properties of the finite
sample model.

The bulk of this paper studies a model in which the error term of the equation
of interest is a martingale difference sequence with respect to its lags and to current
and lagged values of the nearly integrated regressor. Although somewhat restrictive,
this model is of empirical relevance insofar as it captures the salient features of the
predictive regression model, a popular model in empirical finance.2 The Gaussian ver-
sion of the model enjoys the additional (expositional) advantage that its finite sample
statistical properties are in one-to-one correspondence with the statistical properties
of the associated limiting experiment, hereby enabling us to introduce the main ideas
of the paper without the use of asymptotics. Because our asymptotic results depend
on the underlying model only through the associated limiting experiment, they can
be extended to models more general than the model in which the error term of the
equation of interest is a martingale difference sequence with respect to its lags and

2Recent papers studying predictive regressions include Ang and Bekaert (2003), Campbell and
Yogo (2003), Ferson, Sarkissian, and Simin (2003), Lanne (2002), Lewellen (2002), Polk, Thompson,
and Vuolteenaho (2004), and Torus, Valkanov, and Yan (2001). See also Stambaugh (1999) and the
references therein.
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to current and lagged values of the nearly integrated regressor. We illustrate this
point by showing that results extend in a straightforward way to a cointegration-
type model accommodating correlation between the (potentially) serially correlated
error term of the equation of interest and current (and lagged) values of the nearly
integrated regressor.

Section 2 introduces the model used in the bulk of the paper. Sections 3 and 4
develop finite sample and asymptotic optimality theory under the assumption that
the latent errors of that model are Gaussian white noise. Section 5 constructs fea-
sible testing procedures, asymptotically optimal under the assumptions of Section
4, whose asymptotic validity requires less restrictive assumptions than the efficient
testing procedures derived under the assumption of normality. Section 6 studies a
cointegration-type model and shows that the limiting experiment of that model co-
incides with the limiting experiment of the model of Sections 3 and 4, implying that
the asymptotic optimality results of Section 4 can be extended to cointegration-type
models. Mathematical derivations have been relegated to two Appendices.

2. Predictive Regression Model

Following Cavanagh, Elliott, and Stock (1995), Sections 3-5 consider a bivariate model
in which the observed data

{
(yt, xt)

′ : 1 ≤ t ≤ T
}

is generated by the recursive system

yt = α + βxt−1 + εy
t , (1)

xt = µx + vx
t , vx

t = γvx
t−1 + ψ (L) εx

t , (2)

where3

A1. vx
0 = 0.

A2. E (εt|εt−1, εt−2, . . .) = 0, E (εtε
′
t|εt−1, εt−2, . . .) = Σ for some positive definite

matrix Σ, and supt E
[‖εt‖2+%] < ∞ for some % > 0, where εt = (εy

t , ε
x
t )
′ .

A3. ψ (L) = 1 +
∑∞

i=1 ψiL
i, where ψ (1) 6= 0 and

∑∞
i=1 i |ψi| < ∞.

By design, the model (1)−(2) captures the salient features of the predictive regres-
sion model, a popular model in empirical finance.4 Our goal is to construct one- and
two-sided tests of the null hypothesis β = β0, treating α, γ, and the ψ’s as unknown

3In assumption A2 and elsewhere in the paper, ‖·‖ denotes the Euclidean norm and (in)equalities
involving conditional expectations are assumed to hold almost surely.

4In a predictive regression, yt denotes a stock return in period t, xt−1 is a predictor observed at
time t− 1, and the hypothesis of interest is β = 0.
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nuisance parameters. Regarding the nuisance parameter γ, particular attention will
given to the (empirically relevant) case where the predetermined regressor xt−1 in (2)
is highly persistent in the sense that γ is “close” to (but not necessarily equal to)
unity.

The development of inference procedures proceeds in three steps. First, Section 3
develops finite sample optimality theory under the assumption that µx = 0, ψ (L) = 1,
and εt is Gaussian white noise. Then, employing the same assumptions, Section 4
develops asymptotic optimality theory under the assumption that the persistence pa-
rameter γ is modeled as local-to-unity in the sense that γ = 1 + T−1c for some fixed
constant c. Finally, Section 5 proposes feasible testing procedures that enjoy asymp-
totic optimality properties under the assumptions of Section 4 and are asymptotically
valid under A1-A3 and local-to-unity asymptotics.

3. Optimal Inference with Gaussian Errors: Finite Sample Theory

Consider the Gaussian model

yt = α + βxt−1 + εy
t , (3)

xt = γxt−1 + εx
t , (4)

where

A1∗. x0 = 0.

A2∗. εt = (εy
t , ε

x
t )
′ ∼ i.i.d. N (0, Σ) , where Σ is a known, positive definite matrix.

Under these assumptions, the log likelihood function L (·) satisfies

−2L (α, β, γ) = σ−1
yy.x

T∑
t=1

[
yt − α− βxt−1 − σ−1

xx σxy (xt − γxt−1)
]2

+σ−1
xx

T∑
t=1

(xt − γxt−1)
2 ,

where σyy.x = σyy − σ−1
xx σ2

xy and Σ has been partitioned conformably with εt.
Testing problems involving β are invariant under transformations of the form

(yt, xt) → (yt + a, xt) , a ∈ R.
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If β is unrelated to α (as is assumed here), then it seems reasonable to consider
only tests that are invariant under location transformations of the y’s. The statistic
[(y1, . . . , yT ) ι⊥, (x1, . . . , xT )]′ is a maximal invariant under this group of transforma-
tions, where ι⊥ is a T × (T − 1) matrix whose columns form an orthonormal basis
for the set of T -vectors that sum to zero (i.e. are orthogonal to ι = (1, . . . , 1)′).
Apart from an additive constant, the log density of this maximal invariant is given
by L (β, γ) = maxα L (α, β, γ) .

Now,

L (β, γ)− L (0, 0) = βSβ + γSγ − 1

2

(
β − σ−1

xx σxyγ
)2

Sββ − 1

2
γ2Sγγ, (5)

where

Sβ = σ−1
yy.x

T∑
t=1

xµ
t−1

(
yt − σ−1

xx σxyxt

)
, xµ

t−1 = xt−1 − T−1

T∑
s=1

xs−1,

Sγ = σ−1
xx

T∑
t=1

xt−1xt − σ−1
xx σxySβ,

Sββ = σ−1
yy.x

T∑
t=1

xµ2
t−1,

Sγγ = σ−1
xx

T∑
t=1

x2
t−1.

It follows from (5) that S = (Sβ, Sγ, Sββ, Sγγ)
′ is a sufficient statistic for the distribu-

tion of the maximal invariant. When studying invariant tests of H0 : β = β0, we can
therefore restrict attention to tests based on S. Any such test can be represented by
means of a [0, 1]-valued function φ (·) such that H0 is rejected with probability φ (s)
if S = s = (sβ, sγ, sββ, sγγ)

′ . The associated probability of rejecting H0 is Eβ,γφ (S) ,
where the subscript on E indicates the distribution with respect to which the expec-
tation is taken. Our aim is to explore the extent to which it is possible to maximize
Eβ,γφ (S) uniformly in (β, γ) subject to “reasonable” restrictions on φ (·) .

The distribution of S is a curved exponential family [in the sense of Efron (1975,
1978)], the minimal sufficient statistic being of dimension four whereas the parameter
vector (β, γ) is two-dimensional. (A precise statement is provided in Lemma 1 (a) be-
low.) As a consequence, conventional optimality theory for exponential families [e.g.,
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Lehmann (1994)] does not apply.5 Nevertheless, it is possible to construct tests with
interesting optimality properties because it turns out that a set of restrictions moti-
vated by the conditionality principle are sufficient to remove the statistical curvature
from the problem.

Since the distribution of (Sββ, Sγγ) does not depend on β, the pair (Sββ, Sγγ) is
a specific ancillary for β in the sense of Basu (1977). A conditionality argument
therefore suggests that inference on β should be based on the conditional distribution
of (Sβ, Sγ) given (Sββ, Sγγ) . A remarkable property of that conditional distribution
is given in part (b) of the following lemma.

Lemma 1. Let
{
(yt, xt)

′} be generated by (3)− (4) and suppose A1∗-A2∗ hold.

(a) The joint distribution of S is a curved exponential family with density

fS (s; β, γ) = K (β, γ) f 0
S (s)

× exp

[
βsβ + γsγ − 1

2

(
β − σ−1

xx σxyγ
)2

sββ − 1

2
γ2sγγ

]
,

where f 0
S (·) is a density of S when β = γ = 0 and K (·) is defined by the requirement∫

R4 fS (s; β, γ) ds = 1.

(b) The conditional distribution of (Sβ, Sγ) given (Sββ, Sγγ) is a linear exponential
family with density

fSβ ,Sγ |Sββ ,Sγγ (sβ, sγ|sββ, sγγ; β, γ) = g (β, γ|sββ, sγγ) h (sβ, sγ|sββ, sγγ)

× exp (βsβ + γsγ)

for some functions g (·) and h (·) .

In view of Lemma 1 (b), we can remove the curvature from the testing problem
by conditioning on the specific ancillary (Sββ, Sγγ) . It is this property that enables
us to use the classical results of Lehmann (1994) to find UMP conditionally unbiased
(UMPCU) tests for one- and two-sided testing problems concerning β.

First, consider the one-sided testing problem6

5Proofs of optimality results in linear exponential families rely on the monotone likelihood ratio
property and (in testing problems with nuisance parameters) on completeness of minimal sufficient
statistics. Neither property holds in the curved exponential family studied here.

6Results for the one-sided testing problem H0 : β = β0 vs. H1 : β < β0 are completely analogous
and are omitted to conserve space.
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H0 : β = β0 vs. H1 : β > β0.

A level η test with test function φ (·) is conditionally unbiased if

Eβ0,γ [φ (S) |Sββ, Sγγ] ≤ η ∀γ ∈ R,

Eβ,γ [φ (S) |Sββ, Sγγ] ≥ η ∀β > β0, γ ∈ R.

Any conditionally unbiased test is conditionally similar in the sense that

Eβ0,γ [φ (S) |Sββ, Sγγ] = η ∀γ ∈ R. (6)

On the other hand, the properties of exponential families [e.g., Lehmann (1994, The-
orem 2.9)] can be used to show that a test is UMP among conditionally similar tests
only if it is conditionally unbiased. As a consequence, a test is UMPCU if and only
if it is UMP among tests satisfying (6) .

Consider the test function φ∗η (·) given by

φ∗η (s) = 1 [sβ > Cη (sγ, sββ, sγγ)] , (7)

where 1 [·] is the indicator function, Cη (·) satisfies

Eβ0

[
φ∗η (S) |Sγ, Sββ, Sγγ

]
= η, (8)

and the subscript “γ” on E has been omitted in recognition of the fact that the distri-
bution of Sβ conditional on (Sγ, Sββ, Sγγ) does not depend on γ (because (Sγ, Sββ, Sγγ)
is sufficient for γ for any fixed value of β). By construction, the test based on φ∗η (·)
satisfies (6) . In fact, it follows from Theorem 2 (a) below that the test associated
with φ∗η (·) is the UMPCU level η test.

Next, consider the two-sided testing problem

H0 : β = β0 vs. H2 : β 6= β0.

In this case, a level η test is conditionally unbiased if its test function φ (·) satisfies
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Eβ0,γ [φ (S) |Sββ, Sγγ] ≤ η ∀γ ∈ R,

Eβ,γ [φ (S) |Sββ, Sγγ] ≥ η ∀β 6= β0, γ ∈ R.

It follows from Lemma 1 (b) and the properties of exponential families (e.g., Lehmann
(1994, Theorem 2.9)) that a level η test is conditionally unbiased only if its test
function φ (·) satisfies

∂

∂β
Eβ,γ [φ (S) |Sββ, Sγγ]

∣∣∣∣
β=β0

= 0 ∀γ ∈ R.

In turn, this condition holds if and only if

Eβ0,γ [φ (S) Sβ|Sββ, Sγγ] = ηEβ0,γ [Sβ|Sββ, Sγγ] ∀γ ∈ R. (9)

As a consequence, the class of test functions satisfying (6) and (9) contains all test
functions associated with tests that are conditionally unbiased. On the other hand,
it can be shown that a test is uniformly most powerful among tests satisfying (6) and
(9) only if it is conditionally unbiased.

Theorem 2 (b) shows that a level η test is UMPCU if its test function is given by

φ∗∗η (s) = 1
[
sβ < Cη (sγ, sββ, sγγ)

]
+ 1

[
sβ > Cη (sγ, sββ, sγγ)

]
, (10)

where Cη (·) and Cη (·) satisfy

Eβ0

[
φ∗∗η (S) |Sγ, Sββ, Sγγ

]
= η, (11)

Eβ0

[
φ∗∗η (S) Sβ|Sγ, Sββ, Sγγ

]
= η · Eβ0

[Sβ|Sγ, Sββ, Sγγ] . (12)

Theorem 2. Let
{
(yt, xt)

′} be generated by (3)− (4) and suppose A1∗-A2∗ hold.

(a) If φ (·) satisfies (6) , then

Eβ,γφ (S) ≤ Eβ,γφ
∗
η (S)
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for every β ≥ β0 and every γ ∈ R.

(b) If φ (·) satisfies (6) and (9) , then

Eβ,γφ (S) ≤ Eβ,γφ
∗∗
η (S)

for every β ∈ R and every γ ∈ R.

Remarks. (i) Qualitatively similar results can be obtained if the intercept term α
is known. For concreteness, suppose α = 0. In that case, the log likelihood function
L0 (·) satisfies

L0 (β, γ)− L0 (0, 0) = βS0
β + γS0

γ −
1

2

[
γ2 +

(
β − σ−1

xx σxyγ
)2

σxxσ
−1
yy.x

]
Sγγ,

where S0
β = σ−1

yy.x

∑T
t=1 xt−1 (yt − σ−1

xx σxyxt) and S0
γ = σ−1

xx

∑T
t=1 xt−1xt − σ−1

xx σxyS
0
β.

The distribution of the minimal sufficient statistic
(
S0

β, S0
γ , Sγγ

)′
is a curved exponen-

tial family, but the curvature disappears once we condition the specific ancillary Sγγ.
Optimality results analogous to Theorem 2 are therefore readily available, but we
omit a precise statement because the case where α is known appears to be of limited
empirical relevance.

(ii) In most applications, the autoregressive parameter γ can be assumed to lie in
some subset Γ of R. In such cases, the condition (6) might appear excessively strong.
By the properties of exponential families (e.g., Lemma 1 (b) and Lehmann (1994,
Theorem 4.1)), the condition

Eβ0,γ [φ (S) |Sββ, Sγγ] = η ∀γ ∈ Γ

is equivalent to (6) whenever Γ contains an open interval. A similar remark applies
to (9) . Therefore, although the optimality results of Theorem 2 obviously reflect the
fact that γ is assumed to be unknown, the (implicit) assumption that γ can take on
any real value is not crucial. On the other hand, although our proofs go through
for any open non-empty interval Γ, our results will more important empirically when
there is substantial uncertainty about the parameter γ.

(iii) Any conditionally similar test is similar in the sense that

Eβ0,γφ (S) = η ∀γ ∈ R.
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It can be shown that the converse does not hold. As a consequence, the class of
similar tests is strictly greater than the class of conditionally similar tests. It is an
open question whether the test based on φ∗η (·) is UMP within the class of unbiased
tests.

(iv) Studying a more general (but closely related) model, Stock and Watson (1996)
investigated tests maximizing a weighted average (local asymptotic) power criterion.
When adapted to the model under consideration here, the approach of Stock and
Watson (1996) involves maximization of

∫
Eβ,γφ (S) dG (β, γ) (13)

among test functions φ (·) satisfying

Eβ0,γφ (S) ≤ η ∀γ ∈ Γ, (14)

where Γ is some subset of R and G (·) is a weighting function defined on [β0,∞)× Γ
(in the one-sided case) or R× Γ (in the two-sided case). The class of tests satisfying
(14) depends on Γ, but is strictly larger than the class of conditionally similar tests.
On the other hand, the test that maximizes (13) subject to (14) generally depends
on the weighting function G (·) (and Γ), implying that no UMP test exists among
tests satisfying (14) . Our approach to optimality theory therefore complements the
approach of Stock and Watson (1996) in the sense that we are able to arrive at a
stronger conclusion (existence of a UMP test) by confining attention to a strict subset
of the set of testing procedures considered in the Stock and Watson (1996) approach.

(v) Starting from the maximal invariant [(y1, . . . , yT ) ι⊥, (x1, . . . , xT )]′ , we em-
ployed two dimension reduction techniques to arrive at Theorem 2. First, sufficiency
reduced the problem to one involving the vector S. Then, conditioning on specific an-
cillaries led to a further reduction of the dimension of the data, effectively removing
(Sββ, Sγγ) from the problem. Reducing by sufficiency before conditioning on (spe-
cific) ancillaries is consistent with the recommendations of Lehmann (1994, Chapter
10). Nevertheless, it might be tempting to attempt to condition on specific ancil-
laries by reducing by sufficiency. However, it can be shown that β is not identified
from the distribution of the maximal invariant [(y1, . . . , yT ) ι⊥, (x1, . . . , xT )]′ given the
specific ancillary (x1, . . . , xT )′ . As a consequence, our model provides an illustration
of the point that “it is desirable to reduce the data as far as possible through suffi-
ciency, before attempting further reduction by means of (specific) ancillary statistics”
[Lehmann (1994, pp. 545-546)].
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4. Optimal Inference with Gaussian Errors: Asymptotic Theory

This section develops an asymptotic counterpart of Theorem 2. Whereas the finite
sample results of the previous section require no specific assumptions about the range
of possible values of the persistence parameter γ (cf. remark (ii) following Theorem 2),
the asymptotic properties of the model (1)− (2) depend crucially on the assumptions
made with respect to γ. When γ is bounded away from unity in absolute value, the
curvature of the model vanishes asymptotically and standard large-sample optimality
theory based on the theory of locally asymptotically normal (LAN) likelihood ratios
(e.g., Choi, Hall, and Shick (1996)) is applicable. In particular, one-sided testing
problems admit asymptotically UMP tests and two-sided testing problems admit
asymptotically UMP unbiased tests. In contrast, Jeganathan (1997) has shown that
the statistical curvature persists asymptotically when γ is modeled as local-to-unity
in the sense that γ = γT (c) = 1 + T−1c for some fixed, unknown constant c.7

Because the statistical curvature does not vanish when γ = γT (c) , testing prob-
lems concerning β exhibit nonstandard large-sample properties under local-to-unity
asymptotics. For instance, the t-test testing β = β0 in (1) is not asymptotically
pivotal under local-to-unity asymptotics [e.g., Cavanagh, Elliott, and Stock (1995),
Elliott and Stock (1994)]. Moreover, testing procedures developed under the assump-
tion that γ = 1 are not robust to local departures from that assumption [e.g., Stock
(1997)].8 Procedures that are asymptotically valid when γ is local-to-unity have been
proposed by Campbell and Dufour (1997), Campbell and Yogo (2003), Cavanagh, El-
liott, and Stock (1995), and Lanne (2002), but all of these existing testing procedures
are asymptotically biased.9 In particular, these procedures are too conservative for
testing the region in the alternative hypothesis that is most likely to be the important
one in practice: the one where β is close its null value. By developing an asymptotic
counterpart of Theorem 2, this section demonstrates by example that (non-trivial)
asymptotically unbiased testing procedures can be constructed even when γ is local-
to-unity.

Under the local-to-unity parameterization of γ, an appropriate parameterization

7When γ = γT (c) = 1 + T−1c for some known constant c (e.g., when the unit root hypothesis
γ = 1 is known to hold), the curvature also persists but the situation is much simpler because the
likelihood ratios are locally asymptotically mixed normal (LAMN) and the conditional optimality
results of Feigin (1986) are applicable.

8Because tests of the unit root hypothesis γ = 1 are inconsistent against local-to-unity alternatives
[e.g., Elliott, Rothenberg, and Stock (1996), Stock (1994)], this non-robustness result can also be
used to establish the invalidity of two-step procedures based on unit root pretests [e.g., Stock and
Watson (1996)].

9The tests proposed by Campbell and Dufour (1997), Campbell and Yogo (2003) and Cavanagh,
Elliott, and Stock (1995), respectively, are asymptotically biased because they are not asymptotically
similar. In spite of being asymptotically similar, Lanne’s (2002) test is also asymptotically biased
[Wright (2000)].
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of β is β = βT (b) = β0 +T−1σ
−1/2
xx σ

1/2
yy.xb, b being a fixed constant. Expressed in terms

of b, the null hypothesis is b = 0, while the one- and two-sided alternatives are b > 0
and b 6= 0, respectively.

Expanding L (·) around (β, γ) = (β0, 1) = [βT (0) , γT (0)] , we have:

L [βT (b) , γT (c)]− L [βT (0) , γT (0)]

(15)

= bRβ + cRγ − 1

2

(
b− ρ√

1− ρ2
c

)2

Rββ − 1

2
c2Rγγ,

where

Rβ = σ−1/2
xx σ−1/2

yy.x T−1

T∑
t=1

xµ
t−1

(
yt − β0xt−1 − σ−1

xx σxy∆xt

)
,

Rγ = σ−1
xx T−1

T∑
t=1

xt−1∆xt − ρ√
1− ρ2

Rβ, ρ = σxyσ
−1/2
xx σ−1/2

yy ,

Rββ = σ−1
xx T−2

T∑
t=1

xµ2
t−1,

Rγγ = σ−1
xx T−2

T∑
t=1

x2
t−1.

As is S, the statistic R = (Rβ, Rγ, Rββ, Rγγ)
′ is minimal sufficient. When developing

asymptotic counterparts of the results of Section 3, it turns out to be convenient
to work with R. The following lemmas give some useful properties of its limiting
distribution.

Lemma 3. Let
{
(yt, xt)

′} be generated by (3) − (4) and suppose A1∗-A2∗ hold. If

b = T (β − β0) σ
1/2
xx σ

−1/2
yy.x and c = T (γ − 1) are fixed as T increases without bound,

then

R →d Rρ (b, c) =
(Rρ

β (b, c) ,Rρ
γ (b, c) ,Rββ (c) ,Rγγ (c)

)′

as T →∞, where
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Rρ
β (b, c) =

∫ 1

0

W µ
x,c (r) dWy (r) +

(
b− ρ√

1− ρ2
c

)∫ 1

0

W µ
x,c (r)2 dr,

Rρ
γ (b, c) =

∫ 1

0

Wx,c (r) dWx,c (r)− ρ√
1− ρ2

Rρ
β (b, c) ,

Rββ (c) =

∫ 1

0

W µ
x,c (r)2 dr,

Rγγ (c) =

∫ 1

0

Wx,c (r)2 dr,

Wx and Wy are independent Wiener processes, W µ
x,c (r) = Wx,c (r) − ∫ 1

0
Wx,c (s) ds,

and Wx,c an Ornstein-Uhlenbeck process satisfying the stochastic differential equation
dWx,c (r) = cWx,c (r) dr + dWx (r) with initial condition Wx,c (0) = 0.

Lemma 4. Let Rρ (b, c) be defined as in Lemma 3.

(a) The joint distribution of Rρ (b, c) is a curved exponential family with density

fR (r; b, c, ρ) = K (b, c, ρ) f 0
R (r; ρ)

× exp


brβ + crγ − 1

2

(
b− ρ√

1− ρ2
c

)2

rββ − 1

2
c2rγγ


 ,

where r = (rβ, rγ, rββ, rγγ)
′ , f 0

R (·; ρ) is a density of Rρ (0, 0) , and K (·) is defined by
the requirement

∫
R4 fR (r; b, c, ρ) dr = 1.

(b) The conditional distribution of
(Rρ

β (b, c) ,Rρ
γ (b, c)

)
given (Rββ (c) ,Rγγ (c)) is

a linear exponential family with density

fRρ
β ,Rρ

γ |Rββ ,Rγγ
(rβ, rγ|rββ, rγγ; b, c, ρ) = g (b, c|rββ, rγγ; ρ) h (rβ, rγ|rββ, rγγ; ρ)

× exp (brβ + crγ)

for some functions g (·) and h (·) .

The characterizations of the limiting distribution of R given in Lemmas 3 and
4 serve complementary purposes. Lemma 4, which is based on the theory of LAQ
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likelihood ratios [Jeganathan (1995), Le Cam and Yang (2000)], forms the basis of the
development of asymptotic counterparts of the results of the previous section. In par-
ticular, Lemma 4 (an asymptotic counterpart of Lemma 1) enables us to characterize
one- and two-sided tests with asymptotic optimality properties. These characteriza-
tions, given in Theorem 5, are abstract in the sense that they involve the density
f 0
R (·; ρ) for which no closed form expression appears to be known. To help make

the asymptotically optimal tests operational, Theorem 7 of Section 5 uses Lemma
3 to obtain an integral representation of f 0

R (·; ρ) which is useful for computational
purposes.

In view of Lemma 4, the functionalRρ (b, c) inherits those distributional properties
of S that were exploited in the development of the finite sample optimality results of
Section 3. By implication, the limiting experiment associated with the sequence of
models under study here has the same basic structure as the finite sample experiments
studied in Section 3. Specifically, the log likelihood ratios associated with the limiting
experiment are quadratic; that is, the log likelihood ratios are LAQ in the sense of
Jeganathan (1995). Moreover, the quadratic terms Rββ (c) and Rγγ (c) are specific
ancillaries in the limiting experiment. It therefore seems plausible that appropriately
constructed asymptotic counterparts of φ∗η (·) and φ∗∗η (·) should enjoy asymptotic
optimality properties analogous to the finite sample optimality properties enjoyed by
φ∗η (·) and φ∗∗η (·) . Theorem 5, the main result of the paper, verifies this conjecture.

Corresponding to any invariant test of H0 : b = 0 based on R, there is a [0, 1]-
valued function π (·) such that the probability of rejecting H0 equals π (r) whenever
R = r. This test function satisfies φ = π ◦ζ, where φ (·) is the test function associated
with S and ζ (·) is any mapping such that ζ (S) = R (with probability one).

Asymptotic optimality results for the one-sided testing problem

H0 : b = 0 vs. H1 : b > 0

can be obtained by restricting attention to test functions satisfying an asymptotic
conditional similarity condition. Our formulation of an asymptotic counterpart of
the conditional similarity condition (6) is motivated by the fact that π ◦ ζ satisfies
(6) if and only if

EβT (0),γT (c) [(π (R)− η) g (Rββ, Rγγ)] = 0 ∀c ∈ R, g ∈ Cb

(
R2

)
, (16)

where Cb (R2) denotes the set of bounded, continuous, real-valued functions on R2.
The advantage of this characterization of conditional similarity is that it does not
involve conditional distributions, implying that difficulties associated with conditional
weak convergence [e.g., Sweeting (1989)] can be avoided by basing the formulation
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of an asymptotic conditional similarity condition on an asymptotic version of (16) .
Following Feigin (1986), who attributes the approach to Le Cam, we say that a
sequence of tests with associated test functions {πT (·)} is locally asymptotically
conditionally similar (at level η) if

lim
T→∞

EβT (0),γT (c) [(πT (R)− η) g (Rββ, Rγγ)] = 0 ∀c ∈ R, g ∈ Cb

(
R2

)
. (17)

In perfect analogy with Theorem 2 (a), Theorem 5 (a) below shows that a one-sided
test of b = 0 has maximal local asymptotic power among locally asymptotically
conditionally similar tests if its testing function is given by

π∗η (r; ρ) = 1 [rβ > Cη (rγ, rββ, rγγ; ρ)] , (18)

where Cη (·) is the continuous function satisfying

E
[
π∗η (Rρ; ρ) |Rρ

γ,Rββ,Rγγ

]
= η, (19)

and Rρ =
(Rβ,Rρ

γ,Rββ,Rγγ

)′
= Rρ (0, 0) .10

An attainable efficiency bound for the two-sided testing problem

H0 : b = 0 vs. H2 : b 6= 0,

is available for the class of testing functions {πT (·)} satisfying (17) and the following
asymptotic counterpart of (9) :

lim
T→∞

EβT (0),γT (c) [(πT (R)− η) Rβ · g (Rββ, Rγγ)] = 0 ∀c ∈ R, g ∈ Cb

(
R2

)
. (20)

Indeed, it is shown in Theorem 5 (b) that

π∗∗η (r; ρ) = 1
[
rβ < Cη (rγ, rββ, rγγ; ρ)

]
+ 1

[
rβ > Cη (rγ, rββ, rγγ; ρ)

]
(21)

is optimal among test functions satisfying (17) and (20) , where Cη (·) and Cη (·) are

10The existence of the continuous function Cη (·) (and the continuous functions Cη (·) and Cη (·)
appearing in the definition of π∗∗η (·)) is established in Lemma 11 of Appendix A. The domain of
Cη (·) is a set S ⊆ R4 satisfying Pr

[(Rρ
γ ,Rββ ,Rγγ ; ρ

) ∈ S] = 1.
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the continuous functions satisfying

E
[
π∗∗η (Rρ; ρ) |Rρ

γ,Rββ,Rγγ

]
= η, (22)

E
[
π∗∗η (Rρ; ρ) · Rβ|Rρ

γ,Rββ,Rγγ

]
= η · E [Rβ|Rρ

γ,Rββ,Rγγ

]
. (23)

Theorem 5. Let
{
(yt, xt)

′} be generated by (3)− (4) and suppose A1∗-A2∗ hold.

(a) If {πT (·)} satisfies (17) , then

limT→∞EβT (b),γT (c)πT (R) ≤ limT→∞ EβT (b),γT (c)π
∗
η (R; ρ)

= E
[
π∗η (Rρ (b, c) ; ρ)

]

for every b ≥ 0 and every c ∈ R.

(b) If {πT (·)} satisfies (17) and (20) , then

limT→∞EβT (b),γT (c)πT (R) ≤ limT→∞ EβT (b),γT (c)π
∗∗
η (R; ρ)

= E
[
π∗∗η (Rρ (b, c) ; ρ)

]

for every b ∈ R and every c ∈ R.

In view of Theorem 5, the maximal attainable (by tests satisfying the restrictions
we impose) local asymptotic power against the local alternative β = βT (b) depends
on the values of two nuisance parameters, the persistence parameter c and ρ, the
coefficient of correlation computed from Σ.

Let ϕ∗η (·) and ϕ∗∗η (·) denote the asymptotic Gaussian power envelopes for one-
and two-sided size η tests characterized in Theorem 5; that is, let

ϕ∗η (b, c; ρ) = E
[
π∗η (Rρ (b, c) ; ρ)

]

= Pr
[Rρ

β (b, c) > Cη

(Rρ
γ (b, c) ,Rββ (c) ,Rγγ (c) ; ρ

)]
,
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ϕ∗∗η (b, c; ρ) = E
[
π∗∗η (Rρ (b, c) ; ρ)

]

= Pr
[Rρ

β (b, c) < Cη

(Rρ
γ (b, c) ,Rββ (c) ,Rγγ (c) ; ρ

)]

+ Pr
[Rρ

β (b, c) > Cη

(Rρ
γ (b, c) ,Rββ (c) ,Rγγ (c) ; ρ

)]
.

The next section proposes feasible one- and two-sided test functions that attain ϕ∗η (·)
and ϕ∗∗η (·) , respectively, under more general assumptions than those of Theorem 5.

Remarks. (i) Theorem 5 (a) remains true if the requirement (17) is replaced with
the following condition:

lim
T→∞

EβT (0),γT (c) [(πT (R)− η) g (Rββ, Rγγ)] = 0 ∀c ∈ C, g ∈ Cb

(
R2

)
,

where C ⊆ R contains an open interval. [A similar remark applies to Theorem 5
(b).] The proof of this assertion is identical to the proof of Theorem 5 (a) because it
follows from the properties of exponential families [e.g., Lemma 4 (b) and Lehmann
(1994, Theorem 4.1)] that if C ⊆ R contains an open interval, then the class Π (η, ρ)
defined in the proof of Theorem 5 (a) coincides with the class of all functions π (·)
satisfying

E [(π (Rρ)− η) g (Rββ,Rγγ) Λρ (0, c)] = 0 ∀c ∈ C, g ∈ Cb

(
R2

)
,

where Λρ (·) is defined as in the proof of Theorem 5 (a).
(ii) In view of remark (i), the function ϕ∗η (·) constitutes a suitable power enve-

lope also if c is treated as an unknown, non-positive nuisance parameter, a plausible
assumption in most empirical applications. On the other hand, the local asymptotic
conditional similarity condition (17) would be unnecessarily restrictive if a consistent
estimator of c was available. No such estimator exists under the assumptions of our
model, but consistent estimation of c is feasible if c is treated as a known (continuous)
function of β [e.g., Valkanov (1999)]. (Consistent estimators of c are also available in
certain panel versions of our model [e.g., Moon and Phillips (2000, 2004)].)

5. Feasible Inference

This section considers the general case where
{
(yt, xt)

′} is generated by (1) − (2) ,
assumptions A1-A3 hold and local-to-unity asymptotics are employed. Our aim is to
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construct test functions with desirable large-sample properties. Specifically, we wish
to develop test functions that do not require knowledge of any nuisance parameters,
are asymptotically equivalent to π∗η (R; ρ) and π∗∗η (R; ρ) under the assumptions of
Theorem 5, and are well behaved more generally. This will be accomplished by con-
structing a statistic R̂, which is asymptotically equivalent to R under the assumptions
of the previous section and is well behaved more generally.

Let x0 = x1, v̂x
0 = 0, and define v̂x

t = xt − x1 and x̂µ
t−1 = xt−1 − T−1

∑T
s=1 xs−1

(for t = 1, . . . , T ). Let

Ω =

(
ωyy ωyx

ωxy ωxx

)
= lim

T→∞
T−1

T∑
t=1

T∑
s=1

E

[(
εy

t

ψ (L) εx
t

)(
εy

s

ψ (L) εx
s

)′]

denote the long-run variance of (εy
t , ψ (L) εx

t )
′ and let Ω̂ be a consistent estimator

thereof. Finally, let

R̂β = ω̂−1/2
yy.x ω̂−1/2

xx T−1

T∑
t=1

x̂µ
t−1 (yt − β0xt−1)

− ρ̂√
1− ρ̂2

[
1

2

(
ω̂−1

xx T−1v̂x2
T − 1

)− ω̂−1
xx T−2v̂x

T

T∑
t=1

v̂x
t−1

]
,

R̂γ =
1

2

(
ω̂−1

xx T−1v̂x2
T − 1

)− ρ̂√
1− ρ̂2

R̂β,

R̂ββ = ω̂−1
xx T−2

T∑
t=1

x̂µ2
t−1,

R̂γγ = ω̂−1
xx T−2

T∑
t=1

v̂x2
t−1,

where ω̂yy.x = ω̂yy − ω̂−1
xx ω̂2

xy, ρ̂ = ω̂xyω̂
−1/2
xx ω̂−1/2

yy , and Ω̂ has been partitioned in the
obvious way.

As is R, the statistic R̂ =
(
R̂β, R̂γ, R̂ββ, R̂γγ

)′
is invariant under transformations

of the form (yt, xt) → (yt + a, xt) , where a ∈ R.11 Under the assumptions of Section
4, R̂ is asymptotically equivalent to R. More generally, we have:

11In fact, R̂ is invariant under transformations of the form (yt, xt) → (yt + a, xt + mx) , where
a ∈ R and mx ∈ R.
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Theorem 6. Let
{
(yt, xt)

′} be generated by (1) − (2) , suppose A1-A3 hold, and

suppose b = T (β − β0) ω
1/2
xx ω

−1/2
yy.x and c = T (γ − 1) are fixed as T increases without

bound, where ωyy.x = ωyy − ω−1
xx ω2

xy. If Ω̂ →p Ω, then R̂ →d Rρ (b, c) as T → ∞,

where ρ = ωxyω
−1/2
xx ω

−1/2
yy is the coefficient of correlation computed from Ω. Moreover,

limT→∞ EβT (b),γT (c)π
∗
η

(
R̂; ρ̂

)
= ϕ∗η (b, c; ρ) ∀b ≥ 0, c ∈ R,

and

limT→∞ EβT (b),γT (c)π
∗∗
η

(
R̂; ρ̂

)
= ϕ∗∗η (b, c; ρ) ∀b ∈ R, c ∈ R.

In view of Theorem 6, the Gaussian power envelopes ϕ∗η (·) and ϕ∗∗η (·) are attain-
able whether or not the innovations of the regression model are normally distributed
(with a known covariance matrix). Moreover, the presence of serial correlation does
not affect our ability to attain the Gaussian power envelope as long as Assumption
A3 holds. As usual, these predictions of asymptotic theory are not expected to be
borne out in finite samples if the errors vx

t are “nearly” I(−1) (i.e., if |ψ (1)| is “small”
relative to

∑∞
i=0 ψ2

i ) or “nearly” I(1) (i.e., if |ψ (1)| is “large” relative to
∑∞

i=0 ψ2
i ).

Construction of consistent long-run variance estimators is a problem that has re-
ceived considerable attention and there is no shortage of estimators satisfying the
high-level assumption Ω̂ →p Ω of Theorem 6.12 To describe a consistent kernel

estimator of Ω, let ût =
(
yµ

t − β̂x̂µ
t−1, v̂

x
t − γ̂v̂x

t−1

)′
, where yµ

t = yt − T−1
∑T

s=1 ys,

β̂ =
(∑T

t=1 x̂µ2
t−1

)−1 ∑T
t=1 x̂µ

t−1yt, and γ̂ =
(∑T

t=1 v̂x2
t−1

)−1 ∑T
t=1 v̂x

t−1v̂
x
t . Under the as-

sumptions of Theorem 6 and fairly general conditions on the kernel k (·) and the
bandwidth parameter BT , it follows from Jansson (2002) that

Ω̂ = T−1

T∑
t=1

T∑
s=1

k

( |t− s|
BT

)
ûtû

′
s →p Ω.

To implement the tests based on π∗η
(
R̂; ρ̂

)
and π∗∗η

(
R̂; ρ̂

)
, knowledge of the

critical value functions Cη (·) , Cη (·) , and Cη (·) is required. These critical value
functions are implicitly defined in terms of the conditional distribution of Rβ given(Rρ

γ,Rββ,Rγγ

)
. That distribution is non-standard and does not appear to be avail-

able in closed form, but can easily be obtained (numerically) with the help of the
following integral representation of the joint distribution of Rρ.

12Important contributions to the literature on long-run variance estimation include Andrews
(1991), Andrews and Monahan (1992), Hansen (1992), de Jong and Davidson (2000), and Newey
and West (1987, 1994).
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Theorem 7. The joint distribution of Rρ admits a density of the form

f 0
R (r; ρ) = 1

{
rγ +

ρ√
1− ρ2

rβ > −1

2
, 0 < rββ < rγγ

}

× 1√
2πrββ

exp

(
− r2

β

2rββ

)
h

(
2rγ + 2

ρ√
1− ρ2

rβ + 1, rγγ − rββ, rγγ

)
,

where

h (qγ, qββ, qγγ) =
1

π2√qγ
√

qββ

∫ ∞

0

Re
{
κ

(
t;
√

qγ,
√

qββ

)
exp [−itqγγ]

}
dt,

κ (t; zγ, zββ) =
|A + iB|−1/2

√
cosh

√−2it
exp

[
−

(
zγ

zββ

)′ (
AB−1A + B

)−1
AB−1

(
zγ

zββ

)]

× exp

[
+i

(
zγ

zββ

)′ (
B−1 −B−1A

(
AB−1A + B

)−1
AB−1

) (
zγ

zββ

)]

+
|A + iB|−1/2

√
cosh

√−2it
exp

[
−

(
zγ

−zββ

)′ (
AB−1A + B

)−1
AB−1

(
zγ

−zββ

)]

× exp

[
+i

(
zγ

−zββ

)′ (
B−1 −B−1A

(
AB−1A + B

)−1
AB−1

) (
zγ

−zββ

)]
,

A = A (t) =

(
1√
t

sinh 2
√

t+sin 2
√

t
cosh 2

√
t+cos 2

√
t

1
t

2 sinh
√

t sin
√

t
cosh 2

√
t+cos 2

√
t

1
t

2 sinh
√

t sin
√

t
cosh 2

√
t+cos 2

√
t

1
2t3/2

sinh 2
√

t−sin 2
√

t
cosh 2

√
t+cos 2

√
t

)
,

B = B (t) =




1√
t

sinh 2
√

t−sin 2
√

t
cosh 2

√
t+cos 2

√
t

1
t

(
1− 2 cosh

√
t cos

√
t

cosh 2
√

t+cos 2
√

t

)

1
t

(
1− 2 cosh

√
t cos

√
t

cosh 2
√

t+cos 2
√

t

)
1
t

(
1− 1

2
√

t
sinh 2

√
t+sin 2

√
t

cosh 2
√

t+cos 2
√

t

)

 .

6. Cointegration

A closely related problem to that considered in Sections 2-5 is the problem of conduct-
ing inference on long run economic relationships between highly persistent variables.
The concept of cointegration [Engle and Granger (1987)] provides a useful framework
for doing inference when the individual time series are known to have unit roots. A
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celebrated result from cointegration analysis shows that standard Wald-type test sta-
tistics based on asymptotically efficient estimators of cointegrating coefficients have
asymptotic χ2 null distributions when the individual time series have unit roots.13

Elliott (1998) has shown that the validity of the χ2 result depends crucially on the
validity of the unit root assumption. Indeed, the χ2 result breaks down when the
largest autoregressive root is modeled as local to unity.14

Recognizing the importance of Elliott’s (1998) result, Stock and Watson (1996)
and Wright (1999, 2000) have developed cointegration-type inference procedures that
are asymptotically valid in the absence of (exact) unit root assumptions on the indi-
vidual time series. Although the test proposed by Stock and Watson (1996) enjoys
certain optimality properties (see remark (iv) on Theorem 2), it is asymptotically bi-
ased, as are the tests due to Wright (1999, 2000). In contrast, this section shows that
results analogous to Theorems 5 and 6 are available for cointegration-type models
accommodating correlation between the (potentially) serially correlated error term
of the equation of interest and current (and lagged) values of the nearly integrated
regressor.

6.1. Optimal Inference with Gaussian Errors. Consider the model

yt = α + βxt + εy
t , (24)

xt = γxt−1 + εx
t , (25)

where

B1∗. x0 = 0.

B2∗. εt = (εy
t , ε

x
t )
′ ∼ i.i.d. N (0, Σ) , where Σ is a known, positive definite matrix.

Utilizing the methods developed in Sections 3-4, it is straightforward to develop
asymptotically unbiased cointegration-type testing procedures with demonstrable op-
timality properties.

When
{
(yt, xt)

′} is generated by (24) − (25) , testing problems involving β are
invariant under transformations of the form (yt, xt) → (yt + a, xt) , where a ∈ R. The
log density LCI (·) of the maximal invariant [(y1, . . . , yT ) ι⊥, (x1, . . . , xT )]′ satisfies

13The class of asymptotically efficient [in the sense of Phillips (1991a) and Saikkonen (1991)]
estimators includes the estimators proposed by Johansen (1988, 1991), Park (1992), Phillips and
Hansen (1990), Phillips (1991a, 1991b), Saikkonen (1991, 1992), and Stock and Watson (1993). For
a review, see Watson (1994).

14Kauppi (2004) establishes a similar non-robustness result about Phillips’s (1995) fully modified
VAR method.
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LCI (β, γ)− LCI (0, 0)

(26)

= βSCI
β + γSCI

γ − 1

2

(
β

−σ−1
xx σxyγ

)′
SCI

ββ

(
β

−σ−1
xx σxyγ

)
− 1

2
γ2SCI

γγ ,

where

SCI
β = σ−1

yy.x

T∑
t=1

xm
t

(
yt − σ−1

xx σxyxt

)
, xm

t = xt − T−1

T∑
s=1

xs,

SCI
γ = σ−1

xx

T∑
t=1

xt−1xt − σ−1
xx σxyσ

−1
yy.x

T∑
t=1

xµ
t−1

(
yt − σ−1

xx σxyxt

)
,

SCI
ββ =

(
σ−1

yy.x

∑T
t=1 xm2

t σ−1
yy.x

∑T
t=1 xm

t xµ
t−1

σ−1
yy.x

∑T
t=1 xm

t xµ
t−1 σ−1

yy.x

∑T
t=1 xµ2

t−1

)
,

SCI
γγ = σ−1

xx

T∑
t=1

x2
t−1,

xm
t = xt − T−1

∑T
s=1 xs, xµ

t−1 = xt−1 − T−1
∑T

s=1 xs−1, and Σ has been partitioned in
conformity with εt.

In view of (26) , the model admits a minimal sufficient statistic whose distribution
is a curved exponential family. Moreover, the curvature disappears when we condition
on specific ancillaries, but in this case the dimension of the specific ancillary is greater
than two, suggesting that inference is more complicated in this case than in the case
of the predictive regression model of Sections 3-4. Because the individual elements
of SCI

ββ are asymptotically equivalent (in the appropriate sense), the source of this
potential complication vanishes asymptotically. In fact, it turns out that the limiting
experiment associated with the cointegration model of this section is exactly the same
as the limiting experiment associated with the predictive regression model.

Lemma 8. Let
{
(yt, xt)

′} be generated by (24)− (25) and suppose B1∗-B2∗ hold.

(a) For every bounded sequence
{
(bT , cT )′

}
,
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LCI [βT (bT ) , γT (cT )]− LCI [βT (0) , γT (0)]

= bT RCI
β + cT RCI

γ − 1

2

(
bT − ρ√

1− ρ2
cT

)2

RCI
ββ −

1

2
c2
T RCI

γγ + op0 (1) ,

where

RCI
β = σ−1/2

xx σ−1/2
yy.x T−1

T∑
t=1

xµ
t−1

(
yt − β0xt − σ−1

xx σxy∆xt

)
,

RCI
γ = σ−1

xx T−1

T∑
t=1

xt−1∆xt − ρ√
1− ρ2

RCI
β , ρ = σxyσ

−1/2
xx σ−1/2

yy ,

RCI
ββ = σ−1

xx T−2

T∑
t=1

xµ2
t−1,

RCI
γγ = σ−1

xx T−2

T∑
t=1

x2
t−1,

and “op0 (1) ” is shorthand for “op (1) when (β, γ) = (β0, 1) ”.

(b) If b = T (β − β0) σ
1/2
xx σ

−1/2
yy.x and c = T (γ − 1) are fixed as T increases without

bound, then RCI =
(
RCI

β , RCI
γ , RCI

ββ , RCI
γγ

)′ →d Rρ (b, c) as T →∞, where Rρ (b, c) is
defined as in Section 4.

It follows from Lemma 8 that RCI is an asymptotically sufficient statistic, imply-
ing that there is no loss of attainable asymptotic power from confining attention to
tests based on RCI . Because the limiting representation of RCI coincides with the lim-
iting representation of the minimal sufficient statistic R of the predictive regression
model, the limiting experiment of the cointegration model coincides with the limiting
experiment of the predictive regression model. As a consequence, the asymptotic
optimality theory of Section 4 carries over in an obvious way.

Theorem 9. Let
{
(yt, xt)

′} be generated by (24)− (25) and suppose B1∗-B2∗ hold.

(a) If {πT (·)} satisfies

limT→∞ EβT (0),γT (c)

[(
πT

(
RCI

)− η
)
g

(
RCI

ββ , RCI
γγ

)]
= 0 (27)
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for every c ∈ R and every g ∈ Cb (R2) , then

limT→∞EβT (b),γT (c)πT

(
RCI

) ≤ limT→∞ EβT (b),γT (c)π
∗
η

(
RCI ; ρ

)

= E
[
π∗η (Rρ (b, c) ; ρ)

]

for every b ≥ 0 and every c ∈ R.

(b) If {πT (·)} satisfies (27) and

limT→∞ EβT (0),γT (c)

[(
πT

(
RCI

)− η
)
RCI

β · g (
RCI

ββ , RCI
γγ

)]
= 0 (28)

for every c ∈ R and every g ∈ Cb (R2) , then

limT→∞EβT (b),γT (c)πT

(
RCI

) ≤ limT→∞ EβT (b),γT (c)π
∗∗
η

(
RCI ; ρ

)

= E
[
π∗∗η (Rρ (b, c) ; ρ)

]

for every b ∈ R and every c ∈ R.

Remark. The proof of Theorem 9 is based on Lemma 8 and the methods developed
in Section 4. In an attempt to shed additional light on the asymptotic equivalence
between the model (24)−(25) and the predictive regression model (3)−(4) , we briefly
sketch an alternative method of proof. Replacing yt with yt−β0xt if necessary, there is
no loss of generality from assuming that the null hypothesis of interest is H0 : β = 0.
As in Jeganathan (1997), the model can be written as

yt = α + β̃xt−1 + ε̃y
t , (29)

xt = γxt−1 + εx
t , (30)

where β̃ = βγ, ε̃y
t = εy

t + βεx
t , x0 = 0, and

(
ε̃y

t

εx
t

)
∼ i.i.d. N

(
0, Σ̃

)
, Σ̃ =

(
1 β
0 1

)
Σ

(
1 β
0 1

)′
.
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If Σ̃ is viewed as a fixed parameter (rather than a function of β (and Σ)), this repa-
rameterized model is in the form considered in Sections 3-4 and the null hypothesis
can be expressed as a restriction on β̃ (because β = 0 if and only if β̃ = 0). Because
Σ̃ = Σ + O (T−1) under contiguous alternatives (i.e. when β = O (T−1)), it can be
shown that the dependence of Σ̃ on β is asymptotically negligible (in the appropriate
sense), implying that an alternative proof of Theorem 9 can proceed by applying
Theorem 5 to the reparameterized model (29)− (30) .

6.2. Feasible Inference. Suppose
{
(yt, xt)

′} is generated by the following gen-
eralization of the model considered in the previous subsection:

yt = α + βxt + uy
t , (31)

xt = µx + vx
t , vx

t = γvx
t−1 + ux

t , (32)

where

ut = (uy
t , u

x
t )
′ = Ψ (L) εt (33)

and

B1. vx
0 = 0.

B2. E (εt|εt−1, εt−2, . . .) = 0, E (εtε
′
t|εt−1, εt−2, . . .) = Σ for some positive definite

matrix Σ, and supt E
[‖εt‖2+%] < ∞ for some % > 0.

B3. Ψ (L) = I2 +
∑∞

i=1 ΨiL
i, where |Ψ (1)| 6= 0 and

∑∞
i=1 i ‖Ψi‖ < ∞.

By accommodating correlation between the (potentially) serially correlated error
term of the equation of interest and current (and lagged) values of the nearly inte-
grated regressor, the model (31) − (33) generalizes the predictive regression model
(1)−(2) in a couple of ways. Nevertheless, it turns out to be relatively straightforward
to construct testing procedures with desirable large-sample properties. Once again,
the idea is to base inference on a statistic whose limiting distribution (under B1-B3
and local reparameterizations of β and γ) is that of Rρ (b, c) . For completeness, we
give a precise description.

Let x0 = x1, v̂x
0 = 0, and define v̂x

t = xt − x1 and x̂µ
t−1 = xt−1 − T−1

∑T
s=1 xs−1

(for t = 1, . . . , T ). Define



Optimal Inference with Nearly Integrated Regressors 26

Ω =

(
ωyy ωyx

ωxy ωxx

)
= lim

T→∞
T−1

T∑
t=1

T∑
s=1

E (utu
′
s)

and

δxy = lim
T→∞

T−1

T∑
t=2

t−1∑
s=1

E (ux
t u

y′
s ) ,

and let Ω̂ and δ̂xy be consistent estimators thereof. Finally, let

R̂CI
β = ω̂−1/2

yy.x ω̂−1/2
xx

[
T−1

T∑
t=1

x̂µ
t−1 (yt − β0xt−1)− δ̂xy

]

− ρ̂√
1− ρ̂2

[
1

2

(
ω̂−1

xx T−1v̂x2
T − 1

)− ω̂−1
xx T−2v̂x

T

T∑
t=1

v̂x
t−1

]
,

R̂CI
γ =

1

2

(
ω̂−1

xx T−1v̂x2
T − 1

)− ρ̂√
1− ρ̂2

R̂β,

R̂CI
ββ = ω̂−1

xx T−2

T∑
t=1

x̂µ2
t−1,

R̂CI
γγ = ω̂−1

xx T−2

T∑
t=1

v̂x2
t−1,

where ω̂yy.x = ω̂yy − ω̂−1
xx ω̂2

xy, ρ̂ = ω̂xyω̂
−1/2
xx ω̂−1/2

yy , and Ω̂ has been partitioned in the
obvious way.

Theorem 10. Let
{
(yt, xt)

′} be generated by (31)− (33) , suppose B1-B3 hold, and

suppose b = T (β − β0) ω
1/2
xx ω

−1/2
yy.x and c = T (γ − 1) are fixed as T increases without

bound, where ωyy.x = ωyy − ω−1
xx ω2

xy. If
(
Ω̂, δ̂xy

)
→p (Ω, δxy) , then R̂CI →d Rρ (b, c)

as T →∞, where ρ = ωxyω
−1/2
xx ω

−1/2
yy . Moreover,

limT→∞ EβT (b),γT (c)π
∗
η

(
R̂CI ; ρ̂

)
= ϕ∗η (b, c; ρ) ∀b ≥ 0, c ∈ R,

and

limT→∞ EβT (b),γT (c)π
∗∗
η

(
R̂CI ; ρ̂

)
= ϕ∗∗η (b, c; ρ) ∀b ∈ R, c ∈ R.
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Remark. Let ût = (ûy
t , û

x
t )
′ =

(
yµ

t − β̂x̂µ
t−1, v̂

x
t − γ̂v̂x

t−1

)′
, where yµ

t = yt−T−1
∑T

s=1 ys,

β̂ =
(∑T

t=1 x̂µ2
t−1

)−1 ∑T
t=1 x̂µ

t−1yt, and γ̂ =
(∑T

t=1 v̂x2
t−1

)−1 ∑T
t=1 v̂x

t−1v̂
x
t . Under the as-

sumptions of Theorem 10 and fairly general conditions on k (·) and BT , it follows
from Jansson (2002) that

Ω̂ = T−1

T∑
t=1

T∑
s=1

k

( |t− s|
BT

)
ûtû

′
s →p Ω

and

δ̂xy = T−1

T∑
t=2

t−1∑
s=1

k

( |t− s|
BT

)
ûx

t û
y′
s →p δxy.

7. Simulations

In this section, we present some simulation evidence that reveals the pitfalls of some of
the commonly used tests. In particular, we consider the tests based on the t-statistics
centered around the OLS and DOLS estimators, and the test based on the L2 statistic
of Wright (2000). The test based on the OLS estimator asymptotically has correct
size if the explanatory variable is stationary. The test based on the DOLS estimator
[e.g., Stock and Watson (1993)] is designed for the case in which the explanatory
variable is exactly integrated of order one. The test based on the L2 statistic has
asymptotically correct size if the explanatory variable is nearly integrated. Each test
is designed to behave well under stationarity (OLS), exact integration (DOLS, L2),
or near integration (L2). However, Monte Carlo simulations will show that none of
them has good size or power properties for all three scenarios; see Wright (2000)
for power comparison of other testing procedures using Bonferroni and size-adjusted
tests. Instead, our UMPCU test has good size and power properties overall. The
critical value function for this test is found numerically by approximating an integral
using high order recursive adaptive quadrature. Since this numerical integration is
rather slow, we consider only 200 replications. Although this number is very small
for a precise size evaluation, it is large enough to illustrate some of our main points.

Following the design of Wright (2000), we simulate the simple model introduced
in equations (3) and (4). The true value of the parameter b is assumed to be zero.
We consider the sample size T of 100 observations, and assume that (εy

t , ε
x
t ) are

i.i.d. random variables, normally distributed with unit variance and correlation ρ.
The variance Ω of (εy

t , ε
x
t ) is estimated by the OLS estimator Ω̂. To examine the

size and power properties of each testing procedure, we consider different degrees of
persistence of the explanatory variable: the exactly integrated case (fixed c = 0), the
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nearly integrated case (fixed c = −10) and the stationary i.i.d. case (c = −T ) . For the
exactly and nearly integrated cases in which c is fixed, the finite-sample power curve
for each test can be understood as a discrete approximation to its local asymptotic
power function using Lemma 3. Following this perspective, the continuous stochastic
processes are replaced by discrete approximations using 200 replications.

TABLES IA-IB ABOUT HERE

Tables IA and IB report the rejection of the OLS, DOLS, and L2 tests as functions
of the true value b for ρ = −0.50 and ρ = 0.50, respectively. The test based on the
OLS estimator has null rejection probabilities of 6.5% and 3.0%, being very close
to the 5% nominal level in the stationary i.i.d. case. However, this test has some
size and power limitations in the exactly and nearly integrated cases. For ρ = 0.50,
the null rejection probability is much smaller than the 5% nominal level. Hence,
this test rejects the null less often under some alternatives than under the null, and
is biased. Worse yet, for ρ = −0.50, the null rejection probability is considerably
larger than the 5% nominal level. This is considerably worse when the explanatory
variable is exactly integrated, in which case the null rejection probability is around
16%. Hence, the rejection probabilities under alternative hypotheses of this test are
artificially high. Of course, the size distortions reported here for the OLS test can be
artificially high due to simulation error, but it is well-known that this test indeed has
significant size distortions in the nearly integrated case [Cavanagh, Elliott, and Stock
(1995)]. Our results are even more striking for the test based on the DOLS estimator.
Although its null rejection probabilities of 3.5% and 3.0% is close to the 5% nominal
level in the exactly integrated case, it has poor size and power properties for the other
cases. In particular, in the stationary case, its null rejection probability is close to
100% when ρ = 0.50, and its rejection probability under some alternatives is close to
0% when ρ = −0.50. Even in the nearly integrated case, this test has as poor size and
power properties as many other procedures designed for the exactly integrated case,
a phenomenon observed by Elliott (1998). The bad size properties of the tests based
on the t-statistics centered around the OLS and DOLS estimators is not observed
for the L2 statistic. Its null rejection probabilities are quite close to the 5% nominal
level, regardless of the degrees of persistence and of the correlation coefficient, c and
ρ. However, for the case ρ = −0.50, this test is biased. In particular, this test rejects
the null hypothesis in the stationary case less often than the 5% nominal level for
any value of the alternative considered here.

TABLE II ABOUT HERE

We now evaluate the UMPCU test for testing H1. Table II shows rejection rates for
the UMPCU test for different degrees of persistency and correlation. Unlike the OLS
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and DOLS tests, its null rejection probabilities are reasonably close to the 5% nomi-
nal level in all three cases, although they are a little off when c = 0. In the nearly and
exactly integrated cases, this finding is consistent with our theoretical results. In the
stationary i.i.d. case, on the other hand, it is perhaps surprising that our procedure
exhibits only minimal size distortions. The size distortions in the exactly integrated
case (which are guaranteed to vanish as the sample size increases) could reflect the
fact that the critical value function is based on asymptotic instead of finite sample
distributions and that the covariance matrix Ω is replaced by an estimator (or, of
course, that the simulation error due the small number of replications). Importantly,
the UMPCU test has reasonably good power properties regardless of the degrees of
persistence and correlation.15 This reflects the fact that this test is by construction
asymptotically optimal within the class of tests that satisfy our conditionality re-
striction. Moreover, due to this optimality, our test is in particular asymptotically
unbiased. This means that, unlike the test based on the L2 statistic, our test does
not have the problem of rejecting the null less often than the 5% nominal level.

8. Conclusion

This paper has proposed novel conditionality restrictions subject to which optimality
results can be obtained for one- and two-sided testing problems involving the regres-
sion coefficient in a bivariate regression model with a highly persistent regressor. We
have developed finite sample and asymptotic optimality theory under the assumption
of Gaussian errors and have shown the normality assumption to be least favorable.
The derivation of finite sample optimality results uses classical statistical theory and
the theory of (curved) exponential families, whereas the large sample optimality re-
sults were obtained by using the finite sample optimality results and the theory of
limits of experiments.

Our asymptotic optimality results complement those available in the existing lit-
erature on limits of experiments. The optimality results currently available in that
literature pertain almost exclusively to models exhibiting LAN or LAMN likelihood
ratios. In contrast, our results are obtained for a model whose likelihood ratios are
LAQ (but not LAMN) and differ from existing results in a nontrivial way.16 In models

15The peculiar pattern (decline and/or very limited increase in power as b increases) observed for
moderately large values of b would appear to be due to inaccuracies of our numerical integration
procedure. For any given data set, these inaccuracies are easy to fix, but we have been unable to
come up with a fix that works well overall without being prohibitively slow.

16Another testing problem to which the theory of LAQ likelihood ratios applies but theory of
LAMN likelihood ratios does not is the unit root testing problem. That testing problem has been
extensively studied, celebrated results including those of Dickey and Fuller (1979, 1981), Elliott,
Rothenberg, and Stock (1996), Phillips (1987a), and Phillips and Perron (1988). [For a review, see
Stock (1994).] In the context of the unit root testing problem, the theory of limits of experiments
can be used to give an alternative derivation of the optimality results of Elliott, Rothenberg, and
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with LAN likelihood ratios (such as (3) − (4) in the stationary case when |ρ| < 1),
the commonly used Wald statistics are asymptotically optimal among tests with the
same asymptotic level. Wald statistics also enjoy optimality properties in models
with LAMN likelihood ratios (such as (3) − (4) in the unit root case when ρ = 1),
being optimal among tests with correct asymptotic conditional size given the value
of the observed information matrix.

In the LAMN context, conditioning on the observed information matrix is natural
because its asymptotic counterpart acts as an ancillary statistic in the limiting ex-
periment. The latter property characterizes LAMN models within the class of LAQ
models [Jeganathan (1995, Proposition 6)], implying that conditioning on ancillaries
does not suffice if we want to develop optimality theory for LAQ models outside the
class of LAMN models. This paper provides an example of a testing problem with
nuisance parameters where the stronger requirement of conditioning on specific an-
cillaries (i.e., statistics that would be ancillary if the values of nuisance parameters
were known) makes it possible to develop optimality results in a model with LAQ
likelihood ratios. (Coincidentally, the specific ancillary in our example turns out to
be given by the observed information matrix.) It would be of interest to explore
whether the conditionality restriction proposed here can be applied to develop op-
timality results for other testing problems involving nuisance parameters in models
without LAMN structure.

Stock (1996).
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9. Appendix A: Auxiliary Lemmas

The proof of Theorem 5 makes use of the following lemma.

Lemma 11. Let η ∈ (0, 1) be given and define

S = {(rγ, rββ, rγγ; ρ) : rγ ∈ R, 0 < rββ < rγγ,−1 < ρ < 1} .

(a) There exist a continuous function Cη : S→ R such that π∗η (·; ρ) satisfies (19) ,
where π∗η (·) is defined as in Section 4.

(b) There exist continuous functions Cη : S→ R and Cη : S→ R such that π∗∗η (·; ρ)
satisfies (22)− (23) , where π∗∗η (·) is defined as in Section 4.

Lemma 11 is a special case of the following result, which gives general conditions
under which critical value functions for one- and two-sided tests are continuous in
their arguments.

Lemma 12. Let (Θ, dθ) be a metric space and let {f (·; θ) : θ ∈ Θ} be a family of
probability density functions on R. Let η ∈ (0, 1) and θ0 ∈ Θ be given and suppose
f (r; ·) is continuous at θ0 (with respect to the metric dθ) for almost every r ∈ R.

(a) Suppose that for every θ ∈ Θ there is a unique number Cη (θ) such that

∫ ∞

Cη(θ)

f (r; θ) dr = η.

Then Cη : Θ → R is continuous at θ0.

(b) Suppose that for every θ ∈ Θ there are unique numbers Cη (θ) and Cη (θ) such that

∫ Cη(θ)

Cη(θ)

f (r; θ) dr = 1− η,

∫ Cη(θ)

Cη(θ)

rf (r; θ) dr = (1− η)

∫ ∞

−∞
rf (r; θ) dr.

If

limδ↓0 sup{θ∈Θ:dθ(θ0,θ)<δ}

∫ ∞

−∞
max (1, |r|) |f (r; θ0)− f (r; θ)| dr = 0, (A.1)
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then Cη : Θ → R and Cη : Θ → R are continuous at θ0.

(c) Condition (A.1) holds if, for any ε > 0, there exists a constant δ > 0, a set
∆ ⊆ R, and a function f̄ : R→ R+ such that

sup{θ∈Θ:dθ(θ0,θ)<δ}

∫

∆

max (1, |r|) f (r; θ) dr < ε, (A.2)

sup{θ∈Θ:dθ(θ0,θ)<δ} f (r; θ) ≤ f̄ (r) ∀r ∈ R \∆, (A.3)
∫

R\∆
max (1, |r|) f̄ (r) dr < ∞. (A.4)

Proof of Lemma 12. The proof is by contradiction.
Proof of (a). If Cη (·) is not continuous at θ0, then there exists a sequence

{θn : n ≥ 1} ⊆ Θ and a constant ε > 0 such that limn→∞ θn = θ0 and either
supn Cη (θn) < Cη (θ0)− ε or infn Cη (θn) > Cη (θ0) + ε.

If supn Cη (θn) < Cη (θ0)− ε, then

η = limn→∞

∫ ∞

Cη(θn)

f (r; θn) dr ≥ limn→∞

∫ ∞

Cη(θ0)−ε

f (r; θn) dr

≥
∫ ∞

Cη(θ0)−ε

[limn→∞f (r; θn)] dr =

∫ ∞

Cη(θ0)−ε

f (r; θ0) dr

>

∫ ∞

Cη(θ0)

f (r; θ0) dr = η,

a contradiction. In the display, the first equality uses the defining property of Cη (·) ,
the first inequality uses supn Cη (θn) < Cη (θ0) − ε, the second inequality uses Fa-
tou’s lemma, the second equality uses continuity of f (r; ·) , the third inequality uses
uniqueness of Cη (θ0) , and the last equality uses the definition of Cη (·) .

Analogous reasoning shows that infn Cη (θn) > Cη (θ0) + ε is impossible, complet-
ing the proof of part (a).

Proof of (b). If
∫ Cη(θ)

Cη(θ)
f (r; θ) dr = 1 − η for every θ ∈ Θ, but

(
Cη (·) , Cη (·))′ is

not continuous at θ0, then there exists a sequence {θn : n ≥ 1} ⊆ Θ and a constant
ε > 0 such that limn→∞ θn = θ0 and either

supn Cη (θn) < Cη (θ0)− ε and supn Cη (θn) < Cη (θ0)− ε (A.5)

or
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infn Cη (θn) > Cη (θ0) + ε and infn Cη (θn) > Cη (θ0) + ε. (A.6)

The equations defining Cη (·) and Cη (·) can be written as follows:

I (θ, k) = J (θ, k) ∀θ ∈ Θ, k ∈ R,

where I (θ, k) =
∫ Cη(θ)

Cη(θ)
(r − k) f (r; θ) dr and J (θ, k) = (1− η)

∫∞
−∞ (r − k) f (r; θ) dr.

Now, by (A.1) ,

|J (θ0, k)− J (θn, k)| ≤ (1− η)

∫ ∞

−∞
|r − k| |f (r; θ0)− f (r; θn)| dr

≤ (1− η) (1 + |k|)
∫ ∞

−∞
max (1, |r|) |f (r; θ0)− f (r; θn)| dr

→ 0

as n → ∞. To complete a proof by contradiction it therefore suffices to find a value
of k such that I (θ0, k)− I (θn, k) 9 0 as n →∞.

Suppose (A.5) holds. If Cη (θn) < Cη (θ0) , then

I
(
θ0, Cη (θ0)

)− I
(
θn, Cη (θ0)

)

=

∫ Cη(θ0)

Cη(θ0)

[
r − Cη (θ0)

]
f (r; θ0) dr +

∫ Cη(θn)

Cη(θn)

[
Cη (θ0)− r

]
f (r; θn) dr

≥
∫ Cη(θ0)

Cη(θ0)

[
r − Cη (θ0)

]
f (r; θ0) dr > 0.

Otherwise, if Cη (θn) < Cη (θ0) , then

I
(
θ0, Cη (θ0)

)− I
(
θn, Cη (θ0)

)

=

∫ Cη(θ0)

Cη(θn)

[
r − Cη (θ0)

]
f (r; θ0) dr +

∫ Cη(θ0)

Cη(θn)

[
Cη (θ0)− r

]
f (r; θn) dr

+

∫ Cη(θ0)

Cη(θ0)

[
r − Cη (θ0)

]
[f (r; θ0)− f (r; θn)] dr,
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where

∫ Cη(θ0)

Cη(θn)

[
r − Cη (θ0)

]
f (r; θ0) dr ≥

∫ Cη(θ0)

Cη(θ0)−ε

[
r − Cη (θ0)

]
f (r; θ0) dr > 0,

∫ Cη(θ0)

Cη(θn)

[
Cη (θ0)− r

]
f (r; θn) dr ≥ 0,

and

∣∣∣∣∣
∫ Cη(θ0)

Cη(θ0)

[
r − Cη (θ0)

]
[f (r; θ0)− f (r; θn)] dr

∣∣∣∣∣

≤
∫ ∞

−∞

∣∣r − Cη (θ0)
∣∣ |f (r; θ0)− f (r; θn)| dr → 0,

where the last line uses (A.1). As a consequence,

limn→∞
[
I

(
θ0, Cη (θ0)

)− I
(
θn, Cη (θ0)

)]

≥
∫ Cη(θ0)

max(Cη(θ0),Cη(θ0)−ε)

[
r − Cη (θ0)

]
f (r|θ0) dr > 0

if (A.5) holds.
Analogous reasoning shows that

limn→∞
[
I

(
θ0, Cη (θ0)

)− I
(
θn, Cη (θ0)

)]
< 0

if (A.6) holds. The proof of (b) is therefore complete.
Proof of (c). To show that (A.1) is implied by (A.2) − (A.4) under the assump-

tions of the lemma, suppose (A.1) does not hold. Then there exists a sequence
{θn : n ≥ 1} ⊆ Θ and a constant ε > 0 such that limn→∞ θn = θ0 and

∫ ∞

−∞
max (1, |r|) |f (r; θ0)− f (r; θn)| dr > 2ε ∀n.
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Assuming we can pick a constant δ > 0, a set ∆ ⊆ R, and a function f̄ : R→ R+

such that (A.2)− (A.4) hold, we have:

limn→∞ sup{θ∈Θ:dθ(θ0,θ)<dθ(θ0,θn)}

∫

∆

max (1, |r|) f (r; θ) dr ≤ ε

and

limn→∞

∫

R\∆
max (1, |r|) |f (r; θ0)− f (r; θn)| dr = 0,

where the first display uses limn→∞ dθ (θ0, θn) = 0 and (A.2) , while the second display
uses limn→∞ dθ (θ0, θn) = 0, continuity of f (r; ·) at θ0, and the dominated convergence
theorem (the applicability of which follows from (A.3)− (A.4)). As a consequence,

limn→∞

∫ ∞

−∞
max (1, |r|) |f (r; θ0)− f (r; θn)| dr

≤ 2limn→∞ sup{θ∈Θ:dθ(θ0,θ)<dθ(θ0,θn)}

∫

∆

max (1, |r|) f (r; θ) dr

+limn→∞

∫

R\∆
max (1, |r|) |f (r; θ0)− f (r; θn)| dr

≤ 2ε,

a contradiction. ¥

Proof of Lemma 11. The proof of Lemma 11 constructs a conditional proba-
bility density function of Rβ given

(Rρ
γ,Rββ,Rγγ

)
that satisfies the conditions of

Lemma 12. Let Zβ = R−1/2
ββ Rβ, Zγ = Wx (1) , Zββ =

∫ 1

0
Wx (r) dr, Qγ = Z2

γ ,

Qββ = Z2
ββ, and Qγγ = Rγγ, where Rρ =

(Rβ,Rρ
γ,Rββ,Rγγ

)′
= Rρ (0, 0) . For any

(rγ, rββ, rγγ, ρ) ∈ S, let

Sβ (rγ, rββ, rγγ; ρ) =

{
rβ : rγ +

ρ√
1− ρ2

rβ > −1

2

}
.

By construction, S and Sβ satisfy

Pr
[Rβ ∈ Sβ

(Rρ
γ,Rββ,Rγγ; ρ

)
,
(Rρ

γ,Rββ,Rγγ, ρ
) ∈ S] = 1.
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We now obtain a characterization of f 0
R (·; ρ) , the density of Rρ. Because

(Zβ,Qγ,Qββ,Qγγ) =

(
Rβ√Rββ

, 2Rρ
γ + 2

ρ√
1− ρ2

Rβ + 1,Rγγ −Rββ,Rγγ

)
,

it follows from the changes of variables formula that

f 0
R (r; ρ) =

2√
rββ

fZβ ,Q

(
rβ√
rββ

, 2rγ + 2
ρ√

1− ρ2
rβ + 1, rγγ − rββ, rγγ

)
,

where fZβ ,Q (·) is the density of (Zβ,Q′)′ = (Zβ,Qγ,Qββ,Qγγ)
′ .

Now, Zβ ∼ N (0, 1) and Zβ is independent of Q. As a consequence,

fZβ ,Q

(
rβ√
rββ

, 2rγ + 2
ρ√

1− ρ2
rβ + 1, rγγ − rββ, rγγ

)

=
1√
2π

exp

(
− r2

β

2rββ

)
fQ

(
2rγ + 2

ρ√
1− ρ2

rβ + 1, rγγ − rββ, rγγ

)
,

where fQ (·) is the density of Q.
Since

( Zγ

Zββ

)
∼ N

((
0
0

)
,

(
1 1/2

1/2 1/3

))
,

the density of (Qγ,Qββ)′ is given by

fQγ ,Qββ
(qγ, qββ) =

1

2
√

qγ
√

qββ

[
fZγ ,Zββ

(√
qγ,
√

qββ

)
+ fZγ ,Zββ

(−√qγ,
√

qββ

)]
,

where

fZγ ,Zββ
(zγ, zββ) =

√
3

π
exp

[
−

(
zγ

zββ

)′ (
2 −3
−3 6

)(
zγ

zββ

)]
(A.7)

is the density of (Zγ,Zββ)′ .



Optimal Inference with Nearly Integrated Regressors 37

Moreover,

Pr
(
sign (Zγ) = sign (Zββ) |Z2

γ = qγ,Z2
ββ = qββ

)

= 1− Pr
(
sign (−Zγ) = sign (Zββ) |Z2

γ = qγ,Z2
ββ = qββ

)

=
fZγ ,Zββ

(√
qγ,
√

qββ

)

fZγ ,Zββ

(√
qγ,
√

qββ

)
+ fZγ ,Zββ

(−√qγ,
√

qββ

)

whenever qγ > 0 and qββ > 0. (Because Pr
(Z2

γ = qγ,Z2
ββ = qββ

)
= 0, the object

Pr
(
sign (Zγ) = sign (Zββ) |Z2

γ = qγ,Z2
ββ = qββ

)
is to be interpreted as a regular con-

ditional probability (in the measure theoretic sense [e.g., Dudley (2002)]).)
Finally, we characterize the density of Qγγ conditional on (Zγ,Zββ)′ . Let the zero

mean Gaussian process W̃x (·) be given by

W̃x (r) = Wx (r)− p (r)′
( Zγ

Zββ

)
, p (r) =

( −2r + 3r2

6r − 6r2

)
.

By construction,
{

W̃x (r) : 0 ≤ r ≤ 1
}

is independent of (Zγ,Zββ)′ . The covariance

kernel K̃ (·) of W̃x (·) is given by

K̃ (r, s) = Cov
(
W̃x (r) , W̃x (s)

)

= min (r, s) (1−max (r, s))− 3
(
r − r2

) (
s− s2

)
.

It is easy to show that g0 (r) = 1 is the only continuous function g (·) satisfying∫ 1

0
g (r)2 dr = 1 and

∫ 1

0

K̃ (r, s) g (s) ds = 0 ∀r ∈ [0, 1] .

It therefore follows from Mercer’s Theorem [e.g. Shorack and Wellner (1986)] that

K̃ (r, s) =
∞∑

j=1

λjgj (r) gj (s) ,

where λj > 0 for every j, λ1 ≥ λ2 ≥ . . . and {gj (·) : j ≥ 0} is an orthonormal basis of



Optimal Inference with Nearly Integrated Regressors 38

the set of square integrable functions defined on the unit interval. As a consequence,
W̃x (r) can be represented as

W̃x (r) =
∞∑

j=1

λ
1/2
j Zjgj (r) ,

where Zj = λ
−1/2
j

∫ 1

0
W̃ µ

x (r) gj (r) dr ∼ i.i.d. N (0, 1) . Because the function p (·) can
be written as

p (r) =
∞∑

j=0

hjgj (r) , hj =

∫ 1

0

p (r) gj (r) dr,

it follows from the preceding displays that

Wx (r) = (Zγ,Zββ) h0g0 (r) +
∞∑

j=1

λ
1/2
j

[
Zj + λ

−1/2
j (Zγ,Zββ) hj

]
gj (r) ,

implying

Qγγ =

∫ 1

0

Wx (r)2 dr = [(Zγ,Zββ) h0]
2 +

∞∑
j=1

λj

[
Zj + λ

−1/2
j (Zγ,Zββ) hj

]2

,

where Zj ∼ i.i.d. N (0, 1) and {Zj : j ≥ 1} is independent of (Zγ,Zββ)′ . Conditional
on (Zγ,Zββ) = (zγ, zββ) , the characteristic function of Qγγ is therefore given by

κ (t|zγ, zββ) = exp
(
i [(zγ, zββ) h0]

2 t
) ∞∏

j=1

κj (t|zγ, zββ) ,

where

κj (t|zγ, zββ) = (1− i2λjt)
−1/2 exp

(
i [(zγ, zββ) hj]

2 t

1− i2λjt

)

denotes the conditional characteristic function of λj

[
Zj + λ

−1/2
j (Zγ,Zββ) hj

]2

given

(Zγ,Zββ) = (zγ, zββ) and the dominated convergence theorem (for conditional expec-
tations) has been used to show that
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E

[
exp

(
i · limn→∞

n∑
j=1

λj

[
Zj + λ

−1/2
j (Zγ,Zββ) hj

]2
)
|Zγ,Zββ

]

= limn→∞ E

[
exp

(
i

n∑
j=1

λj

[
Zj + λ

−1/2
j (Zγ,Zββ) hj

]2
)
|Zγ,Zββ

]
.

It now follows from the inversion theorem for characteristic functions that the density
of Qγγ conditional on (Zγ,Zββ) = (zγ, zββ) is given by

fQγγ |Zγ ,Zββ
(qγγ|zγ, zββ) =

1

2π

∫ ∞

−∞
exp (−iqγγt)κ (t|zγ, zββ) dt. (A.8)

(The inversion theorem is applicable because

∫ ∞

−∞
|κ (t|zγ, zββ)| dt =

∫ ∞

−∞

( ∞∏
j=1

|κj (t|zγ, zββ)|
)

dt ≤
∫ ∞

−∞

( ∞∏
j=1

|κj (t|0, 0)|
)

dt

≤
∫ ∞

−∞

(
3∏

j=1

|κj (t|0, 0)|
)

dt ≤
∫ ∞

−∞
|κ3 (t|0, 0)|3 dt < ∞.

The first inequality in the display uses supzγ ,zββ
|κj (t|zγ, zββ)| = |κj (t|0, 0)| , which

holds because

Re

(
i [(zγ, zββ) hj]

2 t

1− i2λjt

)
= −2λj [(zγ, zββ) hj]

2 t2

1 + 4λ2
j t

2
≤ 0.

The second inequality in the display uses supj≥1,t∈R |κj (t|0, 0)| ≤ 1, the third inequal-
ity uses λ1 ≥ λ2 ≥ λ3, and the last inequality uses λ3 > 0.)

Combining pieces, we have:

f 0
R (r; ρ) =

2√
rββ

fZβ ,Q

(
rβ√
rββ

, 2rγ + 2
ρ√

1− ρ2
rβ + 1, rγγ − rββ, rγγ

)
,

where
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2fZβ ,Q (zβ, qγ, qββ, qγγ)

=
1√
2π

exp

(
−z2

β

2

)
1√

qγ
√

qββ

fZγ ,Zββ

(√
qγ,
√

qββ

)
fQγγ |Zγ ,Zββ

(
qγγ|√qγ,

√
qββ

)

+
1√
2π

exp

(
−z2

β

2

)
1√

qγ
√

qββ

fZγ ,Zββ

(−√qγ,
√

qββ

)
fQγγ |Zγ ,Zββ

(
qγγ| − √qγ,

√
qββ

)
,

and fZγ ,Zββ
(·) and fQγγ |Zγ ,Zββ

(·) are defined in (A.7) and (A.8) , respectively.
For any (rγ, rββ, rγγ, ρ) ∈ S, let

f 0
Rβ |Rρ

γ ,Rββ ,Rγγ
(rβ|rγ, rββ, rγγ; ρ)

= 1 [rβ ∈ Sβ (rγ, rββ, rγγ; ρ)]
f 0
R (rβ, rγ, rββ, rγγ; ρ)∫

Sβ(rγ ,rββ ,rγγ ;ρ) fR (rβ, rγ, rββ, rγγ; ρ) drβ

be the conditional density of Rβ given
(Rρ

γ,Rββ,Rγγ

)
= (rγ, rββ, rγγ) .

Let π∗η (r; ρ) = 1 [rβ > Cη (rγ, rββ, rγγ; ρ)] , where Cη : S→ R is implicitly given by

∫ ∞

Cη(rγ ,rββ ,rγγ ;ρ)
f 0
Rβ |Rρ

γ ,Rββ ,Rγγ
(rβ|rγ, rββ, rγγ; ρ) drβ = η.

(Existence and uniqueness of Cη (·) is easily shown.) By construction, π∗η (·; ρ) satisfies
(19) . Moreover, Lemma 12 (a) can be used to used to show that Cη (·) is continuous
on S.

Let π∗∗η (r; ρ) = 1
[
rβ < Cη (rγ, rββ, rγγ; ρ)

]
+1

[
rβ > Cη (rγ, rββ, rγγ; ρ)

]
, where the

functions Cη : S→ R and Cη : S→ R satisfy

∫ Cη(rγ ,rββ ,rγγ ;ρ)

Cη(rγ ,rββ ,rγγ ;ρ)
f 0
Rβ |Rρ

γ ,Rββ ,Rγγ
(rβ|rγ, rββ, rγγ; ρ) drβ = 1− η

and

∫ Cη(rγ ,rββ ,rγγ ;ρ)

Cη(rγ ,rββ ,rγγ ;ρ)
rβf 0

Rβ |Rρ
γ ,Rββ ,Rγγ

(rβ|rγ, rββ, rγγ; ρ) drβ

= (1− η)

∫ ∞

−∞
rβf 0

Rβ |Rρ
γ ,Rββ ,Rγγ

(rβ|rγ, rββ, rγγ; ρ) drβ.
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(Existence and uniqueness of Cη (·) and Cη (·) follows from the development in Lehmann
(1994, Section 4.2).) By construction, π∗∗η (·; ρ) satisfies (22)−(23) . Moreover, Lemma

12 (b)-(c) can be used to show that Cη (·) and Cη (·) are continuous on S. ¥
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10. Appendix B: Proofs

Proof of Lemma 1. Lemma 1 follows from equation (5) and the properties of ex-
ponential families (e.g., Lehmann (1994, Lemma 2.8)). ¥

Proof of Theorem 2. By Lemma 1 (b) and Lehmann (1994, Theorem 4.3),

Eβ,γ [φ (Sβ, Sγ, Sββ, Sγγ) |Sββ, Sγγ] ≤ Eβ,γ

[
φ∗η (Sβ, Sγ, Sββ, Sγγ) |Sββ, Sγγ

]

for any φ (·) satisfying (6) , any β > β0, and any γ ∈ R. Part (a) now follows from
the law of iterated expectations.

Analogous reasoning establishes part (b) (including existence of the functions
Cη (·) and Cη (·) satisfying (11)− (12)). ¥

Proof of Lemma 3. Lemma 3 follows from standard weak convergence arguments
[e.g., Phillips (1987b, 1988a, 1988b) and Phillips and Solo (1992)] and straightforward
algebra. ¥

Proof of Lemma 4. Lemma 4 follows from (15) , Lemma 3, Lehmann (1994, Lemma
2.8), and Le Cam’s third lemma [e.g., Jeganathan (1995, Proposition 1) and van der
Vaart (2002, Lemma 3.1)]. Le Cam’s third lemma is applicable because the family
of distributions associated with the maximal invariant has LAQ likelihood ratios at
(β, γ) = (β0, 1) . In particular,

L [βT (b) , γT (c)]− L [βT (0) , γT (0)]

= bRβ + cRγ − 1

2

(
b− ρ√

1− ρ2
c

)2

Rββ − 1

2
c2Rγγ →d0 Λρ (b, c) ,

where

Λρ (b, c) = bRβ + cRρ
γ −

1

2

(
b− ρ√

1− ρ2
c

)2

Rββ − 1

2
c2Rγγ,

“ →d0 ” is shorthand for “ →d when (β, γ) = (β0, 1) ” and the convergence result
follows from Lemma 3. ¥
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Proof of Theorem 5. The proof of Theorem 5 is based on Lemma 4 and the
theory of LAQ likelihood ratios. Repeated use will be made of the fact that

∫

R4

g (r) fR (r; b, c, ρ) dr = E
[
g (Rρ) eΛρ(b,c)

]
,

where b ∈ R, c ∈ R, Λρ (·) is defined as in the proof of Lemma 4, and g : R4 → R is
any function such either side of the equality is well defined.

Proof of (a). Let Π (η, ρ) denote the class of all functions π (·) satisfying

E
[
(π (Rρ)− η) g (Rββ,Rγγ) eΛρ(0,c)

]
= 0 ∀c ∈ R, g ∈ Cb

(
R2

)
.

By construction, π∗η (·; ρ) ∈ Π (η, ρ) . Applying Lehmann (1994, Theorem 4.3) and the
law of iterated expectations, it can be shown that π∗η (·; ρ) satisfies

E
[
π (Rρ) eΛρ(b,c)

] ≤ E
[
π∗η (Rρ; ρ) eΛρ(b,c)

] ∀b ≥ 0, c ∈ R, π ∈ Π (η, ρ) .

Because Cη (·) is continuous (Lemma 11), it follows from Lemma 3 and the con-
tinuous mapping theorem (CMT) that π∗η (R; ρ) →d0 π∗η (Rρ; ρ) . This convergence
result, Le Cam’s third lemma and Billingsley (1999, Theorem 3.5) can be used to
show that

{
π∗η

}
satisfies (17) and that

limT→∞ EβT (b),γT (c)π
∗
η (R; ρ) = E

[
π∗η (Rρ; ρ) eΛρ(b,c)

] ∀b ≥ 0, c ∈ R.

The proof of (a) will be completed by showing that for any {πT (·)} satisfying
(17) , any b ≥ 0, and any c ∈ R, there exists a π ∈ Π (η, ρ) such that

limT→∞EβT (b),γT (c)πT (R; ρ) = E
[
π (Rρ; ρ) eΛρ(b,c)

]
. (B.1)

Let {πT (·)} , b ≥ 0 and c ∈ R be given, and suppose {πT (·)} satisfies (17) . Let{
πT (m) (·) : m ≥ 1

}
be any subsequence of {πT (·)} satisfying

limm→∞ EβT (b),γT (c)πT (m) (R; ρ) = limT→∞EβT (b),γT (c)πT (R; ρ) .

Because πT (m) = Op (1) , it follows from Prohorov’s theorem [e.g., Billingsley (1999)]
that there exists a subsequence

{
πT (m(n)) (·) : n ≥ 1

}
such that

(
πT (m(n)), R

) →d0 (π∞,Rρ) (34)
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as n →∞, where π∞ is some random variable (defined on the same probability space
as Rρ) and the dependence of R on n has been suppressed. Now,

limT→∞EβT (b),γT (c)πT (R; ρ) = limm→∞ EβT (m)(b),γT (m)(c)πT (m) (R; ρ)

= limn→∞ EβT (m(n))(b),γT (m(n))(c)πT (m(n)) (R; ρ)

= E [π∞ exp (Λρ (b, c))]

= E
[
π (Rρ; ρ) eΛρ(b,c)

]
,

where π (Rρ) = E (π∞|Rρ) , the third equality uses (34) , Le Cam’s third lemma
and Billingsley (1999, Theorem 3.5), and the last equality uses the law of iterated
expectations. The result π ∈ Π (η, ρ) now follows because

E
[
(π (Rρ)− η) g (Rββ,Rγγ) eΛρ(0,c)

]

= E
[
(π∞ − η) g (Rββ,Rγγ) eΛρ(0,c)

]

= limn→∞ EβT (m(n))(0),γT (m(n))(c)

[(
πT (m(n)) (R; ρ)− η

)
g (Rββ, Rγγ)

]

= 0

for any c ∈ R and any g ∈ Cb (R2) , where the first equality uses the law of iter-
ated expectations, the second equality uses (34) , Le Cam’s third lemma, Lemma 3,
Billingsley (1999, Theorem 3.5) and CMT, and the last equality uses the fact that
{πT (·)} satisfies (17) . This completes the proof of part (a).

Proof of (b). Let Π0 (η, ρ) ⊆ Π (η, ρ) denote the class of all functions π (·) satisfying
π ∈ Π (η, ρ) and

E
[
(π (Rρ)− η)Rβ · g (Rββ,Rγγ) eΛρ(0,c)

]
= 0 ∀c ∈ R, g ∈ Cb

(
R2

)
.

By construction, π∗∗η (·; ρ) ∈ Π0 (η, ρ) . Applying Lehmann (1994, Theorem 4.3) and
the law of iterated expectations, it can be shown that π∗∗η (·; ρ) satisfies
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E
[
π (Rρ) eΛρ(b,c)

] ≤ E
[
π∗∗η (Rρ; ρ) eΛρ(b,c)

] ∀b ∈ R, c ∈ R, π ∈ Π0 (η, ρ) .

Because Cη (·) and Cη (·) are continuous (Lemma 11 (b)), it follows from Lemma 3
and CMT that π∗∗η (R; ρ) →d0 π∗∗η (Rρ; ρ) . This convergence result, Le Cam’s third

lemma, and Billingsley (1999, Theorem 3.5) can be used to show that
{
π∗∗η

}
satisfies

(17) , (20) , and

limT→∞ EβT (b),γT (c)π
∗∗
η (R; ρ) = E

[
π∗∗η (Rρ; ρ) eΛρ(b,c)

] ∀b ∈ R, c ∈ R.

Finally, by proceeding as in the proof of (a) it can be shown that for any {πT (·)}
satisfying (17) and (20) , any b ∈ R, and any c ∈ R, there exists a π ∈ Π0 (η, ρ) such
that

limT→∞EβT (b),γT (c)πT (R; ρ) = E
[
π (Rρ; ρ) eΛρ(b,c)

]
. ¥

Proof of Theorem 6. The result R̂ →d Rρ (b, c) follows from standard weak conver-
gence arguments (e.g., Phillips (1987b, 1988a, 1988b) and Phillips and Solo (1992))
and straightforward algebra. For instance,

R̂γγ = ω̂−1
xx T−2

T∑
t=1

v̂x2
t−1 = ω−1

xx T−2

T∑
t=1

vx2
t−1 + op (1)

=

∫ 1

0

(
ω−1/2

xx T−1/2vx
bTrc

)2
dr + op (1) →d

∫ 1

0

Wx,c (r)2 dr,

where the second equality uses ω̂xx →p ωxx and T−1/2 (x1 − µx) →p 0, and the con-

vergence result uses ω
−1/2
xx T−1/2vx

bT ·c →d Wx,c (·) and CMT.
For any b ≥ 0 and any c ∈ R,
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EβT (b),γT (c)π
∗
η

(
R̂; ρ̂

)
= PrβT (b),γT (c)

[
R̂β > Cη

(
R̂γ, R̂ββ, R̂γγ; ρ̂

)]

→ Pr
[Rρ

β (b, c) > Cη

(Rρ
γ (b, c) ,Rββ (c) ,Rγγ (c) ; ρ

)]

= ϕ∗η (b, c; ρ) ,

where the convergence result uses
(
R̂′, ρ̂

)′
→d

(Rρ (b, c)′ , ρ
)′

, continuity of Cη (·) ,

and CMT. An analogous argument shows that

lim
T→∞

EβT (b),γT (c)π
∗∗
η

(
R̂; ρ̂

)
→ ϕ∗∗η (b, c; ρ) ∀ (b, c) ∈ R2. ¥

Proof of Theorem 7. Let Zγ, Zββ, Qγγ, and Q be defined as in the proof of
Lemma 11 and recall that

f 0
R (r; ρ) =

1√
2πrββ

exp

(
− r2

β

2rββ

)

×2fQ

(
2rγ + 2

ρ√
1− ρ2

rβ + 1, rγγ − rββ, rγγ

)
,

where fQ (·) is the density of Q and

2fQ (qγ, qββ, qγγ) =
1√

qγ
√

qββ

fZγ ,Zββ ,Qγγ

(√
qγ,
√

qββ, qγγ

)

+
1√

qγ
√

qββ

fZγ ,Zββ ,Qγγ

(√
qγ,−√qββ, qγγ

)
,

where fZγ ,Zββ ,Qγγ (·) is the density of (Zγ,Zββ,Qγγ)
′ .

By the inversion theorem for characteristic functions,
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fZγ ,Zββ ,Qγγ (zγ, zββ, qγγ)

=
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
κ (tγ, tββ, tγγ) exp [−i (tγzγ + tββzββ + tγγqγγ)] dtγdtββdtγγ

=
1

2π

∫ ∞

−∞
κγγ (tγγ; zγ, zββ) exp [−itγγqγγ] dtγγ,

where

κγγ (tγγ; zγ, zββ) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
κ (tγ, tββ, tγγ) exp [−i (tγzγ + tββzββ)] dtγdtββ,

and κ (·) is the joint characteristic function of (Zγ,Zββ,Qγγ)
′ . It follows from Abadir

and Larsson (2001) that

κ (tγ, tββ, tγγ) = E exp [itγZγ + itββZββ + itγγQγγ]

=
exp

[
1
4
(l1 (tγ, tγγ) + l2 (tγ, tββ, tγγ) + l3 (tββ, itγγ))

]
√

cosh
√−2itγγ

,

where

l1 (tγ, tγγ) = −2t2γ
tanh

√−2itγγ√−2itγγ

= −t2γ
1√|tγγ|

sinh 2
√|tγγ|+ sin 2

√|tγγ|
cosh 2

√|tγγ|+ cos 2
√|tγγ|

−it2γ
sign (tγγ)√|tγγ|

sinh 2
√|tγγ| − sin 2

√|tγγ|
cosh 2

√|tγγ|+ cos 2
√|tγγ|

,
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l2 (tγ, tββ, tγγ) = 2i
tγtββ

tγγ

(
1

cosh
√−2itγγ

− 1

)

= −2tγtββ
1

|tγγ|
2 sinh

√|tγγ| sin
√|tγγ|

cosh 2
√|tγγ|+ cos 2

√|tγγ|
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sign (tγγ)

|tγγ|

(
1− 2 cosh

√|tγγ| cos
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cosh 2
√|tγγ|+ cos 2

√|tγγ|

)
,

l3 (tββ, tγγ) = i
t2ββ

tγγ

(
tanh

√−2itγγ√−2itγγ

− 1

)

= −t2ββ

1

2 |tγγ|3/2

sinh 2
√|tγγ| − sin 2

√|tγγ|
cosh 2

√|tγγ|+ cos 2
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−it2ββ

sign (tγγ)

|tγγ|

(
1− 1

2
√|tγγ|
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√|tγγ|
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)
.

Now,

1

4
Re [l1 (tγ, tγγ) + l2 (tγ, tββ, tγγ) + l3 (tββ, tγγ)] = −1

4

(
tγ
tββ

)′
A (tγγ)

(
tγ
tββ

)
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1

4
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where
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 ,
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B (t) =




sign(t)√
|t|
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√
|t|−sin 2

√
|t|
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√
|t|+cos 2

√
|t|

sign(t)
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√
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√
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√
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√
|t|
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√
|t|+sin 2

√
|t|

cosh 2
√
|t|+cos 2

√
|t|

)


 .

Using the properties of noncentral quadratic forms in normal random variables,
it can be shown that

1

(2π)2

∫

R2

exp

(
ix′z − 1

4
ix′Bx

)
exp

(
−1

4
x′Ax

)
dx

=
|A + iB|−1/2

π
exp

[
−z′

(
AB−1A + B

)−1
AB−1z

]

× exp
[
iz′

(
B−1 −B−1A

(
AB−1A + B

)−1
AB−1

)
z
]

for any z ∈ R2, any symmetric 2× 2 matrix B, and any symmetric, positive definite
2× 2 matrix A. As a consequence,

κγγ (tγγ; zγ, zββ) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
φ (tγ, tββ, tγγ) exp [−i (tγzγ + tββzββ)] dtγdtββ

=
|A + iB|−1/2

π
√

cosh
√−2itγγ

exp

[
−

(
zγ

zββ

)′ (
AB−1A + B

)−1
AB−1

(
zγ

zββ

)]

× exp

[
+i

(
zγ

zββ

)′ (
B−1 −B−1A

(
AB−1A + B

)−1
AB−1

) (
zγ

zββ

)]
,

where A = A (tγγ) and B = B (tγγ) .

The stated result now follows because κγγ (tγγ; zγ, zββ) = κγγ (−tγγ; zγ, zββ), im-
plying

fZγ ,Zββ ,Qγγ (zγ, zββ, qγγ) =
1

2π

∫ ∞

−∞
κγγ (tγγ; zγ, zββ) exp [−itγγqγγ] dtγγ

=
1

π

∫ ∞

0

Re {κγγ (tγγ; zγ, zββ) exp [−itγγqγγ]} dtγγ. ¥
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Proof of Lemma 8. Lemma 8 (a) follows simple algebra and the relations

σ−1/2
xx σ−1/2

yy.x T−1

T∑
t=1

xm
t

(
yt − β0xt − σ−1

xx σxy∆xt

)
= RCI

β + op0 (1)

and

σ−1
xx T−2

T∑
t=1

xm2
t = σ−1

xx T−2

T∑
t=1

xm
t xµ

t−1 + op0 (1) = RCI
ββ + op0 (1) .

Lemma 8 (b) follows from standard weak convergence arguments [e.g., Phillips (1987b,
1988a, 1988b) and Phillips and Solo (1992)]. ¥

Proof of Theorem 9. Theorem 9 follows as Theorem 5 using Lemma 8 instead
of Lemma 3. ¥

Proof of Theorem 10. Theorem 10 follows from standard weak convergence ar-
guments [e.g., Phillips (1987b, 1988a, 1988b) and Phillips and Solo (1992)] and the
proof of Theorem 6. ¥
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11. Appendix C: Tables

TABLE IA
Power Function (ρ = 0.5)

c = 0 c = −10 c = −100
b OLS DOLS L2 OLS DOLS L2 OLS DOLS L2

0 0.5% 3.5% 5.5% 3.5% 27.0% 6.5% 6.5% 98.0% 5.5%
5 31.5% 54.% 30.0% 12.5% 64.5% 13.0% 8.5% 100.0% 7.5%
10 62.0% 87.0% 49.0% 41.5% 85.0% 21.5% 26.0% 100.0% 5.0%
15 83.5% 96.5% 71.0% 62.5% 97.5% 29.5% 40.5% 100.0% 6.0%
20 96.0% 100.0% 84.5% 88.5% 98.5% 46.5% 56.5% 100.0% 8.0%
25 98.0% 100.0% 88.5% 96.5% 100.0% 65.0% 71.5% 100.0% 11.0%
30 100.0% 100.0% 93.0% 98.0% 100.0% 65.0% 81.0% 100.0% 10.5%
35 100.0% 100.0% 96.5% 99.0% 100.0% 74.0% 89.0% 100.0% 12.5%
40 100.0% 100.0% 98.5% 99.5% 100.0% 79.0% 93.5% 100.0% 12.5%

TABLE IB
Power Function (ρ = −0.5)

c = 0 c = −10 c = −100
b OLS DOLS L2 OLS DOLS L2 OLS DOLS L2

0 16.0% 3.0% 5.0% 6.5% 0.5% 4.5% 3.0% 0.0% 4.5%
5 78.5% 57.5% 29.0% 31.5% 3.5% 1.5% 10.5% 0.0% 2.5%
10 96.5% 87.5% 50.5% 57.5% 19.5% 2.0% 20.0% 0.0% 3.0%
15 99.5% 96.5% 71.5% 93.5% 46.5% 7.5% 35.0% 0.0% 1.5%
20 100.0% 100.0% 86.0% 98.5% 81.0% 14.5% 48.0% 0.0% 4.0%
25 100.0% 100.0% 90.0% 100.0% 95.0% 34.5% 69.5% 0.0% 3.0%
30 100.0% 100.0% 95.0% 100.0% 98.0% 42.5% 77.0% 0.0% 2.5%
35 100.0% 100.0% 96.5% 100.0% 98.5% 50.0% 87.5% 0.0% 2.5%
40 100.0% 100.0% 97.0% 100.0% 100.0% 60.5% 94.0% 0.0% 1.0%
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TABLE II
Power Function of UMPCU test

ρ = 0.5 ρ = −0.5
b c = 0 c = −10 c = −100 c = 0 c = −10 c = −100
0 1.0% 1.5% 6.0% 9.0% 4.5% 5.5%
5 37.5% 5.0% 9.0% 54.5% 10.0% 4.5%
10 61.5% 16.0% 9.5% 79.0% 20.0% 6.0%
15 71.5% 21.0% 10.5% 93.5% 43.0% 8.5%
20 72.5% 26.5% 13.5% 99.0% 74.5% 10.0%
25 74.0% 31.0% 18.5% 99.5% 91.5% 14.0%
30 74.5% 34.0% 17.5% 98.0% 98.5% 14.0%
35 76.5% 38.5% 17.0% 97.0% 99.0% 25.0%
40 77.5% 46.5% 21.5% 90.5% 99.5% 32.0%
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