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ABSTRACT

When a k period future return is regressed on a current variable such as the log  dividend yield, the

marginal significance level of the t-test that the return is unpredictable typically increases over some

range of future return horizons, k. Local asymptotic power analysis shows that the power of the long-

horizon predictive regression test dominates that of the short-horizon test over a nontrivial region of the

admissible parameter space. In practice, small sample OLS bias, which differs under the null and the

alternative, can distort the size and reduce the power gains of long-horizon tests. To overcome these

problems, we suggest a moving block recursive Jackknife estimator of the predictive regression slope

coefficient and test statistics that is appropriate under both the null and the alternative. The methods are

applied to testing whether future stock returns are predictable. Consistent evidence in favor of return

predictability shows up at the 5 year horizon.
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1 Introduction

Let rt � I(0) be the return on an asset or a portfolio of assets from time t � 1 to
t and let xt � I(0) be a time t hypothesized predictor of the asset�s future returns.
In �nance rt might be the return on equity and xt the log dividend yield whereas in
international economics rt might be the return on the log exchange rate and xt the
deviation of the exchange rate from a set of macroeconomic fundamentals.1 A test of
the predictability of the return can be conducted by regressing the one-period ahead
return rt+1 on xt and performing a t-test on the slope coe¢ cient. Empirical research in
�nance and economics frequently goes beyond this by regressing the asset�s multi-period
future return yt;k =

Pk
j=1 rt+j, on xt,

yt;k = �k + �kxt + �t;k; (1)

and conducting a t-test of the null hypothesis that the return is unpredictable H0 :
�k = 0, where the t-statistic is constructed with a heteroskedastic and autocorrelation
consistent (HAC) standard error. Frequently, it is found that the OLS slope estimates,
asymptotic t-ratios, and R2s are increasing over a range of horizons k > 1: Because the
marginal signi�cance level of the test of no predictability declines over this range of k;
the test using the long horizon regression may reject the null hypothesis whereas the
test using the short horizon regression may not. Because the long-horizon regression
is built by adding up the intervening short-horizon regressions, these results present
a puzzle and the underlying basis for them are not fully understood. As stated by
Campbell, Lo, and MacKinlay (1997), �An important unresolved question is whether
there are circumstances under which long-horizon regressions have greater power to
detect deviations from the null hypothesis than do short-horizon regressions.�
This paper addresses the power question posed by Campbell et. al. There are two

aspects to our study. The �rst concerns the asymptotic properties of the tests. To deter-
mine whether there exists an asymptotic theoretical motivation for using long-horizon
regression, we compare the local asymptotic power of long- and short-horizon regression
tests in two ways. Our �rst examination assumes that the regressor has a local-to-unity
dominant autoregressive root. This approach is motivated by the high persistence of
the predictive variables used in empirical applications. But because this also has the
unattractive implication that the predictor is asymptotically unit root nonstationary, it
is useful also to evaluate local asymptotic power when the observations are covariance
stationary. Thus, our second examination of local asymptotic power is conducted under
this alternative scenario.

1This line of research includes Fama and French (1988a) and Campbell and Shiller (1988) who
regressed long-horizon equity returns on the log dividend yield. See also Mishkin (1992), who ran
regressions of long-horizon in�ation on long-term bond yields, Mark (1995), Mark and Choi (1997),
Chinn and Meese (1995) and Rapach and Wohar (2002) who regressed long-horizon exchange rate
returns on the deviation of the exchange rate from its fundamental value. Alexius (2001) and Chinn
and Merideth (2002) regress long-horizon exchange rate returns on long-term bond yield di¤erentials.
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We �nd that the local asymptotic power of long-horizon regression tests dominate
that of the short-horizon test over a nontrivial subset of the admissible parameter space.
When the regressor is econometrically exogenous with local-to-unity autoregressive co-
e¢ cient, there are no local power advantages to long-horizon regression tests. When
the regressor is covariance stationary, local asymptotic power advantages accrue to long-
horizon regression tests when the regression error or the regressor (or both) exhibit
negative serial correlation. This noteworthy result may not be particularly useful in
guiding empirical work both because the required correlation structure is not a common
feature of the data used empirical applications of long-horizon regressions and because
strict exogeneity is an unrealistic assumption for many applications.
Asymptotic results that speak directly to extant empirical work are obtained when

the regressor is endogenous. Endogeneity arises not in the sense of a misspeci�cation of
the structural model because the predictive regressions we study are employed simply
as a projection of the k�period future return rt+k on xt to estimate functions of the
underlying moments of the distribution between frtg and fxtg: The motivation for using
predictive regressions when the regressor is endogenous is analogous to the motivation
for HAC estimation of covariance matrices in exchange for modeling the exact auto-
correlation and conditional heteroskedasticity dynamics of the regression error. Here,
whether the regressor has a local-to-unity autoregressive root or is covariance station-
ary, asymptotic power advantages accrue to long-horizon regression tests in empirically
relevant regions of the parameter space� where fxtg is positively autocorrelated and
persistent, the short-horizon regression error exhibits low to moderate serial correlation,
and the innovations to the regressor and the regression error are contemporaneously
correlated.
The second aspect of our study concerns small sample performance of long-horizon

regression tests. While theoretical power comparisons are valid asymptotically for local
alternative hypotheses, power gains of the long-horizon regression test can be attenuated
in practice on account of small sample bias. We characterize the bias, the power loss
attributable to the bias and the associated size distortion of the tests. The small sample
bias under the null hypothesis is di¤erent than it is under the alternative so that a simple
bias adjustment under the null does not result in a proper sized test. To obtain a test
with better size, we suggest a moving block recursive jackknife strategy to reduce bias in
the slope coe¢ cient estimator and to obtain a test with the correct size. The jackknife
strategy is appropriate both under the null and under the alternative, has good size
properties and restores the power advantages of long-horizon regression tests in sample
sizes likely to be available to applied researchers.
We illustrate the use of these methods in an examination of the predictability of

returns on the Standard and Poors index. Using annual time series that begin in 1871
and recursively updating the sample from 1971 to 2002 gives stable recursive jackknifed
test results that consistently reject the hypothesis of no predictability at return horizons
of 10 years or more.
Studies of the econometrics of predictive regressions include Campbell (2001) who
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studied an environment where the regressor fxtg follows an AR(1) process and where
the short-horizon regression error is serially uncorrelated. Using the concept of approx-
imate slope to measure its asymptotic power, he found that long-horizon regressions
had approximate slope advantages over short-horizon regressions but his Monte Carlo
experiments did not reveal systematic power advantages for long-horizon regressions in
�nite samples. Berben (2000) reported asymptotic power advantages for long-horizon
regression when the exogenous predictor and the short-horizon regression error follow
AR(1) processes. Berben and Van Dijk (1998) conclude that long-horizon tests do not
have asymptotic power advantages when the regressor is unit-root nonstationary and is
weakly exogenous� properties that Berkowitz and Giorgianni (2001) also �nd in Monte
Carlo analysis. Mankiw and Shapiro (1986), Hodrick (1992), Kim and Nelson (1993),
and Goetzmann and Jorion (1993), Mark (1995), and Kilian (1999) study small-sample
inference issues. Stambaugh (1999) proposes a Bayesian analysis to deal with small sam-
ple bias and Campbell and Yogo (2002) study point optimal tests in the short-horizon
predictive regression.. Kilian and Taylor (2002) examine �nite sample properties under
nonlinearity of the data generation process and Clark and McCracken (2001) study the
predictive power of long-horizon out-of-sample forecasts.
The long-horizon regressions that we study regress returns at alternative horizons on

the same explanatory variable. The regressions admit variations in k but the horizon is
implicitly constrained to be small relative to the sample size with k=T ! 0 as T !1.
An alternative long-horizon regression employed in the literature regresses the future
k-period return (from t to t + k) on the past k-period return (from t � k to t) [Fama
and French (1988b)]. In this alternative long-horizon regression, the return horizon k
can be large relative to the size of the sample T . Richardson and Stock (1989) develop
an alternative asymptotic theory where k ! 1 and T ! 1 but k=T ! � 2 (0; 1) and
show that the test statistics converge to functions of Brownian motions. Daniel (2001)
studies optimal tests of this kind. Valkanov (2003) employs the Richardson and Stock
asymptotic distribution theory to the long-horizon regressions of the type that we study
when the regressor xt � I(1).
The remainder of the paper is as follows. The next section sets the stage for our

inquiry by presenting estimation results from two canonical examples of the use of pre-
dictive regression in �nance in economics. Section 3 presents the local asymptotic power
analysis and the small sample properties of the predictive regression tests are discussed
in Section 4 discusses its small sample properties. Section 5 presents the moving block
recursive jackknife method to adjust the OLS bias and to correct the size distortion
of the tests. The jackknife methods are applied to study stock return predictability in
Section 7 and Section 8 concludes. Proofs of propositions are contained in the appendix.

2 Canonical empirical examples

We illustrate the issues with two canonical empirical examples. The �rst example uses
the log dividend yield as a predictor of future stock returns [Fama and French (1988b),
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Campbell and Shiller (1988)] using annual observations from 1871 to 1995.2 The pre-
dictive regression can be motivated as in Campbell et. al. (1997) who show how the
log dividend yield is the expected present value of future returns net of future dividend
growth. If forecasts of future dividend growth are relatively smooth, this present-value
relation suggests that the log dividend yield contains information useful for predicting
future returns.
Letting rt+1 = ln ((Pt+1 +Dt+1) =Pt) and xt = ln (Dt=Pt) ; where P and D are the

price and dividend on the Standard and Poors index, we run the equity return regressions
at horizons of 1, 2, 4, and 8 years. HAC standard errors are computed using the auto-
matic lag selection method of Newey and West (1994). The results, displayed in panel A
of Table 1, show that the evidence for return predictability appears to strengthen as the
return horizon is lengthened. OLS slope coe¢ cient point estimates, HAC asymptotic
t-ratios, and regression R2s all increase with return horizon.3

Our second example uses the deviation of the exchange rate from its monetary fun-
damentals value as a predictor of future exchange rate returns [Mark (1995) and Chinn
and Meese (1995)]. Letting rt+1 = ln(St+1=St) be the exchange rate return where S is
the nominal exchange rate, x = ln(F=S), F = (M=M�)(Y �=Y ), M(M�) and Y (Y �) are
domestic (foreign) money and income respectively, and F is the monetary fundamentals
value of the exchange rate. The monetary approach to exchange rate determination,
which has a present value interpretation, gives a motivation for the predictive regression
for exchange rate returns analogous to that for equity returns. Results are presented for
horizons of 1,2,3, and 4 years for a US�UK data set consisting of 100 quarterly obser-
vations spanning from 1973.1 to 1997.3.4 The results, displayed in panel B of Table 1
exhibit a similar pattern for slope coe¢ cient point estimates, HAC asymptotic t-ratios
and regression R2s that increase with the return horizon.
In both examples, the regressor fxtg is highly persistent. Augmented Dickey�Fuller

and Phillips�Perron unit root tests statistics for the regressors are shown in Table 2.
The unit root can be rejected at the 5 percent level if the entire sample of 1500 monthly
log dividend yield observations is used but if one analyzed only the �rst 288 monthly
observations (or 24 years) the unit root would not be rejected. The third column of the
table shows that with 24 years of data, a unit root in the deviation of the log exchange
rate from the log fundamentals also cannot be rejected at standard signi�cance levels.
Failure to reject the null hypothesis does not require us to accept it especially in light
of the well known low power in small samples of unit root tests. For the exchange
rate predictor, evidence against a unit root is stronger in a long historical record, as
found by Rapach and Wohar (2002). In the ensuing analysis, we pay close attention to

2These data were used in Robert J. Shiller (2000) and were obtained from his web site. Annual
observatinos were constructed from these monthly data. Returns are rt+1 = ln ((Pt+1 +Dt)=Pt) where
Pt is the beginning of year price of the S&P index and Dt is the annual �ow of dividends in year t.

3Because the dependent variable changes with k, the R2s are not directly comparable across horizons.
4These data are from Mark and Sul (2001). St is the end-of-quarter dollar price of the pound,

industrial production is used to proxy for income, US money is M2 and UK money is M0 (due to
availability).
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environments in which fxtg is persistent.

Table 1: Illustrative Long-Horizon Regressions

A. Returns on S&P index
Horizon in years

1 2 4 8
�̂ 0.131 0.263 0.483 0.833
t-ratio 2.827 3.333 3.993 5.445
R2 0.151 0.285 0.492 0.701

B. Returns on $/£ exchange rate
Horizon in years

1 2 3 4
�̂ 0.201 0.420 0.627 0.729
t-ratio 2.288 3.518 5.706 5.317
R2 0.172 0.344 0.503 0.606

Table 2: Regressor persistence in the data.

Monthly Dividend Monthly Dividend Quarterly Deviation from
yield T=1500 yield T=288 Fundamentals T=100

ADF � c -3.58 -2.02 -1.66
� t -4.29 -2.66 -1.31

PP � c -3.45 -1.87 -1.78
� t -4.09 -2.25 -1.63

AC 1 0.986 0.985 0.940
6 0.883 0.859 0.648
12 0.732 0.670 0.273
24 0.544 0.367 0.094
36 0.474 0.161 -0.170

Notes: � c (� t) is the studentized coe¢ cient for the unit root test with a constant (trend). ADF
is the augmented Dickey�Fuller test and PP is the Phillips�Perron test. Approximate critical
values for � c for T = 1500; 288; 100 are -2.86, -2.86, and -2.89, respectively at the 5% level
and -2.57, -2.57, and -2.58, respectively at the 10% level. Approximate critical values for � t
for T = 1500; 288; 100 are -3.41, -3.43, and -3.45 respectively at the 5% level and -3.12, -3.13,
and -3.15 respectively at the 10% level. AC is the �rst-order autocorrelation coe¢ cient.
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3 Local asymptotic power

We study local asymptotic power from two perspectives. First, as in Campbell and
Yogo (2002) and Valkanov (2003), we assume that the regressor has a local-to-unity
autoregressive root to account for a highly persistent regressor. However, for problems
such as in predicting stock returns, this formulation implies that in large samples the
dividend yield and therefore the equity return is I(1). To avoid the unattractive assump-
tion that that equity returns are unit-root nonstationary, in subsection 3.2 we conduct
an alternative local-to-zero asymptotic analysis where both the return sequence fytg and
the dividend-yield fxtg are covariance stationary.
For notational convenience, we work with predictive regressions of the form

�yt+1 = �1xt + et+1: (2)

We suppress the regression constant since its inclusion has no e¤ect on the asymptotic
properties of the predictive regression tests. We reintroduce the constant below in our
analysis of the small sample properties of the tests.5

Economic theory typically provides guidance on the appropriate sign of the slope
coe¢ cient under the alternative. Throughout the paper, we restrict out attention to the
one-sided alternative for which �1 > 0:

3.1 Local-to-unity asymptotic power

For our local-to-unity asymptotic analysis, the observations are generated according to

Assumption 1 (Local-to-unity autoregressive root.) For sample size T; the observations
have the representation

�yt+1 = �1(T )xt + et+1 (3)

xt+1 = �(T )xt + ut+1 (4)

where fet+1g and fut+1g are zero mean covariance stationary sequences. �(T ) = 1+c1=T
and �1(T ) = b1=T give the sequence of local alternatives where c1 and b1 are con-
stants. For the long-horizon regression, the sequence of local alternatives at horizon k is
�k(T ) = (kb1)=T:

5This reformulation of the dependent variable maps exactly into the returns formulation for exchange
rates (yt = ln (St)) and is an approximate representation of stock returns. The approximation follows
from Campbell et. al. (1997), by letting yt be the log stock price, xt the log dividend yield. Then
rt+1 ' ��yt+1+(1� �)xt where � is the implied discount factor when the discount rate is the average
dividend yield.
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Let �t = (�x
0
t; e

0
t)
0 and 
 = � + � + �0 be it�s long run covariance matrix,


 = lim
T!1

1

T

TX
t=1

1X
l=�1

E(�t�
0
t�l) =

�

xx 
xe

ex 
ee

�
;

where � = lim
T�!1

PT
t=1E(�t�

0
t) =

�
�xx �xe
�ex �ee

�
; and

� = lim
T�!1

1
T

PT
t=1

Pt�1
l=1 E(�t�l�

0
t) =

�
�xx �xe
�ex �ee

�
:

Next, let B1 be a scaler Brownian motion with long run variance 
xx; J�c be the
di¤usion process de�ned by dJ�c (r) = c1J

�
c (r) + dB1(r); with initial condition

J�c (0) = 0; and Jc = J�c (r) �
R 1
0
J�c (r)dr: The slope coe¢ cient from the k�horizon

regression is �̂k = (
P

t xt�yt+k) (
P
x2t )

�1 with asymptotic t-ratio t�(k) = �̂k=

q
V (�̂k);

where V (�̂k) = b
ee (Pt x
2
t )
�1. Then following Phillips (1988), Cavanagh, Elliot and

Stock (1995) and Berben and Van Dijk (1998), we have

Proposition 1 (Local-to-unity asymptotic distribution) Under Assumption 1, the OLS
estimator of the kth horizon regression slope coe¢ cient is asymptotically distributed as,

T
�
�̂k � �

�
=) kR

(
�

�Z
J2c

��1 Z
JcdB1 +

�
1� �2

�1=2�Z
J2c

��1 Z
JcdB

�
2

)
(5)

+
�xe � �xe;k�1


xx

�Z
J2c

��1
+ kb1:

Its corresponding t�statistic has asymptotic distribution,

t�(k) =) �� 1c +
�
1� �2

�1=2
N(0; 1) +

�
�xe � �xe;k�1 + b1p


xx
ee

�
�c (6)

where �xe;k�1 = limT!1
1
T

PT
t=k+1

Pk�1
l=1 E(�xt�let); � 1c =

�R
J2c
��1=2 R

JcdB1,
B2 = �B1 + (1� �2)1=2B�

2 ; B
�
2 is a standard Brownian motion distributed independently

of B1; R = 

1=2
xx 


�1=2
ee ; � = 
xe (
xx
ee)

�1=2 and �c =
�R

J2c
��1=2

> 0:

When the regressor is strictly exogenous [Campbell and Yogo (2002), Valkanov
(2003)], then �xe = �xe;k�1 = 0: This gives t�(k) =) �� 1c +

�
1� �2

�1=2
N(0; 1) +�

b1=
p

xx
ee

�
�c which does not depend on k and

Corollary 1 (Local-to-unity and exogeneity) If the regressor is econometrically exoge-
nous then under Assumption 1, the long-horizon regression test has no asymptotic power
advantage over the short-horizon regression test.
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Strict exogeneity, however, is unlikely to hold in many empirical applications. When
future equity returns rt+1 = ln(Pt+1 +Dt)� lnPt are regressed on xt = lnDt�1 � lnPt,
both rt+1 and xt+1 depend on lnPt+1. It would not be surprising therefore, to �nd that
the regression error and the innovation to xt are negatively correlated, E(ut+1et+1) < 0.
Analogously, when the exchange rate return rt+1 = lnSt+1 � lnSt is regressed on the
deviation of the log fundamentals from the exchange rate, xt+1 = lnFt+1 � lnSt+1 the
dependence of both rt+1 and xt+1 on lnSt+1 suggests that the innovation to xt+1 and
the short-horizon regression error will be negatively correlated.6

To make the point more formally, suppose that the bivariate sequence f(yt; zt)0g can
be represented as a �rst-order VECM with cointegration vector (�1; 1),�

�yt
�zt

�
=

�
h1xt�1
h2xt�1

�
+

�
a11 a12
a21 a22

��
�yt�1
�zt�1

�
+

�
�t
ut

�
; (7)

where the equilibrium error is xt = zt � yt.7 Eq.(7) has the equivalent restricted vector
autoregressive (VAR) representation for (�yt; xt),�

�yt
xt

�
=

�
(a11 + a12) (h1 + a12)

(a22 � a12 + a21 � a11) (1 + h2 � h1 + a22 � a12)

��
�yt�1
xt�1

�
+

�
0 �a12
0 (a12 � a22)

��
�yt�2
xt�2

�
+

�
�t

ut � �t

�
: (8)

By inspection of (8), fxtg and f�ytg are seen to be correlated both contemporaneously
and dynamically (at leads and lags). Writing out the �rst equation of (8) and advancing
the time index gives the short-horizon regression

�yt+1 = (h1 + a12)xt + [(a11 + a12)�yt � a12xt�1 + �t+1] ; (9)

where slope coe¢ cient is h1+a12 and the regression error (a11+a12)�yt�a12xt�1+ �t+1;
is serially correlated and also correlated with xt. The objective of the short-horizon
regression is not to estimate this h1+a12 per se, but to estimate the projection coe¢ cient
of �yt+1 on xt which includes the correlation between the regressor xt and (�yt; xt�1)
in the error term. A researcher would use the predictive regression instead of estimating
a complete speci�cation of the dynamic correlation structure between �yt+1 and xt for
the same reason that (s)he would use a HAC covariance estimator to avoid explicitly
modeling the serial correlation and conditional heteroskedasticity of the regression error.
By (6), the limiting behavior of the di¤erence between t�statistics at the horizons k

and horizon 1 is ta�(k)�ta�(1) =) �
�
�xe;k�1=

p

xx
ee

�
�c: For a one-tail test with �k > 0

under the alternative, this di¤erence will be positive if innovations to the regressor and

6The predicted negative innovation correlation are in fact present in the data. Fitting a �rst-order
vector autoregression to (et; vt)0, we obtain an innovation correlation of -0.948 for stocks and -0.786 for
exchange rates.

7In exchange rate analysis, �yt+1 is the exchange rate return and zt is the log fundamentals. Equity
returns and dividend yields do not have an exact VECM representation.
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the regression error are negatively correlated in the sense that �xe;k�1 < 0: Thus, when
the regressor is endogenous, we have

Corollary 2 (Local-to-unity with endogenous regressor) Under Assumption 1, asymp-
totic power advantages accrue to long-horizon regression tests if �xe;k�1 < 0 for k > 1:

The local-to-unity assumption for the autoregressive root implies that the predictor
is asymptotically unit-root nonstationary. This is not an appropriate characterization
for time-series such as the dividend yield (or earnings-to-price ratios). Therefore, it is
useful to have an alternative statement about local power of long- and short-horizon
regressions in a stationary environment.

3.2 Local asymptotic power under covariance stationarity

For the local asymptotic analysis under covariance stationarity, the observations are
generated according to

Assumption 2 (Covariance stationarity) For sample size T; the observations have the
representation

�yt+1 = �1(T )xt + et+1 (10)

xt+1 = �xt + ut+1 (11)

where fet+1g and fut+1g are zero mean covariance stationary sequences,
�1 < � < 1; and �1(T ) = b1=

p
T where b1 is a constant. Local-to-zero endogeneity

obeys c1(T ) = c1=
p
T = E

�PT
t=1 xtet+1

��PT
t=1 x

2
t

��1
:

The long-horizon regression (k > 1) obtained by addition of short-horizon regressions
is

yt+k � yt = �k(T )xt + �t;k

where

�k(T ) = �1(T )

"
1 +

k�1X
j=1

�j

#
=

b1p
T

�
1� �k

1� �

�
=

bkp
T

�t;k =

kX
j=1

et+j + �1(T )

 
k�1X
j=1

ut+j

!
: (12)

Under the sequence of local alternatives, the OLS estimator at horizon k > 1 has prob-

ability limit (bk + ck) =
p
T , where ck=

p
T = E

�PT
t=1 xt�t;k

��PT
t=1 x

2
t

��1
: The direct
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dependence of �t;k on the projection errors ut+j vanish asymptotically so the asymptotic
variance of the OLS estimator may be calculated under the null hypothesis of no pre-
dictability (ck = bk = 0, k > 0). Under the sequence of local alternatives, the squared
t-ratio for the test of the null hypothesis H0 : �k = 0 has the asymptotic noncentral
chi-square distribution

t2� (k) =
T �̂

2

k

V (�̂k)

D! �21(�k);

with noncentrality parameter

�k =
(bk + ck)

2

V (�̂k)
:

Local asymptotic power depends on the DGP�s parameter values. We denote this depen-
dence by writing the parameter vector that characterizes the DGP as  and measure local
asymptotic power between long-and short-horizon regression tests by �(k; ) = �k=�1:
We can now state

Proposition 2 Under Assumption 2, the long-horizon regression (k > 1) test of the hy-
pothesis that xt does not predict future changes in yt has asymptotic local power advantage
over the short-horizon regression (k = 1) test if

�(k; ) =
�k
�1
= plim

T!1

"
�̂k

�̂1

#2 "
V (�̂1)

V (�̂k)

#
=

�
bk + ck
b1 + c1

�2 �

ee

��(k)

�
> 1

where 
ee and 
��(k) are the long run variances of et+1 in (10) and �t;k in (12), respec-
tively.

If the regressor is exogenous, then ck = 0 for all k > 0: For direct comparison with
Corollary 1, we have,

Corollary 3 (Exogenous regressor) If the regressor is exogenous, then under Assump-
tion 2, the long-horizon regression has asymptotic local power advantages over the short-
horizon regression if �

1� �k

1� �

�2 �

ee

��(k)

�
> 1:

There obviously will be no power advantages to long horizon regression tests if fetg is
iid and � = 0 since in this case, E

�
�t+k�

0
t+k=T

�
= E

�Pk
j=1 et+j

��Pk
j=1 et+j

�0
=T +o (1)

which gives 
��(k)
�1ee = k:8 With a persistent regressor, �k(T )=�1(T ) =
Pk�1

j=0 �
j

=
�
1� �k

�
= (1� �) ; which is increasing in k and approaches k as � approaches unity.

8See Mark and Sul (2002) who compute the local-asymptotic power advantages for several parametric
speci�cations under the exogeneity assumption.
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Figure 1: k� = argmax f� (k; )g ;  = (a11; b1;�) = (0:1; 0:1; 0:95) :

Long-horizon regression tests will have local-to-zero asymptotic power advantages if

��(k) increases at a rate less than k: This can happen if the regression error is negatively
serially correlated. Large negative serial correlation of the regression error is not a
common feature of either stock return or foreign exchange return data and the exogeneity
assumption is untenable.
When the regressor is endogenous, local power advantages can accrue to long-horizon

regression if b1
�
1� �k

�
= (1� �) + ck is increasing at a faster rate than 
��(k): If in ad-

dition, c1 < 0 such that b1 + c1 ' 0 while bk + ck > 0 and is increasing in k for k > 1
the power advantage can be substantial. While it is di¢ cult to construct simple para-
metric examples where the short-run and long-run correlations have di¤erent signs, such
behavior can be observed in the data.9 The following example lays out a paramet-
ric structure in which local-asymptotic power advantages are attained by long-horizon
regression tests.

Example 1. The observations are generated by

�yt+1 = �1(T )xt + et+1;

xt+1 = �xt + ut+1;�
et
ut

�
=

�
a11 a12(T )
0 0

��
et�1
ut�1

�
+

�
mt

nt

�
;

9In a related context, Lo (1991) �nds that stock returns are positively serially correlated at daily
horizons but become negatively serially correlated at annual frequencies.
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where (mt; nt)
0 iid� [0;�(T )] ;�(T ) =

�
1 �mn(T )

�mn(T ) 1

�
; b1(T ) = b1=

p
T ;

a12(T ) = a12=
p
T ; and �mn(T ) = �mn=

p
T : Then

c1(T ) =
E(et+1xt)

E(xt)2
=

�
a12 + a11�mnp
T (1� a11�)

��
1� �2

�
;

with c1 =
��
a12 + a11�mn

�
(1� a11�)

�1� (1� �2) ; and ck = c1
�
1� ak11

�
(1� a11)

�1. The
unconditional mean of the long-horizon regression slope coe¢ cient is

E
�
�̂k

�
=

b1p
T

�
1� �k

1� �

�
+

c1p
T

�
1� ak11
1� a11

�
The parameter vector for this DGP is  = (b1; �; a11; �mn; a12) and our measure of

relative asymptotic power is

�(k; ) =

 
b1
Pk�1

j=0 �
j + c1

Pk�1
j=0 a

j
11

b1 + c1

!2

ee

��(k)

:

the asymptotic variances are computed under the null hypothesis. Figure 1 shows the
horizon k� = argmax f�(k; )g obtained by searching over k 2 [0; 20] ; �mn 2 [�0:9; 0] ;
a12 2 [�0:9; 0] with a11 = 0:1; b1 = 0:1; � = 0:95: If the long-horizon regression test has
no local power advantage k� = 1: As can be seen from the �gure, long-horizon regression
consistently exhibits local asymptotic power advantages in this region of the parameter
space.

3.3 Monte Carlo analysis of local asymptotic predictions under
covariance stationarity

In this subsection, we report the results of a Monte Carlo experiment that uses the DGP
of example 1. We perform 2000 replications with T = 500: In this �nite sample analog
to the asymptotic calculations of example 1, we compute the size adjusted power of the
predictive regression tests for every horizon k 2 [1; 20]: Figure 2 plots the horizon k�

for which the relative size adjusted power is maximized.10 The Monte Carlo experiment
con�rms that power gains can be achieved in �nite samples with long-horizon tests when
the regression error and innovations to the regressor are negatively correlated.
The surface generated by the Monte Carlo experiment this �gure di¤ers somewhat

from that of Figure 1. Here, the greatest power advantage generally occurs at a longer
horizon than the asymptotic calculations predicted and the region over which long-
horizon test has power advantages are di¤erent. There are two reasons for the discrep-
ancy. First, a potential pitfall of the local-to-zero asymptotic analysis in the stationary

10Asymptotic standard errors were calculated using the method of Andrews (1991).
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Figure 2: k� which maximizes relative size adjusted power fromMonte Carlo experiment.
No constant in regression.T = 500;  = (a11; b1;�) = (0:1; 0:1; 0:95) :

environment is that the e¤ect of critical nuisance parameters (e.g., a12 and �mn) are
eliminated from the asymptotic variance but remains important in small samples. The
second possible reason is that the �nite sample surface is sensitive to the particular HAC
estimator of the asymptotic covariance matrix employed.
These power advantages are perhaps less evident in simulation studies [Berkowitz

and Giorgianni (2001), Kilian (1999)]. One possibility for the discrepancy is that a
nontrivial amount of small sample bias is introduced when the predictive regression is
estimated with a constant. The above experiment did not include a constant.
To get an idea of the extent of the power loss that might be encountered in applied

work, we include a constant in the regression and computed the size adjusted power for
T = 100 for each of the optimal horizons k� determined by the previous experiment.
We adjust the parameters that characterize endogeneity along with local alternative
true values Let

�
aT12; �

T
mn; b

T
1

�
be the parameter values in the experiment for sample size

T . We set a10012 = a50012 �
p
500; �100mn = �500mn �

p
500 and b1001 = b5001 �

p
500: For each

con�guration of parameter values at the optimal horizon k�, Figure 3 plots the absolute
di¤erence between the size adjusted power of the k� horizon regression test generated
from the T = 500 DGP without constant and the size adjusted power from the T = 100
experiment with constant. As is seen from the �gure, �nite sample power loss tends
to be most pronounced in the same region where local asymptotic power gains are the
largest (i.e., as �mn and a12 become increasingly negative).
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Figure 3: Power loss with endogenous regressor due to small sample bias.

4 Exact �nite sample properties of long-horizon re-
gressions

We have seen that small sample bias causes size distortion in the test and creates compli-
cations for inference. In section 4.1 we characterize the OLS small sample bias.11 Here,
we show that the magnitude and even the direction of the bias under the null hypothesis
is not the same as it is under the alternative. Since a simple size adjustment under the
null will not result in a test with the correct size, in Section 5 we propose a new bias
reduction methods that are applicable both under the null and alternative hypotheses.
For our small sample analysis, the observations are generated according to

Assumption 3 The observations obey

�yt+1 = �+ �1xt + et+1; (13)

xt+1 = �xt + ut+1; (14)

where fet+1g and fut+1g are zero mean covariance stationary sequences.

Note that the representation in Assumption 3 allows both fxt+1g and fet+1g to follow
general ARMA(p,q) processes. Our focus is on issues of bias, size distortion and power
loss consequences from including the constant �.
11The small sample bias in the short-horizon predictive regression was studied by Stambaugh (1999).
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4.1 Small Sample OLS Bias

We �rst consider the case of an exogenous regressor. Endogeneity is considered in
subsection 4.1.2.

4.1.1 Exogenous Regressor

Let a ��0denote the deviation of a variable from its sample mean. Writing (13) in
deviations from the mean form gives,

�~yt+1 = �1~xt + ~et+1;

where �̂1 = �1+(
P
~xt~et+1) (

P
~x2t )

�1
:We represent the contemporaneous correlation be-

tween ~et+1 and eut+1 as the projection ~et+1 = �eut+1+e�t+1; where � = Cov (~et+1; eut+1) =V ar (eut+1) :
Let 'i = E

hPT
t=1 exteut+1+ii hPT

t=1 exti�1 : With an exogenous regressor, et+1; is not cor-
related with current and past values of xt but it may be correlated with future values of
xt. In this case, 'i is nonzero through the correlation between et and the sample mean
of xt: If � < 0; then probably 'i < 0: We assume that this is the case in

Proposition 3 (Small Sample Bias under Exogeneity) Let 'i < 0 and the regressor
be exogenous such that E (et+1xt�s) = 0; s � 0. Under Assumption 3 and the null
hypothesis of no predictability, the small sample bias in the OLS slope estimator in the
k � th horizon regression is

E
�
�̂
o

k

�
� Bias (H0(k)) = �

kX
i=0

'i;:

and under the alternative hypothesis it is

E
�
�̂
a

k � �ak

�
� Bias (Ha(k)) =

�
�'0 for k = 1;

�
Pk

i=0 'i +
Pk�1

i=1 �
a
i'i for k > 1:

By Proposition (3), it can be seen that

Bias (Ha(k))� Bias (H0(k)) =

�
0 for k = 1;Pk�1

i=1 �
a
i'i < 0 for k > 1:

In the short-horizon regression (k = 1) ; the small sample bias is identical both under
the null and the alternative hypotheses. In the long-horizon (k > 1) regressions the bias
is more pronounced under the null hypothesis than under the alternative.
The following Monte Carlo experiment veri�es and quanti�es these results. The

DGP is as in Assumption 3 with et+1 = mt+1; xt+1 = �xt + ut+1; � = 0:99; ut+1 = nt+1;
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(mt+1; nt+1)
0 iid� (0;�) where � is the 2 � 2 matrix with 1s on the diagonal and � as

the o¤-diagonal elements. Sample size is T = 100: The results, reported in Table 3,
shows that larger upward biases are present under the null than under the alternative
for horizons exceeding 1.

Table 3: Small-sample bias under the null and the alternative with
exogenous regressor

The DGP is given in Assumption 3 with et+1 = mt+1; xt+1 = �xt + ut+1;

ut+ = nt+1; (mt+1; nt+1)
0 iid� (0;�);�11 = �22 = 1;�12 = �21 = �;

�01= 0; �
a
1= 0:1; � = 0:99; T = 100:

Null Alternative
� k=1 k=5 k=10 k=15 k=20 k=1 k=5 k=10 k=15 k=20
-0.1 0.005 0.025 0.046 0.067 0.080 0.005 -0.025 -0.161 -0.386 -0.691
-0.2 0.010 0.048 0.089 0.125 0.150 0.010 -0.001 -0.119 -0.328 -0.620
-0.3 0.015 0.071 0.131 0.182 0.221 0.015 0.022 -0.076 -0.270 -0.550
-0.4 0.020 0.095 0.174 0.240 0.291 0.020 0.046 -0.034 -0.213 -0.479
-0.5 0.025 0.118 0.216 0.297 0.362 0.025 0.069 0.009 -0.155 -0.409
-0.6 0.030 0.142 0.258 0.355 0.432 0.030 0.092 0.051 -0.098 -0.339
-0.7 0.036 0.165 0.301 0.412 0.502 0.036 0.116 0.093 -0.041 -0.269
-0.8 0.041 0.188 0.343 0.469 0.572 0.041 0.139 0.135 0.016 -0.199

4.1.2 Endogeneous Regressor

Unless sharper assumptions about the DGP are made, analytically characterizing the
small sample bias when the regressor is endogenous becomes intractable. Accordingly,
we adopt

Assumption 4 The regressor fxtg follows the AR(p) process xt =
Pp

j=1 �jxt�j + ut
and the regression error fet+1g follows the MA(1) process et+1 = mt+1 + �mt; where
mt+1 = �ut+1 + �t+1 and where futg and f�tg are mutually and serially uncorrelated
sequences.

To see more explicitly the nature of the endogeneity, notice that the regression error
also has the alternative representation et+1 = �ut+1 + ��ut + �t+1 + ��t; in which the
error process consists of an MA(1) component in the innovations in xt and an MA(1)
component in an iid random shock that is independent of ut: The moving average com-
ponent of et can be generalized to an MA(q) or to an ARMA(p; q) process but since
the conclusions of this subsection are invariant to these generalizations, we stick to the
simpler formulation.
Here, the null hypothesis of no predictability (H0 : � = 0; �k = 0; k � 1) ; is as the

null hypothesis under exogeneity of the regressor, which is characterized in Proposition
3. Under the alternative hypothesis, however, we have
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Proposition 4 (Small Sample Bias under Endogeneity) Let the observations be gener-
ated according to Assumption 4. Under the alternative hypothesis of predictability, the
small sample bias of the OLS slope estimator in the kth horizon regression is

E
�
�̂
a

k � �ak

�
=

�
c+ �'0 � ��

Pp
i=1 �i'i�1 for k = 1;

c+ �
Pk

i=0 'i � ��
Pp

i=1 �i'i�1 +
Pk�1

i=1 �
a
i'i for k > 1;

where c is the asymptotic bias due to endogeneity.

The small sample bias under the null hypothesis is not the same as the OLS bias
under the alternative as we note that

Bias(Ha(k))-Bias(H0(k)) =
�

���
Pp

i=1 �i'i�1 < 0 for k = 1;
���

Pp
i=1 �i'i�1 +

Pk�1
i=1 �

a
i'i for k > 1:

The following Monte Carlo experiment veri�es and quanti�es the proposition. Here,
et+1 = a12ut +mt+1: Table 4 shows that the upward bias is generally more pronounced
under the null hypothesis than it is under the alternative. The essential point, however,
is that the bias is not the same under the null and under the alternative.

Table 4: Small-sample bias under the null and the alternative when
the Regressor is Endogenous

The DGP is given in Assumption 3 with et+1 = a12ut +mt+1; xt+1 = �xt + ut+1;

ut+1 = nt+1; (mt+1; nt+1)
0 iid� (0;�);�11 = �22 = 1;�12 = �21 = � = �0:7;

�01 = 0; �
a
1 = 0:1; � = 0:99; T = 100:

a12 k=1 k=5 k=10 k=15 k=20
Null � 0.036 0.165 0.301 0.412 0.502
Alternative -0.9 -0.010 0.242 0.397 0.406 0.295

-0.8 -0.005 0.228 0.364 0.357 0.233
-0.7 0.000 0.214 0.330 0.307 0.170
-0.5 0.010 0.186 0.262 0.208 0.045
-0.1 0.030 0.130 0.127 0.009 -0.206
0.0 0.036 0.116 0.093 -0.041 -0.269

To see the opposing directions of bias under the null and alternative in graphical
form, Figure 4 displays empirical distributions of �̂1 under the null and the alternative
hypotheses with T = 100: The empirical distribution of �̂1 under the null hypothesis is
seen to shift to right while that under the alternative shifts to the left.

To summarize, when the regressor is exogenous, the small sample bias at the �rst
horizon under the null hypothesis is the same as that under the alternative. For k > 1;
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Figure 4: Upward bias under the null and downward bias under the alternative in the
short-horizon predictive regression.
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however, bias under the null is more pronounced than it is under the alternative and
when the regressor is endogenous, the bias under the null hypothesis is di¤erent from
that under the alternative at all horizons. If the bias were the same under the null
and under the alternative, then the bias calculated under the null could be used as an
adjustment factor to obtain tests with the correct size. Since this is not the case, we
require a bias adjustment that applies both under the null and under the alternative
hypotheses.

5 Bias and size adjustment

The OLS bias naturally distorts the size of long-horizon tests. For xt � AR(1); the OLS
bias in the short-horizon regression is E(b�1 � �1) = ��

�
1+3�
T

�
+ O(1=T 2); [Stambaugh

(1999)] and the bias in the associated t-statistic is E
�
t�̂1

�
= ��

�
2�+1p
1��2

�
+ O(T�1)

where � = Cov(xtet+1)
V ar(xt)

:12 The OLS t�statistic is therefore biased upward for � < 0; which
distorts the size of the test. Moreover, because the bias is not the same under the null
and under the alternative, the (size adjusted under the null) power of the test will be
a¤ected.
In the long-horizon regression, bias, power loss, and size distortion can be magni�ed

through cumulation of intervening short-horizon bias terms. This can be a particularly
nettlesome problem when the regressor and regression error is only slightly correlated
in the direction to give long-horizon regression a moderate local asymptotic power ad-
vantage. Since the small sample bias in the t-statistics can lead to such small sample
power loss so as to lead one to erroneously conclude that long-horizon regressions are
not useful, even asymptotically.

12Suppose xt = a+ �xt�1 + ut and ut is iid. Tanaka (1984) shows that

P (tb� < z) = I(z) + i(z)p
T

 
2�+ 1p
1� �2

!
+O(T�1)

where I(z) is the standard normal cumulative distribution function and i(z) is the standard normal
density function. Obviously, the t�statistic is asymptotically standard normal. When xt follows AR(1)
with unknown mean like the above example, the OLS estimate of �1 is given by

p
T (�̂1 � �1) =

�
p
T (b� � �) + pT (�̂ � �) where �̂ = �Pxt�t+1

� �P
x2t
��1

: If we treat � as a known parameter as in
Cavanagh, Elliott and Stock (1995), then we have

P (t�̂1
< z) = �P (t�̂ < z) + P (t�̂ < z) = (� + 1) I(z) + �

i(z)p
T

 
2�+ 1p
1� �2

!
+O(T�1):

The last term is unbiased. It follows that the unconditional mean of t�statistic for �̂1 is as stated in
the text.
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5.1 A recursive moving block Jackknife procedure

Quenouille (1956) suggested the Jackknife as a method to attenuate small sample bias.
We draw on that idea and propose a recursive moving block Jackknife (henceforth RJK)
procedure to obtain bias reduction in the long-horizon slope coe¢ cient estimates as well
as in the t-tests of the null hypothesis of no predictability. We begin with a discussion
for obtaining bias reduction in the slope coe¢ cient. Subsection 5.1.2 discusses the bias-
reduction strategy for the test statistic.

5.1.1 OLS Bias Correction

The procedure is motivated as follows. Let Y be a random vector and � = E(Y ): Let
�T be an estimator of the true parameter value �0 = g(�) where g is a known contin-
uous function. Under regularity conditions assumed in Sargan (1976), the Edgeworth
asymptotic expansion of P (

p
T (�T � �o) < x) is

I
�x
!

�
+ i(

x

!
)

�
 0 +  2

�x
!

�2�
+O

�
T�2

�
(15)

where !2 is the asymptotic variance of
p
T (�T � �o); I(z) is the standard normal cu-

mulative distribution function (evaluated at z), i(z) is the standard normal density, and
 0;  2 are the Edgeworth expansion terms. The small sample bias of �T is

E(�T � �o) =
�

T
+O

�
T�2

�
(16)

where a1 = 1
2
( 0 +  2)!:

The bias formula (16) suggests the following procedure to correct for the bias in the
predictive regression slope. To reduce clutter, we suppress the notational dependence
on the horizon k: Let �s = (yt�1+s+k � yt�1+s; xt�1+s); s = 1; :::; T1; T1 = T � k + 1 be
the 2-dimensional vector comprising of the dependent and independent variables of the
long-horizon regression. Construct a moving block sample of size B from the original set
of observations, f�1; � � � ; �Bg ;

�
�2; � � � ; �B+1

	
; � � � ;

�
�T1�B+1; � � � ; �T1

	
:Using the data

from each block, construct an estimate of the k�horizon slope coe¢ cient �0: Call the
resulting estimate �Bj,where j = 1; :::; T1 � B + 1 indexes the block of B observations.
For each j; the analog to (16) is

�Bj = �0 +
�

B
+Op

�
B�2� : (17)

Multiply both sides of (17) by B and taking the sample average gives

BE�B (�) = �+B�0 +O
�
B�2� ; (18)

where E�B (�) =
1

T�B+1
PT�B+1

j=1 �Bj. Now repeat using block size B + 1; then block
size B + 2; and so on through block size B + (T1 � B) = T1: This gives the sequence
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�
BE�B (�) = �+B�0; (B + 1)E

�
B+1 (�) = �+ (B + 1) �0; :::; T1E

�
T (�) = �+ T1�0

	
.

Let t = B;B + 1; :::; T1; and de�ne zt = tE�t (�) : Write zt as a regression on a constant
and trend, zt = �+�0t: The coe¢ cient estimate on the trend �RJK is the RJK estimate
of �0:and it is is accurate in the following sense.

Proposition 5 (Moving block recursive Jackknife)

E(�RJK � �o) = O(T�2):

For the choice of B we draw on Hall, Horowitz and Jing (1995) who provide the
blocking rule on the bootstrap with dependent data. In the cases of bias estimation, the
optimal block size suggested is by T 1=3 while for one or two sided distribution functions,
the suggested size is T 1=4 and T 1=5; respectively.

5.1.2 Test statistic correction

Rothenberg (1984), Phillips and Park (1988) and Cribari-Neto and Ferrari (1995) provide
Edgeworth expansions of the Wald, likelihood ratio and Lagrange multiplier tests under
general conditions.13 Here, we follow Cribari-Neto and Ferrari who showed that the
Wald statistic has the asymptotic expansion,

W = WT �
�1
T
WT �

�2
T
W 2
T (19)

whereWT is theWald statistic computed from a sample of size T andW is its �true�value,
�1 and �2 are Bartlett coe¢ cients which are derived from the asymptotic expansion of
the Wald statistic. While the explicit formulae for �1 and �2 depend on the speci�c
DGP, our recursive moving-block Jackknife method does not require those formulae as
it is designed to estimate the Bartlett coe¢ cients.
The correction for the Wald statistic proceeds as follows. Construct a moving block

sample of size B from the original set of observations, f�1; � � � ; �Bg ;
�
�2; � � � ; �B+1

	
;

� � � ;
�
�T1�B+1; � � � ; �T1

	
: Using the data from each block, construct the Wald statistic

(the squared t-ratio) WB;j; j = 1; :::; T1 �B + 1: From each block, the analog to (19) is

BW = ��1WB;j � �2W
2
B;j +BWB;j:

Taking the average over j gives BW = ��1E�B (W ) � �2E
�
B (W

2) + BE�B (W ) ; where
E�B (W ) =

1
T1�B+1

PT1�k+1
j=1 WB;j; and E�B (W

2) = 1
T1�B+1

PT1�k+1
j=1 W 2

B;j: Repeat using
block size B+1; then block size B+2; and so on through block size B+(T1�B) = T1:
Then for t = B;B + 1; :::; T1 we have tW = ��1E�t (W ) � �2E

�
t (W

2) + tE�t (W ) : Let
zt = tE�t (W ) ; and qt = zt=t: Then the size corrected test statistic is given by the
estimated slope coe¢ cient in the regression zt = �1qt + �2q

2
t +Wt:

13Our strategy builds on Bartlett (1937) who suggested a correction technique to account for size
distortion in test statistics.
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6 Monte Carlo Experiments

We conduct a Monte Carlo experiment to assess the bias reduction achieved under the
null hypothesis using the RJK procedure for short-and long-horizon regression coe¢ -
cients and associated test statistics.14 The DGP used is

�yt+1 = �+ �1xt + et+1 (20)

xt+1 = �xt + ut+1 (21)

where (et+1; ut+1)
0 = (mt+1; nt+1)

0 iid� (0;�);� is as in example 1. We set � = �1 = 0
in constructing the pseudo data but estimate the regression (20) with a constant. The
regressor is speci�ed to be exogenous to focus directly on small sample bias induced by
estimating the constant. We set � = 0:9 and consider various values of the correlation
�mn between mt+1 and nt+1. The value of � is suggested by the empirical example
regarding stock return predictability. The results are shown in Table 5.
The OLS bias worsens as �mn becomes increasingly negative. The RJK procedure

eliminates nearly all of the bias in the short-horizon predictive regression. The percent-
age of bias reduction for �mn = �0:9 is 0:97; 0:62; 0:48; 0:43; 0:39 for k = 1; 5; 10; 15; and
20 respectively. The relative bias reduction is fairly stable for alternative values of �mn.
The second two panels of the table report the size of the OLS t-test and the RJK

Wald test of the hypothesis of no predictability. While the OLS t-test is oversized at
k = 1; the RJK Wald test remains reasonably sized up through horizon 10, and becomes
only moderately oversized for k = 15 and 20:

14The recursive jackknife test statistics are squared t-ratios. HAC covariance matrix estimation is
done using the method of Sul, Phillips and Choi (2003).
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Table 5: Bias and Size under the Null Hypothesis

�mn k = 1 k = 5 k = 10 k = 15 k = 20 k = 1 k =5 k = 10 k = 15 k = 20
OLS Bias �100 RJK Bias �100

-0.9 3.53 14.74 25.00 32.23 37.68 0.12 5.63 12.91 18.38 22.83
-0.7 2.75 11.44 19.35 25.03 29.33 0.09 4.34 9.96 14.26 17.72
-0.5 1.97 8.15 13.72 17.84 20.98 0.06 3.06 7.04 10.15 12.62
-0.3 1.19 4.86 8.12 10.66 12.62 0.03 1.79 4.13 6.05 7.53
-0.1 0.40 1.57 2.53 3.48 4.25 0.01 0.52 1.23 1.95 2.44

OLS t-test 10% Size RJK Wald test 10% Size
-0.9 0.17 0.18 0.28 0.33 0.37 0.14 0.11 0.14 0.18 0.20
-0.7 0.15 0.16 0.25 0.30 0.34 0.12 0.09 0.14 0.17 0.18
-0.5 0.14 0.14 0.23 0.29 0.32 0.11 0.08 0.13 0.16 0.17
-0.3 0.14 0.13 0.22 0.27 0.30 0.10 0.08 0.12 0.15 0.16
-0.1 0.13 0.13 0.21 0.26 0.29 0.10 0.08 0.12 0.14 0.15

OLS t-test 5% Size RJK Wald test 5% Size
-0.9 0.11 0.12 0.20 0.26 0.30 0.08 0.07 0.10 0.13 0.15
-0.7 0.09 0.10 0.18 0.23 0.27 0.06 0.06 0.10 0.12 0.14
-0.5 0.08 0.09 0.17 0.22 0.25 0.06 0.05 0.09 0.12 0.13
-0.3 0.08 0.08 0.15 0.20 0.23 0.05 0.05 0.08 0.11 0.11
-0.1 0.08 0.08 0.15 0.20 0.22 0.06 0.05 0.08 0.09 0.11

7 Equity return predictability revisited

In this section, we apply the RJK method to revisit the question of equity returns
predictability. We begin by estimating the predictive regressions at horizons 1 through
20 beginning with 1971 as the end of the sample then recursively updating the sample
through 2002. We begin by examining estimates of unadjusted (squared) robust OLS
t-ratios. Figure 5 summarizes the essential features of these regressions by presenting
the p-values of the test of no predictability at each horizon for each sample. A researcher
who was estimating these regressions in real time would �nd that the hypothesis of no
predictability could not be rejected at the 10 percent level at the one-period horizon.
Small marginal signi�cance levels for the test are consistently found at horizons 4 and
above up through 1997. As the sample is updated through 2002, p-values for the test
become large and exceed 0.1 at the shorter (less than 11) horizons. A change in the
relation between the dividend yield and future returns appears to have taken place in
1997.
Figure 6 presents analogous information for the RJK estimates of the Wald statistic

for the test of no predictability. As the sample is updated, the hypothesis of no pre-
dictability is consistently rejected at the 5-year horizon and at horizons of 10 and above.
The deterioration in the p-values for samples ending in 1997 through 2002 for the OLS
tests does not occur with the RJK test statistics.
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Figure 5: Signi�cance level for standard OLS test of hypothesis of no predictability in
the short-horizon regression.
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Figure 6: Signi�cance level of test of hypothesis of no predictability in the short-horizon
regression using the moving block recursive Jackknife method.
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Returning to the changing dynamic character of the recursive OLS tests, we examine
the recursive estimates for the short-horizon predictive regression. The RJK coe¢ cient
estimator provides an estimate of the true slope (�1) combined with any asymptotic cor-
relation due to endogeneity (c). It also removes small sample bias of the OLS estimator
at the �rst horizon. We thus have the decompositionsb�1;RJK = b�1 + bc; (22)b�1;OLS = b�1;RJK + Bias. (23)

A direct estimate of the asymptotic endogeneity factor is provided by ĉ = 
̂ue
̂xx where

̂ue is the sample long run covariance between ût and êt+1 and 
̂xx is the sample long
run variance of xt: Figure 7 displays recursive estimates of the various pieces of the
decompositions. Notice that the OLS estimates exhibit more instability than the RJK
estimates. OLS lies above the RJK estimates until 1991. Both estimates decline some-
what when the sample extends to 1999. but OLS estimates drop by substantially more.
The reason is that the endogeneity factor becomes much more negative during the bull
market of the 1990s. The solid black line, which is the estimate of the �true�slope �1
declines during the 90s as well, but by a lesser amount than the endogeneity factor. As
the OLS estimates decline towards zero, the power advantage tilts increasingly towards
the longer horizons.

8 Conclusion

This paper provides asymptotic justi�cation for long-horizon predictive regressions. Lo-
cal asymptotic power was evaluated with a persistent (local-to-unity) regressor and for
a covariance stationary regressor. Power advantages generally accrue to long-horizon
regression when there is endogeneity between the regressor that is used to predict fu-
ture values of the dependent variable and the regression error. The endogeneity is not
necessarily the result of misspeci�cation of a structural model since the predictive re-
gressions are linear least squares projections used to evaluate the predictive content of
a variable. Use of these regressions can be justi�ed in the same way that a researcher
chooses to employ HAC estimators instead of specifying a complete parametric model
of autocorrelation and conditional heteroskedasticity.
The local asymptotic power advantages of long-horizon regression are not so obvious

in small samples. The problem is that estimation of the constant term in the predictive
regression causes the OLS estimator to be biased in small samples. A further com-
plication is that the bias is not the same under the null hypothesis as it is under the
alternative. Thus in small samples, the OLS t-test not only tends to be over sized, but
the long-horizon t-test also su¤ers from power loss. A bias correction done under the
null hypothesis will not result in tests of the proper size.
To address these small sample problems, we suggest a moving block recursive Jack-

knife method to estimate the coe¢ cients in the asymptotic expansion of the OLS es-
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Figure 7: Recovering bias decompositions in the short-horizon predictive regression co-
e¢ cient �1:
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timator and for the Wald statistic. The recursive Jackknife successfully provides bias
correction in the short-horizon predictive regression. At long horizons, it is able to
remove about half of the small sample bias and the Jackknifed Wald statistic is not
unreasonably sized at either short or long horizons.
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Appendix

Proof of Proposition 1

Proof. The OLS estimator of the slope coe¢ cient for the kth horizon regression,

�̂k � �k =

PT�k
t=1 xt�t+k;kPT�k

t=1 x
2
t

:

By Assumption 1, we have

T
�
�̂k � �k

�
= kb1 +

T�1
PT�k

t=1 xt�t+k;k

T�2
PT�k

t=1 x
2
t

:

By Lemmas 3.1 and Theorem 4.1 of Phillips (1988) and Cavanagh, Elliot and Stock
(1995), it follows that

T
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q
V (�̂k); and V (�̂k) = 
̂��(k) [

P
x2t ]

�1
: Since 
��(1) = 
ee; t� (k)

can be rewritten as

t�(k) =
�̂k

k
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ee
 
T�kX
t=1

x2t

!1=2
:

From Phillips (1987) and Cavanagh, Elliot and Stock (1995), it is straightforward to
show that

t�(k) =) �� 1c +
�
1� �2

�1=2
N(0; 1) +

�
�xe � �xe;k�1 + b1p


xx
ee

�
�c;

where �xe;k�1 = limT!1
1
T

PT
t=k+1

Pk�1
l=1 E(�xt�lut); � 1c =

�R
J2c
��1=2 R

JcdB1; and �c =�R
J2c
��1=2

:

Proof of Proposition 2

Let � (k) = (�1;k; :::; �T;k) and x = (x1; :::; xT ) : The proof of Proposition 2 is aided by the
following lemmas.
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Lemma 1 Under Assumption 2, the regression error is asymptotically orthogonal to the
regressor,

plim
T!1

T�1x0�̂ (k) = 0:

Proof. x0� (k) = Op
�
T 1=2

�
; which gives T�1x0� (k) = op (1) : Since �k � �̂k !p 0, it

follows that plim
T!1

T�1x0�̂ (k) = plim
T!1

T�1x0
�
� (k) + x

�
�k � �̂k

��
= 0.

Lemma 2 Under Assumption 2, the long run variance of �̂t;k is
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�
:

Proof. First note that �k� �̂k !p 0 and T�1x0x is Op (1) : Then from Lemma 1, we
have
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Lemma 3 Under Assumption 2, the ratio of the long run variance of the kth and 1st
horizon regression coe¢ cients is
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Proof. From Lemma 1 and 2, we have
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It holds because by Assumption 2 we get �k� �̂k !p 0 and T�1x0e = T�1x0� (k) = op (1).

Proof. (of Proposition 2) Proposition 2 follows directly from Lemmas 1,2 and 3.
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Derivation of Example 1 formulae

Let a11(L) � (1� a11L)�1 =
P1

j=0 a
j
11L

j and �(L) � (1� �L)�1 =
P1

j=0 �
jLj , where L

is the lag operator. Then rewrite the innovations process as,

et+1 = a12(T )a11(L)ut + a11(L)mt+1;

xt = �(L)ut:

It follows that
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Now, for k = 2,
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�t;2 = et+2 + et+1 + �1(T )ut+1:
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Continuing on in this way, it can be seen that for any k, bk(T ) = b1(T )
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Finally, divide by E (x2t ) = (1� �2)
�1 to get
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Proof of Proposition 3

For an exogenous regressor under the null hypothesis, we have at the �rst horizon
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Note that in general,
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The correlation between ~et+1 and ~et+2 arises because both are deviations from the same
sample mean. To see this,
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This relation holds similarly between eut+1 and eut+k: Hence (A:1) can be rewritten as
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Under the alternative hypothesis,
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Proof of Proposition 4

Under Assumption 4, we have
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It follows that

E

�P
t ~xt~et+1P
t ~x

2
t

�
= �'0 � ��

pP
i=1

�i'i�1 + ��

241� pP
j=1

�j

!235
| {z }

c

+O(T�2);

where c =
�
1�

�Pp
j=1 �j

�2�
is the asymptotic bias term due to the endogenous regres-

sor. The small sample bias of �̂
a

1 is

E
�
�̂
a

1 � �a1 � c
�
= �'0 � ��

pP
i=1

�i'i�1 +O(T�2);

where c is the asymptotic bias term.
For the kth horizon, the asymptotic bias term does not change since et+1 is not

serially correlated. Hence the small sample bias of �̂
a

k is given by

E
�
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a

k � �ak � c
�
= �

kX
i=1

'i +
k�1X
i=1

�ai'i � ��
pP
i=1

�i'i�1 +O(T�2)

�

Proof. (of Proposition 5) The regression is set up as tE�t (�) = �+ �t+ vt. Let a �e�
denote the deviation from the sample mean and note that 1

T

P
t
etevt = Op(1): Then

E (�RJK � �0) = E

 P
t
etevtP
t
et2
!
=
E
�P

t
etevt�

O (T 3)
=

O(T )

O (T 3)
= O

�
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�
:

:
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