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1.  Introduction 

Standard treatments of instrumental variables (IV) regression stress that for 

instruments to be valid they must be exogenous.  It is also important, however, that the 

second condition for a valid instrument, instrument relevance, holds, for if the 

instruments are only marginally relevant, or “weak,” then first-order asymptotics can be a 

poor guide to the actual sampling distributions of conventional IV regression statistics. 

At a formal level, the strength of the instruments matters because the natural 

measure of this strength – the so-called concentration parameter – plays a role formally 

akin to the sample size in IV regression statistics. Rothenberg (1984) makes this point in 

his survey of approximations to the distributions of estimators and test statistics.  He 

considered the single equation IV regression model, 

 

y = Yβ + u,       (1.1) 

 

where y and Y are T�1 vectors of observations on the dependent variable and endogenous 

regressor, respectively, and u is a T�1 vector of i.i.d. N(0,σuu) errors.  The reduced form 

equation for Y is 

 

Y = ZΠ + V,       (1.2) 

 

where Z is a T�K2 matrix of fixed, exogenous instrumental variables, Π is a K2�1 

coefficient vector, and V is a T�1 vector of i.i.d. N(0,σVV) errors, where corr(ut,Vt) = ρ. 
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The two stage least squares (TSLS) estimator of � is ˆTSLS�  = (Y�PZy)/ (Y�PZY), 

where PZ = Z(Z�Z)-1Z�.  Rothenberg (1984) expresses ˆTSLS�  as 

 

µ( ˆTSLS�  – �) = 
1/ 2

2

( / )

1 (2 / ) ( / )
uu u Vu

VV V VV

S

S

� � �

� � � �

  +
  + + 

,    (1.3) 

 

where ζu = Π 
�Z�u/(σuuΠ 

�Z�ZΠ)1/2, ζV = Π 
�Z�V/(σVVΠ 

�Z�ZΠ)1/2, SVu = V 
�PZu/(σuuσVV)1/2, 

SVV = V 
�PZV/σVV, and µ is the square root of the concentration parameter, µ2 =  

Π 
�Z�ZΠ/σVV. 

Under the assumptions of fixed instruments and normal errors, ζu and ζV are 

standard normal variables with correlation ρ, and SVu and SVV are elements of a matrix 

with a central Wishart distribution.  Because the distributions of ζu, ζV, SVu, and SVV do 

not depend on the sample size, the sample size enters the distribution of the TSLS 

estimator only through the concentration parameter.  In fact, the form of (1.3) makes it 

clear that µ2 can be thought of as an effective sample size, in the sense that µ formally 

plays the role usually associated with T .  Rothenberg (1984) proceeds to discuss 

expansions of the distribution of the TSLS estimator in orders of µ, and he emphasizes 

that the quality of these approximations can be poor when µ2 is small.  This has been 

underscored by the dramatic numerical results of Nelson and Startz (1990a, 1990b) and 

Bound, Jaeger and Baker (1995). 

If µ2 is so small that inference based on some IV estimators and their 

conventional standard errors are potentially unreliable, then the instruments are said to be 
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weak.  But this raises two practical questions.  First, precisely how small must µ2 be for 

instruments to be weak?  Second, because Π, and thus µ2, is unknown, how is an applied 

researcher to know whether µ2 is in fact sufficiently small that his or her instruments are 

weak? 

This paper provides answers to these two questions.  First, we develop 

quantitative definitions of what constitutes weak instruments.  In our view, the matter of 

whether a group of instrumental variables is weak cannot be resolved in the abstract;  

rather, it depends on the inferential task to which the instruments are applied and how 

that inference is conducted.  We therefore offer two alternative definitions of weak 

instruments.  The first definition is that a group of instruments is weak if the bias of the 

IV estimator, relative to the bias of ordinary least squares (OLS), could exceed a certain 

threshold b, for example 10%.  The second is that the instruments are weak if the 

conventional α-level Wald test based on IV statistics has an actual size that could exceed 

a certain threshold r, for example r = 10% when α = 5%.  Each of these definitions yields 

a set of population parameters that defines weak instruments, that is, a “weak instrument 

set.”  Because different estimators (e.g., TSLS or LIML) have different properties when 

instruments are weak, the resulting weak instrument set depends on the estimator being 

used.  For TSLS and other k-class estimators, we argue that these weak instrument sets 

can be characterized in terms of the minimum eigenvalue of the matrix version of µ2/K2. 

Given this quantitative definition of weak instrument sets, we then show how to 

test the null hypothesis that a given group of instruments is weak against the alternative 

that it is strong.  Our test is based on the Cragg-Donald (1993) statistic; when there is a 

single endogenous regressor, this statistic is simply the “first-stage F-statistic”, the F-
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statistic for testing the hypothesis that the instruments do not enter the first stage 

regression of TSLS.  The critical values for the test statistic, however, are not Cragg and 

Donald’s (1993):  our null hypothesis is that the instruments are weak, even though the 

parameters might be identified, whereas Cragg and Donald (1993) test the null hypothesis 

of underidentification.  We therefore provide tables of critical values that depend on the 

estimator being used, whether the researcher is concerned about bias or size distortion, 

and the numbers of instruments and endogenous regressors.  These critical values are 

obtained using weak instrument asymptotic distributions (Staiger and Stock (1997)), 

which are more accurate than Edgeworth approximations when the concentration 

parameter is small.1 

Additionally, this paper makes a separate contribution to the literature on 

distributions of IV estimators with weak instruments.  Bekker (1994) obtained first-order 

distributions of various IV estimators under the assumptions that K2 → ∞, T → ∞, and 

K2/T → c, 0 ≤ c < 1, when µ2/T is fixed and the errors are Gaussian.  Chao and Swanson 

(2002) have explored the consistency of IV estimators with weak instruments when the 

number of instruments is large in the sense that K2 is also modeled as increasing to 

infinity, but more slowly than T.  Sargan (1975), Kunitomo (1980) and Morimune (1983) 

provided earlier treatments of large-K2 asymptotics.  We continue this line of work and 

provide conditions under which the Staiger-Stock (1997) weak instrument asymptotics 

hold, even if the number of instruments is increasing, as long as 2
2K /T � 0.  We refer to 

asymptotic limits taken under the sequence K2 → ∞, T → ∞, such that 2
2K  /T � 0 and 

µ2/K2 is O(1),  as many weak instrument limits.  It is shown in the appendix that these 

conditions justify using relatively straightforward sequential asymptotic calculations to 
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compute limiting distributions under such sequences.  Here, these many weak instrument 

limits are used to characterize the weak instrument sets when the number of instruments 

is moderate.  Some of these results might be of more general interest, however;  for 

example, Chao and Swanson (2002) show that LIML is consistent under these conditions, 

and we provide its 2K -limiting distribution. 

This paper is part of a growing literature on detecting weak instruments, surveyed 

in Stock, Wright, and Yogo (2002).  Cragg and Donald (1993) proposed a test of 

underidentification, which (as discussed above) is different than a test for weak 

instruments.  Hall, Rudebusch, and Wilcox (1996), following on work by Bowden and 

Turkington (1984), suggested testing for underidentification using the minimum 

canonical correlation between the endogenous regressors and the instruments.  Shea 

(1997) considered multiple included regressors and suggested looking at a partial R2.  

Neither Hall, Rudebusch, and Wilcox (1996) nor Shea (1997) provide a formal 

characterization of weak instrument sets or a formal test for weak instruments, with 

controlled type I error, based on their respective statistics.  For the case of a single 

endogenous regressor, Staiger and Stock (1997) suggested declaring instruments to be 

weak if the first-stage F-statistic is less than ten.  Recently Hahn and Hausman (2002) 

suggested comparing the forward and reverse TSLS estimators and concluding that 

instruments are strong if the null hypothesis that these are the same cannot be rejected.  

Relative to this literature, the contribution of this paper is twofold.  First, we provide a 

formal characterization of the weak instrument set for a general number of endogenous 

regressors.  Second, we provide a test of whether given instruments fall in this set, that is, 
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whether they are weak, where the size of the test is controlled asymptotically under the 

null of weak instruments. 

The rest of the paper is organized as follows.  The IV regression model and the 

proposed test statistic are presented in Section 2.  The weak instrument sets are developed 

in Section 3.  Section 4 presents the test for weak instruments and provides critical values 

for tests based on TSLS bias and size, Fuller-k bias, and LIML size.  Section 5 examines 

the power of the test, and conclusions are presented in Section 6.  Results on many weak 

instrument asymptotics are collected and proven in the appendix. 

 

2.  The IV Regression Model, the Proposed Test Statistic, and 

Initial Asymptotic Results 

2.1.  The IV Regression Model 

We consider the linear IV regression model (1.1) and (1.2), generalized to have n 

included endogenous regressors Y and K1 included exogenous regressors X: 

 

y = Yβ + Xγ + u,       (2.1) 

Y = ZΠ + XΦ + V,       (2.2) 

 

where Y is now a T�n matrix of included endogenous variables, X is a T�K1 matrix of 

included exogenous variables (one column of which is 1’s if (2.1) includes an intercept), 

and Z is a T�K2 matrix of excluded exogenous variables to be used as instruments.  It is 

assumed throughout that K2 � n.  Let Z = [X Z] denote the matrix of all the exogenous 
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variables.  The conformable vectors β and γ and the Π and Φ are unknown parameters. 

Throughout this paper we exclusively consider inference about β. 

Let Xt = ( )
11t K tX X� �, Zt = ( )

21t K tZ Z� �, and Zt = (Xt� Zt�)� denote the 

vectors of the tth observations on these variables.  Also let Q and Σ denote the population 

second moment matrices, 

 

( )
t

't uu u
t t

u

u
E u

�    
= =    

    
V

V VV

V
V

�
�

� �
 and E(Zt Zt�) = Z

X

 
= 

 
XX X

Z ZZ

Q Q
Q

Q Q
. (2.3) 

 

2.2.  k-Class Estimators and Wald Statistics 

Let the superscript “�” denote the residuals from the projection on X, so for 

example Y� = MXY, where MX = I – X(X�X)-1X�.  In this notation, the OLS estimator of β 

is �̂  = (Y�
�Y�)-1(Y�

�y).  The k-class estimator of β is, 

 

ˆ ( )k�  = [Y�
�(I - k �Z

M )Y�]-1[Y�
�(I - k �Z

M )y�].   (2.4) 

 

The Wald statistic testing the null hypothesis that β = β0, based on the k-class 

estimator, is 

 

W(k) = 0 0
ˆ ˆ[ ( ) ]'[ '( ) ][ ( ) ]

ˆ ( )uu

k I k k

n k�

�

� �− − −
Z

Y M Y� � � �
 ,  (2.5) 

 



8 

where ˆ ( )uu kσ  = ˆ ( )k⊥u � ˆ ( )k⊥u /(T – K1 – n), where ˆ ( )k⊥u = y� – Y�
ˆ ( )k� . 

This paper considers four specific k-class estimators:  TSLS, the limited 

information maximum likelihood estimator (LIML), the family of modified LIML 

estimators proposed by Fuller (1977) (“Fuller-k estimators”), and bias-adjusted TSLS 

(BTSLS;  Nagar (1959), Rothenberg (1984)).  The values of k for these estimators are (cf. 

Donald and Newey (2001)): 

 

TSLS:  k = 1,           (2.6) 

LIML:  k = ˆ
LIMLk  is the smallest root of det(Y�MXY - k Y�MZY) = 0,    (2.7) 

Fuller-k: k = ˆ
LIMLk  – c/(T – K1 – K2), where c is a positive constant,    (2.8) 

BTSLS: k = T/(T – K2 + 2),         (2.9) 

 

where det(A) is the determinant of the matrix A.  If the errors are symmetrically 

distributed and the exogenous variables are fixed, LIML is median unbiased to second 

order (Rothenberg (1983)).  In our numerical work, we examine the Fuller-k estimator 

with c = 1, which is the best unbiased estimator to second order among estimators with k 

= 1 + a( ˆ
LIMLk  – 1) – c/(T – K1 – K2) for some constants a and c (Rothenberg (1984)).  For 

further discussion, see Donald and Newey (2001) and Stock, Wright, and Yogo (2002, 

Section 6.1). 

2.3.  The Cragg-Donald Statistic 

The proposed test for weak instruments is based on the eigenvalue of the matrix 

analog of the F-statistic from the first stage regression of TSLS, 
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GT = 1/ 2ˆ −
VV� �Y�

� �Z
P Y� 1/ 2ˆ −

VV� /K2,     (2.10) 

 

where ˆ
VV�  = (Y�MZY)/(T–K1–K2).

2 

The test statistic is the minimum eigenvalue of GT: 

 

gmin = mineval(GT).       (2.11) 

 

This statistic was proposed by Cragg and Donald (1993) to test the null 

hypothesis of underidentification, which occurs when the concentration matrix is 

singular.  Instead, we are interested in the case that the concentration matrix is 

nonsingular but still is sufficiently small that the instruments are weak.  To obtain the 

limiting null distribution of the Cragg-Donald statistic (2.11) under weak instruments, we 

rely on weak instrument asymptotics. 

2.4.  Weak Instrument Asymptotics:  Assumptions and Notation 

We start by summarizing the elements of weak instrument asymptotics from 

Staiger and Stock (1997).  The essential idea of weak instruments is that Z is only weakly 

related to Y, given X.  Specifically, weak instrument asymptotics are developed by 

modeling Π as local to zero: 

 

Assumption LΠ:  Π = ΠT = C/ T , where C is a fixed K2�n matrix with bounded 

elements Cij ≤ c . 
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Following Staiger and Stock (1997), we make the following assumption on the 

moments: 

 

Assumption M.  The following limits hold jointly for fixed K2: 

(a) (T–1u�u, T–1V�u, T–1V�V) 
p

→  (σuu, ΣVu, ΣVV);  

(b) T–1Z�Z 
p

→ Q; 

(c)  (T–1/2X�u, T–1/2Z�u, T–1/2X�V, T–1/2Z�V) 
d

→  (�Xu, �Zu, �XV, �ZV), where � � 

[�Xu�, �Zu�, vec(�XV)�, vec(�ZV)�]� is distributed N(0, Σ � Q). 

 

Assumption M can hold for time series or cross-sectional data.  Part (c) assumes 

that the errors are homoskedastic. 

Notation and definitions.  The following notation in effect transforms the 

variables and parameters and simplifies the asymptotic expressions.  Let ρ = 

1/ 2 1/ 2' u uu�− −
VV V� � , θ  = 1

u
−

VV V� �  = 1/ 2
uu� 1/ 2−

VV� ρ, λ = Ω1/2C 1/ 2−
VV� , Λ = λ�λ/K2, and Ω = QZZ – 

QZX
1−

XXQ QXZ.  Note that ρ�ρ � 1.  Define the K2 � 1 and K2 � n random variables, zu =  

Ω–1/2
�(�Zu – QZX

1−
XXQ �Xu)

1/ 2
uu� −  and zV = Ω–1/2

�(�ZV – QZX
1−

XXQ �XV) 1/ 2−
VV� , so 

 

vec( )

 
 
 

u

V

z

z
 � N(0, 

2K⊗� � ), where 
1 '

 
n

 
=  
 I

�
�

�
.   (2.12) 

 

Also let 
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ν1 = (λ + zV)� (λ + zV)   and      (2.13) 

ν2 = (λ + zV)� zu.       (2.14) 

 

2.5.  Selected Weak Instrument Asymptotic Representations 

For convenience, we summarize the following results from Staiger and Stock 

(1997), using simpler notation. 

OLS estimator.  Under Assumptions LΠ and M, the probability limit of the OLS 

estimator is �̂  
p

→  β + θ. 

k-class estimators.  Suppose that T(k – 1) 
d

→  κ.  Then under Assumptions LΠ and 

M, 

 

ˆ ( )k�  – β 
d

→  1/ 2
uu� 1/ 2−

VV� (ν1 – κIn)
–1(ν2 – κρρ)    and   (2.15) 

 

W(k) 
d

→  
1

2 1 2
1 2

1 2 2 1 2

( ) '( ) ( )

[1 2 '( ) ( ) ( ) '( ) ( )]
n

n nn

� � �

� � � � �

−

− −

− − −
− − − + − − −

I
I I
� � � � �

� � � � � � � � �
,  (2.16) 

 

where (2.16) holds under the null hypothesis β = β0. 

For LIML and the Fuller-k estimators, κ is a random variable, while for TSLS and 

BTSLS κ is nonrandom.  Let �  be the (n + 1) � (n + 1) matrix, � =  

[zu  (λ + zV)]� [zu  (λ + zV)].  Then the limits in (2.15) and (2.16) hold with: 
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TSLS:  κ = 0,        (2.17) 

LIML:  κ = κ*, where κ* is the smallest root of det(� – κ � ) = 0, (2.18) 

Fuller-k: κ = κ* – c, where c is the constant in (2.8), and  (2.19) 

BTSLS: κ = K2 – 2.       (2.20) 

 

Note that the convergence in distribution of T( ˆ
LIMLk  – 1) 

d

→  κ* is joint with the 

convergence in (2.15) and (2.16).  For TSLS, the expressions in (2.15) and (2.16) 

simplify to 

  

ˆ TSLS�  – β 
d

→  1/ 2
uu� 1/ 2−

VV� 1
1 2
−� �   and     (2.21) 

WTSLS 
d

→  
1

2 1 2
1 2

1 2 2 1 2

'

(1 2 ' ' )n

−

− −− +
� � �

� � � � � �
.    (2.22) 

 

Weak instrument asymptotic representations: the Cragg-Donald statistic.   

Under the weak instrument asymptotic assumptions, the matrix GT in (2.10) and the 

Cragg-Donald statistic (2.11) have the limiting distributions, 

 

GT 
d

→  ν1/K2 and      (2.23) 

gmin 
d

→  mineval(ν1/K2).     (2.24) 
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Inspection of (2.13) reveals that ν1 has a noncentral Wishart distribution with 

noncentrality matrix λ�λ = K2Λ.  This noncentrality matrix is the weak instrument limit of 

the concentration matrix: 

1/ 2−
VV� Π 

�Z�ZΠ 1/ 2−
VV� � 

p

→  K2Λ.    (2.25) 

 

Thus the weak instrument asymptotic distribution of the Cragg-Donald statistic 

gmin is that of the minimum eigenvalue of a noncentral Wishart, divided by Κ2, where the 

noncentrality parameter is K2Λ.  To obtain critical values for the weak instrument test 

based on gmin, we characterize the weak instrument set in terms of the eigenvalues of Λ, 

the task taken up in the next section. 

 

3. Weak Instrument Sets 

This section provides two general definitions of a weak instrument set, the first 

based on the bias of the estimator and the second based on size distortions of the 

associated Wald statistic.  These two definitions are then specialized to TSLS, LIML, the 

Fuller-k estimator, and BTSLS, and the resulting weak instrument sets are characterized 

in terms of the minimum eigenvalues of the concentration matrix. 

3.1. First Characterization of a Weak Instrument Set: Bias 

One consequence of weak instruments is that IV estimators are in general biased, 

so our first definition of a weak instrument set is in terms of its maximum bias. 

When there is a single endogenous regressor, it is natural to discuss bias in the 

units of β, but for n > 1, a bias measure must scale β so that the bias is comparable across 
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elements of β.  A natural way to do this is to standardize the regressors Y� so that they 

have unit standard deviation and are orthogonal or, equivalently, to rotate β by 1/ 2
� �Y Y

� , 

where � �Y Y
�  = E(Y�

�Y�/T).  In these standardized units, the squared bias of an IV 

estimator, which we generically denote ˆ IV� , is (E ˆ IV�  – β)� � �Y Y
� (E ˆ IV�  – β).  As our 

measure of bias, we therefore consider the relative squared bias of the candidate IV 

estimator ˆ IV� , relative to the bias of the OLS estimator, 

 

2
TB  = 

IV IVˆ ˆ( ) ' ( )
ˆ ˆ( ) ' ( )

Y Y

Y Y

E E

E E

� �

� �

− −

− −

� � � � �

� � � � �
.    (3.1) 

 

If n = 1, then the scaling matrix in (3.1) drops out and the expression simplifies to BT = 

|E ˆ IV�  – β|/|E �̂  – β|.  The measure (3.1) was proposed, but not pursued, in Staiger and 

Stock (1997). 

The asymptotic relative bias, computed under weak instrument asymptotics, is 

denoted by B = limT�∞BT . Under weak instrument asymptotics, E( �̂ – β) → θ  = 

1/ 2
uu� 1/ 2−

VV� ρ  and � �Y Y
�  → ΣVV, so the denominator in (3.1) has the limit 

ˆ ˆ( ) ' ( )
Y Y

E E� �− −� � � � �  → σuuρ�ρ.  Thus the square of the asymptotic relative bias is 

 

B2 =  1
uu
−σ  limT�∞ 

ˆ ˆ( ) ' ( )

'

IV IV

Y Y
E E� �− −� � � � �

� �
.   (3.2) 

 



15 

We deem instruments to be strong if they lead to reliable inferences for all 

possible degrees of simultaneity ρ; otherwise they are weak.  Applied to the relative bias 

measure and assuming ρ�ρ > 0, this leads us to consider the worst-case asymptotic bias, 

 

Bmax =  maxρ: 0 < ρ�ρ ≤ 1|B|.     (3.3) 

 

The first definition of a weak instrument set is based on this worst-case bias.  We 

define the weak instrument set, based on relative bias, to consist of those instruments that 

have the potential of leading to asymptotic relative bias greater than some value b.  In 

population, the strength of an instrument is determined by the parameters of the reduced 

form equation (2.2).  Accordingly, let � = {Π, ΣVV, Ω}.  The relative bias definition of 

weak instruments is 

 

�bias = {�: Bmax � b}.      (3.4) 

 

Relative bias vs. absolute bias. Our motivation for normalizing the squared bias 

measure by the bias of the OLS estimator is that it helps to separate the two problems of 

endogeneity (OLS bias) and weak instrument (IV bias).  For example, in an application to 

estimating the returns to education, based on a reading of the literature the researcher 

might believe that the maximum OLS bias is ten percentage points;  if the relative bias 

measure in (3.1) is 0.1, then the maximum bias of the IV estimator is one percentage 

point.  Thus formulating the bias measure in (3.1) as a relative bias measure allows the 
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researcher to return to the natural units of the application using expert judgment about the 

possible magnitude of the OLS bias.   This said, for TSLS it is possible to reinterpret the 

maximal relative bias measure in terms of maximal absolute bias, a point to which we 

return in Section 3.3. 

3.2. Second Characterization of a Weak Instrument Set: Size 

Our second definition of a weak instrument set is based on the maximal size of 

the Wald test of all the elements of β.  In parallel to the approach for the bias measure, 

we consider an instrument strong from the perspective of the Wald test if the size of the 

test is close to its level for all possible configurations of the IV regression model.  Let 

WIV denote the Wald test statistic based on the candidate IV estimator ˆ IV� .  For the 

estimators considered here, under conventional first-order asymptotics WIV has a chi-

squared null distribution with n degrees of freedom, divided by n.  The actual rejection 

rate RT under the null hypothesis is 

 

RT = 
0

Pr�� [WIV > 2
;n �� /n],     (3.5) 

 

where 2
;n ��  is the α-level critical value of the chi-squared distribution with n degrees of 

freedom and α is the nominal level of the test.   

In general, the rejection rate in (3.5) depends on ρ.  As in the definitions of the 

bias-based weak instrument set, we consider the worst-case limiting rejection rate, 

 

Rmax = maxρ: ρ�ρ ≤ 1 R, where R = limT�∞ RT.   (3.6) 
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The size-based weak instrument set �size consists of instruments that can lead to a 

size of at least r > α: 

 

�size = {�: Rmax ≥ r}.     (3.7) 

 

For example, if α = .05 then a researcher might consider it acceptable if the worst case 

size is r = .10. 

3.3  Weak Instrument Sets for TSLS 

We now apply these general definitions of weak instrument sets to TSLS and 

argue that the sets can be characterized in terms of the minimum eigenvalue of Λ. 

Weak instrument set based on TSLS bias.  Under weak instrument asymptotics, 

 

( TSLS
TB )2 � 

' '

'

h h� �

� �
 � (BTSLS)2    and    (3.8) 

(Bmax, TSLS)2 =  maxρ: 0 < ρ�ρ ≤ 1 
' '

'

h h� �

� �
,    (3.9) 

 

where h = E[ 1
1
−� (λ + zV)�zV].  The asymptotic relative bias BTSLS depends on ρ and λ, 

which are unknown, as well as K2 and n. 

Because h depends on λ but not ρ, by (3.8) we have that Bmax, TSLS =  

[maxeval(h�h)]1/2, where maxeval(A) denotes the maximum eigenvalue of the matrix A.  
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By applying the singular value decomposition to λ it is further possible to show that the 

maximum eigenvalue of h�h depends only on K2, n, and the eigenvalues of λ�λ/K2 = Λ.  It 

follows that, for a given K2 and n, the boundary b of the TSLS bias weak instrument set is 

a function only of the eigenvalues of Λ. 

When the number of instruments is treated as a slowly growing function of the 

sample size, it is further possible to show that the boundary of the weak instrument set is 

a decreasing function of the minimum eigenvalue of Λ.  Specifically, consider sequences 

of K2 and T such that K2 → ∞ and T → ∞ jointly, subject to 2
2K  /T � 0, where Λ (which 

in general depends on K2) is held constant as K2 → ∞;  we write this joint limit as (K2, T 

→ ∞) and, as in the introduction, refer to it as representing “many weak instruments.” It 

follows from (3.9) and appendix Equation (A.14) that the many weak instrument limit of 

TSLS
TB  is3, 

 

2( , )lim K T→∞ ( TSLS
TB )2 = 

2'( )

'

−+ I� � �

� �
.    (3.10) 

 

By solving the maximization problem (3.9), we obtain the many weak instrument limit, 

Bmax, TSLS = (1 + mineval(Λ))–1.  It follows that, for many instruments, the set �bias, TSLS 

can be characterized by the minimum eigenvalue of Λ, and the TSLS weak instrument set 

�bias, TSLS can be written as 

 

�bias, TSLS = {�: mineval(Λ) � � bias, TSLS(b;K2,n)},   (3.11) 
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where � bias, TSLS(b;K2,n) is a decreasing function of the maximum allowable bias b. 

Our formal justification for the simplification that �bias, TSLS depends only on the 

smallest eigenvalue of Λ, rather than on all its eigenvalues, rests on the many weak 

instrument asymptotic result (3.10).  Numerical analysis for n = 2 suggests, however, that 

Bmax, TSLS is decreasing in each eigenvalue of Λ for all values of K2.  These numerical 

results suggest that the simplification in (3.11), relying only on the minimum eigenvalue, 

is valid for all K2 under weak instrument asymptotics, even though we currently cannot 

provide a formal proof.4 

We note that although Bmax was defined as maximal bias relative to OLS, for 

TSLS this is also the maximal absolute bias in standardized units.   The numerator of 

(3.8) is evidently maximized when ρ�ρ = 1. Thus, for TSLS, (3.2) can be restated as 

(Bmax)2 = 1
uu
−σ maxρ: ρ�ρ = 1 limT�∞ ˆ ˆ( ) ' ( )TSLS TSLS

Y Y
E E� �− −� � � � � .  But 

ˆ ˆ( ) ' ( )TSLS TSLS

Y Y
E E� �− −� � � � �  is the squared bias of ˆ TSLS� , not relative to the bias of 

the OLS estimator.  For TSLS, then, the relative bias measure can alternatively be 

reinterpreted as the maximal bias of the candidate IV estimator, in the standardized units 

of 1/ 2 1/ 2
uu� � �

−
Y Y

� . 

Weak instrument set based on TSLS size.  For TSLS, it follows from (2.22) that 

the worst-case asymptotic size is 

 

Rmax, TSLS = maxρ: ρ�ρ ≤ 1 
1

22 1 2
;1 2

1 2 2 1 2

'
Pr

1 2 ' ' n ��
−

− −

 
> − + 

� � �

� � � � � �
.  (3.12) 
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Rmax, TSLS, and consequently �size, TSLS, depends only on the eigenvalues of Λ as well as n 

and K2 (the reason is the same as for the similar assertion for Bmax, TSLS). 

When the number of instruments is large, the Wald statistic is maximized when 

ρ�ρ = 1 and is an increasing function of the eigenvalues of Λ.  Specifically, it is shown in 

the appendix (Equation (A.15)) that the many weak instrument limit of the TSLS Wald 

statistic, divided by K2, is 

 

WTSLS/K2 
p

→  
1

1 2

'( )

[1 2 '( ) '( ) ]
n

n nn

−

− −

+
− + + +

I
I I

� � �

� � � � � �
.  (3.13) 

 

The right hand side of (3.13) is maximized when ρ�ρ = 1, in which case this expression 

can be written, ρ�(Λ + In)
–1ρ/ρ�[In – (Λ + In)

–1]2ρ.  In turn, the maximum of this ratio over 

ρ depends only on the eigenvalues of Λ and is decreasing in those eigenvalues. 

The many weak instrument limit of Rmax, TSLS is 

 

Rmax, TSLS = maxρ: ρ�ρ ≤ 1 
2( , )lim K T→∞ Pr[WTSLS

 /K2 > 2
;n �� /(nK2)] = 1,    (3.14) 

 

where the limit follows from (3.13) and from 2
;n �� /(nK2) → 0.  With many weak 

instruments the TSLS Wald statistic WTSLS increases linearly in K2, so the boundary of the 

weak instrument set, in terms of the eigenvalues of Λ, increases as a function of K2 

without bound. 
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For small values of K2, numerical analysis suggests that Rmax, TSLS is a 

nonincreasing function of all the eigenvalues of Λ, which (if so) implies that the 

boundary of the weak instrument set can, for small K2, be characterized in terms of this 

minimum eigenvalue.  The argument leading to (3.11) therefore applies here and leads to 

the characterization, 

 

�size, TSLS = {�: mineval(Λ) � � size, TSLS(r;K2,n,α) },  (3.15) 

 

where � size, TSLS(r;K2,n,α) is decreasing in the maximal allowable size r. 

3.4  Weak Instrument Sets for Other k-class Estimators 

The general definitions of weak instrument sets given in Sections 3.1 and 3.2 also 

can be applied to other IV estimators.  The weak instrument asymptotic distribution for 

general k-class estimators is given in Section 2.2.  What remains to be shown is that the 

weak instrument sets, defined for specific estimators and test statistics, can be 

characterized in terms of the minimum eigenvalue of Λ.  As in the case of TSLS, the 

argument for the estimators considered here has two parts, for small K2 and for large K2. 

For small K2, the argument applied for the TSLS bias can be used generally for k-

class statistics to show that, given K2 and n, the k-class maximal relative bias and 

maximal size depend only on the eigenvalues of Λ.  In general, this dependence is 

complicated and we do not have theoretical results characterizing this dependence.  

Numerical work for n = 1 and n = 2 indicates, however, that the maximal bias and 

maximal size measures are decreasing in each of the eigenvalues of Λ in the relevant 

range of those eigenvalues.  This in turn means that the boundary of the weak instrument 
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set can be written in terms of the minimum eigenvalue of Λ, although this 

characterization could be conservative (see footnote 4). 5 

For large K2, we can provide theoretical results, based on many weak instrument 

limits, showing that the boundary of the weak instrument set depends only on 

mineval(Λ).  These results are summarized here. 

LIML and Fuller-k.  It is shown in the appendix (Equations (A.19) and (A.20)) 

that the LIML and Fuller-k estimators and their Wald statistics have the many weak 

instrument asymptotic distributions, 

 

2K ( ˆ LIML�  – β) 
d

→  N(0, σuu
1/ 2−

VV� Λ–1(Λ + In – ρρ�)Λ–1 1/ 2−
VV� �)  (3.16) 

WLIML 
d

→  x�(Λ + In – ρρ�)1/2Λ–1(Λ + In – ρρ�)1/2
�x/n, where x � N(0, In), (3.17) 

 

where these distributions are written for LIML but also apply to Fuller-k. 

An implication of (3.16) is that the LIML and Fuller-k estimators are consistent 

under the sequence (K2, T) → ∞, a result shown by Chao and Swanson (2002) for LIML.  

Thus the many weak instrument maximal relative bias for these estimators is 0. 

An implication of (3.17) is that the Wald statistic is distributed as a weighted sum 

of n independent chi-squared random variables.  When n = 1, it follows from (3.17) that 

the many weak instrument size has the simple form, 

 

        Rmax, LIML = maxρ: ρ�ρ ≤ 1 
2( , )lim K T→∞ Pr[WLIML

  > 2
1;�� ] 
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= Pr[ 2
1�  > 

1+
�

�

2
1;�� ],       (3.18) 

 

that is, the maximal size is the tail probability that a chi-squared distribution with one 

degree of freedom exceeds (Λ/(Λ + 1))
 

2
1;�� .  This evidently is decreasing in Λ and 

depends only on Λ (which trivially here is its minimum eigenvalue). 

BTSLS.  The many weak instrument asymptotic distributions of the BTSLS 

estimator and Wald statistic, derived in the appendix (Equations (A.16) and (A.17)), are 

 

2K ( ˆ BTSLS�  – β) 
d

→  N(0, σuu
1/ 2−

VV� Λ–1(Λ + In + ρρ�)Λ–1 1/ 2−
VV� �) ,  (3.19) 

WBTSLS 
d

→  x�(Λ + In + ρρ�)1/2Λ–1(Λ + In + ρρ�)1/2
�x/n, where x � N(0, In). (3.20) 

 

It follows from (3.19) that the BTSLS estimator is consistent and that its maximal 

relative bias tends to zero under many weak instrument asymptotics. 

For n =1, the argument leading to (3.18) applies to BTSLS, except that the factor 

is different:  the many weak instrument limit of the maximal size is 

 

 Rmax, BTSLS = Pr[ 2
1�  > 

2+
�

�

2
1;�� ],       (3.21) 

 

which is a decreasing function of Λ. 
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It is interesting to note that, according to (3.18) and (3.21), for a given value of Λ 

the maximal size distortion of LIML and Fuller-k tests is less than that of BTSLS when 

there are many weak instruments. 

3.5.  Numerical Results for TSLS, LIML, and Fuller-k 

We have computed weak instrument sets based on maximum bias and size for a 

several k-class statistics.  Here, we focus on TSLS bias and size, Fuller-k (with c = 1 in 

(2.8)) bias, and LIML size.  Because LIML does not have moments in finite samples, 

LIML bias is not well-defined so we do not analyze it here. 

The TSLS maximal relative bias was computed by Monte Carlo simulation for a 

grid of minimal eigenvalue of Λ from 0 to 30 for K2 = n + 2,…, 100, using 20,000 Monte 

Carlo draws.  Computing the maximum TSLS bias entails computing h defined following 

(3.8) by Monte Carlo simulation, given n, K2, then computing the maximum bias, 

[maxeval(h�h)]1/2.  Computing the maximum bias of Fuller-k and the maximum size 

distortions of TSLS and LIML is more involved than computing the maximal TSLS bias 

because there is no simple analytic solution to the maximum problem (3.6).  Numerical 

analysis indicates that RTSLS is maximized when ρ�ρ = 1, so the maximization for n = 2 

was done by transforming to polar coordinates and performing a grid search over the half 

unit circle (half because of symmetry in (2.22)).  For Fuller-k bias and LIML size, 

maximization was performed over this half circle and over 0 ≤ ρ�ρ ≤ 1.  Because the bias 

and size measures appear to be decreasing functions of all the eigenvalues, at least in the 

relevant range, we set Λ = � In.  The TSLS size calculations were performed using a grid 

of �  with 0 ≤ �  ≤ 75 (100,000 Monte Carlo draws); for Fuller-k bias, 0 ≤ �  ≤ 12 (50,000 

Monte Carlo draws); and for LIML size, 0 ≤ �  ≤ 10 (100,000 Monte Carlo draws). 
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The minimal eigenvalues of Λ that constitute the boundaries of �bias, TSLS,  

�size, TSLS, �bias, Fuller-k, and �size, LIML are plotted, respectively, in the top panels of 

Figures 1 – 4 for various cutoff values b and r.  First consider the regions based on bias.  

The boundary of �bias, TSLS is essentially flat in K2 for K2 sufficiently large; moreover, the 

boundaries for n = 1 and n = 2 are numerically very similar, even for small K2.  The 

boundary of the relative bias region for b = .1 (10% bias) asymptotes to approximately 8 

for both n = 1 and n = 2.  In contrast, the boundary of the bias region for Fuller-k tends to 

zero as the number of instruments increase, which agrees with the consistency of the 

Fuller-k estimator under many weak instrument asymptotics. 

Turning to the regions based on size, the boundary of �size, TSLS depends strongly 

on K2 and n;  as suggested by (3.14), the boundary is approximately linear in K2 for K2 

sufficiently large.  The boundary eigenvalues are very large when the degree of 

overidentification is large.  For example, if one is willing to tolerate a maximal size of 

15%, so the size distortion is 10% for the 5% level test, then with 10 instruments the 

minimum eigenvalue boundary is approximately 20 for n = 1 and approximately 16 for 

n= 2.  In contrast, the boundary of �size, LIML decreases with K2 for both n = 1 and n =2.  

Comparing these two plots provides a concrete assessment that tests based on LIML are 

far more robust to weak instruments than tests based on TSLS. 
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4.  Test for Weak Instruments 

This section provides critical values for the weak instrument test based on the 

Cragg-Donald (1993) statistic, gmin.  These critical values are based on the boundaries of 

the weak instrument sets obtained in Section 3 and on a bound on the asymptotic 

distribution of gmin. 

4.1  A Bound on the Asymptotic Distribution of gmin. 

Recall that the Cragg-Donald statistic gmin is the minimum eigenvalue of GT, 

where GT is given by (2.10).  As stated in (2.23), under weak instrument asymptotics, 

K2GT is asymptotically distributed as a noncentral Wishart with dimension n, degrees of 

freedom K2, identity covariance matrix, and noncentrality matrix K2Λ; that is, 

 

GT 
d

→  ν1/K2 � Wn(K2, In, K2Λ)/K2.     (4.1) 

 

The joint pdf for the n eigenvalues of a noncentral Wishart is known in the sense 

that there is an infinite series expansion for the pdf in terms of zonal polynomials 

(Muirhead [1978]).  This joint pdf depends on all the eigenvalues of Λ, as well as n and 

K2.  In principle the pdf for the minimum eigenvalue can be determined from this joint 

pdf for all the eigenvalues.  It appears that this pdf (the “exact asymptotic” pdf of gmin) 

depends on all the eigenvalues of Λ. 

This exact asymptotic distribution of gmin is not very useful for applications both 

because of the computational difficulties it poses and because of its dependence on all the 

eigenvalues of Λ.  This latter consideration is especially important because in practice 



27 

these eigenvalues are unknown nuisance parameters, so critical values that depend on 

multiple eigenvalues would produce an infeasible test. 

We circumvent these two problems by proposing conservative critical values 

based on the following bounding distribution. 

 

Proposition 1. Pr[mineval(Wn(k, In, A)) ≥ x] ≤ Pr[ 2
k� (mineval(A)) ≥ x], where 

2
k� (a) denotes a noncentral chi-squared random variable with noncentrality 

parameter a. 

 

Proof.  Let α be the eigenvector of A corresponding to its minimum eigenvalue.  

Then α�Wα is distributed 2
k� (mineval(A)) (Muirhead [1982, Theorem 10.3.6]).  But 

α�Wα ≥ mineval(W), and the result follows. 

 

Applying (4.1), the continuous mapping theorem, and Proposition 1, we have that 

 

Pr[gmin ≥ x] → Pr[mineval(ν1/K2) ≥ x] ≤ 2

2
2

2

(mineval( ))
Pr K K

K
x

� 
 
  

≥
�

. (4.2) 

 

Note that this inequality holds as an equality in the special case n = 1. 

Conservative critical values for the test based on gmin are obtained as follows. 

First, select the desired minimal eigenvalue of Λ.  Next, obtain the desired percentile, say 

the 95% point, of the noncentral chi-squared distribution with noncentrality parameter 

equal to K2 times this selected minimum eigenvalue, and divide this percentile by K2.
6 
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4.2.  The Weak Instruments Test 

The bound (4.2) yields the following testing procedure to detect weak 

instruments.  To be concrete, this is stated for a test based on the TSLS bias measure with 

significance level 100δ%.  The null hypothesis is that the instruments are weak, and the 

alternative is that they are not: 

 

H0: � � �bias, TSLS   vs.   H1: � 	 � bias, TSLS .   (4.3) 

 

The test procedure is 

 

Reject H0 if gmin ≥ dbias, TSLS(b; K2,n,δ),    (4.4) 

 

where dbias, TSLS(b; K2,n,δ) = 1
2K −

2

2
,1K �� −  (K2 � bias, TSLS (b;K2,n)), where 

2

2
,1K �� − (m) is the 

100(1-δ)% percentile of the noncentral chi-squared distribution with K2 degrees of 

freedom and noncentrality parameter m and the function � bias, TSLS is the weak instrument 

boundary minimum eigenvalue of Λ in (3.11). 

The results of Section 3 and the bound resulting from Proposition 1 imply that, 

asymptotically, the test (4.4) has the desired asymptotic level: 

 

limT�∞ Pr[gmin ≥ dbias, TSLS(b; K2,n,δ) | � � �bias, TSLS ] � δ.  (4.5) 
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The procedure for testing whether the instruments are weak from the perspective 

of the size of the TSLS (or LIML) is the same, except that the critical value in (4.4) is 

obtained using the size-based boundary eigenvalue function, � size, TSLS (r;K2,n,α) (or, for 

LIML, � size, LIML (r;K2,n,α)). 

4.3.  Critical Values 

Given a minimum eigenvalue � , conservative critical values for the test are 

percentiles of the scaled noncentral chi-squared distribution, 
2

2
,1K �� −  (K2 � )/K2.  The 

minimum eigenvalue �  is obtained from the boundary eigenvalue functions of Section 

3.5. 

Critical values are tabulated in Tables 1 – 4 for the weak instrument tests based on 

TSLS bias, TSLS size, Fuller-k bias and LIML size, respectively, for 1 or 2 included 

endogenous variables (and 3 for TSLS bias) and up to 30 instruments.  These critical 

values are plotted in the panel below the corresponding boundaries of the weak 

instrument sets in Figures 1 – 4.  The critical value plots are qualitatively similar to the 

corresponding boundary eigenvalue plots, except of course the critical values exceed the 

boundary eigenvalues to take into account the sampling distribution of the test statistic. 

These critical value plots provide a basis for comparing the robustness to weak 

instruments of various procedures:  the lower the critical value curve, the more robust is 

the procedure.  For discussion and comparisons of TSLS, BTSLS, Fuller-k, JIVE, and 

LIML, see Stock, Wright, and Yogo (2002, Section 6). 

Comparison to the Staiger-Stock (1997) rule of thumb.  Staiger and Stock (1997) 

suggested the rule of thumb that, in the n = 1 case, instruments be deemed weak if the 

first-stage F is less than ten.  They motivated this suggestion based on the relative bias of 
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TSLS.  Because the 5% critical value for the relative bias weak instrument test with b = 

.1 is approximately 11 for all values of K2, the Staiger-Stock rule of thumb is 

approximately a 5% test that the worst case relative bias is approximately 10% or less.  

This provides a formal, and not unreasonable, testing interpretation of the Staiger-Stock 

rule of thumb. 

The rule of thumb fares less well from the perspective of size distortion.  When 

the number of instruments is one or two, the Staiger-Stock rule of thumb corresponds to a 

5% level test that the maximum size is no more than 15% (so the maximum TSLS size 

distortion is no more than 10%).  However, when the number of instruments is moderate 

or large, the critical value is much larger and this rule of thumb does not provide 

substantial assurance that the size distortion is controlled. 

 

5.  Asymptotic Properties of the Test as a Decision Rule 

This section examines the asymptotic rejection rate of the weak instrument test as 

a function of the smallest eigenvalue of Λ.  When this eigenvalue exceeds the boundary 

minimum eigenvalue for the weak instrument set, the asymptotic rejection rate is the 

asymptotic power function. 

The exact asymptotic distribution of gmin depends on all the eigenvalues of Λ.  It 

is bounded above by (4.2).  Based on numerical analysis, we conjecture that this 

distribution is bounded below by the distribution of the minimum eigenvalue of a random 

matrix with the noncentral Wishart distribution Wn(K2, In, mineval(K2Λ)In)/K2.  These 

two bounding distributions are used to bound the distribution of gmin as a function of 

mineval(Λ). 
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The bounds on the asymptotic rejection rate of the test (4.4) (based on TSLS 

maximum relative bias) are plotted in Figure 5 for b = .1 and n = 2.  The value of the 

horizontal axis (the minimum eigenvalue) at which the upper rejection rate curve equals 

5% is � bias(.1;K2,2).  Evidently, as the minimum eigenvalue increases, so does the 

rejection rate.  If K2 is moderate or large, this increase is rapid and the test essentially has 

unit power against values of the minimum eigenvalue not much larger than the critical 

value.  The bounding distributions give a reasonably tight range for the actual power 

function, which depends on all the eigenvalues of Λ. 

The analogous curves for the test based on Fuller-k bias, TSLS size, or LIML size 

are centered differently because the tests have different critical values but otherwise are 

qualitatively similar to those in Figure 5 and thus are omitted. 

Interpretation as a decision rule.  It is useful to think of the weak instrument test 

as a decision rule:  if gmin is less than the critical value, conclude that the instruments are 

weak, otherwise conclude that they are strong. 

Under this interpretation, the asymptotic rejection rates in Figure 5 bound the 

asymptotic probability of deciding that the instruments are strong.  Evidently, for values 

of mineval(Λ) much below the weak instrument region boundary, the probability of 

correctly concluding that the instruments are weak is effectively one.  Thus, if in fact the 

researcher is confronted by instruments that are quite weak, this will be detected by the 

weak instruments test with probability essentially one.  Similarly, if the researcher has 

instruments with a minimum eigenvalue of Λ substantially above the threshold for the 

weak instruments set, then the probability of correctly concluding that they are strong 

also is essentially one. 
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The range of ambiguity of the decision procedure is given by the values of the 

minimum eigenvalue for which the asymptotic rejection rates effectively fall between 

zero and one.  When K2 is small, this range can be ten or more, but for K2 large this range 

of potential ambiguity of the decision rule is quite narrow. 

 

6. Conclusions 

The procedure proposed here is simple:  compare the minimum eigenvalue of GT, 

the first-stage F-statistic matrix, to a critical value.  The critical value is determined by 

the IV estimator the researcher is using, the number of instruments K2, the number of 

included endogenous regressors n, and how much relative bias or size distortion the 

researcher will tolerate.  The test statistic is the same whether one focuses on the bias of 

TSLS or Fuller-k or on the size of TSLS or LIML; all that differs is the critical value.  

Viewed as a test, the procedure has good power, especially when the number of 

instruments is large.  Viewed as a decision rule, the procedure effectively discriminates 

between weak and strong instruments, and the region of ambiguity decreases as the 

number of instruments increases. 

Our findings support the view that LIML is far superior to TSLS when the 

researcher has weak instruments, at least from the perspective of coverage rates.  Actual 

LIML coverage rates are close to their nominal rates even for quite small values of the 

minimum eigenvalue, especially for moderately many instruments.  Similarly, the Fuller-

k estimator is more robust to weak instruments than TSLS, when viewed from the 

perspective of bias.  Additional comparisons across estimators based on these methods 

are discussed in Stock, Wright, and Yogo (2002). 
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When there is a single included endogenous variable, this procedure provides a 

refinement and improvement to Staiger and Stock’s (1997) rule of thumb that, in the n = 

1 case, instruments be deemed “weak” if the first-stage F is less than ten.  The difference 

between that rule of thumb and the procedure of this paper is that, instead of comparing 

the first-stage F to ten, it should be compared to the appropriate entry in Table 1 (TSLS 

bias), Table 2 (TSLS size), Table 3 (Fuller-k bias), or Table 4 (LIML size).  Those critical 

values indicate that their rule of thumb can be interpreted as a test with approximately a 

5% significance level, of the hypothesis that the maximum relative bias is at least 10%.  

The Staiger-Stock rule of thumb is too conservative if LIML or Fuller-k are used unless 

the number of instruments is very small, but it is insufficiently conservative to ensure that 

the TSLS Wald test has good size. 

This paper has two loose ends.  First, the characterization of the set of weak 

instruments is based on the premise that the maximum relative bias and maximum size 

distortion are nonincreasing in each eigenvalue of Λ, for values of those eigenvalues in 

the relevant range.  This was justified formally using the many weak instrument 

asymptotics in the appendix;  although numerical analysis suggests it is true for all K2, 

this remains to be proven.  Second, the lower bound of the power function in Section 5 is 

based on the assumption that the cdf of the minimum eigenvalue of a noncentral Wishart 

random variable is nondecreasing in each of the eigenvalues of its noncentrality matrix.  

This too appears to be true based on numerical analysis but we do not have a proof nor 

does this result seem to be available in the literature. 

Beyond this, several avenues of research remain open.  First, the tests proposed 

here are conservative when n > 1 because they use critical values computed using the 
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noncentral chi-squared bound in Proposition 1.  Although the tests appear to have good 

power despite this, tightening the Proposition 1 bound (or constructing tests based on all 

the eigenvalues) could produce more powerful tests.  Second, we have considered 

inference based on TSLS, Fuller-k, and LIML, but there are other estimators to explore as 

well.  Third, the analysis here is predicated upon homoskedasticity, and it remains to 

extend these tests to GMM estimation of the linear IV regression model under 

heteroskedasticity. 
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Appendix 

 

This appendix extends the fixed-K2 weak instrument asymptotics of Staiger and 

Stock (1997) to the case of many weak instruments.  Specifically, we suppose that the 

number of instruments can increase with the sample size but that 2
2K /T � 0.  The 

instruments are modeled as being weak, in the sense that the weak instrument assumption 

LΠ of Section 2.4 is assumed to hold, which in turn implies that the scaled concentration 

matrix Λ is finite as T � ∞.  Under these assumptions, plus some additional technical 

assumptions stated below (including i.i.d. sampling), it is shown that the limits of k-class 

IV statistics as K2 and T jointly tend to infinity can in general be computed using 

sequential asymptotic limits.  Under sequential asymptotics, the fixed-K2 weak 

instrument limit is first obtained, then the limit of that distribution is taken as K2 � ∞.  

The advantage of this “first T then K2” approach is that the sequential calculations are 

simpler than the calculations that arise along the joint sequence of (K2, T). 

We begin in Section A.1 by specifying the assumptions.  Section A.2 justifies the 

sequential asymptotics by showing that, under these assumptions, a key uniform 

convergence result (Lemma 6 in Phillips and Moon (1999)) holds.  In Section A.3, we 

derive the many weak instrument limits of k-class estimators and test statistics using 

sequential asymptotics.  Section A.4 provides some concluding remarks. 

 

A.1.  The Model, Notation and Assumptions 

To simplify the expressions, we consider the IV regression model with no 

included exogenous variables, that is, (2.1) and (2.2) without the X variables.  Because 



36 

this appendix is concerned with sequences of K2, it is useful to indicate dependence of Λ 

on K2.  Accordingly, let 
2K�  = 1/ 2−

VV� C �QZZC 1/ 2−
VV� �/K2 be the matrix Λ in the text, 

explicitly indexed by K2;  
2K�  is the expected value of the concentration matrix (divided 

by K2) when there are K2 instruments. 

Throughout this appendix, it is assumed that the random variables are i.i.d. with 

four moments, the instruments are not multicollinear, and the errors are homoskedastic.  

Specifically, we assume, 

 

Assumption  A1. 

(a) There exists a constant D1 > 0 such that mineval(Z�Z/T) ≥ D1 a.s. for all K2 

and for all T greater than some T0. 

(b)  Zt is i.i.d. with EZtZt� = QZZ, where QZZ is positive definite, and E 4
itZ  ≤ D2 < 

∞, i = 1,…, K2. 

(c) ηt = [ut  Vt�]� is i.i.d. with E(ηt | Zt) = 0, E(ηtηt� | Zt) = Σ, and  

E(|ηitηjtηktηlt| | Zt) = E(|ηitηjtηktηlt|) ≤ D2 < ∞, i, j, k, l  = 1,…, n + 1. 

 

Our analysis focuses on sequences of K2 that, if they increase, do so slower than 

T .  Specifically, we assume, 

 

Assumption A2. 2
2K /T → 0 as T → ∞. 
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Note that Assumption A2 does not require K2 to increase, but it limits the rate at 

which it can increase. 

 

A.2.  Uniform Convergence Result 

This section provides the uniform convergence result (Theorem A.1) that justifies 

the use of sequential asymptotics to compute the many weak instrument limiting 

representations.  We adopt Phillips and Moon’s (1999) notation in which (T, K2 → ∞)seq 

denotes the sequential limit in which first T → ∞, then K2 → ∞;  the notation (K2, T → ∞) 

denotes the joint limit in which K2 is implicitly indexed by T. 

Lemma 6 of Phillips and Moon (1999) provides general conditions under which 

sequential convergence implies joint convergence. 

 

Phillips and Moon (1999) Lemma 6. 

(a) Suppose there exist random vectors XK and X on the same probability space as 

XK,T satisfying, for all K, XK,T 
p

→  XK as T → ∞ and XK 
p

→  X as K → ∞.  Then, 

XK,T 
p

→  X as (K, T → ∞) if and only if, 

 

lim supK, T Pr[ �XK,T – XK�  > ε] = 0 for all ε > 0.   (A.1) 

 

(b) Suppose there exist random vectors XK such that, for any fixed K, XK,T 
d

→  XK 

as T → ∞ and XK 
d

→  X as K → ∞.  Then XK,T 
d

→  X as (K, T → ∞) if and only 

if, for all bounded continuous functions f,  
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lim supK,T | E[f(XK,T)] – E[f(XK)] | = 0.          (A.2) 

 

Note that condition (A.2) is equivalent to the requirement that 

 

lim supK,T supx |
,

( )
K TXF x   – ( )

KXF x | = 0,    (A.3) 

 

where 
,K TXF  is the cdf of XK,T and 

KXF  is the cdf of XK. 

The rest of this section is devoted to showing that the conditions of this lemma, 

that is, (A.1) and (A.3), hold under assumptions LΠ, A1, and A2 for the statistics that 

enter the k-class estimators and tests.  To do so, we use the following Berry-Esseen 

bound proven by Götze (1991, equation (1.5)): 

 

Berry-Esseen Bound (Götze (1991)).  Let {X1,…, XT} be an i.i.d. sequence in K
�  

with zero means, a nonsingular second moment matrix, and finite absolute third 

moments.  Let PT be the probability measure associated with T–1/2
1

T

tt
X

=∑ , and let 

P be the limiting Gaussian measure.  Then for each T, 

 

sup KA C∈
|PT(A) – P(A)| ≤ const � (K/T)1/2,    (A.4) 

 

where CK is the class of all measurable convex sets in K
� . 
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We now turn to k-class statistics.  First note that, for fixed K2, under Assumptions 

LΠ and A1, the weak law of large numbers and the central limit theorem imply that the 

following limits hold jointly for fixed K2: 

 

(T–1u�u, T–1V�u, T–1V�V) 
p

→  (σuu, ΣVu, ΣVV),    (A.5) 

Π 
�Z�ZΠ 

p

→  C 
�QZZC,     (A.6) 

 (Π 
�Z�u, Π 

�Z�V) 
d

→  (C 
��Zu, C

 
��ZV),   (A.7) 

(u�PZu, V 
�PZu, V 

�PZV) 
d

→  (�Zu�
1−

ZZQ �Zu, �ZV�
1−

ZZQ �Zu, �ZV�
1−

ZZQ �ZV), (A.8) 

 

where � � [�Zu�, vec(�ZV)�]� (defined in Assumption M) is distributed N(0, Σ � QZZ). 

The following theorem shows that, in fact, the limits in (A.5) – (A.8) and related 

limits hold uniformly in K2 under the weak instrument assumption (Assumption LΠ), the 

sampling assumption (Assumption A1), and the rate condition (Assumption A2).  As in 

(A.3), let FX denote the cdf of the random variable X (etc.). 

 

Theorem A.1.  Under Assumptions LΠ, A1, and A2, 

(a) 
2 ,limsupK T Pr[| (u�u/T, V �u/T, V �V/T) – (σuu, ΣVu, ΣVV) | > ε] = 0 ∀  ε > 0, 

(b) 
2 ,limsupK T Pr[| Π �Z�ZΠ/K2 – C �QZZC/K2 | > ε] = 0 ∀  ε > 0, 

(c) 
2 ,limsupK T supx | FΠ� Z�u(x) – ' ( )F

ZuC x��  | = 0, 

(d) 
2 ,limsupK T supx | FΠ� Z�V(x) – ' ( )F x

ZVC
��  | = 0, 
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(e) 
2 ,limsupK T supx | ' ( )PF x

Zu u  – 1'
( )F x−

Zu ZZ ZuQ
�� ��  | = 0, 

(f) 
2 ,limsupK T supx | ' ( )PF

ZV u x  – 1'
( )F −

ZV ZZ ZuQ
x�� ��  | = 0, 

(g) 
2 ,limsupK T supx | ' ( )PF

ZV V x  – 1'
( )F −

ZV ZZ ZVQ
x�� ��  | = 0. 

 

Theorem A.1 verifies the conditions (A.1) and (A.3) of Phillips and Moon’s 

(1999) Lemma 6 for statistics that enter the k-class estimator and Wald statistic.  Some of 

these objects converge in probability uniformly under the stated assumptions (parts (a) 

and (b)), while others converge in distribution uniformly (parts (c) – (g)).  It follows from 

the continuous mapping theorem that continuous functions of these objects also converge 

in probability (and/or distribution) uniformly under the stated assumptions.  Because the 

k-class estimator ˆ ( )k�  and Wald statistic W(k) are continuous functions of these 

statistics (after centering and scaling as needed), it follows that the (K2, T → ∞) joint 

limit of these k-class statistics can be computed as the sequential limit, (T, K2 → ∞)seq. 

The proof of Theorem A.1 uses the following lemma. 

 

Lemma A.2.  Let ∆T = (Z�Z/T) –1 – 1−
ZZQ .  Under Assumptions A1 and A2, 

(a) 
2 ,limsupK T Pr[| T –1u�Z∆T Z�u | > ε] = 0 ∀  ε > 0, 

(b) 
2 ,limsupK T Pr[| T –1V�Z∆T Z�u | > ε] = 0 ∀  ε > 0, 

(c) 
2 ,limsupK T Pr[| T –1V�Z∆T Z�V | > ε] = 0 ∀  ε > 0. 

 

Proof of Lemma A.2. 
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(a)  The strategy is to show that T –1u�Z∆T Z�u has expected mean square that is 

bounded by const � ( 2
2K /T), then to apply Chebychev’s inequality.  The expected square 

of T–1u�Z∆T Z�u is 

 

E(T–1u�Z∆T Z�u)2 =  2
1 1 1 1

1
' '

T T T T

q r s t q T r s T t
q r s t

E u u u u
T = = = =

∑∑∑∑ Z Z Z Z	 	  

= 4 2
2

1

1
( ' )

T

t t T t
t

E u
T =

∑ Z Z	  + 2 2
2

1 1,

1
( ' )( ' )

T T

s t t T t s T s
s t t s

E u u
T = = ≠

∑ ∑ Z Z Z Z	 	  

+ 2 2 2
2

1 1,

2
( ' )

T T

s t t T s
s t t s

E u u
T = = ≠

∑ ∑ Z Z	 .    (A.9) 

 

The first term on the right hand side of (A.9) is 

 

4 2
2

1

1
( ' )

T

t t T t
t

E u
T =

∑ Z Z	  = 4 1 2
2

1

1
( ) { '[( ' / ) ] }

T

t t t
t

Eu E T
T

−

=
−∑ ZZZ Z Z Q Z  

= 4 1 21
( ) [ '( ' / ) ' ]t t t t tEu E T

T
−− ZZZ Z Z Z Z Q Z  

      = 4 1 21
( ){ [ '( ' / ) ]t t tEu E T

T
−Z Z Z Z  

1 1 1 22 [( '( ' / ) )( ' )] [ ' ] }t t t t t tE T E− − −− +ZZ ZZZ Z Z Z Z Q Z Z Q Z , (A.10) 

 

where the second line follows because Zt is i.i.d.  Now E[Zt�(Z�Z/T)–1Zt]
2 ≤ 

E[Zt�Ztmaxeval[(Z�Z/T)–1]]2 = E[Zt�Zt/mineval(Z�Z/T)]2 ≤ 2
1D− E(Zt�Zt)

2 = const � 2
2K , 
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where the second inequality follows from Assumption A.1.  Similar calculations show 

that E[Zt�(Z�Z/T)–1Zt(Zt�
1−

ZZQ Zt)]  ≤ const � 2
2K  and E[Zt�

1−
ZZQ Zt]

2  ≤ const � 2
2K , 

the second two terms after the final equality in (A.10) are ≤ const � 2
2K .  It follows from 

(A.10) that  

 

2 4 2

1

( ' )
T

t t T t
t

T E u−

=
∑ Z Z	  ≤ const � 2

2K /T.    (A.11) 

 

The second term on the right hand side of (A.9) is 

 

2 2
2

1 1,

1
( ' )( ' )

T T

s t t T t s T s
s t t s

E u u
T = = ≠

∑ ∑ Z Z Z Z	 	  = 
2

2
1 1,

( ' )( ' )
T T

uu
t T t s T s

s t t s

E
T

�

= = ≠
∑ ∑ Z Z Z Z	 	  

≤ 
2

2
1 1

( ' )( ' )
T T

uu
t T t s T s

s t

E
T

�

= =
∑∑ Z Z Z Z	 	   

= 
2

2

1

1
( ' )

T

uu t T t
t

E
T

�
=

 
  
∑ Z Z	 = 

2

2 '
uu TE tr

T
�

   
      

Z Z
	  

= 

2

2 1 '
uu E tr

T
� −   −      

ZZ

Z Z
I Q = 

2

2 1 2
2

'
uu E tr K

T
� −

     −        
ZZ

Z Z
Q   

= 
2

2 1 2
2

1

1
'

T

uu t t
t

E K
T

� −

=

   −  
   
∑ ZZZ Q Z  

= 2 1 2 1 1 2
22 2

1 1 1,

1 1
( ' ) ( ' )( ' )

T T T

uu t t t t s s
t t s s t

E E K
T T

� − − −

= = = ≠

 
+ − 

 
∑ ∑ ∑ZZ ZZ ZZZ Q Z Z Q Z Z Q Z  

= 
2 2

2 22 2
22 2

( 1)
uu

TK T T K
const K

T T
�

 −× + − 
 

 = 
2

2 2
uu

K
const

T
�× ,      (A.12) 
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where the penultimate equality follows because E(Zt�
1−

ZZQ Zt) = K2 and E(Zt�
1−

ZZQ Zt)
2 = 

const � 2
2K . 

The third term on the right hand side of (A.9) is 

 

2 2 2
2

1 1,

2
( ' )

T T

s t t T s
s t t s

E u u
T = = ≠

∑ ∑ Z Z	  = 2 2
2

1 1,

1
2 ( ' )

T T

uu t T s
s t t s

E
T

�
= = ≠
∑ ∑ Z Z	  

≤ 2 2
2

1 1

1
2 ( ' )

T T

uu t T s
s t

E
T

�
= =
∑∑ Z Z	  

= 2
2

1 1

1
2 ( ' ')

T T

uu T s s T t t
s t

E tr
T

�
= =
∑∑ Z Z Z Z	 	  

= 22 uu T TEtr
T T

�
    

        
Z'Z Z'Z

	 	  = 
2

2 1 '
2 uu E tr

T
� −

    −       
ZZ

Z Z
I Q  

= 
2

2 1 1' '
2 2uu Etr

T T
� − −

      − +           
ZZ ZZ

Z Z Z Z
I Q Q  

= 2 1 1
22

1 1

1
2 ' '

T T

uu t s s t
t s

E K
T

� − −

= =

   −    
∑∑ ZZ ZZZ Q Z Z Q Z  

= 2 1 2 1 1
22 2

1 1 1,

1 1
2 ( ' ) ( ' ')

T T T

uu t t s s t t
t t s s t

E Etr K
T T

� − − −

= = = ≠

 
+ − 

 
∑ ∑ ∑ZZ ZZ ZZZ Q Z Q Z Z Q Z Z  

= 
2

2 2 2
22 2

( 1)
2 uu

TK T T K
const K

T T
�

 −× + − 
 

 

= 
2

2 2 22 uu

K K
const

T T
�

 
× − 

 
,       (A.13) 
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where the penultimate equality uses Etr( 1−
ZZQ ZsZs�

1−
ZZQ ZtZt�) = tr(I) = K2 for s 
 t and 

E(Zt�
1−

ZZQ Zt)
2 = const � 2

2K . 

The application of (A.11), (A.12), and (A.13) to (A.9) implies that E(T–1u�Z∆T 

Z�u)2 ≤ 2 2
2 /uuconst K T�× , and the desired result (a) follows by Chebychev’s inequality. 

The proofs of (b) and (c) are analogous to the proof of (a). 

 

Proof of Theorem A.1. 

(a)  This follows from the weak law of large numbers because (u�u/T, V�u/T, V�V/T) do 

not depend on K2. 

(b) Note that E[Π  
�Z�ZΠ/K2 – C 

�QZZC/K2] = 0.  Under Assumption LΠ, the (1, 1) element 

of this matrix is (Π  
�Z�ZΠ – C 

�QZZC)1,1/K2 = 2 21
2 1 11 1

( ) ( )
K K

i j it kt iji j
TK C C Z Z q−

= =
−∑ ∑ , where 

qij is the (i, j) element of QZZ.  Because Zt is i.i.d. (Assumption A1(b)) and the elements 

of C are bounded (Assumption LΠ), the expected value of the square of this element is 

 

      E{[(Π 
�Z�ZΠ – C 

�QZZC)1,1/K2]
2} = 

2 2
2

1 1
1 12

1 1
( )

K K

i j it kt ij
i j

E C C Z Z q
T K = =

 
− 

 
∑∑  

= 
2 2 2 2

1 1 1 12
1 1 1 12

1 1
[( )( )]

K K K K

i j k l it jt ij kt lt kl
i j k l

C C C C E Z Z q Z Z q
T K = = = =

− −∑∑∑∑  ≤ const � 
2
2K

T
. 

 

By the same argument applied to the (1,1) element, the remaining elements of  

Π  �Z�ZΠ/K2 – C 
�QZZC/K2 are also bounded in mean square by const � ( 2

2K /T).  The 

matrix Π  
�Z�ZΠ/K2 is n � n so the number of elements does not depend on K2 and the 
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result (b) follows by Chebychev’s inequality and noting that, under Assumption A2, 

2
2K /T → 0. 

(c)  Under Assumption LΠ, Π  
�Z�u = T–1/2C 

�Z�u = C 
�( 1/ 2

1

T

t tt
T u−

=∑ Z ).  Let PT denote the 

probability measure associated with T–1/2Z�u and let P denote the limiting probability 

measure associated with �Zu.  Define the convex set A(x) = {y 2K∈ � : C 
�y ≤ x}, so that 

PT(A(x)) = FΠ� Z�u(x) and P(A(x)) = ' ( )F
ZuC x�� .  By Assumption A.1, Ztut is an i.i.d., mean 

zero K2-dimensional random variable with finite third moments, so Götze’s (1991) Berry-

Esseen bound (A.4) applies and supx | FΠ� Z�u(x) – ' ( )F
ZuC x��  | ≤ const � 2 /K T .  The 

result (c) follows from K2/T → 0 by Assumption A2.  We note that this line of argument 

is used in Jensen and Mayer (1975). 

(d)  The proof is the same as for (c). 

(e)  Write, u�PZu = (T –1/2u�Z)(T –1Z�Z)(T –1/2Z�u) = �1 + �2, where �1 =  

(T –1/2u�Z) 1−
ZZQ (T –1/2Z�u), and �2 = (T –1/2u�Z)∆T(T –1/2Z�u).  As in the proof of (c), let PT 

denote the probability measure associated with T–1/2Z�u and let P denote the limiting 

probability measure of �Zu.  Let B(x) be the convex set, B(x) = {y 2K∈ � : y� 1−
ZZQ y ≤ x}, so 

that PT(B(x)) = 
1
( )F x�  and P(B(x)) = 1'

( )F x−
Zu ZZ ZuQ

�� �� .  It follows from (A.4) that  

supx | 
1
( )F x�  – 1'

( )F x−
Zu ZZ ZuQ

�� ��  | ≤ const � 2 /K T .  By Lemma A.2(a), �2 
p

→  0 uniformly 

as (K2, T → ∞), and the result (e) follows. 

(f) and (g).  The dimensions of V�PZu and V�PZV do not depend on K2, and the proofs of 

(f) and (g) are similar to that of (e). 
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A.3.  Many Weak Instrument Asymptotic Limits 

This section collects calculations of the many weak instrument asymptotic limits 

of k-class estimators and Wald statistics.  Because of Theorem A.1, these calculations are 

performed using sequential asymptotics, in which the fixed-K2 weak instrument 

asymptotic limits in Section 2.4 are analyzed as K2 → ∞.  The limiting distributions differ 

depending on the limiting behavior of k.  The main results are collected in Theorem A.3. 

 

Theorem A.3.  Suppose that Assumptions LΠ and A1 hold; that 
2K�  → Λ∞, where 

maxeval(Λ∞) < ∞; and that K2 → ∞ and T → ∞ subject to 2
2K /T → 0.  Let x be a 

n-dimensional standard normal random variable.  Then the following limits hold 

as (K2, T → ∞): 

(a)  (TSLS) If T(k – 1)/K2 → 0, then 

 

ˆ ( )k�  – β 
p

→  1/ 2
uu� 1/ 2−

VV� (Λ∞ + In)
–1ρ  and    (A.14) 

W(k)/K2 
p

→   
1

1 2

'( )

[1 2 '( ) '( ) ]
n

n nn

−
∞
− −

∞ ∞

+
− + + +

I
I I

� � �

� � � � � �
.  (A.15) 

 

(b) (BTSLS)  If 2K [T(k – 1)/K2 – 1] → 0 and mineval(Λ∞) > 0 , then 

 

2K ( ˆ ( )k�  – β) 
d

→  N(0, σuu
1/ 2−

VV� 1−
∞� (Λ∞ + In + ρρ�) 1−

∞�
1/ 2−

VV� �) and (A.16) 
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W(k) 
d

→  x�(Λ∞ + In + ρρ�)1/2 1−
∞� (Λ∞ + In + ρρ�)1/2

�x/n.    (A.17) 

 

(c) (LIML, Fuller-k).  If T(k – kLIML)/ 2K  → 0 and mineval(Λ∞) > 0, then 

 

2K [T(k – 1)/K2 – 1] 
d

→  N(0, 2),     (A.18) 

2K ( ˆ ( )k�  – β) 
d

→  N(0, σuu
1/ 2−

VV� 1−
∞� (Λ∞ + In – ρρ�) 1−

∞�
1/ 2−

VV� �)  and (A.19) 

W(k) 
d

→  x�(Λ∞ + In – ρρ�)1/2 1−
∞� (Λ∞ + In – ρρ�)1/2

�x/n.     (A.20) 

 

Before proving Theorem A.3, we first state some limiting properties of random 

variables that appear in the weak instrument representations.  Let zu, zV, and ρ be as 

defined in Section 2.4, and let ν1 and ν2 be as defined in (2.13) and (2.14).  Then the 

following limits hold jointly as K2 → ∞: 

 

ν1/K2 
p

→  Λ∞ + In,       (A.21) 

ν2/K2 
p

→  ρ,        (A.22) 

2

2

2

2

2

'

'

'

u u

u

u

K

K

K

K

K

 −
 
 
 
 
 
 

− 
  

V

z z

z

z z




�

 
d

→  N(0, B), where B = 

2 0 2 '

0 0

2 0 'n

∞

 
 
 
 + I

�

�

� ��

, (A.23) 
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(ν2 – K2ρ)/ 2K  → N(0, Λ∞ + In + ρρ�).    (A.24) 

 

The results (A.21) – (A.24) follow by straightforward calculations using the 

central limit theorem, the weak law of large numbers, and the joint normal distribution of 

zu and zV in (2.12). 

Proof of Theorem A.3. 

(a)  From (2.21), the fixed-K2 weak instrument approximation to the distribution of the 

TSLS estimator is ˆ TSLS�  – β � 1/ 2
uu� 1/ 2−

VV� 1
1 2
−� �  = 1/ 2

uu� 1/ 2−
VV� 1

1 2 2 2( / ) ( / )K K−� �� .   The 

limit stated in the theorem for the estimator follows by substituting (A.21) and (A.22) 

into this expression.  The many weak instrument limit for the Wald statistic follows by 

modifying (2.22) to be 

 

WTSLS/K2  � 
1

2 2 1 2 2 2
1 2

1 2 2 2 2 2 1 2 2 2

( / ) '( / ) ( / )

[1 2 '( / ) ( / ) ( / ) '( / ) ( / )]

K K K

n K K K K K

−

− −− +
� � �

� � � � � �
 

 

and applying (A.21) and (A.22). 

(b)  The fixed-K2 weak instrument approximation to the distribution of a k-class 

estimator, given in (2.15), in general can be written, 

 

2K [ ˆ ( )k�  – β] � 

1

1/ 2 1/ 2 1 2 2

2 2 2

1n
uu n

K K

K K K

�
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−

−
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2 2 2

2 2

K K

K K

�  − −× −      

� �
� ,   (A.25) 

 

where T(k – 1) 
d

→  κ for fixed K2.  The assumption 2K [T(k – 1)/K2 – 1] → 0 implies 

that (κ – K2)/ 2K  → 0, so by (A.21) and (A.24) we have, as K2 → ∞, 

 

1 2 2

2 2 2

1n
n

K K

K K K

� − −−    

I
I

�
 

p

→  Λ∞ and 

2 2 2

2 2

K K

K K

� − −−   

� �
�  

d

→  N(0, Λ∞ + In + ρρ�), 

 

and the result (A.16) follows.  The assumption mineval(Λ∞) > 0 is used to ensure the 

invertibility of Λ∞.  The distribution of the Wald statistic follows. 

(c)  For fixed K2, T(kLIML – 1) 
d

→  κ*.   We show below that, as K2 → ∞, 

 

2

2

* K

K

� −
 = 2

2

'u u K

K

−z z
 + op(1).     (A.26) 

 

The result (A.18) follows from (A.26) and (A.23).  Moreover, applying (A.21), (A.23), 

(A.24), and (A.26) yields,  
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d

→  N(0, Λ∞ + In –  ρρ�), 

 

where Λ∞ is invertible by the assumption mineval(Λ∞) > 0.  The result (A.19) follows, as 

does the distribution of the Wald statistic. 

It remains to show (A.26).  From (2.18), κ* is the smallest root of, 

 

0 = det 2

2 1

1 '' '
*u u

n

�
�

�

   
−   

    

z z

�

�

� �
.    (A.27) 

 

Let φ = (κ* – K2)/ 2K , a = (zu�zu – K2)/ 2K , b = (ν2 – K2ρ)/ 2K , and L = (ν1 – 

K2In)/K2.  Then (A.27) can be rewritten so that φ is the smallest root of 

 

0 = det
2

( ) '

n

a

K

	 	

	 	

− − 
 

− −  

b

b L I

�

�
.     (A.28) 

 

We first show that 1/ 4
2K − φ 

p

→  0.  Let 	�  = 1/ 4
2K − φ.  By (A.21), (A.23), and (A.24), 1/ 4

2K − a 

p

→  0, 1/ 4
2K − b 

p

→  0, and L 
p

→  Λ∞.  By the continuity of the determinant, it follows that in 

the limit K2 → ∞, 	�  is the smallest root of the equation, 
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� �

� �
,     (A.29) 

 

from which it follows that 	�  = 1/ 4
2K − φ 

p

→  0. 

To obtain (A.26), write the determinantal equation (A.28) as 

 

      0 = [(a – φ) – (b – φρρ)�( 1/ 2
2K L – φIn)

–1(b – φρρ)]det( 1/ 2
2K L – φIn) 

         = / 2
2
nK {(a – φ) – [ 1/ 4

2K − (b –φρρ)]�(L – 1/ 2
2K − φIn)

–1[ 1/ 4
2K −  (b –φρρ)}det(L – 1/ 2

2K − φIn) 

= / 2
2
nK {[(a – φ)]det(Λ∞) + op(1)},           (A.30) 

 

where the final equality follows from 1/ 4
2K − b 

p

→  0, L 
p

→  Λ∞, 1/ 4
2K − φ 

p

→  0, and det(Λ∞) > 

0.  By the continuity of the solution to (A.28), it follows that φ = a + op(1) which, in the 

original notation, is (A.26). 

 

A.4.  Remarks 

1. To simplify the calculations, we have assumed i.i.d. sampling.  Götze (1991) provides 

a Berry-Esseen bound for i.n.i.d. sampling in which the rate is 2
2K /T → 0 rather than 

the rate of K2/T → 0, which appears in his result quoted in Section A.2.  Because we 

already assume that 2
2K /T → 0 (this rate is used in the consistency calculations in 

Theorem A.1(b) and Lemma A.2), the results in Section A.2 extend to the case where 
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the errors and instruments are independently but not necessarily identically 

distributed. 

2. The many weak instrument representations in Theorem A.3 for BTSLS, LIML and 

the Fuller-k estimator rule out the partially identified and unidentified cases, for 

which mineval(Λ∞) = 0.  This suggests that the approximations in Theorem A.3(b) 

and (c) might become inaccurate as 
2KΛ  becomes nearly singular.  The behavior of 

the many weak instrument approximations in partially identified and unidentified 

cases remain to be explored. 
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Endnotes 

 
1 See Rothenberg (1984, pp. 921) for a discussion of the quality of the Edgeworth 

approximation as a function of µ2 and K2. 

2 The definition of GT in (2.10) is GT in Staiger and Stock (1997, eq. (3.4)), divided by K2 

to put it in F-statistic form. 

3 In the appendix, the assumption that Λ is constant is generalized slightly to consider 

sequences of Λ, indexed by K2, that have a finite limit Λ∞ as K2 → ∞. 

4 Because in general the maximal bias depends on all the eigenvalues, the maximal bias 

when all the eigenvalues are equal to some value � 0 might be greater than the maximal 

bias when one eigenvalue is slightly less than � 0 but the others are large.  For this reason 

the set �bias is potentially conservative when K2 is small.  This comment applies to size-

based sets as well. 

5 It appears that there is some non-monotonicity in the dependence on the eigenvalues for 

Fuller-k bias when the minimum eigenvalue is very small, but for such small eigenvalues 

the bias is sufficiently large that this non-monotonicity does not affect the boundary 

eigenvalues. 

6The critical values based on Proposition 1 can be quite conservative when all the 

eigenvalues of Λ are small.  For example, the boundary of the TSLS bias-based weak 

instrument set with b = 0.1, n = 2, and K2 = 4 is mineval(Λ) = 3.08, and the critical value 

for a 5% test with b = .10 based on Proposition 1 is 7.56.  If the second eigenvalue in fact 

equals the first, the correct critical value should be 4.63, and the rejection probability 

under the null is only 0.1%.  (Of course, it is infeasible to use this critical value because 
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the second eigenvalue of Λ is unknown.)  If the second eigenvalue is 10, then the 

rejection rate is approximately 2%.  On the other hand, if the second eigenvalue is large, 

the Proposition 1 bound is tighter.  For example, for values of K2 from 4 to 34 and n = 2, 

if the second eigenvalue exceeds 20 the rejection probability under the null range from 

3.3% to 4.1% for the nominal 5% weak instrument test based on TSLS bias with b = .10. 
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Table 1. 
Critical Values for the Weak Instrument Test Based on TSLS Bias 

Significance level is 5% 
 

 n = 1, b = n = 2, b = n = 3, b = 
K2 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 
3 13.91 9.08 6.46 5.39 . . . . . . . . 
4 16.85 10.27 6.71 5.34 11.04 7.56 5.57 4.73 . . . . 
5 18.37 10.83 6.77 5.25 13.97 8.78 5.91 4.79 9.53 6.61 4.99 4.30 
6 19.28 11.12 6.76 5.15 15.72 9.48 6.08 4.78 12.20 7.77 5.35 4.40 
7 19.86 11.29 6.73 5.07 16.88 9.92 6.16 4.76 13.95 8.50 5.56 4.44 
8 20.25 11.39 6.69 4.99 17.70 10.22 6.20 4.73 15.18 9.01 5.69 4.46 
9 20.53 11.46 6.65 4.92 18.30 10.43 6.22 4.69 16.10 9.37 5.78 4.46 
10 20.74 11.49 6.61 4.86 18.76 10.58 6.23 4.66 16.80 9.64 5.83 4.45 
11 20.90 11.51 6.56 4.80 19.12 10.69 6.23 4.62 17.35 9.85 5.87 4.44 
12 21.01 11.52 6.53 4.75 19.40 10.78 6.22 4.59 17.80 10.01 5.90 4.42 
13 21.10 11.52 6.49 4.71 19.64 10.84 6.21 4.56 18.17 10.14 5.92 4.41 
14 21.18 11.52 6.45 4.67 19.83 10.89 6.20 4.53 18.47 10.25 5.93 4.39 
15 21.23 11.51 6.42 4.63 19.98 10.93 6.19 4.50 18.73 10.33 5.94 4.37 
16 21.28 11.50 6.39 4.59 20.12 10.96 6.17 4.48 18.94 10.41 5.94 4.36 
17 21.31 11.49 6.36 4.56 20.23 10.99 6.16 4.45 19.13 10.47 5.94 4.34 
18 21.34 11.48 6.33 4.53 20.33 11.00 6.14 4.43 19.29 10.52 5.94 4.32 
19 21.36 11.46 6.31 4.51 20.41 11.02 6.13 4.41 19.44 10.56 5.94 4.31 
20 21.38 11.45 6.28 4.48 20.48 11.03 6.11 4.39 19.56 10.60 5.93 4.29 
21 21.39 11.44 6.26 4.46 20.54 11.04 6.10 4.37 19.67 10.63 5.93 4.28 
22 21.40 11.42 6.24 4.43 20.60 11.05 6.08 4.35 19.77 10.65 5.92 4.27 
23 21.41 11.41 6.22 4.41 20.65 11.05 6.07 4.33 19.86 10.68 5.92 4.25 
24 21.41 11.40 6.20 4.39 20.69 11.05 6.06 4.32 19.94 10.70 5.91 4.24 
25 21.42 11.38 6.18 4.37 20.73 11.06 6.05 4.30 20.01 10.71 5.90 4.23 
26 21.42 11.37 6.16 4.35 20.76 11.06 6.03 4.29 20.07 10.73 5.90 4.21 
27 21.42 11.36 6.14 4.34 20.79 11.06 6.02 4.27 20.13 10.74 5.89 4.20 
28 21.42 11.34 6.13 4.32 20.82 11.05 6.01 4.26 20.18 10.75 5.88 4.19 
29 21.42 11.33 6.11 4.31 20.84 11.05 6.00 4.24 20.23 10.76 5.88 4.18 
30 21.42 11.32 6.09 4.29 20.86 11.05 5.99 4.23 20.27 10.77 5.87 4.17 

 
Notes:  The test rejects if gmin exceeds the critical value.  The critical value is a function 
of the number of included endogenous regressors (n), the number of instrumental 
variables (K2), and the desired maximal bias of the IV estimator relative to OLS (b). 
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Table 2. 
Critical Values for the Weak Instrument Test Based on TSLS Size 

Significance level is 5% 
 

 n = 1, r = n = 2, r = 
K2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25 
1 16.38 8.96 6.66 5.53 . . . . 
2 19.93 11.59 8.75 7.25 7.03 4.58 3.95 3.63 
3 22.30 12.83 9.54 7.80 13.43 8.18 6.40 5.45 
4 24.58 13.96 10.26 8.31 16.87 9.93 7.54 6.28 
5 26.87 15.09 10.98 8.84 19.45 11.22 8.38 6.89 
6 29.18 16.23 11.72 9.38 21.68 12.33 9.10 7.42 
7 31.50 17.38 12.48 9.93 23.72 13.34 9.77 7.91 
8 33.84 18.54 13.24 10.50 25.64 14.31 10.41 8.39 
9 36.19 19.71 14.01 11.07 27.51 15.24 11.03 8.85 
10 38.54 20.88 14.78 11.65 29.32 16.16 11.65 9.31 
11 40.90 22.06 15.56 12.23 31.11 17.06 12.25 9.77 
12 43.27 23.24 16.35 12.82 32.88 17.95 12.86 10.22 
13 45.64 24.42 17.14 13.41 34.62 18.84 13.45 10.68 
14 48.01 25.61 17.93 14.00 36.36 19.72 14.05 11.13 
15 50.39 26.80 18.72 14.60 38.08 20.60 14.65 11.58 
16 52.77 27.99 19.51 15.19 39.80 21.48 15.24 12.03 
17 55.15 29.19 20.31 15.79 41.51 22.35 15.83 12.49 
18 57.53 30.38 21.10 16.39 43.22 23.22 16.42 12.94 
19 59.92 31.58 21.90 16.99 44.92 24.09 17.02 13.39 
20 62.30 32.77 22.70 17.60 46.62 24.96 17.61 13.84 
21 64.69 33.97 23.50 18.20 48.31 25.82 18.20 14.29 
22 67.07 35.17 24.30 18.80 50.01 26.69 18.79 14.74 
23 69.46 36.37 25.10 19.41 51.70 27.56 19.38 15.19 
24 71.85 37.57 25.90 20.01 53.39 28.42 19.97 15.64 
25 74.24 38.77 26.71 20.61 55.07 29.29 20.56 16.10 
26 76.62 39.97 27.51 21.22 56.76 30.15 21.15 16.55 
27 79.01 41.17 28.31 21.83 58.45 31.02 21.74 17.00 
28 81.40 42.37 29.12 22.43 60.13 31.88 22.33 17.45 
29 83.79 43.57 29.92 23.04 61.82 32.74 22.92 17.90 
30 86.17 44.78 30.72 23.65 63.51 33.61 23.51 18.35 

 
Notes:  The test rejects if gmin exceeds the critical value.  The critical value is a function 
of the number of included endogenous regressors (n), the number of instrumental 
variables (K2), and the desired maximal size (r) of a 5% Wald test of β = β0. 
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Table 3. 
Critical Values for the Weak Instrument Test Based on Fuller-k Bias 

Significance level is 5% 
 

 n = 1, b = n = 1, b = 
K2 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 
1 23.63 19.35 15.42 12.86 . . . . 
2 15.60 12.38 7.93 6.62 14.14 11.94 9.50 8.11 
3 12.04 9.59 6.15 5.13 11.62 9.21 6.57 5.70 
4 10.09 8.10 5.36 4.46 9.96 7.80 5.43 4.70 
5 8.85 7.16 4.89 4.07 8.84 6.94 4.84 4.16 
6 7.99 6.51 4.58 3.82 8.02 6.34 4.47 3.82 
7 7.35 6.02 4.35 3.63 7.41 5.90 4.22 3.58 
8 6.86 5.65 4.17 3.48 6.93 5.56 4.03 3.41 
9 6.47 5.35 4.02 3.36 6.54 5.29 3.89 3.27 
10 6.14 5.11 3.90 3.27 6.22 5.06 3.77 3.16 
11 5.87 4.90 3.79 3.18 5.94 4.87 3.66 3.07 
12 5.64 4.72 3.70 3.11 5.71 4.71 3.58 3.00 
13 5.43 4.57 3.62 3.05 5.50 4.57 3.50 2.93 
14 5.26 4.43 3.54 2.99 5.33 4.44 3.43 2.87 
15 5.10 4.31 3.48 2.94 5.17 4.33 3.37 2.82 
16 4.95 4.20 3.41 2.90 5.02 4.23 3.32 2.78 
17 4.83 4.10 3.36 2.86 4.89 4.13 3.27 2.74 
18 4.71 4.01 3.30 2.82 4.77 4.05 3.22 2.70 
19 4.60 3.93 3.25 2.78 4.67 3.97 3.18 2.67 
20 4.50 3.85 3.21 2.75 4.56 3.90 3.13 2.64 
21 4.41 3.78 3.16 2.72 4.47 3.83 3.10 2.61 
22 4.32 3.71 3.12 2.69 4.39 3.76 3.06 2.59 
23 4.24 3.65 3.08 2.66 4.31 3.70 3.02 2.56 
24 4.17 3.59 3.04 2.63 4.23 3.65 2.99 2.54 
25 4.09 3.54 3.01 2.61 4.16 3.59 2.96 2.52 
26 4.03 3.48 2.97 2.59 4.09 3.54 2.93 2.50 
27 3.96 3.43 2.94 2.56 4.03 3.49 2.90 2.48 
28 3.90 3.39 2.91 2.54 3.97 3.45 2.87 2.47 
29 3.85 3.34 2.88 2.52 3.91 3.40 2.85 2.45 
30 3.79 3.30 2.85 2.50 3.86 3.36 2.82 2.43 

 
See the notes to Table 1. 
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Table 4. 
Critical Values for the Weak Instrument Test Based on LIML Size 

Significance level is 5% 
 

 n = 1, r = n = 1, r = 
K2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25 
1 16.38 8.96 6.66 5.53 . . . . 
2 8.68 5.33 4.42 3.92 7.03 4.58 3.95 3.63 
3 6.46 4.36 3.69 3.32 5.44 3.81 3.32 3.09 
4 5.44 3.87 3.30 2.98 4.72 3.39 2.99 2.79 
5 4.84 3.56 3.05 2.77 4.32 3.13 2.78 2.60 
6 4.45 3.34 2.87 2.61 4.06 2.95 2.63 2.46 
7 4.18 3.18 2.73 2.49 3.90 2.83 2.52 2.35 
8 3.97 3.04 2.63 2.39 3.78 2.73 2.43 2.27 
9 3.81 2.93 2.54 2.32 3.70 2.66 2.36 2.20 
10 3.68 2.84 2.46 2.25 3.64 2.60 2.30 2.14 
11 3.58 2.76 2.40 2.19 3.60 2.55 2.25 2.09 
12 3.50 2.69 2.34 2.14 3.58 2.52 2.21 2.05 
13 3.42 2.63 2.29 2.10 3.56 2.48 2.17 2.02 
14 3.36 2.57 2.25 2.06 3.55 2.46 2.14 1.99 
15 3.31 2.52 2.21 2.03 3.54 2.44 2.11 1.96 
16 3.27 2.48 2.18 2.00 3.55 2.42 2.09 1.93 
17 3.24 2.44 2.14 1.97 3.55 2.41 2.07 1.91 
18 3.20 2.41 2.11 1.94 3.56 2.40 2.05 1.89 
19 3.18 2.37 2.09 1.92 3.57 2.39 2.03 1.87 
20 3.21 2.34 2.06 1.90 3.58 2.38 2.02 1.86 
21 3.39 2.32 2.04 1.88 3.59 2.38 2.01 1.84 
22 3.57 2.29 2.02 1.86 3.60 2.37 1.99 1.83 
23 3.68 2.27 2.00 1.84 3.62 2.37 1.98 1.81 
24 3.75 2.25 1.98 1.83 3.64 2.37 1.98 1.80 
25 3.79 2.24 1.96 1.81 3.65 2.37 1.97 1.79 
26 3.82 2.22 1.95 1.80 3.67 2.38 1.96 1.78 
27 3.85 2.21 1.93 1.78 3.74 2.38 1.96 1.77 
28 3.86 2.20 1.92 1.77 3.87 2.38 1.95 1.77 
29 3.87 2.19 1.90 1.76 4.02 2.39 1.95 1.76 
30 3.88 2.18 1.89 1.75 4.12 2.39 1.95 1.75 

 
See the notes to Table 2. 



Figure 1: Weak Instrument Sets and Critical Values based on
Bias of TSLS Relative to OLS
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Boundary of weak instrument set (n  = 2)
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Figure 2: Weak Instrument Sets and Critical Values based on
Size of TSLS Wald Test
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Boundary of weak instrument set (n  = 2)

0

40

80

120

160

200

0 10 20 30 40 50 60 70 80 90 100

K 2

m
in

e
v
a

l
L

Size = 0.1

Size = 0.25

Size = 0.2

Size = 0.15

Critical value at 5% significance (n  = 2)

0

40

80

120

160

200

0 10 20 30 40 50 60 70 80 90 100

K 2

g
m

in

Size = 0.1

Size = 0.25

Size = 0.2

Size = 0.15



Figure 3: Weak Instrument Sets and Critical Values based on
Bias of Fuller-k Relative to OLS
Boundary of weak instrument set (n  = 1)

0

4

8

12

16

20

24

0 10 20 30 40 50 60 70 80 90 100

K 2

m
in

e
v
a
l
L

Bias = 0.05

Bias = 0.3
Bias = 0.2

Bias = 0.1

Critical value at 5% significance (n  = 1)

0

4

8

12

16

20

24

0 10 20 30 40 50 60 70 80 90 100

K 2

g
m

in

Bias = 0.05

Bias = 0.3

Bias = 0.2
Bias = 0.1



Boundary of weak instrument set (n  = 2)
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Figure 4: Weak Instrument Sets and Critical Values based on
Size of LIML Wald Test
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Boundary of weak instrument set (n  = 2)
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Figure 5: Power Function for TSLS Bias Test (Relative Bias = 0.1, n = 2)
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