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1. Introduction

Standard treatments of instrumental variables (1V) regression stress that for
instruments to be valid they must be exogenous. It is also important, however, that the
second condition for avalid instrument, instrument relevance, holds, for if the
instruments are only marginally relevant, or “weak,” then first-order asymptotics can be a
poor guide to the actual sampling distributions of conventional |V regression statistics.

At aformal level, the strength of the instruments matters because the natura
measure of this strength — the so-called concentration parameter — plays arole formally
akin to the sample sizein IV regression statistics. Rothenberg (1984) makes this point in
his survey of approximations to the distributions of estimators and test statistics. He

considered the single equation IV regression model,

y=YB+u, (1.1

wherey and Y are Tx1 vectors of observations on the dependent variable and endogenous
regressor, respectively, and u isaTx1 vector of i.i.d. N(0,oy,) errors. The reduced form

eguation for Y is

Y=2zM+V, (1.2)

where Z isa TxK;, matrix of fixed, exogenous instrumental variables, ITisaKyx1

coefficient vector, and V isa Tx1 vector of i.i.d. N(O,a) errors, where corr(u,V;) = p.



The two stage least squares (TSLS) estimator of Bis B™° = (Y'P2y)/ (Y'P2Y),

where P; = Z(2'Z)'Z’. Rothenberg (1984) expresses ™ as

ATSLS_ :|:|O-uuDU2 §u+(S/u/ﬂ) 1.3
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where ¢, = M1’Z°ul(0wl1°2’2MY?, &y = 1’Z’VI(owI1'Z'ZIM Y2, Sy = V'P2ul(0uow) Y2,
Sw = V'P2V/ow, and u is the square root of the concentration parameter, 1 =
’z’zZriow,.

Under the assumptions of fixed instruments and normal errors, {, and {y are
standard normal variables with correlation p, and S, and Sy are elements of a matrix
with acentral Wishart distribution. Because the distributions of ¢y, {v, Sw, and Sy, do
not depend on the sample size, the sample size enters the distribution of the TSLS
estimator only through the concentration parameter. In fact, the form of (1.3) makesit
clear that 1 can be thought of as an effective sample size, in the sense that ¢ formally
plays the role usually associated with JT . Rothenberg (1984) proceeds to discuss
expansions of the distribution of the TSLS estimator in orders of u, and he emphasizes
that the quality of these approximations can be poor when 1 is small. This has been
underscored by the dramatic numerical results of Nelson and Startz (1990a, 1990b) and
Bound, Jaeger and Baker (1995).

If 1% is so small that inference based on some IV estimators and their

conventional standard errors are potentially unreliable, then the instruments are said to be



weak. But thisraisestwo practical questions. First, precisely how small must 1 be for
instruments to be weak? Second, because /7, and thus (2, is unknown, how is an applied
researcher to know whether 12 isin fact sufficiently small that his or her instruments are
weak?

This paper provides answers to these two questions. First, we develop
guantitative definitions of what constitutes weak instruments. In our view, the matter of
whether a group of instrumental variablesisweak cannot be resolved in the abstract;
rather, it depends on the inferential task to which the instruments are applied and how
that inference is conducted. We therefore offer two alternative definitions of weak
instruments. Thefirst definition isthat a group of instrumentsisweak if the bias of the
IV estimator, relative to the bias of ordinary least squares (OLS), could exceed a certain
threshold b, for example 10%. The second is that the instruments are weak if the
conventional a-level Wald test based on IV statistics has an actual size that could exceed
acertain threshold r, for example r = 10% when a = 5%. Each of these definitions yields
aset of population parameters that defines weak instruments, that is, a“weak instrument
set.” Because different estimators (e.g., TSLS or LIML) have different properties when
instruments are weak, the resulting weak instrument set depends on the estimator being
used. For TSLS and other k-class estimators, we argue that these weak instrument sets
can be characterized in terms of the minimum eigenvalue of the matrix version of 1#/Ko.

Given this quantitative definition of weak instrument sets, we then show how to
test the null hypothesis that a given group of instrumentsis weak against the alternative
that it isstrong. Our test is based on the Cragg-Donald (1993) statistic; when thereisa

single endogenous regressor, this statistic is simply the “first-stage F-statistic”, the F-



statistic for testing the hypothesis that the instruments do not enter the first stage
regression of TSLS. The critical values for the test statistic, however, are not Cragg and
Donald' s (1993): our null hypothesisis that the instruments are weak, even though the
parameters might be identified, whereas Cragg and Donald (1993) test the null hypothesis
of underidentification. We therefore provide tables of critical values that depend on the
estimator being used, whether the researcher is concerned about bias or size distortion,
and the numbers of instruments and endogenous regressors. These critical values are
obtained using weak instrument asymptotic distributions (Staiger and Stock (1997)),
which are more accurate than Edgeworth approximations when the concentration
parameter is small.!

Additionally, this paper makes a separate contribution to the literature on
distributions of IV estimators with weak instruments. Bekker (1994) obtained first-order
distributions of various 1V estimators under the assumptionsthat K, — o, T — oo, and
Ko/T - ¢, 0< c<1,when /T isfixed and the errors are Gaussian. Chao and Swanson
(2002) have explored the consistency of 1V estimators with weak instruments when the
number of instrumentsislarge in the sense that K, is also modeled as increasing to
infinity, but more slowly than T. Sargan (1975), Kunitomo (1980) and Morimune (1983)
provided earlier treatments of large-K, asymptotics. We continue this line of work and

provide conditions under which the Staiger-Stock (1997) weak instrument asymptotics

hold, even if the number of instrumentsisincreasing, aslong as K2/T — 0. Werefer to
asymptotic limits taken under the sequence K, — o, T — o, such that K2 /T — 0 and

LP/K,is O(1), as many weak instrument limits. It is shown in the appendix that these

conditions justify using relatively straightforward sequential asymptotic calculations to



compute limiting distributions under such sequences. Here, these many weak instrument
limits are used to characterize the weak instrument sets when the number of instruments
ismoderate. Some of these results might be of more general interest, however; for
example, Chao and Swanson (2002) show that LIML is consistent under these conditions,
and we provideits /K, -limiting distribution.

This paper is part of agrowing literature on detecting weak instruments, surveyed
in Stock, Wright, and Y ogo (2002). Cragg and Donald (1993) proposed a test of
underidentification, which (as discussed above) is different than a test for weak
instruments. Hall, Rudebusch, and Wilcox (1996), following on work by Bowden and
Turkington (1984), suggested testing for underidentification using the minimum
canonical correlation between the endogenous regressors and the instruments. Shea
(1997) considered multiple included regressors and suggested looking at a partial 2.
Neither Hall, Rudebusch, and Wilcox (1996) nor Shea (1997) provide aformal
characterization of weak instrument sets or aformal test for weak instruments, with
controlled type | error, based on their respective statistics. For the case of asingle
endogenous regressor, Staiger and Stock (1997) suggested declaring instruments to be
wesak if the first-stage F-statistic isless than ten. Recently Hahn and Hausman (2002)
suggested comparing the forward and reverse TSLS estimators and concluding that
instruments are strong if the null hypothesis that these are the same cannot be rejected.
Relative to this literature, the contribution of this paper istwofold. First, we provide a
formal characterization of the weak instrument set for a general number of endogenous

regressors. Second, we provide atest of whether given instruments fall in this set, that is,



whether they are weak, where the size of the test is controlled asymptotically under the
null of weak instruments.

Therest of the paper isorganized asfollows. The IV regression model and the
proposed test statistic are presented in Section 2. The weak instrument sets are devel oped
in Section 3. Section 4 presents the test for weak instruments and provides critical values
for tests based on TSLS bias and size, Fuller-k bias, and LIML size. Section 5 examines
the power of the test, and conclusions are presented in Section 6. Results on many weak

instrument asymptotics are collected and proven in the appendix.

2. ThelV Regression Model, the Proposed Test Statistic, and

Initial Asymptotic Results
2.1. ThelV Regression Mode
We consider the linear 1V regression model (1.1) and (1.2), generalized to have n

included endogenous regressors Y and K; included exogenous regressors X:

y=YB+ Xy+u, (2.2)

Y=ZM+X®+V, (2.2)

whereY is now a Txn matrix of included endogenous variables, X is a TxK; matrix of
included exogenous variables (one column of which is 1’sif (2.1) includes an intercept),

and Z isaTxK; matrix of excluded exogenous variables to be used as instruments. Itis

assumed throughout that K, > n. Let Z =[X Z] denote the matrix of all the exogenous



variables. The conformable vectors 8and yand the [T and @ are unknown parameters.

Throughout this paper we exclusively consider inference about .

Let X, = (Xlt XKlt),’ = (th ZKzt),’ and Z; = (Xt, Zt,), denote the

vectors of the t™" observations on these variables. Also let Q and X denote the population

second moment matrices,

O z
B EW VD=L SMH=F adEZz) = TN 290=Q. (23
t[] O Pw 2wl Egzx Q0

2.2. k-Class Estimatorsand Wald Statistics

Let the superscript “*” denote the residuals from the projection on X, so for

example Y* = MxY, where My = | — X(X’X)*X’. In this notation, the OLS estimator of 8

is B = (YY) (YXy). Thek-class estimator of Bis,

A

BK) =YX -KM )Y Y0 -kM )y, (24)

The Wald statistic testing the null hypothesis that 8= B, based on the k-class

estimator, is

[B(K) =Bl TY (1 =kM YT B(K) - B,

Wk = 6. (K)

(2.5)




where 6., (k) = G°(k)0°(K) /(T — Ky — ), where G°(k) vty B

This paper considers four specific k-class estimators. TSLS, the limited
information maximum likelihood estimator (LIML), the family of modified LIML
estimators proposed by Fuller (1977) (“Fuller-k estimators’), and bias-adjusted TSLS

(BTSLS; Nagar (1959), Rothenberg (1984)). The values of k for these estimators are (cf.

Donald and Newey (2001)):
TSLS: k=1, (2.6)
LIML: k= IQUML isthe smallest root of det(Y'MxY - KY'MzY) =0, (2.7)

Fuller-k: k

K. —C/(T—Ki—Kj,), wherecisapositive constant, ~ (2.8)

BTSLS: k=T/(T—Kz+2), (2.9)

where det(A) is the determinant of the matrix A. If the errors are symmetrically
distributed and the exogenous variables are fixed, LIML is median unbiased to second
order (Rothenberg (1983)). In our numerical work, we examine the Fuller-k estimator
with ¢ = 1, which is the best unbiased estimator to second order among estimators with k
=1+a(k,,, —1)—c/(T—Ki—Ky) for some constants a and ¢ (Rothenberg (1984)). For
further discussion, see Donald and Newey (2001) and Stock, Wright, and Y ogo (2002,
Section 6.1).

2.3. The Cragg-Donald Statistic

The proposed test for weak instruments is based on the eigenvalue of the matrix

analog of the F-statistic from the first stage regression of TSLS,



Gr= YV P YR Z2IK,, (2.10)

where 2, = (YMzY)/[(T-K1—K) 2

Thetest statistic isthe minimum eigenvalue of Gr:

Omin = Mineval (Gr). (2.11)

This statistic was proposed by Cragg and Donald (1993) to test the null
hypothesis of underidentification, which occurs when the concentration matrix is
singular. Instead, we are interested in the case that the concentration matrix is
nonsingular but still is sufficiently small that the instruments are weak. To obtain the
limiting null distribution of the Cragg-Donald statistic (2.11) under weak instruments, we
rely on weak instrument asymptotics.
2.4. Weak Instrument Asymptotics: Assumptionsand Notation

We start by summarizing the elements of weak instrument asymptotics from
Staiger and Stock (1997). The essential idea of weak instrumentsisthat Z isonly weakly
related to Y, given X. Specifically, weak instrument asymptotics are developed by

modeling /17 aslocal to zero:

Assumption L M1=Tl;= C/JT , where C is afixed Koxn matrix with bounded

elements Cij <C.



Following Staiger and Stock (1997), we make the following assumption on the

moments:

Assumption M. The following limits hold jointly for fixed Ky:
p
@ (Twu, TVU, TVY) = (Gu, Zvw 3W);

b TZZ - Q

d
© (TYX'u, TY?Z’u, TY2X'V, TY2Z2V) = (W, Pou, Py, ¥ov), Where P=

[P, o, vec( B, vec(¥av)]’ is distributed N(O, Z® Q).

Assumption M can hold for time series or cross-sectional data. Part (C) assumes
that the errors are homoskedastic.
Notation and definitions. The following notation in effect transforms the

variables and parameters and simplifies the asymptotic expressions. Let p =
Ty o2 0=3r5, =02 X p A= QV2C V2, A= N AKy, and Q= Qzz -
Qzx Q;& Qxz. Notethat p’p< 1. Definethe K, x 1 and K, x n random variables, z, =

OV (¥y - Qzx QL Yo, * andz, = OV (¥oy — Qax QL ¥v) 2%, 0

q & ENN(O,EDIKZ),Where fzéi

o,
Hrec(z, )1 ,

. (2.12)

oo

Also let

10



vi=A+z) (A+z) and (2.13)

vo=(A+2z) z. (2.14)

2.5. Selected Weak Instrument Asymptotic Representations
For convenience, we summarize the following results from Staiger and Stock
(1997), using simpler notation.

OL S estimator. Under Assumptions L and M, the probability limit of the OLS
~ P
estimatoris - B+ 6.

d
k-class estimators. Supposethat T(k—1) — k. Then under Assumptions L and

ﬁ(k) -B i o2 2V (v -kl (va—kp) and (2.15)

W(k) i (VZ — Kp) I(Vl _Kl n)_l(vz _Kp) (2 16)
nl-2p'(v, —xl n)_l(vz —kp) +(v, ~&p)'(v, x| n)_2 v, —xp)] T

where (2.16) holds under the null hypothesis 8= .
For LIML and the Fuller-k estimators, k is arandom variable, while for TSLS and
BTSLS kisnonrandom. Let = bethe (n+ 1) x (n+ 1) matrix, ==

[0 (A+2)] [z (A+2)]. Thenthelimitsin (2.15) and (2.16) hold with:

11



TSLS: k=0, (2.17)

LIML: K = K*, where k* isthe smallest root of det(E— kX ) =0, (2.18)
Fuller-k: K = K* — ¢, where c isthe constant in (2.8), and (2.19)
BTSLS: K=Ky—-2. (2.20)

A~ d
Note that the convergence in distribution of T(k ,,, —1) — k* isjoint with the

convergencein (2.15) and (2.16). For TSLS, the expressionsin (2.15) and (2.16)

simplify to

~ d
B -B - ol v, and (2.21)

TS i V, 'Vl_lVZ
n(l_ 2p IVl_lVZ +V2 I1/1_2‘/2)

(2.22)

Weak instrument asymptotic representations. the Cragg-Donald statistic.
Under the weak instrument asymptotic assumptions, the matrix Gt in (2.10) and the

Cragg-Donald statistic (2.11) have the limiting distributions,

d
GT N V1/K2 and (223)

d
Omin — Mineval(vi/Ky). (2.24)

12



Inspection of (2.13) revealsthat v, has a noncentral Wishart distribution with
noncentrality matrix A’A = KoA. This noncentrality matrix is the weak instrument limit of

the concentration matrix:

p
S22 - KA. (2.25)

Thus the weak instrument asymptotic distribution of the Cragg-Donald statistic
Omin IS that of the minimum eigenvalue of a noncentral Wishart, divided by K3, where the
noncentrality parameter is Ko/A. To obtain critical values for the weak instrument test
based on gmin, We characterize the weak instrument set in terms of the eigenvalues of A,

the task taken up in the next section.

3. Weak Instrument Sets

This section provides two general definitions of aweak instrument set, the first
based on the bias of the estimator and the second based on size distortions of the
associated Wald statistic. These two definitions are then specialized to TSLS, LIML, the
Fuller-k estimator, and BTSLS, and the resulting weak instrument sets are characterized
in terms of the minimum eigenvalues of the concentration matrix.

3.1. First Characterization of a Weak Instrument Set: Bias

One consequence of weak instrumentsisthat IV estimators arein general biased,
so our first definition of aweak instrument set isin terms of its maximum bias.

When there is a single endogenous regressor, it is natural to discuss biasin the

units of B, but for n > 1, a bias measure must scale 8 so that the bias is comparable across

13



elements of B. A natural way to do thisis to standardize the regressors Y* so that they
/2

have unit standard deviation and are orthogonal or, equivalently, to rotate 8 by EjLYl ,

— 1L . . .
where X, . =E(Y7Y7/T). Inthese standardized units, the squared bias of an IV
estimator, which we generically denote ", is (E 8" -B'Z,.,. (EB" —PB). Asour

measure of bias, we therefore consider the relative squared bias of the candidate IV

estimator 3", relative to the bias of the OLS etimator,

_(EF"-B)Z,, (EB" -B)
(EF-B)'Z,..(EB-P)

B (3.1)
If n =1, then the scaling matrix in (3.1) drops out and the expression simplifiesto Br =
IEB" —BIIEB — Bl. The measure (3.1) was proposed, but not pursued, in Staiger and

Stock (1997).

The asymptotic relative bias, computed under weak instrument asymptotics, is

denoted by B = limr_,..Br . Under weak instrument asymptotics, E( ﬁ -p) - 0=

ow T e and X, - S, sothe denominator in (3.1) hasthe limit

(Eﬁ —,B)'EYLYL(E,B -B) - owpP'p. Thusthe square of the asymptotic relative biasis

(EBY -P)'Z,.,. (EBY -B) |

p'p

(3.2)

14



We deem instruments to be strong if they lead to reliable inferences for all
possible degrees of simultaneity p; otherwise they are weak. Applied to the relative bias

measure and assuming p’p > 0, thisleads us to consider the worst-case asymptotic bias,

Bmax = maXp ()<p(pg 1|B| (33)

Thefirst definition of aweak instrument set is based on this worst-case bias. We
define the weak instrument set, based on relative bias, to consist of those instruments that
have the potential of leading to asymptotic relative bias greater than some valueb. In

population, the strength of an instrument is determined by the parameters of the reduced

form equation (2.2). Accordingly, let Z={TI1, 2, Q}. Therelative bias definition of

weak instrumentsis

Whias ={ Z: B™* > b}. (3.4

Relative bias vs. absolute bias. Our motivation for normalizing the squared bias
measure by the bias of the OL S estimator is that it helps to separate the two problems of
endogeneity (OLS bias) and weak instrument (IV bias). For example, in an application to
estimating the returns to education, based on areading of the literature the researcher
might believe that the maximum OLS biasis ten percentage points; if therelative bias
measurein (3.1) is 0.1, then the maximum bias of the IV estimator is one percentage

point. Thusformulating the bias measurein (3.1) as arelative bias measure allows the

15



researcher to return to the natural units of the application using expert judgment about the
possible magnitude of the OLS bias. Thissaid, for TSLSit is possible to reinterpret the
maximal relative bias measure in terms of maximal absolute bias, a point to which we
return in Section 3.3.
3.2. Second Characterization of a Weak Instrument Set: Size

Our second definition of aweak instrument set is based on the maximal size of
the Wald test of all the elements of B. In parallel to the approach for the bias measure,
we consider an instrument strong from the perspective of the Wald test if the size of the

test isclosetoitslevel for all possible configurations of the IV regression model. Let

W" denote the Wald test statistic based on the candidate IV estimator 8" . For the

estimators considered here, under conventional first-order asymptotics W has a chi-
squared null distribution with n degrees of freedom, divided by n. The actual rejection

rate Rr under the null hypothesisis

Rr= Pr, [WY> »2 /n], (3.5)

where ;(,ia isthe a-level critical value of the chi-squared distribution with n degrees of

freedom and a isthe nominal level of the test.
In general, the rejection rate in (3.5) depends on p. Asin the definitions of the

bias-based weak instrument set, we consider the worst-case limiting rejection rate,

16



The size-based weak instrument set Ws 2 consists of instruments that can lead to a

sizeof atleastr > a:

Wame={Z: R™*>1}. (3.7)

For example, if a = .05 then aresearcher might consider it acceptable if the worst case
sizeisr =.10.
3.3 Weak Instrument Setsfor TSLS

We now apply these general definitions of weak instrument setsto TSLS and
argue that the sets can be characterized in terms of the minimum eigenvalue of A.

Weak instrument set based on TSLS bias. Under weak instrument asymptotics,

(BI%SY? % = (B9 and (39
'h'h
(BT 9?2 = MaXp: 0<pp<1 pp,pp ) (3.9)

where h = E[v;* (A + 2v)'2/]. The asymptotic relative bias B™-° depends on p and A,

which are unknown, aswell as K, and n.
Because h depends on A but not p, by (3.8) we have that B™ ™5 =

[maxeval (h’h)]¥?, where maxeval (A) denotes the maximum eigenvalue of the matrix A.

17



By applying the singular value decomposition to A it is further possible to show that the
maximum eigenvalue of h’h depends only on Ky, n, and the eigenvalues of A’A/K; = A. It
follows that, for a given K, and n, the boundary b of the TSLS bias weak instrument set is
afunction only of the eigenvalues of A.

When the number of instrumentsis treated as a slowly growing function of the

sample size, it is further possible to show that the boundary of the weak instrument set is

adecreasing function of the minimum eigenvalue of A. Specifically, consider sequences

of K;and T suchthat K, — o and T — o jointly, subject to KZ /T — 0, where A (which

in general depends on K5) isheld constant as K, — o; wewritethisjoint limit as (Ko, T
- o) and, asin the introduction, refer to it as representing “ many weak instruments.” It

follows from (3.9) and appendix Equation (A.14) that the many weak instrument limit of

B;I'S_S iS3’

. '(A+1)7?
lim ;. (BI¥®)? = %. (3.10)

By solving the maximization problem (3.9), we obtain the many weak instrument limit,

B™ ™5 = (1 + mineval(A))™. It follows that, for many instruments, the set Whias, ta.s

can be characterized by the minimum eigenvalue of A, and the TSLS weak instrument set

Wias, TaLs Can be written as

Whias, TS.S = {ZI mineval (/\) < {pias, Ts_s(b;Kz,n)}, (3.11)

18



where / pias 19.5(0;K2,n) is a decreasing function of the maximum allowable bias b.

Our formal justification for the simplification that Whias ta.s depends only on the

smallest eigenvalue of A, rather than on all its eigenvalues, rests on the many weak
instrument asymptotic result (3.10). Numerical analysis for n = 2 suggests, however, that
B™> ™5 s decreasing in each eigenvalue of A for all values of K,. These numerical
results suggest that the simplification in (3.11), relying only on the minimum eigenvalue,
isvalid for all K, under weak instrument asymptotics, even though we currently cannot
provide aformal proof.*

We note that although B™ was defined as maximal bias relativeto OLS, for

TSLS thisis also the maximal absolute biasin standardized units. The numerator of

(3.8) isevidently maximized when o’p = 1. Thus, for TSLS, (3.2) can be restated as
(B™)? = g3tmaxp pp-1 liMre (EB™°-B)' .. (EA™ -B). But

(EA™S-B)'Z,. . (EF™® - B) isthe squared biasof ™, not relative to the bias of
the OLS estimator. For TSLS, then, the relative bias measure can adternatively be
reinterpreted as the maximal bias of the candidate IV estimator, in the standardized units
of 6. 225Y2 .

Weak instrument set based on TSLSsize. For TSLS, it follows from (2.22) that

the worst-case asymptotic sizeis

0 v,V V,

R™ ™S = maxy gpe1 Pr
pepst a— 20V, +v, 'V, V

O
> Il (312)
2 O

19



R™* T35 and consequently Wiz, 1 s, depends only on the eigenvalues of A aswell asn

and K (the reason is the same as for the similar assertion for B™* ™5,

When the number of instrumentsis large, the Wald statistic is maximized when
P p=1andisanincreasing function of the eigenvalues of A. Specificaly, itisshownin

the appendix (Equation (A.15)) that the many weak instrument limit of the TSLS Wald

statistic, divided by K, is

1 _1
WSS, parl) p (3.13)
N1-2p(A+1,)"p+p(A+l,)"p]

Theright hand side of (3.13) is maximized when p’p = 1, in which case this expression
can bewritten, o/(A + 1) plo[1n — (A + 1) . In turn, the maximum of this ratio over

P depends only on the eigenvalues of A and is decreasing in those eigenvalues.

The many weak instrument limit of R™* ™-5is

R™ 5= maxg gpen lim r o) PITWSSKo > 0 /(K] =1, (3.14)

where the limit follows from (3.13) and from ;(,ia/(nKz) - 0. With many weak

instruments the TSLS Wald statistic W™ increases linearly in K5, so the boundary of the
weak instrument set, in terms of the eigenvalues of A, increases as a function of K,

without bound.

20



For small values of Ky, numerical analysis suggests that R™ ™-°isa
nonincreasing function of all the eigenvalues of A, which (if so) impliesthat the
boundary of the weak instrument set can, for small K5, be characterized in terms of this
minimum eigenvalue. The argument leading to (3.11) therefore applies here and leadsto

the characterization,

Wiz ta.s = { Z: mineva(A) < 7 gz 1a.5(r;K2,n,0) }, (3.15)

where / gz 1s.5(r;K2,n,a) is decreasing in the maximal alowablesizer.
3.4 Weak Instrument Setsfor Other k-class Estimators

The general definitions of weak instrument sets given in Sections 3.1 and 3.2 aso
can be applied to other 1V estimators. The weak instrument asymptotic distribution for
general k-class estimatorsis given in Section 2.2. What remains to be shown is that the
weak instrument sets, defined for specific estimators and test statistics, can be
characterized in terms of the minimum eigenvalue of A. Asin the case of TSLS, the
argument for the estimators considered here has two parts, for small K, and for large Ko.

For small K, the argument applied for the TSLS bias can be used generally for k-
class statistics to show that, given K, and n, the k-class maximal relative bias and
maximal size depend only on the eigenvalues of A. In general, this dependenceis
complicated and we do not have theoretical results characterizing this dependence.
Numerical work for n = 1 and n = 2 indicates, however, that the maximal bias and
maximal size measures are decreasing in each of the eigenvalues of A in the relevant

range of those eigenvalues. Thisin turn means that the boundary of the weak instrument
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set can be written in terms of the minimum eigenvalue of A, although this
characterization could be conservative (see footnote 4). °

For large Ky, we can provide theoretical results, based on many weak instrument
limits, showing that the boundary of the weak instrument set depends only on
mineval(A). These results are summarized here.

LIML and Fuller-k. It isshown in the appendix (Equations (A.19) and (A.20))
that the LIML and Fuller-k estimators and their Wald statistics have the many weak

instrument asymptotic distributions,

~ d
JK; (B™ =) — N(O, 0w Z A A+ 1= pp)A 2% (3.16)

d
WHME 2 XA+ 1y = p) PATHA + 1, = pp) Y xIn, where x ~ N(O, 1),  (3.17)

where these distributions are written for LIML but also apply to Fuller-k.
An implication of (3.16) isthat the LIML and Fuller-k estimators are consistent
under the sequence (Ko, T) — oo, aresult shown by Chao and Swanson (2002) for LIML.
Thus the many weak instrument maximal relative bias for these estimatorsis 0.
Animplication of (3.17) isthat the Wald statistic is distributed as aweighted sum
of nindependent chi-squared random variables. When n =1, it follows from (3.17) that

the many weak instrument size has the simple form,

, LIML _ - IML 2
R™ MY = maxg, pp<1 liMy, o PIW™ME > 2201
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A
=Prl x> el Kol (3.18)

that is, the maximal sizeisthetail probability that a chi-squared distribution with one

degree of freedom exceeds (A/(A + 1)) le;a . Thisevidently isdecreasing in A and

depends only on A (which trivially hereisits minimum eigenvalue).
BTSLS. The many weak instrument asymptotic distributions of the BTSLS

estimator and Wald statistic, derived in the appendix (Equations (A.16) and (A.17)), are

~ d
,Kz (ﬂBTS_S _ﬁ) . N(O, O-UUZV_\}IZ/\_J'(A + |n + pp()/\—lzvv—\:}.IZ/ ’ (319)

d
WETSS L (A + 1 + po)) PAHA + 1y + pp) Y2 xin, where x ~ N(O, 1).  (3.20)

It follows from (3.19) that the BTSLS estimator is consistent and that its maximal
relative bias tends to zero under many weak instrument asymptotics.
For n =1, the argument leading to (3.18) appliesto BTSLS, except that the factor

isdifferent: the many weak instrument limit of the maximal sizeis

Rmax, BTSLS — PI'[ le S

2
o ), (3:21)

which is a decreasing function of A.
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It isinteresting to note that, according to (3.18) and (3.21), for agiven value of A
the maximal size distortion of LIML and Fuller-k testsis |ess than that of BTSLS when
there are many weak instruments.

3.5. Numerical Resultsfor TSLS, LIML, and Fuller-k

We have computed weak instrument sets based on maximum bias and size for a
several k-class statistics. Here, we focuson TSLS bias and size, Fuller-k (withc=11in
(2.8)) bias, and LIML size. Because LIML does not have moments in finite samples,
LIML biasis not well-defined so we do not analyze it here.

The TSLS maximal relative bias was computed by Monte Carlo simulation for a
grid of minimal eigenvalue of A from 0to 30 for K, =n+ 2,..., 100, using 20,000 Monte
Carlo draws. Computing the maximum TSLS bias entails computing h defined following
(3.8) by Monte Carlo ssmulation, given n, Ky, then computing the maximum bias,
[maxeval (h’h)]¥2. Computing the maximum bias of Fuller-k and the maximum size
distortions of TSLS and LIML is more involved than computing the maximal TSLS bias
because there is no simple analytic solution to the maximum problem (3.6). Numerical
analysisindicates that R™> is maximized when p’p = 1, so the maximization for n = 2
was done by transforming to polar coordinates and performing a grid search over the half
unit circle (half because of symmetry in (2.22)). For Fuller-k biasand LIML size,
maximization was performed over this half circle and over 0 < p’p < 1. Because the bias
and size measures appear to be decreasing functions of all the eigenvalues, at least in the
relevant range, we set A = /1. The TSLS size calculations were performed using agrid
of ¢/ with0< ¢ <75 (100,000 Monte Carlo draws); for Fuller-k bias, 0 < ¢ < 12 (50,000

Monte Carlo draws); and for LIML size, 0< ¢ < 10 (100,000 Monte Carlo draws).
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The minimal eigenvalues of A that constitute the boundaries of Whias ts.s,

Weize, 795 YWhias, Fuller-ks @8N0 Wiz 1ML &€ plotted, respectively, in the top panels of

Figures 1 — 4 for various cutoff valuesb and r. First consider the regions based on bias.

The boundary of Whias 1o s 1S essentially flat in K; for K sufficiently large; moreover, the

boundariesfor n =1 and n = 2 are numerically very similar, even for small K,. The
boundary of the relative bias region for b = .1 (10% bias) asymptotes to approximately 8
for bothn=1and n=2. In contrast, the boundary of the bias region for Fuller-k tends to
zero as the number of instruments increase, which agrees with the consistency of the

Fuller-k estimator under many weak instrument asymptotics.

Turning to the regions based on size, the boundary of Wz, 19 s depends strongly

on K; and n; as suggested by (3.14), the boundary is approximately linear in K, for K,
sufficiently large. The boundary eigenvalues are very large when the degree of
overidentification islarge. For example, if oneiswilling to tolerate a maximal size of
15%, so the size distortion is 10% for the 5% level test, then with 10 instruments the

minimum eigenvalue boundary is approximately 20 for n = 1 and approximately 16 for

n= 2. In contrast, the boundary of Wsz, LimL decreases with K, for bothn =1 and n =2.

Comparing these two plots provides a concrete assessment that tests based on LIML are

far more robust to weak instruments than tests based on TSLS.
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4. Test for Weak Instruments

This section provides critical values for the weak instrument test based on the
Cragg-Donald (1993) statistic, gmin. These critical values are based on the boundaries of
the weak instrument sets obtained in Section 3 and on a bound on the asymptotic
distribution of gpin.
4.1 A Bound on the Asymptotic Distribution of gmin.

Recall that the Cragg-Donald statistic gnin 1S the minimum eigenvalue of Gr,
where Grisgiven by (2.10). Asstated in (2.23), under weak instrument asymptotics,
K>Gr isasymptotically distributed as a noncentral Wishart with dimension n, degrees of

freedom Ko, identity covariance matrix, and noncentrality matrix K,A; that is,

d
Gr - V1/K2 ~ Wn(Kz, I, Kz/\)/Kz (41)

Thejoint pdf for the n eigenvalues of a noncentral Wishart is known in the sense
that thereis an infinite series expansion for the pdf in terms of zona polynomials
(Muirhead [1978]). Thisjoint pdf depends on all the eigenvalues of A, aswell asn and
Kz. In principle the pdf for the minimum eigenvalue can be determined from thisjoint
pdf for all the eigenvalues. It appears that this pdf (the “exact asymptotic” pdf of gmin)
depends on all the eigenvalues of A.

This exact asymptotic distribution of gmin is not very useful for applications both
because of the computational difficulties it poses and because of its dependence on al the

eigenvalues of A. Thislatter consideration is especialy important because in practice
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these eigenvalues are unknown nuisance parameters, so critical values that depend on
multiple eigenvalues would produce an infeasible test.
We circumvent these two problems by proposing conservative critical values

based on the following bounding distribution.

Proposition 1. Primineval (Wn(K, I, A)) = X] < Pr[ xZ (mineval(A)) = x], where
% (a) denotes anoncentral chi-squared random variable with noncentrality

parameter a.

Proof. Let a be the eigenvector of A corresponding to its minimum eigenvalue.

Then a’'Wa isdistributed 7 (mineval(A)) (Muirhead [1982, Theorem 10.3.6]). But

a’Wa = mineva (W), and the result follows.
Applying (4.1), the continuous mapping theorem, and Proposition 1, we have that

Oy (mineval (K, A
Pr[gmin=X] — Pr[mineval(vi/Kz) = X] < Pr DZKZ( ° (K,A))
B 2

0
>2x1. (4.2
8

Note that this inequality holds as an equality in the special casen = 1.

Conservative critical values for the test based on gn,in are obtained as follows.
First, select the desired minimal eigenvalue of A. Next, obtain the desired percentile, say
the 95% point, of the noncentral chi-squared distribution with noncentrality parameter

equal to K, times this selected minimum eigenvalue, and divide this percentile by K».°
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4.2. TheWeak Instruments Test

The bound (4.2) yields the following testing procedure to detect weak
instruments. To be concrete, thisis stated for atest based on the TSLS bias measure with
significance level 1000%. The null hypothesisis that the instruments are weak, and the

aternative isthat they are not:

Ho: Z € Whias tas VS Hii Z & Whias 1sLs- (4.3)

The test procedureis

Reject Ho if Omin = dpias, 19 5(b; K2,Nn,9), (4.4)

where dyias ta.s(0; K2,n,0) = K;* 7 1 5 (Kot bias as (0;K2,n)), where y¢ | ; (m) isthe

100(1-9)% percentile of the noncentral chi-squared distribution with K, degrees of
freedom and noncentrality parameter m and the function / piss 195 1S the weak instrument
boundary minimum eigenvalue of Ain (3.11).

The results of Section 3 and the bound resulting from Proposition 1 imply that,

asymptotically, the test (4.4) has the desired asymptotic level:

liMT_seo Pr{Omin 2 doias ta.s(b; K2,n,0) | Z € Whias Tas] < 0. (4.5)
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The procedure for testing whether the instruments are weak from the perspective
of the size of the TSLS (or LIML) is the same, except that the critical valuein (4.4) is
obtained using the size-based boundary eigenvalue function, ¢ 4, s s(r;K2,n,a) (or, for
LIML, 7 sz Lim (r;Kz,n,a)).

4.3. Critical Values
Given aminimum eigenvalue /, conservative critical valuesfor the test are

percentiles of the scaled noncentral chi-squared distribution, }(Iiz,l— s (K22)IKa. The

minimum eigenvalue ¢ is obtained from the boundary eigenvalue functions of Section
3.5.

Critical values are tabulated in Tables 1 — 4 for the weak instrument tests based on
TSLSbias, TSLS size, Fuller-k biasand LIML size, respectively, for 1 or 2 included
endogenous variables (and 3 for TSLS bias) and up to 30 instruments. These critical
values are plotted in the panel below the corresponding boundaries of the weak
instrument setsin Figures 1 —4. The critical value plots are qualitatively similar to the
corresponding boundary eigenvalue plots, except of course the critical values exceed the
boundary eigenvalues to take into account the sampling distribution of the test statistic.

These critical value plots provide a basis for comparing the robustness to weak
instruments of various procedures. the lower the critical value curve, the more robust is
the procedure. For discussion and comparisonsof TSLS, BTSLS, Fuller-k, JVE, and
LIML, see Stock, Wright, and Y ogo (2002, Section 6).

Comparison to the Staiger-Stock (1997) rule of thumb. Staiger and Stock (1997)
suggested the rule of thumb that, in the n = 1 case, instruments be deemed weak if the

first-stage F isless than ten. They motivated this suggestion based on the relative bias of
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TSLS. Because the 5% critical value for the relative bias weak instrument test with b =
1 isapproximately 11 for all values of Ky, the Staiger-Stock rule of thumb is
approximately a 5% test that the worst case relative bias is approximately 10% or less.
This provides aformal, and not unreasonable, testing interpretation of the Staiger-Stock
rule of thumb.

The rule of thumb fares less well from the perspective of size distortion. When
the number of instrumentsis one or two, the Staiger-Stock rule of thumb correspondsto a
5% level test that the maximum size is no more than 15% (so the maximum TSLS size
distortion is no more than 10%). However, when the number of instruments is moderate
or large, the critical value is much larger and this rule of thumb does not provide

substantial assurance that the size distortion is controlled.

5. Asymptotic Properties of the Test asa Decision Rule

This section examines the asymptotic rejection rate of the weak instrument test as
afunction of the smallest eigenvalue of A. When this eigenval ue exceeds the boundary
minimum eigenvalue for the weak instrument set, the asymptotic rejection rate is the
asymptotic power function.

The exact asymptotic distribution of gnmin depends on al the eigenvalues of A. It
is bounded above by (4.2). Based on numerical analysis, we conjecture that this
distribution is bounded below by the distribution of the minimum eigenvalue of arandom
matrix with the noncentral Wishart distribution W(K>, 1,, mineval (KoA)l 1)/Kzo. These
two bounding distributions are used to bound the distribution of gy, as afunction of

mineval (A).
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The bounds on the asymptotic rejection rate of the test (4.4) (based on TSLS
maximum relative bias) are plotted in Figure 5 for b=.1 and n = 2. The value of the
horizontal axis (the minimum eigenvalue) at which the upper rejection rate curve equals
5% is /pias(.1;K2,2). Evidently, as the minimum eigenvalue increases, so does the
rejection rate. If K, is moderate or large, thisincreaseis rapid and the test essentialy has
unit power against values of the minimum eigenvalue not much larger than the critical
value. The bounding distributions give a reasonably tight range for the actual power
function, which depends on all the eigenvalues of A.

The analogous curves for the test based on Fuller-k bias, TSLS size, or LIML size
are centered differently because the tests have different critical values but otherwise are
qualitatively similar to those in Figure 5 and thus are omitted.

I nterpretation as a decision rule. It isuseful to think of the weak instrument test
asadecisionrule: if gmin islessthan the critical value, conclude that the instruments are
weak, otherwise conclude that they are strong.

Under this interpretation, the asymptotic rejection ratesin Figure 5 bound the
asymptotic probability of deciding that the instruments are strong. Evidently, for values
of mineval (A) much below the weak instrument region boundary, the probability of
correctly concluding that the instruments are weak is effectively one. Thus, if in fact the
researcher is confronted by instruments that are quite weak, thiswill be detected by the
weak instruments test with probability essentialy one. Similarly, if the researcher has
instruments with a minimum eigenvalue of A substantially above the threshold for the
weak instruments set, then the probability of correctly concluding that they are strong

also isessentially one.
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The range of ambiguity of the decision procedure is given by the values of the
minimum eigenvalue for which the asymptotic rejection rates effectively fall between
zero and one. When K5 is small, this range can be ten or more, but for K; large this range

of potential ambiguity of the decision rule is quite narrow.

6. Conclusions

The procedure proposed hereissimple: compare the minimum eigenvalue of Gr,
the first-stage F-statistic matrix, to acritical value. The critical value is determined by
the IV estimator the researcher is using, the number of instruments K, the number of
included endogenous regressors n, and how much relative bias or size distortion the
researcher will tolerate. The test statistic is the same whether one focuses on the bias of
TSLS or Fuller-k or onthe size of TSLS or LIML,; all that differsisthe critical value.

Viewed as atest, the procedure has good power, especially when the number of
instrumentsislarge. Viewed as adecision rule, the procedure effectively discriminates
between weak and strong instruments, and the region of ambiguity decreases as the
number of instruments increases.

Our findings support the view that LIML isfar superior to TSLS when the
researcher has weak instruments, at least from the perspective of coverage rates. Actual
LIML coverage rates are close to their nominal rates even for quite small values of the
minimum eigenvalue, especially for moderately many instruments. Similarly, the Fuller-
k estimator is more robust to weak instruments than TSLS, when viewed from the
perspective of bias. Additional comparisons across estimators based on these methods

are discussed in Stock, Wright, and Y ogo (2002).
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When there is a single included endogenous variable, this procedure provides a
refinement and improvement to Staiger and Stock’ s (1997) rule of thumb that, inthen =
1 case, instruments be deemed “weak” if the first-stage F isless than ten. The difference
between that rule of thumb and the procedure of this paper is that, instead of comparing
the first-stage F to ten, it should be compared to the appropriate entry in Table 1 (TSLS
bias), Table 2 (TSLS size), Table 3 (Fuller-k bias), or Table 4 (LIML size). Those critical
values indicate that their rule of thumb can be interpreted as a test with approximately a
5% significance level, of the hypothesis that the maximum relative biasis at least 10%.
The Staiger-Stock rule of thumb istoo conservativeif LIML or Fuller-k are used unless
the number of instrumentsis very small, but it is insufficiently conservative to ensure that
the TSLS Wald test has good size.

This paper hastwo loose ends. First, the characterization of the set of weak
instrumentsis based on the premise that the maximum relative bias and maximum size
distortion are nonincreasing in each eigenvalue of A, for values of those eigenvaluesin
the relevant range. Thiswas justified formally using the many weak instrument
asymptoticsin the appendix; although numerical analysis suggestsit istrue for all Ky,
thisremainsto be proven. Second, the lower bound of the power function in Section 5is
based on the assumption that the cdf of the minimum eigenvalue of a noncentral Wishart
random variable is nondecreasing in each of the eigenvalues of its noncentrality matrix.
This too appears to be true based on numerical analysis but we do not have a proof nor
does this result seem to be available in the literature.

Beyond this, several avenues of research remain open. First, the tests proposed

here are conservative when n > 1 because they use critical values computed using the
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noncentral chi-squared bound in Proposition 1. Although the tests appear to have good
power despite this, tightening the Proposition 1 bound (or constructing tests based on all
the elgenvalues) could produce more powerful tests. Second, we have considered
inference based on TSLS, Fuller-k, and LIML, but there are other estimators to explore as
well. Third, the analysis here is predicated upon homoskedasticity, and it remains to
extend these teststo GMM estimation of the linear 1V regression model under

heteroskedasticity.



Appendix

This appendix extends the fixed-K, weak instrument asymptotics of Staiger and

Stock (1997) to the case of many weak instruments. Specifically, we suppose that the

number of instruments can increase with the sample size but that KZ/T — 0. The

instruments are modeled as being weak, in the sense that the weak instrument assumption
L of Section 2.4 is assumed to hold, which in turn implies that the scaled concentration
matrix A isfiniteas T — o, Under these assumptions, plus some additional technical

assumptions stated below (including i.i.d. sampling), it is shown that the limits of k-class
IV statistics as K, and T jointly tend to infinity can in general be computed using
sequential asymptotic limits. Under sequential asymptotics, the fixed-K, weak
instrument limit isfirst obtained, then the limit of that distribution is taken as Ky — co.

The advantage of this“first T then K, approach is that the sequential calculations are
simpler than the calculations that arise along the joint sequence of (Ky, T).

We begin in Section A.1 by specifying the assumptions. Section A.2 justifies the
sequential asymptotics by showing that, under these assumptions, a key uniform
convergence result (Lemma 6 in Phillips and Moon (1999)) holds. In Section A.3, we
derive the many weak instrument limits of k-class estimators and test statistics using

sequential asymptotics. Section A.4 provides some concluding remarks.

A.1l. TheModel, Notation and Assumptions
To simplify the expressions, we consider the IV regression model with no

included exogenous variables, that is, (2.1) and (2.2) without the X variables. Because
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this appendix is concerned with sequences of Ky, it isuseful to indicate dependence of A

onK,. Accordingly, let A4, = X/*C’QzC X,,/*’IK; be the matrix A in the text,

explicitly indexed by K, A, isthe expected value of the concentration matrix (divided

by K3) when there are K, instruments.
Throughout this appendix, it is assumed that the random variables arei.i.d. with
four moments, the instruments are not multicollinear, and the errors are homoskedastic.

Specifically, we assume,

Assumption Al.

(8) There exists aconstant D1 > 0 such that mineval(Z’Z/T) = D; a.s. for al K,
and for al T greater than some T,

(b) Zisi.i.d. with EZ;Z{ = Qzz, where Q27 is positive definite, and EZ;! < D, <
o, i=1,..., Ko

(© ne=[uw V{1 isii.d with E(n:| Z) =0, E(nn! | Zy) = 2, and

E(minenend | Zo) = E(ninjiee) < D2 < oo, i, j, Kk 1 =1,...,n+ 1.

Our analysis focuses on sequences of K that, if they increase, do so slower than

JT. Specifically, we assume,

Assumption A2. KZ/T - 0asT - .
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Note that Assumption A2 does not require K; to increase, but it limits the rate at

which it can increase.

A.2. Uniform Convergence Result

This section provides the uniform convergence result (Theorem A.1) that justifies
the use of sequential asymptotics to compute the many weak instrument limiting
representations. We adopt Phillips and Moon’s (1999) notation in which (T, Ky - 00) gy
denotes the sequential limit in which first T — oo, then K, — oo; the notation (K, T — o)
denotes the joint limit in which K, isimplicitly indexed by T.

Lemma 6 of Phillips and Moon (1999) provides general conditions under which

sequential convergence implies joint convergence.

Phillips and Moon (1999) Lemma 6.

(@) Suppose there exist random vectors Xk and X on the same probability space as
p p
XK,T SGIISfyIng, for all K, XK,T - XkasT - oand Xk - XasK - o, Then,

p
Xkt - Xas(K, T - o) if and only if,

lim supx, 1 Pr[ || Xk 1= Xk|| > & =0for al £>0. (A1)

d
(b) Suppose there exist random vectors Xk such that, for any fixed K, Xk 1 - Xg

d d
aST > wand Xk - XasK - . Then Xkt - Xas(K, T - o) if and only

if, for al bounded continuous functions f,
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lim supxr | E[f(X«7)] — E[f(X«)] | = 0. (A.2)
Note that condition (A.2) is equivalent to the requirement that

[im supk T Supx | P (x) —F (x)]=0, (A.3)

where F, isthecdf of X«rand F,_isthecdf of X«.

Therest of this section is devoted to showing that the conditions of thislemma,
that is, (A.1) and (A.3), hold under assumptions L, A1, and A2 for the statistics that
enter the k-class estimators and tests. To do so, we use the following Berry-Esseen

bound proven by Gotze (1991, equation (1.5)):

Berry-Esseen Bound (Gotze (1991)). Let {Xy,..., X7} beani.i.d. sequencein R*

with zero means, a nonsingular second moment matrix, and finite absolute third
T X
moments. Let Py be the probability measure associated with T2 Zm t,and let

P be the limiting Gaussian measure. Then for each T,

sup,_« [Pr(A) — P(A)] < const x (KIT)"2, (A.4)

where CK isthe class of all measurable convex setsin R .
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We now turn to k-class statistics. First note that, for fixed K,, under Assumptions

Lrand Al, the weak law of large numbers and the central limit theorem imply that the

following limits hold jointly for fixed Ka:

p
Ty, TVU, TVY) - (Gu Sve 3W),
p
n'zzn - C’'QzC,
d
(M'Z'u, MN’Z’V) - (C’'¥u, C’'¥2v),

d
(U'Pzu, V'Pzu, V'P2V) = (%2 Qn ¥ou, ¥ Qn Wou, ¥ QL ¥av),

(A.5)

(A.6)

(A7)

(A.8)

where Y= [ ¥/, vec( ¥v)’]’ (defined in Assumption M) is distributed N(O, 2 ® Q7).

The following theorem shows that, in fact, the limitsin (A.5) — (A.8) and related

limits hold uniformly in K, under the weak instrument assumption (Assumption Lp),

the

sampling assumption (Assumption A1), and the rate condition (Assumption A2). Asin

(A.3), let Fx denote the cdf of the random variable X (etc.).

Theorem A.1. Under AssumptionsLp, Al, and A2,

@ limsup, . Pr| (Uu/T, VUIT, V'VIT) = (Ow, 2w, 2w) |> € =0 0 £>0,
(b) limsup, . Pr[| 11°Z’ZIM/K; — C’'QzzC/K, | > €] =0 O £>0,
(¢) limsupy rsupx|Frzu(X) — Fey, (X) [=0,

(d) limsup, ;supx |Fr-zv(X) = Fey,, (X) [=0,
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(e |imSUpK2’-|- Supx | Fu'qu(X) - FWZuIQE%.FZu () 1=0,
(1) TSI SUBc | Ry, () = oy, () 120,

(9) limsupy, - supx | Ky (X) — F'sz QA ¥y (x) [=0.

Theorem A.1 verifies the conditions (A.1) and (A.3) of Phillipsand Moon’'s
(1999) Lemma 6 for statistics that enter the k-class estimator and Wald statistic. Some of
these objects converge in probability uniformly under the stated assumptions (parts (a)
and (b)), while others converge in distribution uniformly (parts (c) —(g)). It followsfrom
the continuous mapping theorem that continuous functions of these objects aso converge

in probability (and/or distribution) uniformly under the stated assumptions. Because the
k-class estimator ﬁ(k) and Wald statistic W(K) are continuous functions of these
statistics (after centering and scaling as needed), it follows that the (K,, T — o) joint

limit of these k-class statistics can be computed as the sequential limit, (T, Kz - 00)ggq.

The proof of Theorem A.1 uses the following lemma.

LemmaA.2. LetAr=(2’2IT) - Q. - Under Assumptions Al and A2,
(@ limsup, . Pr[| T7wZArZ’u|>€] =00 £>0,
(b) limsup, . Pr[| T™V'ZAr Z’u |>€ =0 0 >0,

(©) limsup, - Pr[| TV'ZArZ’V|>€ =00 £>0.

Proof of Lemma A.2.
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(@) Thestrategy isto show that T u’ZAr Z’u has expected mean square that is

bounded by const x ( KZ/T), then to apply Chebychev’ sinequality. The expected square

of TIu'ZArZ’uis

T T T
E

.
E(T'uzZAr Zu)i?= = Z U UuZ, 'AZ Z'AZ,

g=1 r=1 s=

T_12 Zu (Z.'A.Z,) +—EZ Z WUA(Z,' A Z,)(Z,'A Z,)

+—E ului(Z,'4.2.)% . (A.9)
3,3, s
The first term on the right hand side of (A.9) is

1 & 4., , _ 1 P . _A-L 2
FE;ut (Z2,'4.2,) _F(Eu‘); EZ [(2'21T)-Q;1Z}

[ERN

= Z(BUHE[Z,(Z'Z1T)Z, - Z,'Q;: Z,)?

_|

=~

(Eu'{E[Z,(Z'ZIT)"Z ]

—2E[(Z,(Z'ZIT)*Z)(Z,'Q A Z) +E[Z,'QA 2],  (A.10)

where the second line follows because Z; isi.i.d. Now E[Z{(Z'Z/T)Z]? <

E[Z/Z:maxeval[(Z'Z/T)™]? = E[Z/Z/mineval (Z'ZIT)]* < D> E(Z/Z)* = const x K2,
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where the second inequality follows from Assumption A.1. Similar calculations show

that E[Z/(Z2'ZIT) " Z(Z{ Q,% Zy)] < constx K2 and E[Z/ Q,2 Z{]* < const xK2,
the second two terms after the final equality in (A.10) are< const x K?. It follows from

(A.10) that
.
T‘ZEZ u'(Z,'4.2,)* <const x KZ/T. (A.11)
1=
The second term on the right hand side of (A.9) is

1 T T

2 1T T
E VUA(Z,'A2)(Z. a7, = S E 7 AZNZ A7
T2 4 t:gm S t( t AT t)( s AT s) -I-2 ;t:'ms( t AT t)( s AT s)

7]

0_2

< T—u;EZZ(zt'ATZt)(z;ATZS)

7' zon’

, Ol & . DZ_ , U 0O
O-quB]TtZ(Zt ATZt)H - O-qugr BAT H%E

2
L, OZ'Z00 00 g, oz'zon 0
=o’Erd -Q4 zajuEE[trggl 7 — K20
ZZBT HD ZZBT II%II 25
0 mJ Lo 0O
= o, [E Zt'inth -KJ0
B = B

Dl T o 1 T T o o D
o, %—Z E(Z,'QuZ,) +;; Z E(Z,'QaZ)(Z,'QsZ,) - ng

2 _ 2 |:| 2
TK; +I0 21)K2 -Kig= COﬂStXO'uzu&, (A.12)
T T 0 T

, O
= uu |j:0nSt X
0
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where the penultimate equality follows because E(Zy Q,2 Zy) = Kz and E(Z¢ Q52 Zy)* =
const x KZ.

The third term on the right hand side of (A.9) is

2 il 2.2 1 2 2 1 : il 1 2
_2 Z U U, (Zt ATZS) - 20'qu—2 (Zt ATZS)
NESS

s=1t=1t#s

0z'z0, 02'Z00 qu%ra 402 yAunis
g

- 2oL T T “BT e

- 2l 20 ;gZﬁ@%A%ﬁ

D

= 252 HEHL S TZ'Q‘lz Z.'Q;! 0
uu|:| B—I-_thS: t y74 E 2|:|

T T

= O'uugr—ZE(Z 'Q3Z,)? +T—tZS:;#Etr(Q£Z Q32,2 - KZE

TK; T(T-DK, O

= 202, m:onstx -K,0
T? T? in

= 207, [ponst X |_<r -—0 (A.13)



where the penultimate equality uses Etr(Q,; Z<Zs Q2 ZiZ{') =tr(1) = K, for s# t and
E(Z/ Q;% Zy)* = const x K2,

The application of (A.11), (A.12), and (A.13) to (A.9) implies that E(T*u’ZA;
Z’u)® < constxo’ K2/ T , and the desired result () follows by Chebychev’ s inequality.

The proofs of (b) and (c) are analogous to the proof of (a).

Proof of Theorem A.1.
(& Thisfollowsfrom the weak law of large numbers because (u’u/T, V'u/T, V'VIT) do
not depend on Ko.

(b) Note that E[ 7 °Z’ZIM/K; — C’QzzCIK3] = 0. Under Assumption L, the (1, 1) element

of this matrix is (172’21 - C'QzzCha/Kz = (TK,) ™y 5" C.C(Z,Z, — ;) , where

j=1 i1
gij isthe (i, j) element of Qzz. Because Z;isi.i.d. (Assumption A1(b)) and the elements

of C are bounded (Assumption L), the expected value of the square of thiselement is

E{[(IT1"Z’Z - C'Q2C)1 /K] leat i ZKZC C.(Z.Z, —q )D
—_ i = — ; . i - i |:|
7zC)1.1/K2 T jj?z 2,2 1\ Sl — Ui

1 Ko Ko Ko Ky 2

1 K
— C.C.C.C.E[(Zz.Z,-o)Z.Z, — < const x —%.
T K22 £ JZ;Z i1~j1 klcll [( it=jt qu)( kt it qkl )] T

By the same argument applied to the (1,1) element, the remaining elements of

1 ’Z’ZMIK, — C’Q2zC/K; are also bounded in mean square by const x (KZ/T). The

matrix I1’Z’ZIIK; isn x n so the number of elements does not depend on K, and the
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result (b) follows by Chebychev’ sinequality and noting that, under Assumption A2,
KZ/T - 0.

(¢) Under Assumption Lp, 11°Z’'u=TY?C’Z’u=C’(T™? Z;th ). Let Py denote the
probability measure associated with T?Z’u and let P denote the limiting probability
measure associated with ¥%,. Define the convex set A(x) = {y OR"2: C’y < x}, so that
Pr(A(X)) = Fr-zu(x) and P(A(X)) = Fow, (x). By Assumption A.1, Ziuisani.i.d., mean
zero Ko-dimensional random variable with finite third moments, so Gotze's (1991) Berry-
Esseen bound (A.4) applies and supy | Fr-zu(X) — Fey, (X) [< constx (K, /T . The

result (c) follows from Ko/T — 0 by Assumption A2. We note that this line of argument
isused in Jensen and Mayer (1975).

(d) The proof isthe same asfor (c).

(e) Write, wPzu = (T Y2z)(T*2’2)(T™V%72’u) = & + &, where & =

(TY2wz) Q2 (T™22'u), and & = (T™Y2u'Z)A(T?Z’u). Asinthe proof of (c), let Py
denote the probability measure associated with TZ’u and let P denote the limiting

probability measure of ¥,. Let B(x) bethe convex set, B(x) ={y OR**: Y Q.2 y<x}, s0

that Pr(B(X)) = F. (x) and P(B(X)) = F,, v (x). It followsfrom (A.4) that

p
supy | F.(X) — F, . (X) |<constx /K, /T . By LemmaA.2(a), & — Ouniformly

as(Kz, T - o), and the result (e) follows.
(f) and (g). The dimensions of V'Pzu and V’'PzV do not depend on K5, and the proofs of

(f) and (g) are similar to that of (e).
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A.3. Many Weak Instrument Asymptotic Limits

This section collects calculations of the many weak instrument asymptotic limits
of k-class estimators and Wald statistics. Because of Theorem A.1, these calculations are
performed using sequential asymptotics, in which the fixed-K, weak instrument
asymptotic limitsin Section 2.4 are analyzed as K, — . The limiting distributions differ

depending on the limiting behavior of k. The main results are collected in Theorem A.3.

Theorem A.3. Suppose that Assumptions Lz and Al hold; that A, - A, where

maxeval (A\s,) < oo; and that K, — w0 and T — o subjectto KZ/T - 0. Letx bea

n-dimensional standard normal random variable. Then the following limits hold
as(Kz, T - o0):

(@ (TSLS) If T(k—1)/K» — O, then

BK) -B = 0l ZV2(Ne+ 1) p and (A.14)

KK, pA.+1,)"p . A.15
MO =~ 2+ 1) p +p (A +1,) 7] (A1)

(b) (BTSLS) If /K, [T(k—1)/K»—1] - 0and mineval(A) >0, then

JG (BO) =B) = NO, 0w Z2 A2 N+ 1o+ p) AL 52 and (A.L6)
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WK = X (Ao + In+ pPYY2 A (N + 1 + ppr)V2x0N. (A.17)

(©) (LIML, Fuller-K). If T(k—kum)/\/K, - 0and mineval(Aw) > O, then

JK, [T(k=1)/K, = 1] ° N(O, 2), (A.18)
JG (B =B = NO, 0w 5V AX (e + 10— pp) A2 527) and  (A9)

W(K) ° X (N + 10— p) 2 A (Neo + 11— po)Y2xI0. (A.20)

Before proving Theorem A.3, we first state some limiting properties of random
variables that appear in the weak instrument representations. Let z,, zy, and p be as
defined in Section 2.4, and let v; and v, be as defined in (2.13) and (2.14). Then the

following limits hold jointly as K, — oo:

VKo Awtl, (A.21)
VK, - p (A.22)
z,'z,-K,
Ik
| d 02 0  2p' O
~ N(O,B),whereB=30 A, 0 . (A3

Rp 0 I,+ppY

N

N &

|

)
MOoO0O000O0oo

I Y
b

%
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(Va—Kop)/ JK, = N(O, Aw + 1+ pp). (A.24)

Theresults (A.21) — (A.24) follow by straightforward cal culations using the
central limit theorem, the weak law of large numbers, and the joint normal distribution of
z,and zy in (2.12).

Proof of Theorem A.3.

(& From (2.21), the fixed-K, weak instrument approximation to the distribution of the

TSLSestimator is f7° — B~ o2 XV vy, = 62 5,42 (v, 1 K,) X (v,/K,). The

limit stated in the theorem for the estimator follows by substituting (A.21) and (A.22)
into this expression. The many weak instrument limit for the Wald statistic follows by

modifying (2.22) to be

(VZ / K2) '(Vl/ KZ)_l(VZ / KZ)

TSLS
W /K2 ~ ' -1 ' -2
nl-2p (Vll Kz) (Vz / Kz) +(V2 / Kz) (Vll Kz) (Vz / Kz)]

and applying (A.21) and (A.22).
(b) The fixed-K; weak instrument approximation to the distribution of a k-class

estimator, given in (2.15), in general can be written,

" - O -k 0 O
Ko 1A) -~ otz iels 1 2.0
5 K JKEJKHE



- O k.0 O
X 2 2p K- 2 (A25)
K B R

[

d
where T(k—1) — k for fixed K,. The assumption \/K—z [T(k=1)/K;—1] - Oimplies

that (k —Ky)/ /K, — 0, soby (A.21) and (A.24) we have, asK; — oo,

_ U p
vi—K,l, 1 Kzﬁl AL and
K2 K2 VKZ

Voo Kep Koo, C N A+ 1 + pp)
NI E”

and the result (A.16) follows. The assumption mineval(A.) > 0 is used to ensure the

invertibility of A». The distribution of the Wald statistic follows.

d
(c) Forfixed Ky, T(kyme —1) —» «*. We show below that, asK, — oo,

K 22K o (A.26)
JK, JK, "

Theresult (A.18) follows from (A.26) and (A.23). Moreover, applying (A.21), (A.23),

(A.24), and (A.26) yidlds,
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5 N, Au+10— pp),

where A., isinvertible by the assumption mineval(A.) > 0. Theresult (A.19) follows, as
does the distribution of the Wald statistic.

It remainsto show (A.26). From (2.18), k* isthe smallest root of,

0=det [ —k* - (A.27)

Let 9= (k* =Ko/ |[K, , a= (22— Ko)/\[K; , b= (V2= Kop)/ K, , and L = (v —

Kol n)/Kz. Then (A.27) can be rewritten so that @is the smallest root of

Oa-¢  (b-¢gp)' O

0 =det .
D-dp K L-gl.F

(A.28)
Wefirst show that K;%*@ . 0. Let ¢ = K;¥* @ By (A.21), (A.23), and (A.24), K;*“a

p p p
-~ 0, K;""b - 0,andL - A.. By the continuity of the determinant, it follows that in

thelimit K, — o, ¢ isthe smallest root of the equation,
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O:detgfb z w 1/4D
@e 21, +0,(KN)g

, (A.29)
from which it followsthat ¢ = K;¥*¢ — 0.

To obtain (A.26), write the determinantal equation (A.28) as

0= [(a—9) — (b— @D/ (K}*L — 1) (b @] det(KI*L — ¢1.)
= K" {(@= 0 - [K," (0—Al'(L - K" g 'K, (b—gp)det(L - K" 1)

= K;"*{[(a~ @]det(A) + 0p(1)}, (A.30)

p p p
where the final equality followsfrom K;Y*b - 0,L - As, K;"*¢@ - 0, and det(A.) >

0. By the continuity of the solution to (A.28), it follows that ¢= a + 0y(1) which, in the

original notation, is (A.26).

A.4. Remarks

1. Tosimplify the calculations, we have assumed i.i.d. sampling. Goétze (1991) provides

aBerry-Esseen bound for i.n.i.d. sampling in which the rate is KZ/T - O rather than

therate of Ko/T — 0, which appearsin hisresult quoted in Section A.2. Because we
dready assumethat K2/T - O (thisrateis used in the consistency calculationsin

Theorem A.1(b) and LemmaA.2), the results in Section A.2 extend to the case where
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the errors and instruments are independently but not necessarily identically
distributed.

. The many weak instrument representations in Theorem A.3 for BTSLS, LIML and
the Fuller-k estimator rule out the partially identified and unidentified cases, for
which mineval (A.) = 0. This suggests that the approximationsin Theorem A.3(b)
and (c) might become inaccurate as A, becomes nearly singular. The behavior of
the many weak instrument approximationsin partially identified and unidentified

cases remain to be explored.
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Endnotes

! See Rothenberg (1984, pp. 921) for adiscussion of the quality of the Edgeworth
approximation as a function of 1% and Ko.

% The definition of Grin (2.10) is Grin Staiger and Stock (1997, eg. (3.4)), divided by K,
to put it in F-statistic form.

% In the appendix, the assumption that A is constant is generalized slightly to consider
sequences of A, indexed by Ko, that have afinite limit A, asK, — oo,

“ Because in general the maximal bias depends on all the eigenval ues, the maximal bias
when all the eilgenvalues are equal to some value ¢ o might be greater than the maximal

bias when one eigenvalue is dlightly less than 7 ¢ but the others are large. For this reason

the set Whias IS potentially conservative when K, issmall. This comment appliesto size-

based sets as well.

> |t appears that there is some non-monotonicity in the dependence on the eigenval ues for
Fuller-k bias when the minimum eigenvalue is very small, but for such small eigenvalues
the biasis sufficiently large that this non-monotonicity does not affect the boundary
eigenvalues.

®The critical values based on Proposition 1 can be quite conservative when all the
eigenvalues of A are small. For example, the boundary of the TSLS bias-based weak
instrument set withb =0.1, n=2, and K, =4 ismineval(A) = 3.08, and the critical value
for a5% test with b = .10 based on Proposition 1is 7.56. If the second eigenvalue in fact
equals thefirst, the correct critical value should be 4.63, and the rejection probability

under the null isonly 0.1%. (Of course, it isinfeasible to use this critical value because
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the second eigenvalue of A isunknown.) If the second eigenvalueis 10, then the
rejection rate is approximately 2%. On the other hand, if the second eigenvalueis large,
the Proposition 1 bound istighter. For example, for values of K, from4to 34 and n = 2,
if the second eigenvalue exceeds 20 the regjection probability under the null range from

3.3% t0 4.1% for the nominal 5% weak instrument test based on TSLS bias with b = .10.
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Table 1.
Critical Vaues for the Weak Instrument Test Based on TSLS Bias
Sgnificance level is5%

n=1b= n=2b= n=3,b=

0.05/0.10|0.20|0.30 | 0.05]0.10 | 0.20 | 0.30 | 0.05| 0.10 | 0.20 | 0.30

13.91 9.08 6.46/ 5.39

16.85/10.27] 6.71 5.34/11.04| 7.56 5.57| 4.73

18.37/10.83] 6.77| 5.25/13.97| 8.78 5.91 4.79 9.53 6.61 4.99 4.30

19.28/11.12] 6.76 5.15/15.72| 9.48 6.08 4.78/12.20| 7.7/ 5.35 4.40

19.86/11.29] 6.73] 5.07/16.88] 9.92] 6.16 4.76/13.95 8.50 5.56| 4.44

20.25/11.39| 6.69 4.99/17.70 10.22| 6.20, 4.73/15.18| 9.01 5.69 4.46

20.74/11.49| 6.61| 4.86/18.76/10.58 6.23] 4.66/16.80 9.64 5.83 4.45

20.90/11.51] 6.56) 4.80/19.12 10.69] 6.23 4.62/17.35| 9.85 5.87 4.44

21.01/11.52| 6.53| 4.75/19.40/10.78] 6.22] 4.59/17.80/10.01 5.90 4.42

Kz
3
4
5
6
7
8
9 |20.53/11.46| 6.65 4.92/18.30/10.43| 6.22| 4.69/16.10] 9.37, 5.78 4.46
10
11
12
13

21.10/11.52| 6.49 4.7119.6410.84] 6.21 4.56/18.17/10.14 5.92 4.41

14 |21.18/11.52| 6.45 4.67/19.83/10.89 6.20 4.53 18.47/10.25 5.93| 4.39

15 [21.23|11.51] 6.42] 4.63/19.98 10.93| 6.19 4.50/18.73/10.33 5.94 4.37

16 |21.28/11.50] 6.39] 4.59/20.12/10.96 6.17 4.4818.94/10.41 5.94| 4.36

17 [21.31/11.49 6.36] 4.56/20.23/10.99] 6.16 4.45/19.13/10.47| 5.94 4.34

18 [21.34/11.48| 6.33] 4.53/20.33/11.00, 6.14 4.4319.2910.52 5.94| 4.32

19 [21.36/11.46| 6.31 4.51 20.4111.02] 6.13 4.41/19.44/10.56 5.94 4.31

20 |21.38/11.45 6.28] 4.48/20.48/11.03] 6.11 4.39 19.56/10.60, 5.93| 4.29

21 121.39/11.44 6.26] 4.46/20.54/11.04| 6.10 4.37/19.67/10.63] 5.93 4.28

22 121401142 6.24] 4.43/20.60/11.05 6.08 4.3519.77/10.65 592 4.27

23 |21.41 1141 6.22] 4.41/20.65/11.05 6.07 4.3319.86/10.68 5.92| 4.25

24 1214111140 6.20] 4.39/20.69/11.05] 6.06, 4.32/19.94/10.70| 591 4.24

25 |21.42/11.38] 6.18 4.37/20.73/11.06) 6.05 4.3020.01/10.71 5.90] 4.23

26 121.42/11.37 6.16] 4.35/20.76/11.06/ 6.03 4.2920.07/10.73] 5.90 4.21

27 121.42/11.36| 6.14] 4.34/20.79/11.06] 6.02 4.27/20.13/10.74| 5.89| 4.20

28 121.42/11.34 6.13] 4.32/20.82/11.05 6.01 4.26/20.18 10.75 5.88 4.19

29 |21.42/11.33] 6.11 4.31/20.84/11.05 6.00 4.24 20.23/10.76 5.88/ 4.18

30 121.42/11.32 6.09] 4.29/20.86/11.05 5.99 4.23/20.27/10.77| 587 4.17

Notes: Thetest rejectsif gmin exceedsthe critical value. The critical value isafunction
of the number of included endogenous regressors (n), the number of instrumental
variables (K;), and the desired maximal bias of the IV estimator relative to OLS (b).
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Table 2.
Critical Vaues for the Weak Instrument Test Based on TSLS Size
Sgnificance level is5%

n=1r= n=2r=

0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25

16.38 8.96 6.66 5.53

19.93 1159 8.75 71.25 7.03 4.58 3.95 3.63

22.30] 12.83 9.54 7.80] 13.43 8.18 6.40 5.45

2458 1396 10.26 831 16.87 9.93 7.54 6.28

26.87] 15.09 10.98 884 1945 11.22 8.38 6.89

29.18| 16.23 11.72 938 21.68 12.33 9.10 7.42

31.50] 1738 1248 993 2372 1334 9.77 791

33.84 1854 1324 1050 2564 1431 1041 8.39

© o~ NN RPN

36.19] 19.71 1401 1107, 2751 1524 11.03 8.85

10 3854 2088 1478 11.65 29.32] 16.16) 11.65 9.31

11 4090 2206/ 1556 1223 3111 1706 1225 9.77

12 4327 2324 1635 12.82 3288 17.95 12.86 10.22

13 4564 2442 1714 1341 3462 1884 1345 10.68

14 48.01 2561 1793 14.00 36.36] 19.72| 14.05 11.13

15 50.39] 26.80, 18.72 1460 38.08) 20.60] 14.65 11.58

16 5277, 2799 1951 1519 39.80] 2148 1524 12.03

17 55.15] 2919 2031 15.79 4151 2235 1583 1249

18 5753 3038 21.10] 16.39] 43.22] 2322 1642 1294

19 59.92] 3158 2190 1699 4492 2409 1702 13.39

20 62.30] 32.77] 2270 1760 46.62 2496 1761 1384

21 64.69) 3397 2350 1820 4831 2582 1820 14.29

22 67.07] 3517 2430 1880 5001 26.69 18.79 14.74

23 69.46| 36.37 2510, 1941 51.70 2756/ 1938 15.19

24 71.85] 3757 2590 20.01 5339 2842 1997 1564

25 7424/ 3877 26.71 20.61] 55.07 29.29] 20.56| 16.10

26 76.62] 3997 2751 21.22] 56.76 30.15 21.15 16.55

27 79.01 41.17] 2831 2183 5845 3102 2174 17.00

28 8140 4237, 29120 2243 60.13 3188 2233 17.45

29 83.79 4357 29.92] 23.04 6182 3274 2292 17.90

30 86.17] 44./8 30.72 2365 6351 3361 2351 1835

Notes: Thetest rejectsif gmin exceedsthe critical value. The critical value isafunction
of the number of included endogenous regressors (n), the number of instrumental
variables (Ky), and the desired maximal size (r) of a5% Wald test of 8= [.
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Table 3.

Critical Values for the Weak Instrument Test Based on Fuller-k Bias

Sgnificance level is5%

n=1b= n=1b=

Ko 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30

1 23.63| 19.35 1542 1286 . . . .
2 1560 12.38 7.93 6.62 14.14] 11.94 9.50 8.11
3 12.04 9.59 6.15 513 11.62 9.21 6.57 5.70
4 10.09 8.10 5.36 4.46 9.96 7.80 5.43 4.70
5 8.85 7.16 4.89 4.07 8.84 6.94 4.84 4.16
6 7.99 6.51 4.58 3.82 8.02 6.34 4.47 3.82
7 7.35 6.02 4.35 3.63 7.41 5.90 4.22 3.58
8 6.86 5.65 4.17 3.48 6.93 5.56 4.03 341
9 6.47 5.35 4.02 3.36 6.54 5.29 3.89 3.27
10 6.14 5.11 3.90 3.27 6.22 5.06 3.77 3.16
11 5.87 4.90 3.79 3.18 5.94 4.87 3.66 3.07
12 564 4.72 3.70 3.11 571 4.71 3.58 3.00
13 5.43 457 3.62 3.05 5.50 457 3.50 2.93
14 5.26 443 3.54 2.99 5.33 444 3.43 2.87
15 5.10 431 3.48 2.94 5.17 4.33 3.37 2.82
16 4,95 4.20 341 2.90 5.02 423 3.32 2.78
17 4.83 4.10 3.36 2.86 4.89 4.13 3.27 2.74
18 471 4.01 3.30 2.82 477 4.05 3.22 2.70
19 4.60 3.93 3.25 2.78 4.67 3.97 3.18 2.67
20 4.50 3.85 3.21 2.75 4.56 3.90 3.13 2.64
21 441 3.78 3.16 2.72 4.47 3.83 3.10 2.61
22 4.32 3.71 3.12 2.69 4.39 3.76 3.06 2.59
23 424 3.65 3.08 2.66 431 3.70 3.02 2.56
24 417 3.59 3.04 2.63 4.23 3.65 2.99 2.54
25 4.09 3.54 3.01 2.61 4.16 3.59 2.96 2.52
26 4.03 3.48 2.97 2.59 4.09 3.54 2.93 2.50
27 3.96 343 2.94 2.56 4.03 3.49 2.90 2.48
28 3.90 3.39 2.91 2.54 3.97 3.45 2.87 2.47
29 3.85 3.34 2.88 2.52 3.91 3.40 2.85 2.45
30 3.79 3.30 2.85 2.50 3.86 3.36 2.82 2.43

See the notesto Table 1.
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Table 4.

Critical Values for the Weak Instrument Test Based on LIML Size

Sgnificance level is5%

n=1r= n=1r=
Ko 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
1 16.38 8.96 6.66 5.53 . . . .
2 8.68 5.33 4.42 3.92 7.03 4.58 3.95 3.63
3 6.46 4.36 3.69 3.32 5.44 3.81 3.32 3.09
4 5.44 3.87 3.30 2.98 472 3.39 2.99 2.79
5 484 3.56 3.05 2.77 4.32 3.13 2.78 2.60
6 4.45 3.34 2.87 2.61 4.06 2.95 2.63 2.46
7 4.18 3.18 2.73 2.49 3.90 2.83 2.52 2.35
8 3.97 3.04 2.63 2.39 3.78 2.73 2.43 2.27
9 3.81 2.93 2.54 2.32 3.70 2.66 2.36 2.20
10 3.68 2.84 2.46 2.25 3.64 2.60 2.30 2.14
11 3.58 2.76 2.40 2.19 3.60 2.55 2.25 2.09
12 3.50 2.69 2.34 2.14 3.58 2.52 2.21 2.05
13 3.42 2.63 2.29 2.10 3.56 2.48 2.17 2.02
14 3.36 2.57 2.25 2.06 3.55 2.46 2.14 1.99
15 331 2.52 2.21 2.03 3.54 2.44 2.11 1.96
16 3.27 2.48 2.18 2.00 3.55 2.42 2.09 1.93
17 3.24 2.44 2.14 1.97 3.55 241 2.07 191
18 3.20 241 211 1.94 3.56 2.40 2.05 1.89
19 3.18 2.37 2.09 1.92 3.57 2.39 2.03 1.87
20 3.21 2.34 2.06 1.90 3.58 2.38 2.02 1.86
21 3.39 2.32 2.04 1.88 3.59 2.38 2.01 1.84
22 3.57 2.29 2.02 1.86 3.60 2.37 1.99 1.83
23 3.68 2.27 2.00 1.84 3.62 2.37 1.98 1.81
24 3.75 2.25 1.98 1.83 3.64 2.37 1.98 1.80
25 3.79 2.24 1.96 181 3.65 2.37 1.97 1.79
26 3.82 2.22 1.95 1.80 3.67 2.38 1.96 1.78
27 3.85 2.21 1.93 1.78 3.74 2.38 1.96 1.77
28 3.86 2.20 1.92 1.77 3.87 2.38 1.95 1.77
29 3.87 2.19 1.90 1.76 4.02 2.39 1.95 1.76
30 3.88 2.18 1.89 1.75 412 2.39 1.95 1.75
See the notes to Table 2.
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Figure 1: Weak Instrument Sets and Critical Values based on

Bias of TSLS Relative to OLS
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Boundary of weak instrument set (n = 2)
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9 min

Figure 2: Weak Instrument Sets and Critical Values based on
Size of TSLS Wald Test
Boundary of weak instrument set (n = 1)
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Boundary of weak instrument set (n = 2)
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Figure 3: Weak Instrument Sets and Critical Values based on
Bias of Fuller-%£ Relative to OLS
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Boundary of weak instrument set (n = 2)
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Figure 4: Weak Instrument Sets and Critical Values based on

Size of LIML Wald Test
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Boundary of weak instrument set (n = 2)
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Power

Power

Figure 5: Power Function for TSLS Bias Test (Relative Bias = 0.1, n = 2)
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