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1 Introduction

Diffusion models, and their extensions such as jump-diffusions and Markov models driven by Lévy processes,

are essential tools for much of theoretical asset pricing. Estimating these models from discrete time observations

has become in recent years an active area of research in econometrics and statistics. Beyond the choice of

inference strategy, an important debate in this area concerns the question of what sampling scheme to use, if

a choice is available, and in any event what to do with the sampling times. The most straightforward thing to

do, in accordance with the usual low-frequency data collection procedures in Þnance, is to view the sampling

as occurring at Þxed discrete time intervals, such as a day or a week. In many circumstances, however, this

is not realistic. In fact, all transaction-level data are available at irregularly and randomly spaced times. For

example, Figure 1 shows a histogram distribution of the time between trades for the Nokia shares traded on

the New York Stock Exchange during the month of January 2000. A continuous exponential distribution Þtted

to the same data is also plotted.1

Not only are the data randomly spaced in time, but whenever a theoretical model is spelled out in continuous

time, its estimation necessarily relies on discretely sampled data. In fact, is there any other kind of data? By

now, we have a good understanding of the implications of sampling discreteness, and how to design estimation

methods that correct for it (see Hansen and Scheinkman (1995) and Aït-Sahalia (1996)). Our objective in this

paper is to understand the additional effect that the randomness of the sampling intervals might have when

estimating a continuous-time model with discrete data. SpeciÞcally, we aim to disentangle the effect of the

sampling randomness from the effect of the sampling discreteness, and to compare their relative magnitudes.

We also examine the effect of simply ignoring the sampling randomness. We achieve this by comparing the

properties of three likelihood-based estimators, which make different use of the observations on the state

process and the times at which these observations have been recorded. We design these estimators in such a

way that each one of them is subject to a speciÞc subset of the effects we wish to measure. As a result, the

differences in their properties allow us to zero in and isolate these different effects.

Our main conclusion is that the loss from not observing, or not using, the sampling intervals, will be at

least as great, and often substantially greater, than the loss due to the fact that the data are discrete rather

than continuous. While correcting for the latter effect has been the main focus of the literature in recent

years, our results suggest however that empirical researchers using randomly spaced data should pay as much

attention, if not more, to sampling randomness as they do to sampling discreteness.

The paper is organized as follows. Section 2 sets up the model and provides an intuitive description of

our approach and results. Section 3 formally lays out our assumptions and presents the theoretical results

that underpin our methodology. In Section 4, we propose three types of likelihood-based inference, making

different use of the sampling intervals. By comparing these different likelihood-based estimators, we can assess

the relative costs attributable to the discreteness of the sampling and to its randomness. We carry out this

analysis in Section 5, before analyzing in Section 6 the cost of ignoring the sampling randomness: what happens

1The data comes from the NYSE�s Trades and Quotes (TAQ) database. Nokia shares are American Depository Shares (ADS).

We aggregated trades that do not result in a price change for the purpose of deÞning the times between trades. The histogram

in Figure 1 is based on 46,063 such trades, with a mean time between trades of 10.7 seconds.
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if one behaves as if the sampling times were not random when in fact they are? Section 7 shows what our

general expressions yield in a speciÞc example and reports evidence from simulations. Section 8 concludes.

All proofs are in the Appendix.

2 Description of the Approach

Before delving into formal assumptions and theorems, let us provide a heuristic description of our setup, the

estimators and techniques we use and Þnally our results.

2.1 The Setup

The basic setup is as follows. We assume that the discrete data we observe have been generated by a time-

homogenous diffusion on the real line

dXt = µ(Xt; θ)dt+ σdWt (2.1)

where Wt is a Brownian motion, µ(., .) is the drift function, σ2 the diffusion coefficient and θ the drift

parameters, θ ∈ Θ and σ > 0. We will show that the properties of estimators vary widely depending upon

whether only the drift or the diffusion parameters, or both together, are estimated. Hence we consider the

three cases of estimating β = (θ, σ2) jointly, estimating β = θ with σ2 = σ20 known or estimating β = σ
2 with

θ = θ0 known. As usual, β0, θ0 and σ
2
0 denote the true values of the parameters. The parameter space for the

d-dimensional vector β is an open and bounded set.

The parameter vector β is to be estimated at time T on the basis of NT+1 discrete observations recorded at

times τ0 = 0, τ1, τ2, ..., τNT , where NT is the smallest integer such that τNT+1 > T . We let Yn = Xτn denote

the observed values of the state variable. Because we are interested in studying the effect on the estimators of

sampling that is not only discrete but also random, we let the sampling intervals ∆n = τn − τn−1 be random
variables, in which case the number NT + 1 of observations recorded by time T will also be random.

It is shown in Masry (1978), Masry (1983), Philips (1973) and Robinson (1977) that aliasing problems can

sometimes be avoided by sampling at random times. A particular feature of this literature, however, is that

inference is often carried out without using the times of observation τn of the process. This is also the case for

the Duffie and Glynn (1997) method of moments estimator. In the empirical market microstructure literature

in Þnance, it is typical to set up the model to be estimated in discrete time, thereby effectively discarding the

sampling intervals (see e.g., Hasbrouck (1991), Hasbrouck (1996)).

More recently, the literature has focused on the informational content of the times between trades. For

example, Engle and Rusell (1998) propose a model for the conditional distribution of the time between trades

given past information, while Rydberg and Shephard (1999) report different models and empirical evidence

on the number of trades recorded in a given time interval. The primary objective of this literature is to build

realistic models for the distribution of times between trades in discrete time, whereas we are concerned with

understanding the effect that the very existence of such a distribution (as opposed to having non-random times
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between trades) would have on the behavior of estimators of continuous-time models for the price process (2.1),

as well as with the interesting issues arising at the interface of the continuous and discrete time domains.

2.2 The Estimators: FIML, IOML and PFML

We consider three possible estimators �β of β. We design these estimators in such a way that each one of them

is subject to a speciÞc subset of the costs we wish to measure. The Þrst estimator we consider is the Full

Information Maximum Likelihood (FIML) estimator, using the bivariate observations (Yn,∆n); the second is

the partial information maximum likelihood estimator using only the state observations Yn, with the sampling

intervals integrated out (IOML for Integrated Out Maximum Likelihood); the third is the pseudo maximum

likelihood estimator pretending that the observations times are Þxed (PFML for Pretend Fixed Maximum

Likelihood). Not surprisingly, the Þrst estimator, FIML, is asymptotically efficient, making the best possible

use of the joint data (Yn,∆n). The second estimator, IOML, corresponds to the asymptotically optimal choice

if one recognizes that the sampling intervals ∆n�s are random but does not observe them. The third estimator,

PFML, corresponds to the �head-in-the-sand� policy consisting of acting as if the sampling intervals were all

identical (pretending that ∆n = ∆̄ for all n) when in fact they are random.

Both FIML and IOML confront the randomness issue head-on. FIML uses the recorded sampling times,

IOML does not, but still recognizes their relevance by integrating them out in the absence of observations on

them. Because the data are always discretely sampled, each estimator is subject to the �cost of discreteness,�

which we deÞne to be the additional variance, or efficiency loss, relative to the variance of an asymptotically

efficient estimator based on the full continuous-time sample path. It also represents the error that one would

make if one were to use continuous-time asymptotics when the data are in fact discretely sampled.

However, FIML is only subject to the cost of discreteness, while IOML is penalized by both the fact that

the data are discrete (the continuous-time sample path is not observed) and randomly spaced in time (the

sampling intervals are not observed). The additional variance of IOML over that of FIML will therefore be

identiÞed as the �cost of randomness,� or the cost of not observing the randomly-spaced sampling intervals.

But if in fact one had recorded the observations times but chosen not to use them in the empirical estimation

phase, then what we call the cost of randomness can be interpreted as the cost of throwing away, or not using,

these data. Note that this is a lower bound to the cost of throwing away the sampling intervals, since it

assumes that one is still following the optimal likelihood strategy in that context.

By contrast, PFML does as if the sampling times were simply not randomly spaced. Comparing it to FIML

will give rise to the notion of the �cost of ignoring the randomness.� This is the cost imputable to ignoring

the randomness of the sampling intervals, as opposed to the what we call the cost of randomness, which is

the cost due to not observing the randomly-spaced sampling intervals. In the former case, one (mistakenly)

uses PFML, while in the latter case one realizes that the intervals are informative but, in their absence,

IOML is the best one can do. Different types of estimation strategies in empirical market microstructure

that do not use the sampling intervals can be viewed as versions of either IOML or PFML, depending upon

their treatment of the sampling intervals: throw them away, or ignore their randomness. They will often be

suboptimal versions of these estimators because they are subject to an additional efficiency loss if they do not
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use maximum-likelihood.

All three estimators rely on maximizing a version of the likelihood function of the observations. Let

p(y1|y0, δ, β) denote the transition function of the process X deÞned in (2.1), i.e., the density with respect to

Lebesgue measure of Xt+δ = y1 given Xt = y0 and given the time interval δ between Xt+δ and Xt and the

parameter vector β. Because of the time homogeneity of the model, the transition function p depends only on

δ and not on (t, t+ δ) separately. All three estimators make use of some functional of the density p: namely,

p(Yn|Yn−1,∆n, β) for FIML; the expectation �p(Yn|Yn−1, β) of p(Yn|Yn−1,∆n, β) over the law of ∆n|Yn−1 for
IOML; and p(Yn|Yn−1, ∆̄, β) for PFML (i.e., like FIML except that ∆̄ is used in place of the actual ∆n). In

practice, even though most diffusion models do not admit closed-form transition densities, all three estimators

can be calculated for any diffusion X using arbitrarily accurate closed-form approximations of the transition

function p (see Aït-Sahalia (2002)). We also show that �p can be obtained in closed form.

2.3 Asymptotic Properties and Taylor Expansions

Clearly, if the sampling intervals were in fact Þxed at some value ∆̄, then all three estimators would be

identical and subject only to the effects of the sampling discreteness. The purpose of this paper is to Þgure

out the relative effects of discrete and random sampling when estimating a continuous time model, which we

achieve by comparing the properties of the three estimators FIML, IOML and PFML. We will show that each

estimator has a probability limit β̄, and
√
T (�β − β̄) converges in law to N(0,Ωβ) as T tends to inÞnity, with

Ωβ =

 ωθ ωθσ2

ωθσ2 ωσ2

 (2.2)

if β =
¡
θ, σ2

¢
, Ωβ = Ωθ if β = θ (σ2 = σ20 known) and Ωβ = Ωσ2 if β = σ2 (θ = θ0 known). While FIML

and IOML are always consistent estimators, i.e., β̄ = β0, this is not the case for PFML when the sampling

intervals are random.

The asymptotic bias β̄ − β0, when present, and the asymptotic variances of the estimators all involve
calculating expectations over the joint distribution of (∆, Y1, Y0) of some functions (which vary by estimator)

of these random variables. In general, these expectations cannot be obtained in closed form. They could of

course be computed either by numerical integration or by simulation, but comparisons across estimators or

sampling schemes and comparative statics would then be essentially infeasible. Our solution is instead to

derive an explicit Taylor expansion for each one of these expectations.

For the purpose of calculating these Taylor expansions, let us assume that each sampling interval ∆n is

drawn conditionally upon Yn−1 from a common distribution. We write a random variable from that common

distribution as ∆ = ε∆0, where ε is deterministic and ∆0 has a given Þnite distribution conditional on Y0.

We next Þgure out, for given Þxed ε, the limit as T goes to inÞnity of the distribution of the estimator. This

makes the relevant quantities of the distribution, such as the asymptotic (in T ) variance Ωβ and probability

limit (again in T ) β̄, functions of ε. To avoid overburdening the notation, we do not indicate this dependence

formally as Ωβ(ε) and β̄(ε), but this is what they are. We then consider Taylor expansions in ε of these

deterministic quantities, around ε = 0. In other words, the Taylor expansions have as their leading term the
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value of the quantity in the limiting case were the full continuous-time sample path is observable, i.e.,when

ε = 0. By adding higher order terms in ε, we correct this leading term for the discreteness of the sampling.

Calculating these Taylor expansions in the case of random sampling required that we develop a new operator,

which we call the generalized inÞnitesimal generator of the diffusion X. This is done as part of Theorem 1

below.

2.4 The Results

The Taylor expansions lead to the following results. We will show that the asymptotic variance matrices Ωβ

can be expanded in ε in the following form

Ωβ = Ω
(0)
β + εΩ

(1)
β + ε2Ω

(2)
β +O

¡
ε3
¢

(2.3)

and we will detail the effects of the choice of inference strategy as they show up in the functions Ω(i)β , i = 0, 1, ....

The Þrst thing that emerges is that for all three estimators, there is no uncertainty in the continuous-sampling

limit as far as the estimation of σ2 is concerned, that is the order 0 coefficient of the term ωσ2 of Ωβ is ω
(0)
σ2 = 0.

This is another way of saying that the complete continuous-time sample path fully reveals (via the quadratic

variation of the X process) the value of σ2. The uncertainty reappears however as soon as we have discrete

sampling (ε > 0) since ω(1)σ2 > 0. For the drift, even the entire continuous-time sample path does not fully

reveal the parameter θ: we have ω(0)θ > 0.

In addition, we will show that the bias of PFML, with the likelihood evaluated at ∆̄ = E[∆], is of the form

β̄ − β0 = b1ε+ b2ε2 +O
¡
ε3
¢
. (2.4)

As could be expected, the bias of PFML disappears in the continuous sampling limit (i.e., the coefficient of

order 0 in ε is b0 = 0) but not when the sampling is discrete (b1 6= 0, or if b1 = 0 then b2 6= 0, so β̄ 6= β0 when
ε > 0).

The two equations (2.3)-(2.4), where the terms Ω(i)β and bi each depend upon the distribution of the

sampling intervals, can then be used to analyze the effects of any given sampling scheme on the three estimators.

Our analysis Þrst documents the efficiency loss which can be attributed to not observing the sampling intervals:

we measure this by determining the Þrst order i in ε at which the coefficient Ω(i)β for IOML differs from the

corresponding coefficient Ω(i)β for FIML, and seeing how much bigger the IOML coefficient is compared to the

FIML coefficient. In some cases, this difference will be present at the level of the Þrst non-zero coefficient

Ω
(i)
β . We call the amount by which the variance of IOML exceeds that of FIML the cost of randomness of the

sampling process.

We can then compare that efficiency loss to the one attributable to not observing the full continuous-time

sample path: we measure the latter by the coefficient at the Þrst order i in ε for which the FIML variance

differs from its continuous-time limit Ω(0)β corresponding to ε = 0. This correction term Ω
(i)
β in the FIML

variance is what we call the cost of discreteness of the sampling process. An alternative interpretation is that

the term Ω(i)β ε
i represents the leading term of the error that one would make if one were to use continuous-time
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asymptotics (i.e., Ω(0)β ) instead of the full Ωβ when the data are in fact discretely sampled.

The comparison of the two losses, imputable respectively to the discreteness and the randomness of the

sampling, reveals that the loss from not using the observation times will be at least as great, and often

substantially greater than the loss from using discrete rather than continuous observations. SpeciÞcally, if one

estimates the diffusion coefficient σ2 in the presence of known drift parameters θ = θ0, the costs incurred due

to the discreteness and the randomness of time both appear in the Ω(1)β term, i.e., at the same order ε1, while

the limiting variance (the term of order ε0) is zero if the full continuous time sample path is observed. As one

considers different sampling schemes with the same average sampling rate, the loss due to not using sampling

times can be an arbitrarily large multiple of the loss due to the discreteness of the data. However, if one

estimates θ when σ2 = σ20 is known, then the cost of randomness is an order of magnitude in ε bigger (order

ε1) than the loss from observing the process discretely rather than continuously (order ε2). However, both

are small relative to the sampling variance that remains present even if the full continuous time sample path

is observed (order ε0). We summarize these results in Table 1. The implication of these results for empirical

researchers using randomly spaced data is that they should pay as much attention, if not more, to sampling

randomness as they do to sampling discreteness.

Turning next to a comparison of PFML to FIML, we can quantify precisely the cost (both in bias and

variance) imputable to ignoring the randomness of the sampling intervals, as opposed to the what we call the

cost of randomness, which is the cost due to not observing the randomly-spaced sampling intervals. In terms

of root mean squared error comparisons, any biased estimator such as PFML will always do worse than an

unbiased estimator such as FIML or IOML �irrespectively of how large their variances are� since the variance

is of order O(T−1) whereas the squared bias is of order O(1) as T goes to inÞnity.

Given this heuristic description of our approach and results, we can now turn to a more precise description

of our assumptions and methodology.

3 Assumptions and Methodology

3.1 The Distribution of the Sampling Intervals

To be able to give speciÞc results on the effects of the sampling randomness on the estimation of β, and in

particular to be able to compute a partial likelihood with the sampling intervals integrated out, we need to

put some structure on the time series dependence of the sampling intervals ∆n = τn − τn−1. Recall that the
process Xt is sampled at times 0 = τ0 < τ1 < τ2 < ..., and we set Yn = Xτn . We assume the following

regarding the data generating process for the sampling intervals:

Assumption 1. (Sampling): The sampling intervals ∆n = τn − τn−1 satisfy L(∆n|Yn−1,∆n−1, Yn−2, ...) =
L(∆n|Yn−1), where L is the density of the listed arguments with respect to a reference measure. Also, the law
of ∆n given Yn−1 has distribution function D(δ|Yn−1 = y), and is independent of n, and of the parameter β.

We write d for the density corresponding to D. This density can be a Dirac mass, such as in the special case

where the sampling happens to occur at a Þxed deterministic interval ∆̄. Then all of our results go through
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with the distribution of ∆n given by a Dirac mass at ∆̄. As another special case, each ∆n may simply be

drawn unconditionally from a density d(δ) = D0(δ), in which case the sampling intervals are i.i.d. But by

letting ∆n be drawn conditionally on Yn−1, we can capture effects such as an increase in trading activity (i.e.,

smaller ∆n�s on average) after the asset return Yn−1 crosses speciÞc boundaries as a result for instance of

limit orders or stop-loss policies. Or, more generally, we can model the dependence of the sampling interval

on the just recorded return. For instance, the top graph in Figure 2 reports a kernel regression estimate of the

conditional mean E [∆n|Yn−1] for the same complete set of Nokia trades in January 2000 as in Figure 1, which
reported the unconditional density of the ∆�s. It is apparent from Figure 2 that large price changes, in either

direction, tend to be followed by shorter wait times to the next price change. We can also trivially extend the

Markovian dependence structure to include additional lags. For instance, by letting the distribution of ∆n

depend on Yn−1 and further lags Yn−2, Yn−3, etc., we could allow for more sophisticated differential trading

intensities as functions of the price path.

Assumption 1 is essential if one is to compute a tractable partial likelihood, as required for the IOML

estimator. But it is still reasonable given the empirical evidence. The bottom graph in Figure 2 reports

the bivariate kernel estimator of E [∆n|Yn,∆n−1]. If anything, the kernel regression shows more variability
of ∆nin the direction of Yn−1 (the inverse U shaped pattern whereby large price changes tend to followed

by short wait times to the next trade) than in the direction of ∆n−1 (where we Þnd a slight increase, so

that long wait times tend to be followed by another long wait time). So the assumption we are making,

namely L (∆n|Yn−1,∆n−1) = L (∆n|Yn−1), is an empirically plausible compromise between the most general
dependence structure and what would be theoretically sufficient to generate our theoretical results (i.i.d.

sampling, that is L (∆n|Yn−1,∆n−1) = L (∆n)), given the need to obtain a tractable partial likelihood.
Throughout the paper, we denote by ∆ a generic random variable with the common distribution of the

∆n�s and, for the purpose of calculating Taylor expansions in ε, write

∆ = ε∆0. (3.1)

We then denote by d0(δ0|y0) the density that ∆0 = δ0 given that Y0 = y0. E[∆0|Y0] denotes the conditional
expectation, and E[∆0] the unconditional expectation of ∆0.

The assumption that the d (or equivalently d0) is independent of β is equivalent to saying that the sampling

interval process is �sequentially exogenous� for the parameter β (see e.g., Section 1.5.2, DeÞnition 1.11 in

Gouriéroux and Monfort (1995)) for a deÞnition of sequential exogeneity).2 This being said, the distribution

of the sampling intervals may only be known up to some parameters, so that d0(δ0|y0) would involve unknown
parameters. A typical example would be exponential arrival times with unknown intensity ϕ. The intensity

parameter ϕ can also depend on y0 in general. But we will not be concerned with drawing inference about the

(nuisance) parameters driving the sampling scheme, such as ϕ, only about the parameters β of the stochastic

differential equation (2.1).

Nevertheless, the particular distribution of the sampling scheme, i.e., the speciÞcation of d0, will have

critical effects on the various estimators of β we consider, and their relative efficiency. While our results

2This assumption can be relaxed: we would then obtain a partial likelihood (see the discussion in footnote 3).
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apply to any d0, we will give speciÞc examples in the rest of the paper. SpeciÞcally, we will consider in

Section 5.4 three sampling schemes: (1) deterministic sampling intervals; (2) uniformly distributed intervals;

(3) exponential arrivals. We also discuss later how to deal with a fourth sampling distribution, where the

∆n�s are generated by two regimes, one with high density (�trading day� or �New York open�) and and

one with low density (�night� or �Singapore then London open�), the distributions of the sampling intervals

being deterministic, uniform or exponential with different expected values, reßecting the different sampling

intensities during the trading day and night. Dealing with this fourth sampling scheme involves relaxing the

identical distribution assumption for the sampling intervals. This can be done at the cost of complicating

the notation. If in fact the ∆n�s do not have a common distribution, our results still go through with E[∆]

denoting the probability limit (assumed to exist) of
Pn
i=1∆i/n as n tends to inÞnity. If, further, the ∆n�s

are not random, but possibly irregularly spaced, then E [∆] denotes the Cesaro limit of
Pn
i=1∆i/n. But for

now let us return to the situation where the ∆n�s are random and drawn from a common distribution D with

density d.

Another way of putting Assumption 1 is in terms of Þltrations, as follows. Let
©FXs : s ≥ 0ª, be the

Þltration generated by the process Xt, and let Fτt = σ{min(τ i, t) : all i} be the smallest σ-Þeld generated by
the sequence of random variables min(τ i, t) for all i�s. Let also Ft be the smallest σ-Þeld containing Fτt and
FXt . Our requirement in the above assumption is then that

P (∆n ≤ x|Fτn−1) = D(x, Yn−1), (3.2)

for all t and x. The formulation in terms of Þltrations also has implications in terms of causality, following

Granger (1969), Sims (1972) and Florens and Fougere (1996). The latter paper also considers continuous time.

In particular, their Theorem 2.1 shows that (in their terminology) (Ft) does not strongly globally cause (FXt )
given (FXt ) if and only if, for all t, FX+∞ is conditionally independent of Ft given FXt . This is indeed the case
under Assumption 1:

Proposition 1. Under Assumption 1, (Ft : t ≥ 0) does not strongly globally cause (FXt : t ≥ 0) given

(FXt : t ≥ 0).
On the other hand, obviously, it is typically not true that ∆ does not cause Y .

3.2 The Data Generating Process for the State Variable

We let S = (x
¯
, x̄) denote the domain of the diffusion Xt. In general, S = (−∞,+∞) , but in many examples

in Þnance, Xt is the price of an asset with limited liability (stock, foreign currency, bond, etc.) or a nominal

interest rate, in which case S = (0,+∞). We make the following assumptions:
Assumption 2. (Differentiability): The function µ(x; θ) is inÞnitely differentiable in x ∈ S, and three times
continuously differentiable in θ ∈ Θ.
The differentiability assumption in x allows us to compute expansions of the transition density p, as well as

expansions of the biases and variances. The differentiability assumption in θ is necessary for the computation

of the maximum-likelihood estimator and its asymptotic properties.
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Assumption 3. (Boundary Behavior): Let κ
¡
x, θ, σ2

¢
= − ¡µ2 (x; θ) /σ2 + ∂µ (x; θ) /∂y¢ / ¡2σ2¢ .We assume

that limx→x
¯
or x→x̄ κ

¡
x, θ, σ2

¢
< +∞ for all values of the parameters. In addition, if the left boundary is x

¯
= −∞, then there exist constants E > 0 and K > 0 such that for all x < −E and θ ∈ Θ, µ (x; θ) ≥ Kx.

If instead x
¯
= 0+, then there exist constants E > 0 and K ≥ 0 such that for all 0 < x < E and θ ∈ Θ,

µ (x; θ) ≥ Kx−α where either α > 1 and K > 0 or α = 1 and K ≥ 1. Finally, for the right boundary x̄ = +∞,
there exist constants E > 0 and K > 0 such that for all x > E and θ ∈ Θ, µ (x; θ) ≤ Kx.

The constraints on the behavior of the function µ are essentially the best possible. More speciÞcally, if µ

has the �wrong� sign near an inÞnity boundary, i.e., is negative near −∞ or positive near +∞, and grows faster
than linearly, then X explodes in Þnite time. Near the zero boundary 0+, if there exist k0 ≥ 0 and α0 < 1
such that µ (x; θ) < Kx−α then 0 and negative values become attainable by X. Assumption 3 implies that the

right boundary x̄ = +∞ is natural if, in its neighborhood, |µ (x; θ)| ≤ K0x, and entrance if µ (x; θ) ≤ −Kxα
for some α > 1. If the left boundary is x

¯
= −∞, then it is natural if, in its neighborhood, |µ (x; θ)| ≤ Kx, and

entrance if µ (x; θ) ≥ −K |x|α for some α > 1. If the left boundary is x
¯
= 0+, then it is an entrance boundary.

Both natural entrance boundaries are unattainable (see e.g., Section 15.6 in Karlin and Taylor (1981)) so that

the exit time from S will be inÞnite, namely Pr(TS = +∞) = 1 where TS = inf{t ≥ 0|Xt /∈ S}. Natural
boundaries can neither be reached in Þnite time nor can the diffusion be started there. Entrance boundaries

such as 0+, cannot be reached starting from an interior point in S = (0,+∞), but it is possible for X to start

there in which case the process moves quickly away from 0 and never returns. We take µ to be such that the

process is stationary and hence ergodic:

Assumption 4. (Stationarity): Assume that exp
©
2σ−2

R x
µ (y; θ) dy

ª
is integrable in x at both boundaries

of S. Then let

π(x, β) =
exp

©
2σ−2

R x
µ (y; θ) dy

ªR x̄
x
¯
exp

©
2σ−2

R x
µ (y; θ) dy

ª
dx

(3.3)

and assume that the initial value of the process, X0, has density π.

Under the integrability assumed in Assumption 4, π(x, β) is the stationary density of the process X, i.e.,

the common marginal density of each Xt. In the Þnancial examples that motivate our analysis, the stationarity

assumption onX means that we will considerX to be the process for (instantaneous) continuously compounded

asset returns or interest rates rather than asset prices.

Note that when both boundaries of the process are entrance boundaries, then the integrability condition

in Assumption 4 is automatically satisÞed. When at least one of the boundaries is natural, the integrability

condition is neither precluded nor implied. But in any event, under Assumptions 2-3, the stochastic differential

equation (2.1) admits a weak solution which is unique in probability law. The solution process {Xt, t ≥ 0}
admits a transition density p(y1|y0, δ, β) which is continuously differentiable in δ, inÞnitely differentiable in y1
and y0 on S and three times continuously differentiable in β (see Aït-Sahalia (2002)).
For inference purposes, we assume:

Assumption 5. (IdentiÞcation) µ(x; θ) = µ(x; �θ) for π−almost all x in S implies θ = �θ.
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Finally, note that we might have started with the model

dXt = µ(Xt; θ)dt+ σ(Xt)dWt (3.4)

where σ(.) is any known positive function. But if we deÞne

Yt =

Z Xt 1

σ(x)
dx (3.5)

then Itô�s Lemma applied to (3.4)-(3.5) allows us to reduce the analysis to the case (2.1) with σ = 1.

3.3 Taylor Expansions for Expectations

As will become apparent below, the asymptotic properties of the estimators (bias for PFML, and variance

for all three) depend upon expectations of matrices of the form E∆,Y1,Y0 [f(Y1, Y0,∆, β, ε)]. Throughout the

paper, we denote by E∆,Y1,Y0 expectations taken with respect to the joint law of (∆, Y1, Y0), and write E∆,Y1 ,

etc., for expectations taken from the appropriate marginal laws of (∆, Y1), etc. All these expectations are taken

with respect to the true distribution of the process. We denote by {Uδ; δ > 0} the semigroup of conditional
expectation operators associated with the process X, deÞned for all f in L2 (where L2 refers to integration

with respect to the y1 variable, weighted by the stationary density π(y1;β0)) by its action

Uδ · f(y0, δ, β, ε) = EY1 [f(Y1, Y0,∆, β, ε)|Y0 = y0,∆ = δ] . (3.6)

In what follows, the functions f will be the log-likelihood, or its derivatives, evaluated at different sampling

intervals, or at the expected value of the sampling interval. Because these expectations are not generally

available in closed-form, our approach is based on calculating Taylor expansions in ε of these matrices � which

happen to all be fully explicit.

To introduce the approach, let us Þrst suppose for a moment that the sampling intervals are deterministic.

In this case, Taylor expansions are intimately related to the inÞnitesimal generator Aβ0 of the diffusion X,

i.e., the operator which returns

Aβ0 · f(y1, y0, δ, β, ε) =
∂f(y1, y0, δ, β, ε)

∂δ
+ µ(y1, β0)

∂f(y1, y0, δ, β, ε)

∂y1
+
1

2
σ20
∂2f(y1, y0, δ, β, ε)

∂y21
. (3.7)

The domain of Aβ0 is the set of functions f in L
2 which are continuously differentiable in δ (once) and in

y1 (twice) and for which the limit in the sense of L2

lim
δ→0

1

δ
[Uδ · f(y0, δ, β, ε)− f(y0, δ, β, ε)] = Aβ0 · f(y0, y0, 0, β0, 0) (3.8)

exists. A sufficient condition for the existence of the limit is given page 10 of Hansen, Scheinkman, and Touzi

(1998). The limit exists provided that ∂f/∂y1 and Aβ0 · f are both also in L2 and

lim
y1→x¯

∂f/∂y1
s(y1;β)

= lim
y→x̄

∂f/∂y1
s(y1;β)

= 0 (3.9)

10



where s denotes the scale density of the process, deÞned as

s (x;β) ≡ exp
½
−2σ−2

Z x

µ (y; θ) dy

¾
(3.10)

for a given lower bound of integration whose choice is irrelevant. Then we deÞne D to be the set of functions
f which are in the domain of the standard inÞnitesimal generator and also continuously differentiable in β and

ε.

If the function f does not explicitly depend on β and ε, we can evaluate

Uδ · f(y0, δ, β, ε) = EY1 [f(Y1, Y0,∆)|Y0 = y0,∆ = δ] ,

which, by a direct application of the deterministic Taylor formula around δ = 0, has the expansion

Uδ · f(y0, δ) =
JX
j=0

δj

j!
Ajβ0 · f(y1, y0, δ)| y1=y0,δ=0 + O

³
δJ+1

´
(3.11)

for all f in the set of functions with J +2 continuous derivatives in δ, 2(J +2) in y1, such that f and its Þrst

J + 1 iterates by repeated applications of Aβ0 (that is the functions A
j
β0
· f, j = 1, 2, .., J + 1) all remain in

D. Let DJ denote the set of functions f which satisfy this property and additionally have J + 1 continuous
derivatives in β and ε. Note that (3.11) is not surprising if (3.8) is viewed as generating Uδ from Aβ0 (instead

of the other way round); in that case, one can think of (3.8) in the exponential formula form Uδ = exp
¡
Aβ0 δ

¢
.

Note that in general the Taylor series on the right hand side of (3.11) need not converge as J goes to

inÞnity, as Uδ · f need not be analytic in δ at δ = 0. There are sufficient conditions, however, that will insure
this: see Proposition 4 in Aït-Sahalia (2002). In the present context, we need not worry about the convergence

of the series as J →∞.We are merely interpreting the truncated series at some J as a (local) Taylor expansion
near δ = 0, and for that analyticity of the function being Taylor-expanded is not necessary.

As we show in Theorem 1 below, the analogous expansion for EY1 [f(Y1, Y0,∆, β, ε)|Y0,∆] when the sam-
pling intervals are random and f can depend on (β, ε) in addition to (Y1, Y0,∆) involves replacing the operator

Aβ0 by a generalized version of it � an operator Γβ0 which we call the generalized inÞnitesimal generator of

X. Given an expansion for the conditional expectation EY1 [f(Y1, Y0,∆, β, ε)|Y0,∆] , we can then calculate
Taylor expansions for the unconditional expectation of f by applying the law of iterated expectations Þrst to

E∆,Y1,Y0 [f(Y1, Y0,∆, β, ε)] = E∆ [EY1,Y0 [f(Y1, Y0,∆, β, ε)|∆]]

and then to EY1,Y0 [f(Y1, Y0,∆, β, ε)|∆] = EY0 [EY1 [f(Y1, Y0,∆, β, ε)|Y0,∆]] .
What we will show in later theorems is that the asymptotic distributions of biased estimators such as

PFML require us to evaluate these expectations not at β = β0 but at some β = β̄ such that its limit as ε tends

to 0 is β0. β̄ will represent the probability limit of the estimator calculated from discrete data. For now, we

will write a general result allowing for that possibility that β depends on ε in which case it satisÞes β̄ → β0

as ε→ 0. If β = β0 always (i.e., not just when ε→ 0), then we have an obvious special case.

Theorem 1. (Taylor Expansions for Expectations) DeÞne the generalized inÞnitesimal operator Γβ0 for the

11



process X in (2.1) as the operator which applies to functions f in D and returns

Γβ0 · f(y1, y0, δ, β, ε) = ∆0Aβ0 · f(y1, y0, δ, β, ε) +
∂f

∂ε
(y1, y0, δ, β, ε) +

∂f

∂β
(y1, y0, δ, β, ε)

∂β

∂ε
(β0, ε). (3.12)

Note that the operator Γβ0 is random in that it depends on ∆0. Then under Assumptions 1-4 if the function

f is in DJ , a Taylor expansion in ε around ε = 0 of the conditional expectation of f, evaluated at β = β̄, with
respect to the law of Y1|(Y0,∆) is given by:

EY1
£
f(Y1, Y0,∆, β̄, ε)|Y0,∆

¤
=

JX
j=0

εj

j!
Γjβ0 · f(Y1, Y0,∆, β, ε)|Y1=Y0,∆=ε=0,β=β0 + Op

¡
εJ+1

¢
. (3.13)

The unconditional expectation with respect to the joint law of (∆, Y1, Y0) is given by:

E∆,Y1,Y0
£
f(Y1, Y0,∆, β̄, ε)

¤
=

JX
j=0

εj

j!
E∆,Y0

h
Γjβ0 · f(Y1, Y0,∆, β, ε)|Y1=Y0,∆=ε=0,β=β0

i
+ O

¡
εJ+1

¢
. (3.14)

When we specify an estimation strategy and a sampling scheme, we will be presented with a variety of

functions f to which Theorem 1 can be applied. We now examine the various estimation strategies and

sampling schemes.

4 Likelihood-Based Inference Making Different Use of the Sam-

pling Intervals

4.1 FIML: Full-Information Likelihood Inference

The Þrst estimator involves using both sets of data (Yn,∆n) and maximizing their joint likelihood. Recall

that we write p(y1|y0, δ, β) for the transition function of the process X, i.e., the density that Yn = y1 given
that Yn−1 = y0 and that ∆n = δ. We also deÞned π(x, β) to be the common marginal density of Xt for all t.

Let us also deÞne p(y1, y0, δ, β) = p(y1|y0, δ, β)π(y0, β) to be the joint density of the (Xt+δ,Xt). Recall also
that d(δ1|y0) denotes the conditional density of the sampling interval, i.e., the density that ∆n = δ1 given

Yn−1 = y0. We now wish to write the likelihood function for the observations {(Yn,∆n) : n = 1, ..., NT } . By
Bayes� Rule and the assumed Markovian structure of the (Yn,∆n)�s we have

L (YNT
,∆NT

, ..., Yn,∆n, Yn−1,∆n−1, ...Y1,∆1|X0;β) =
NTY
n=1

L (Yn,∆n|Yn−1,∆n−1, ..., Y1,∆1,X0;β)

=
NTY
n=1

L (Yn,∆n|Yn−1,∆n−1;β)

where the notation L stands for the density of the listed arguments. As is usual in likelihood inference for

Markov processes, we condition on the Þrst observation X0, and there is no ∆0 (recall that ∆n is the time

interval between Yn−1 and Yn).

12



One further application of Bayes� Rule yields

L (Yn,∆n|Yn−1,∆n−1;β) = L (Yn|Yn−1,∆n,∆n−1;β)× L (∆n|Yn−1,∆n−1) .

Then Assumption 1 implies that L (Yn|Yn−1,∆n,∆n−1;β) = L (Yn|Yn−1,∆n;β) = p(Yn|Yn−1,∆n, β)
L (∆n|Yn−1,∆n−1) = L (∆n|Yn−1) = d(∆n|Yn−1)

so that the likelihood function using all the available information is given by

L (YNT
,∆NT

, ..., Yn,∆n, Yn−1,∆n−1, ...Y1,∆1|X0;β) =
NTY
n=1

p(Yn|Yn−1,∆n, β)d(∆n|Yn−1) (4.1)

and the corresponding log-likelihood function using all the available information is

NT−1X
n=1

l(Yn|Yn−1,∆n, β) +
NT−1X
n=1

c(∆n|Yn−1) (4.2)

where

l(y1|y0, δ, β) ≡ ln (p(y1|y0, δ, β)) (4.3)

and c(δ1|y0) ≡ ln (d(δ1|y0)).
Recall now that we assumed that the conditional sampling density d(δ1|y0) may have its own (nuisance)

parameters, such as an unknown arrival rate, but does not depend on the parameters β of the state process.3

Since we only care about β, we will then deÞne

lT (β) =
NT−1X
n=1

l(Yn|Yn−1,∆n, β) (4.4)

and the FIML estimator �β as a solution of ∂lT (β) / ∂β = 0.We will use the notation úf to denote differentiation

of the function f with respect to the parameters, i.e., for instance úl = ∂l/∂β and l̈ = ∂2l/∂β∂βT .

In practice, the function l, hence the criterion function lT (β), can be evaluated in closed-form using the

expansion of the transition density p(Y1|Y0,∆, β) of an arbitrary diffusion X given in Aït-Sahalia (2002). With

the correction terms gathered in increasing order of ∆, the Hermite-based closed-form expansion is

p(J)(Y1|Y0,∆, β) = 1√
2π∆σ

exp

Ã
−(Y1 − Y0)

2

2∆σ2
+

Z Y1

Y0

µ(w, θ)

σ2
dw

! JX
j=0

cj

µ
Y1
σ
|Y0
σ
, β

¶
∆j

j!

 (4.5)

3An extension of our theory would cover the case where d(δ1|y0) depends on β; in this case, one could take the Þrst term in

(4.2) to be a partial likelihood (see e.g., Cox (1975) and Wong (1986)). This is still covered by our general theory.
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where the coefficient functions cj are given recursively by c0 = 1 and

cj+1 (z1|z0, β) = j (z1−z0)−j
Z z1

z0

(w − z0)j−1
©
κ
¡
w, θ, σ2

¢
cj−1(w|z0; θ) + (1/2)∂2cj−1(w|z0; θ)/∂w2

ª
dw

(4.6)

for j ≥ 1, with κ ¡w, θ, σ2¢ = − ¡µ2 (w; θ) + ∂µ (w; θ) /∂w¢ /2. The function l(y1|y0, δ, β) can also be expressed
as a series in ∆ by Taylor-expanding ln(

PJ
j=0 cj

¡
Y1
σ |Y0σ , β

¢
∆j

j! ) in ∆.

The expansion can be made arbitrarily accurate by increasing J (in practice J = 2 or 3 is amply sufficient).

That is, with l(J) = ln p(J), we have¯̄̄
l (y1|y0,β,εδ0)−l(J) (y1|y0,β,εδ0)

¯̄̄
= O

¡
εJ
¢

(4.7)

and similarly for their Þrst three partial derivatives with respect to β, uniformly.

In order to be able to carry maximum likelihood inference about β, note that Assumption 5 yields that

0 < EY1,Y0

h
úl(y|x, δ, β) úl(y|x, δ, β)0

i
<∞.

This means that none of the parameters are redundant. From standard likelihood considerations (see e.g.,

Billingsley (1961)) and the regularity properties of the log-likelihood function given in Aït-Sahalia (2002), we

obtain that
√
NT (�β − β0) is asymptotically normal with information EY1,Y0

h
−l̈(Y1|Y0,∆, β0)

i
, i.e., that

√
T (�β − β0) −→

T−→∞
N(0, Vβ) (4.8)

in distribution, where

V −1β = (E [∆])−1E∆,Y1,Y0
h
−l̈(Y1|Y0,∆, β0)

i
(4.9)

since T/NT converges in probability to E [∆] .4

Vβ is the FIML version of what is denoted by Ωβ in (2.2). We use a special symbol in this case so as to be

able to refer later to the FIML asymptotic variance separately from the symbol Ωβ which we use as generic

notation for any one estimator. By applying Theorem 1 to the particular function f given by −l̈(Y1|Y0,∆, β0),
we will be able to derive the Taylor expansion of Vβ: see Section 5.

4.2 IOML: Partial Information Likelihood Inference Integrating Out the Obser-

vation Times

Suppose now that the observation intervals ∆n are either not observable or discarded prior to conducting

inference on β. When the ∆n�s are, in fact, random, and we are willing to account for their randomness,

one can still integrate them out before doing the analysis. This results in a proper likelihood framework for

4When scaling the difference �β − β0, we use throughout the square root of the length of time T as opposed to the number

of observations NT actually recorded between time 0 and time T. When the sampling intervals are random, NT is also random.

However, T/NT tends in probability to E[∆], the unconditional expected value of the sampling intervals so that the only difference

involved between (deterministic) scaling by
√
T and (random) scaling by

√
NT is a factor E[∆] in the asymptotic variance.
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inference on β based on using the Yn data only provided that inference is based on the IOML likelihood ratiogLR :
gLR (Yn|Yn−1) = E∆n

[LR (Yn|Yn−1,∆n) |Yn,Yn−1] (4.10)

where LR is the FIML likelihood ratio

LR (Yn|Yn−1,∆n) ≡ p(Yn|Yn−1,∆n, β)
p(Yn|Yn−1,∆n, β0)

. (4.11)

Proposition 2. Under Assumptions 1-4,

gLR (y1|y0) = �p(y1|y0, β)
�p(y1|y0, β0)

(4.12)

where

�p(y1|y0, β) = E∆ [p(y1|Y0,∆, β) |Y0 = y0] . (4.13)

As the notation suggests, �p(Y1|Y0, β) is the conditional density of Y1 given Y0.

4.2.1 Calculating the Integrated-Out Likelihood Function

Among other examples, when ∆ has an exponential distribution, the integration in (4.13) can be done in

closed-form for the (expansion of the) transition density p given in equation (4.5). The fact that an expansion

of the integrated-out conditional density �p is available in closed-form makes the computation of the IOML

estimator just as straightforward as that of FIML. We have that:

Proposition 3. If the density d of ∆ given Y0 is the exponential density with conditional mean E[∆|Y0], that
is

d(∆|Y0) = exp(−∆/E[∆|Y0])
±
E[∆|Y0], (4.14)

then the corresponding expansion of order J for the density �p, that is,

�p(J)(Y1|Y0, β) =
Z +∞

0

p(J)(Y1|Y0, δ, β) d(δ|Y0) dδ

is also explicit and is given by:

�p(J)(Y1|Y0, β) = exp

ÃZ Y1

Y0

µ(w, θ)

σ2
dw

!
× (4.15)

JX
j=0

cj

µ
Y1
σ
|Y0
σ
, β

¶
Bj+(1/2)

Ã√
2 |Y1 − Y0|p
E[∆|Y0]σ

!
|Y1 − Y0|(2j+1)/2 2

(1−2j)/4E[∆|Y0](2j−3)/4
j!
√
πσj+(3/2)


where Bj+(1/2) (z) is the Bessel K function of half-integer order j + (1/2).

The Bessel K functions of half-integer order appearing in Proposition 3 are in closed-form for any j, hence
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(4.15) is indeed a closed-form expression. For instance, the Þrst three Bj+(1/2) functions are given by

B1/2 (z) = exp(−z)
r
π

2z
, B3/2 (z) = exp(−z)

r
π

2z

µ
1 +

1

z

¶
, B5/2 (z) = exp(−z)

r
π

2z

µ
1 +

3

z
+
3

z2

¶
.

4.2.2 Inference with the Integrated-Out Likelihood Function

Coming back to the inference problem for IOML, instead of (4.4), the part of the log-likelihood function

dependent on β is now

λT (β) =
NT−1X
n=1

λ(Yn|Yn−1, β) (4.16)

where

λ(y1|y0, β) = ln (�p(y1|y0, β)) (4.17)

is the log of the integrated-out density. We call �β the IOML estimator obtained as a solution of ∂λT (β) / ∂β = 0.

As in the FIML case of Section 4.1,
√
T (�β − β0) converges in law to N(0, �Vβ), but now

�V −1β = (E [∆])−1EY1,Y0
h
−λ̈(Y1|Y0, β0)

i
(4.18)

where as always EY1,Y0 denotes an expectation taken with respect to the joint stationary density of (Y1, Y0).

As in the FIML case with Vβ, we use here a special symbol (�Vβ) for the asymptotic variance of IOML, instead

of Ωβ so as to be able to refer to it separately later. Computing a Taylor expansion for �Vβ involves calculations

that are substantially more involved than those for Vβ, although they still follow from Theorem 1 applied to

the particular function f given by −λ̈(Y1|Y0, β0).

4.2.3 Relationship Between the Full and Partial Information Likelihoods

To determine the relationship between the partial and full information inference strategies, we need to express

the integrated out likelihood function (4.16) in terms of the full information one, (4.4). The result is:

Proposition 4. (FIML and IOML Likelihoods) The score of the integrated-out likelihood is given by

úλ(y1|y0, β0) = E∆
h
úl(Y1|Y0,∆, β0) |Y0 = y0, Y1 = y1

i
(4.19)

while the information follows from

λ̈(y1|y0, β0) = E∆
h
l̈(Y1|Y0,∆, β0)|Y0 = y0, Y1 = y

i
+ V ar∆

h
úl(Y1|Y0,∆, β0) |Y0 = y0, Y1 = y1

i
. (4.20)

These two equations are conditional versions of the Bartlett or �exlog� identities (see Bartlett (1953), or

Barndorff-Nielsen and Cox (1989)).5 Equation (4.20) is a critical element in our analysis of the differences

between the two estimators FIML and IOML in light of (4.18). Namely, (4.20), jointly with (4.9) and (4.18),

5For a different use of these identities in the econometric literature, see Gouriéroux, Monfort, Renault, and Trognon (1987).
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imply that

�V −1β = V −1β − (E [∆])−1EY1,Y0
h
V ar∆

h
úl(Y1|Y0,∆, β0) |Y0, Y1

ii
(4.21)

from which the asymptotic information loss from not using the observation times, E [∆] (V −1β − �V −1β ), can be

read. Not surprisingly, it follows immediately from (4.21) that �Vβ − Vβ is positive deÞnite; in other words,
FIML is more efficient that IOML. The interesting issue is of course how much more efficient FIML is, i.e., how

large is the loss of information from FIML to IOML, and also how that depends on the particular distribution

of the sampling intervals. We will address these two questions in Section 5 using Taylor expansions of the two

asymptotic variance matrices and relating them to moments of the distribution of ∆0.

4.3 PFML: Pseudo-Likelihood Inference Pretending that the Observation Times

are Fixed

A third inference strategy consists in ignoring the variations in the sampling intervals and Þxing them at a

common value. For instance, in the presence of daily data, one could ignore the presence of weekends, holidays,

etc., and Þx the sampling interval throughout the sample at ∆̄ = 1 day. Or the sampling intervals could be

truly random, as in transaction data, but one decides to act as if the observations were all equally spaced at

a given sampling interval ∆̄ = E [∆] = εE [∆0] � for example assuming that transaction data are sampled at

30 second intervals, or whatever the average time between observations is. The reason for considering this

inference scheme, which would be asymptotically optimal if the sampling intervals were in fact Þxed, is to

measure the cost, in terms of bias and variance, of ignoring the randomness of the ∆n�s. This cost is different

from the cost represented by the increase in variance between IOML and FIML, which measures the cost of

not observing the sampling intervals while being aware of their randomness.

Another interpretation of PFML relates it to the common practice of setting up the theoretical model in

continuous-time model, but estimating a discrete time version. If the model to be estimated were speciÞed

in discrete time, as is most often the case in the empirical microstructure literature, then by design one is

pretending that the sampling intervals are identical at ∆̄, with data Yn = Xn∆̄, n = 0, 1, ..., N. By setting up

the model to be estimated in discrete time, as long as ∆̄ > 0, one introduces an additional bias, due to the

discretization, that would be present even if the data were in fact equally spaced in time. PFML would then

correct for the discretization bias, but not the randomness bias should the data be in fact randomly spaced in

time.

We are being generous with regard to the PFML estimation strategy by letting the Þxed value at which the

likelihood is evaluated be the true unconditional mean of the sampling interval E [∆]: by generous, we mean

that the unconditional mean is indeed the best Þxed value that one can choose (see Proposition 6 below).

We are also assuming that no speciÞcation error is made other than ignoring the randomness of the sampling

intervals. In particular, the transition function p is the same correct density as in the FIML case.
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So this inference scheme is based on maximizing

ÿlT (β) =
NT−1X
n=1

l(Yn|Yn−1, ∆̄, β) (4.22)

where l is the full-information likelihood deÞned in Section 4.1 above. The PFML estimator ÿβ is a solution of

∂ÿlT (β) / ∂β = 0. In this case, its asymptotic distribution follows from using the pseudo-score vector

h(y1, y0, β, ε) =

 h1(y1, y0, β, ε)

h2(y1, y0, β, ε)

 =
 úlθ(y1|y0, εE [∆0] , β)
úlσ2(y1|y0, εE [∆0] , β)

 . (4.23)

The pseudo-scores given by the two components of the vector h are not in general martingales. In fact,

they do not even have mean zero unconditionally. As a result of E∆,Y1,Y0 [h(Y1, Y0, β0, ε)] 6= 0, the estimator
is not consistent. Instead, the probability limit of �β is the solution β̄ of the equations

E∆,Y1,Y0 [h(Y1, Y0, β̄, ε)] = 0. (4.24)

In the limit where sampling is continuous (ε → 0), this sampling scheme becomes FIML. Therefore, we

should expect that the asymptotic bias of the estimator, β̄ − β0 will be of order greater or equal to 1 in ε,
that is: β̄ − β0 = b1ε+ b2ε2 +O(ε3). We will show that this is indeed the case: the biases θ̄− θ0 and σ̄2 − σ20
are both of order O(ε), except if σ2 is known, in which case the bias θ̄ − θ0 is of order O(ε2). Thus, if one

is prepared to live with a small amount of bias (small in the sense that it β̄ − β0 is small when ε is small),
one can still use this estimator. It follows from standard arguments, subject to regularity conditions (see e.g.,

Hansen (1982)) that the asymptotic distribution of
√
T (ÿβ − β̄) is N(0, ÿVβ), where

ÿV −1β = (E [∆])−1D0βS
−1
β Dβ (4.25)

with the matrices Dβ ≡ E∆,Y1,Y0

h
úh(Y1, Y0, β̄, ε)

i
, Sβ,j ≡ E∆,Y1+j ,Yj ,Y1,Y0

£
h(Y1+j , Yj , β̄, ε)h(Y1, Y0, β̄, ε)0

¤
andSβ ≡ P+∞

j=−∞ Sβ,j . The variance ÿVβ is the PFML version of what is denoted by Ωβ in (2.2). Theo-

rem 1 can be applied to each one of the functions úh and h × h (with conditioning on (Y1, Y0) Þrst for Sβ,j ,
j 6= 0) to obtain a Taylor expansion for ÿVβ.

5 Comparing the Cost of Discreteness to the Cost of Randomness

Now that we have deÞned precisely the three estimators FIML, IOML and PFML, and analyzed their respective

asymptotic distributions, we can use the differences between their asymptotic properties to identify the different

costs imposed by not being able to see all the data (a discrete sample path instead of the entire continuous-time

one, and/or not observing the sampling times) or by ignoring some of their features (such a the randomness

of the sample intervals).
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5.1 Structure of the Information Matrices of FIML and IOML

In order to measure the information loss associated with not observing the sampling intervals, we zero in on the

difference between the variances of FIML and IOML. We now detail the asymptotic variances as a function of

the drift and diffusion functions speciÞed originally in equation (2.1). Consider the three information matrices

I = E∆,Y1,Y0

h
−l̈(Y1|Y0,∆, β)

i
, J = EY1,Y0

h
V ar∆

h
úl(Y1|Y0,∆, β) |Y0, Y1

ii
, �I = I − J.

From formula (4.9) above, Vβ = εE [∆0] I−1 and from (4.21) and Proposition 4, we have that �Vβ =

εE [∆0] �I
−1. For simplicity of notation only, we will write the results below as if θ were be one-dimensional

�the extension to multivariate θ involves partitioning matrices, while gaining little additional insight into the

behavior of different estimators. We obtain:

Theorem 2. (FIML): The Taylor expansion of the FIML Information Matrix is given by

I =

 ε i
(1)
θθ + ε

3 i
(3)
θθ +O(ε

4) ε i
(1)
θσ2 + ε

2 i
(2)
θσ2 +O(ε

3)

ε i
(1)
θσ2 + ε

2 i
(2)
θσ2 +O(ε

3) i
(0)
σ2σ2 + ε

2 i
(2)
σ2σ2 +O(ε

3)

 (5.1)

where

i
(1)
θθ =

1
σ20
E∆0,Y0

·
∆0

³
∂µ
∂θ (Y0, θ0)

´2¸
i
(1)
θσ2 =

1
2σ20

E∆0,Y0

h
∆0
³
∂2µ
∂y∂θ (Y0, θ0)

´i
i
(0)
σ2σ2 =

1
2σ40

i
(3)
θθ = E∆0,Y0

·
∆30

½
1
8
∂µ
∂y (Y0, θ0)

³
∂2µ
∂y∂θ (Y0, θ0)

´2
− 1

12σ20

³
∂µ
∂θ (Y0, θ0)

´2 ³
∂µ
∂y (Y0, θ0)

´2
+ 1

12
∂µ
∂θ (Y0, θ0)

∂2µ
∂x∂θ (Y0, θ0)

∂2µ
∂x2 (Y0, θ0)− σ20

48

³
∂3µ
∂y2∂θ (Y0, θ0)

´2¾¸

i
(2)
θσ2 =

1
6σ20

E∆0,Y0

h
∆20

n
∂µ
∂y (Y0, θ0)

∂2µ
∂y∂θ (Y0, θ0) +

1
2
∂µ
∂θ (Y0, θ0)

∂2µ
∂y2 (Y0, θ0)

oi
i
(2)
σ2σ2 =

1
12σ20

E∆0,Y0

h
∆20

³
∂3µ
∂y3 (Y0, θ0)

´i

(5.2)

A notable fact in (5.1) is that i(2)θθ = 0 while i
(0)
σ2σ2 > 0, which is another way of saying that, as we go to a

continuous sampling limit, the sample path contains an order of magnitude in ε less information about θ than

about σ2. To determine the effect of not observing the observation times, we obtain:

Theorem 3. (IOML): The Taylor expansion of the information loss due to not observing the sampling intervals

is given by

J =

 j
(2)
θθ ε

2 +O(ε3) O(ε2)

O(ε2) j
(0)
σ2σ2 +O(ε)

 (5.3)
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where

j
(2)
θθ =

1

4σ20
EY0

"(
σ20

µ
∂2µ

∂y∂θ
(Y0, θ0)

¶2
− 2

µ
∂µ

∂θ
(Y0, θ0)

¶2
∂µ

∂y
(Y0, θ0)

)
V ar

£
∆0|χ2∆0, Y0

¤#
j
(0)
σ2σ2 =

1

4σ40
E
£
V ar

£
χ2|χ2∆0, Y0

¤¤
. (5.4)

where χ2 is a chi-squared random variable with one degree of freedom and is independent of ∆0 and Y0.

In Sections 5.2 (diffusion estimators) and 5.3 (drift estimators), we use these two theorems to derive

expressions for the FIML (Vβ) and IOML (�Vβ) asymptotic variance matrices. They follow from inverting

the matrices I and �I = I − J respectively, calculating a Taylor expansion of the inverse, and multiplying the
result by εE [∆0]. How the quantities E

£
V ar

£
∆0|χ2∆0, Y0

¤¤
and E

£
V ar

£
χ2|χ2∆0, Y0

¤¤
in (5.4) depend upon

the distribution of ∆0 is the topic of Section 5.4. As is apparent from (5.4), these two quantities ultimately

determine how large the information loss is when moving from FIML (where the randomly-spaced sampling

intervals are used in the estimation) to IOML (where they are not).

5.2 Behavior of the Diffusion Estimator

By inverting the FIML information matrix, we now show that the FIML estimator �σ2 has the asymptotic

variance:

Vσ2 = V
(1)
σ2 ε+ V

(2)
σ2 ε

2 + V
(3)
σ2 ε

3 +O
¡
ε4
¢
, (5.5)

and similarly for �Vσ2 , vσ2 , and �vσ2 . Recall that we use capital V to indicate that the coefficient is estimated

alone (assume that the other is known), and lower case v to indicate the appropriate element in the variance

matrix when the drift and diffusion are estimated jointly. Recall also that we use V for FIML and �V for

IOML. The Þrst thing to note is that the entire uncertainty when estimating σ2 comes from the discretization:

that is,

V
(0)
σ2 = �V

(0)
σ2 = v

(0)
σ2 = �v

(0)
σ2 = 0.

Indeed, if the process (2.1) were observed continuously, then σ2 would be the quadratic variation of Xt, and

hence observable.

The Þrst order terms in ε in the variances of the FIML and IOML estimators of σ2 are the same whether

θ is known or not, and they are given by:

Corollary 1. (FIML vs. IOML: Leading Terms for σ2)

V
(1)
σ2 = v

(1)
σ2 =

E[∆0]

i
(0)
σ2σ2

= 2σ40E[∆0]

�V
(1)
σ2 = �v

(1)
σ2 =

E[∆0]

i
(0)
σ2σ2 − j(0)σ2σ2

= 2σ40E[∆0]

µ
1− 1

2
E
£
V ar

£
χ2|χ2∆0, Y0

¤¤¶−1
(5.6)

The consequence of this corollary is that the effect of throwing away the sampling times is to reduce the
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efficiency of �σ2 relative to �σ2 at the level of the main order term: �V (1)σ2 > V
(1)
σ2 . Note that V ar

£
χ2
¤
= 2, and

therefore

E
£
V ar

£
χ2|χ2∆0, Y0

¤¤
= V ar

£
χ2
¤− V ar £E £χ2|χ2∆0, Y0¤¤ ≤ V ar £χ2¤ = 2 (5.7)

so i(0)σ2σ2 ≥ j
(0)
σ2σ2 in (5.6). The magnitude of the effect varies depending on the sampling pattern, i.e., the

distribution of ∆0 � we study this in detail in Section 5.4 below. For now, it suffices to note that the loss of

efficiency can get arbitrarily large. Consider for instance the sampling scheme independent of Y0 given by a

binomial distribution, ∆0 = 0 or ∆0 = δ̄0 while keeping the average sampling interval E[∆0] Þxed. In this

case,

V ar
£
χ2|χ2∆0, Y0

¤
= V ar

£
χ2
¤
1(∆0 = 0) = 2× 1(∆0 = 0)

where 1(.) denotes the indicator function, and hence

�V
(1)
σ2 = �v

(1)
σ2 = 2σ

4
0δ̄0,

which can be made arbitrarily large by increasing the constant δ̄0.

In other words, the variance increase imputable to the discreteness of the sampling is represented by the

term V
(1)
σ2 = 2σ4E[∆0]. The additional variance imputable to the randomness of the sampling, measured by

the difference between �V (1)σ2 and V (1)σ2 can be made an arbitrarily large multiple of the discreteness-induced

variance. Rather than the difference, we can consider the percentage increase in the variance of the IOML

diffusion estimator compared to the corresponding FIML variance. This is the percentage increase in variance

that is attributable to not observing, or throwing away as the case may be, the sampling times. Based on

equations (5.6), this is given by the term

�V
(1)
σ2 − �V

(1)
σ2

�V
(1)
σ2

=

µ
1− 1

2
E
£
V ar

£
χ2|χ2∆0, Y0

¤¤¶−1 − 1. (5.8)

An interesting side aspect of the result is that this percentage increase is independent of the particular diffusion

model (2.1) speciÞed for the dynamics of the state variable X, that is µ and σ2 do not enter equation (5.8).

The percentage increase only involves the distribution of the sampling times.

5.3 Behavior of the Drift Estimator

Estimating the drift parameter θ is fundamentally different from estimating σ2 in that there would be nonzero

asymptotic variance even if we observed the full continuous sample path. The asymptotic variance of
√
T (�θ−θ0)

takes the form:

Vθ = V
(0)
θ + V

(1)
θ ε+ V

(2)
θ ε2 +O

¡
ε3
¢

(5.9)

with V (0)θ positive deÞnite and similarly for �Vθ, vθ, and �vθ. The main order effects are again the same as under

continuous observation in all four cases:
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Corollary 2. (FIML vs. IOML: Leading Terms for θ) The leading term of the asymptotic variances for

estimating θ is identical for FIML and IOML, and does not depend on whether σ2 is estimated or known. It

is given by

V
(0)
θ = �V

(0)
θ = v

(0)
θ = �v

(0)
θ =

E [∆0]

i
(1)
θθ

= σ20E [∆0]

Ã
E∆0,Y0

"
∆0

µ
∂µ

∂θ
(Y0, θ0)

¶2#!−1
(5.10)

The leading term (5.10) in the asymptotic variance of the θ estimator is the �inescapable� variance present

even if the full continuous-time time sample path were observable. It has a particularly nice interpretation,

akin to the asymptotic variance in the nonlinear least squares situation. The variance is proportional to the

inverse of the expected value of the squared gradient (∂µ/∂θ)2 of the drift with respect to the parameter.

Intuitively, the variance will therefore be high when the drift is relatively ßat as a function of the parameter

(i.e., ∂µ/∂θ close to 0). In that case, precise identiÞcation of θ is difficult. A contrario, when the drift function

µ changes signiÞcantly in response to changes in the parameter θ (i.e., ∂µ/∂θ large), the drift will be estimated

precisely.

Differences between FIML and IOML show up, however, in higher order terms. The most striking case

occurs when σ2 is known. In this instance, V (1)θ = 0, while the corresponding terms �V (1)θ is non-zero. In other

words, not observing (or not using) the sampling times is one order of magnitude more costly than the effect

of discretization itself! The speciÞc expressions for the terms of order ε1 are given by

Corollary 3. (FIML vs. IOML: Higher Order Term for θ When σ2 = σ20 Is Known)

V
(1)
θ = 0

�V
(1)
θ = E [∆0]

j
(2)
θθ³
i
(1)
θθ

´2 . (5.11)

In the case where σ2 is unknown, both v(1)θ and �v(1)θ are nonzero. The FIML variance term v
(1)
θ is nonzero

due to the contamination of the estimation of θ by the estimation of σ2. In this case, however, there is a similar

phenomenon to the one that occurs in the estimation of σ2: the IOML variance �v(1)θ can be made arbitrarily

large by choosing speciÞc sampling schemes, whereas v(1)θ stays bounded. The speciÞc expressions are given

by:

Corollary 4. (Higher Order Term for θ, When σ2 Is Unknown)

v
(1)
θ = E [∆0]

³
i
(1)
θσ2

´2
³
i
(1)
θθ

´2
i
(0)
σ2σ2

=
E [∆0] σ

4
0

2

E∆0,Y0

h
∆0

³
∂2µ
∂y∂θ (Y0, θ0)

´i
E∆0,Y0

·
∆0
³
∂µ
∂θ (Y0, θ0)

´2¸

2

(5.12)
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and

�v
(1)
θ = E [∆0]

³
i
(1)
θσ2

´2
+j

(2)
θθ

³
i
(0)
σ2σ2−j(0)σ2σ2

´
³
i
(1)
θθ

´2 ³
i
(0)
σ2σ2−j(0)σ2σ2

´
= v

(1)
θ

µ
1− 1

2
E
£
V ar

£
χ2|χ2∆0, Y0

¤¤¶−1
+E [∆0]

j
(2)
θθ³
i
(1)
θθ

´2 (5.13)

As can be seen from these expressions, the Þrst term on the right hand side of (5.13), the IOML variance,

contains the same ill-behaved expression,
¡
1− 1

2E
£
V ar

£
χ2|χ2∆0, Y0

¤¤¢−1
, as the right hand side of (5.6).

Therefore �v(1)θ blows up along with �V (1)σ2 = �v
(1)
σ2 when the sampling scheme is such that

1
2E
£
V ar

£
χ2|χ2∆0, Y0

¤¤
is close to one (recall from (5.7) that 1

2E
£
V ar

£
χ2|χ2∆0, Y0

¤¤ ≤ 1), whereas from (5.12) the FIML variance

v
(1)
θ remains bounded. In addition, the second term in (5.13) is of the form c×E £V ar £χ2|χ2∆0, Y0¤¤ /E [∆0]
where c does not depend on sampling scheme. This term can therefore also be made arbitrarily large for Þxed

E [∆0] by selecting speciÞc sampling schemes, as in Section 5.2.

5.4 The Effect of the Sampling Distribution on the Loss of Efficiency

More generally, the loss of efficiency associated with integrating out the sampling intervals is a function of

E
£
V ar

£
∆0|χ2∆0, Y0

¤¤
and E

£
V ar

£
χ2|χ2∆0, Y0

¤¤
as can be seen from Theorem 3, with equation (5.6) stating

the implication for the estimation of σ2 and equations (5.12) and (5.13) for the estimation of θ. For clarity,

consider, in this Section, the case where the density d0 of ∆0 is independent of Y0. Then the two quantities

driving the efficiency loss of IOML relative to FIML are E
£
V ar

£
∆0|χ2∆0

¤¤
and E

£
V ar

£
χ2|χ2∆0

¤¤
. They

depend upon the unconditional density d0(δ0) that ∆0 = δ0, and we now seek to get a better handle on that

dependence. For that purpose, we deÞne

mq(b) = EZ

·
Z−qd0

µ
b

Z2

¶¸
, (5.14)

where Z is N(0, 1). In the case where ∆0 has a discrete distribution supported on δm, m = 1, ...,M, we deÞne

instead

mq(b) =
MX
m=1

µ
b

δm

¶2− q
2

gχ2

µ
b

δm

¶
P (∆0 = δm) (5.15)

where gχ2 is the χ2[1] density function. As function of the density d0 from which the sampling intervals are

drawn, the general formulae determining E
£
V ar

£
∆0|χ2∆0

¤¤
and E

£
V ar

£
χ2|χ2∆0

¤¤
are given by:

Proposition 5. The conditional variances driving the efficiency loss in Theorem 3 and Corollaries 1 and 4

depend upon the distribution of the sampling intervals as follows:

E
£
V ar

£
χ2|χ2∆0

¤¤
= 3−E

"µ
m0(χ

2∆0)

m2(χ2∆0)

¶2#
(5.16)
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and

E
£
V ar

£
∆0|χ2∆0

¤¤
= E[∆20]−E

"µ
χ2∆0

m4(χ
2∆0)

m2(χ2∆0)

¶2#
. (5.17)

where χ2 and ∆0 are independent random variables following respectively a χ2[1] and a law with density d0.

We give the results in Table 2 for speciÞc distributions of the sampling intervals. For the sampling schemes

considered, the Þrst four moments of ∆0 and the functions mq, q = 0, 2, 4 (hence all the expressions in

Proposition 5, and consequently in Theorem 3 and Corollaries 1 and 4) are all in closed-form. We consider

three sampling schemes, which, for comparison purposes, we parametrize as a function of their expected value

E[∆0], are: (1) ∆0 is non-random, i.e., had density given by a Dirac mass at E[∆0]; (2) ∆0 is uniform on

(0, 2E[∆0]); (3) ∆0 has exponential distribution with arrival rate 1/E[∆0], i.e., density d0(δ) = (1/E[∆0])

exp(−δ/E[∆0]).
We can also consider a fourth scheme, corresponding to a trading day and night each with its own arrival

distribution. Such a scheme would necessitate a simple relaxation of our stationarity assumption for the dis-

tribution of the sampling intervals. This straightforward extension is as follows. Assume that ∆0 is generated

by two sampling regimes, high density (�trading day� or �New-York open�) and low density (�night� or �Sin-

gapore then London open�); the distributions of waiting times are ∆1 = ε∆10 (day) and ∆ = ε∆20 (night),

with ∆10 and ∆20 being deterministic, uniform or exponential (with different expected values, reßecting the

different sampling intensities during the trading day and night). Suppose that α is the fraction of �day� out

of total time (for example, α = 1/3). Let τ1 be the number of samples during the �day� and τ2 during the

night. Asymptotically as ε→ 0, τ1 and τ2 become nonrandom, with

α = E[∆10(1) + ...+∆10(τ)] = τ1εE[∆10],

and similarly 1− α = τ2εE[∆20]. Hence the asymptotic fraction of ∆n�s coming from the �day� distribution

is

φ =
τ1

τ1 + τ2
=

α/E[∆10]

α/E[∆10] + (1− α)/E[∆20] .

In this case, therefore,

E[∆q0] = φE[∆q10] + (1− φ)E[∆q20]
mq(b) = φmq,∆1(b) + (1− φ)mq,∆2(b). (5.18)

Note also that by combining these results, the expressions for additional sampling schemes can be straight-

forwardly obtained. For example, when ∆0 has two regimes (for example a binomial distribution, or two

regimes drawn from exponential distributions with different arrival rates), E[∆q0] and mq(b) are given by

(5.18) as a weighted average of the respective one-regime moments given in Table 2.
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Note also that when ∆0 is exponentially distributed we obtain the particularly simple expressions

E

"µ
m0(χ

2∆0)

m2(χ2∆0)

¶2#
= 2

E

"µ
χ2∆0

m4(χ
2∆0)

m2(χ2∆0)

¶2#
=

5

4
E [∆0]

2
=
5

8
E
£
∆20
¤
.

A consequence of this in equation (5.16) is that, for exponential sampling, E
£
V ar

£
χ2|χ2∆0

¤¤
= 1. Thus, from

equation (5.8), the leading term in the IOML variance ( �V (1)σ2 ) is equal to twice the leading term in the FIML

variance (�V (1)σ2 ). In other words, for the diffusion parameter σ
2, the cost of randomness (represented by the

extra variance of IOML over FIML) is exactly equal, at Þrst order in ε, to the cost of discreteness (represented

by the FIML variance).

6 The Cost of Ignoring the Sampling Randomness

In the previous Section, we examined the efficiency loss in FIML attributable to the sampling randomness and

compared it to the one attributable to not observing the full continuous time sample path, the latter being

represented by the extra variance of IOML relative to FIML. We now turn to a detailed examination of the

cost (both in bias and variance) imputable to ignoring the randomness of the sampling intervals (by following

what would be an optimal inference strategy, PFML, if the sampling intervals were all equal), as opposed

to the cost of not observing the sampling intervals but being willing to account for their randomness (as in

IOML). For ease of exposition, let us also suppose in this section that the density d0 of ∆0 is independent of

Y0.

We again distinguish between the three cases of estimating θ with σ2 = σ20 known, estimating σ
2 with θ = θ0

known, and estimating both jointly. The asymptotic properties of PFML are given by
√
T (ÿβ− β̄)→ N(0, ÿVβ),

where:

Theorem 4. (Bias and Variance for the PFML Estimator of θ When σ2 = σ20 Is Known): The bias of the

drift estimator is θ̄ − θ0 = ε2 b2 +O(ε
3) with

b2 =
σ20 V ar[∆0]

240EY0

h
( ∂µ∂θ (Y0,θ0))

2
i µ20EY0 ·³∂µ∂θ (Y0, θ0)´2 ∂2µ(Y0,θ0)∂y∂θ

¸
+ 10EY0

h
∂µ(Y0,θ0)

∂θ
∂µ(Y0,θ0)

∂y
∂2µ(Y0,θ0)

∂y2

i
−σ20

³
11EY0

h
∂2µ(Y0,θ0)

∂y2
∂3µ(Y0,θ0)
∂y2∂θ

i
+ 4EY0

h
∂2µ(Y0,θ0)
∂y∂θ

∂3µ(Y0,θ0)
∂y3

i
+4EY0

h
∂µ(Y0,θ0)

∂y
∂4µ(Y0,θ0)
∂y3∂θ

i
+EY0

h
∂µ(Y0,θ0)

∂θ
∂4µ(Y0,θ0)

∂y4

i´´ (6.1)

and its asymptotic variance is

ÿVθ = ÿV
(0)
θ + ÿV

(1)
θ ε+O(ε2) (6.2)
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with ÿV
(0)
θ = σ20

³
EY0

h
(∂µ(Y0, θ0)/∂θ)

2
i´−1

and

ÿV
(1)
θ =

σ20 E[∆2
0]
µ
V ar[∆0]

µ
2EY0

h
(∂µ∂θ (Y0,θ0))

2 ∂µ(Y0,θ0)
∂y

i
−σ20EY0

·µ
∂2µ(Y0,θ0)

∂y∂θ

¶2¸¶
+4σ20T

(2)
θ

¶
4E[∆0]EY0

h
(∂µ∂θ (Y0,θ0))

2
i3

where T (2)θ = 4EY0 [q
∗
1(Y0, β0, 0)G1(Y0, β0)] with G1(Y0, β0) = σ−20

R Y0 úµ(z, θ0)dz and
q∗1(y, β0, 0) = −V ar[∆0]

8σ20

³
4µ(y, θ0)

2 ∂
2µ(y,θ0)
∂y∂θ + 4µ(y, θ0)

³
∂µ(y,θ0)

∂θ
∂µ(y,θ0)

∂y + σ20
∂3µ(y,θ0)
∂y2∂θ

´
+ σ20

³
4∂µ(y,θ0)∂y

∂2µ(Y0,θ0)
∂y∂θ + 2∂µ(y,θ0)∂θ

∂2µ(y,θ0)
∂y2 + σ20

∂4µ(y,θ0)
∂y3∂θ

´´ (6.3)

Note that ÿV (0)θ is the limiting term corresponding to a continuous record of observations, as in FIML and

IOML. So the three estimators are equivalent at the level of the leading term for the variance of the drift

estimator. Moreover note that, as expected, setting V ar [∆0] = 0 in all the expressions involving the PFML

estimator reduces its bias to zero and its variance to that of FIML (and IOML) since in that case all three

estimators are identical. This will also be a feature of the results of the two theorems that follow.

Theorem 5. (Bias and Variance for the PFML Estimator of σ2 When θ = θ0 Is Known): The bias of the

diffusion estimator is

σ̄2 − σ20 = ε V ar[∆0]σ
2
0

2E[∆0]
EY0

h
∂µ
∂y (Y0, θ0)

i
+O(ε2) (6.4)

and its asymptotic variance is

ÿVσ2 = ε ÿV
(1)
σ2 + ε

2 ÿV
(2)
σ2 +O(ε

3) (6.5)

with

ÿV
(1)
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σ40
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³
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∆30
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EY0
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with

q2(y, β0, 0) =
V ar[∆0]
4E[∆0]σ40

³
σ20EY0

h
∂µ
∂y (Y0, θ0)

i
− 2

³
µ(y, θ0)2 + σ20

∂µ
∂y (y, θ0)

´´
. (6.6)

This theorem shows that there is a Þrst order loss of efficiency in PFML represented in ÿV
(1)
σ2 by the

additional term 3σ40V ar [∆0] /E [∆0] , in addition to the cost of discreteness represented by the FIML leading
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term variance V (1)σ2 =2σ
4
0E [∆0] of Corollary 1.

Compared now to IOML, recall that the IOML estimator relies on standard likelihood inference using only

the price data Yn. The asymptotic efficiency of IOML suggests that its variance might be smaller or equal to

the variance of the PFML which makes use of exactly the same data (the Yn�s but not the ∆n�s). However,

because of the inconsistency of the PFML procedure, this is not assured. The inequality does, however, hold

in the case of estimating σ2 with θ = θ0 known, since

ÿV
(1)
σ2 =

µ
1 +

3

2
V ar [∆0]

¶
�V
(1)
σ2 ≥ �V

(1)
σ2 . (6.7)

Theorem 6. (Bias and Variance for the Joint PFML Estimator of β = (θ, σ2)): The two components of the

bias vector β̄ − β0 are given by

θ̄ − θ0 = − ε σ20 V ar[∆0]

4E[∆0]EY0

h
( ∂µ∂θ (Y0,θ0))

2
iEY0

h
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EY0
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∂2µ(Y0,θ0)
∂y∂θ

i
+O(ε2) (6.8)

and (6.4) respectively. The asymptotic variance of �β is

ÿVβ =

 ÿvθθ ÿvθσ2

ÿvσ2θ ÿvσ2σ2

 =

 ÿv
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θθ + εÿv

(1)
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2) εÿv
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εÿv
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3)

 (6.9)

where ÿv(0)θθ = ÿV
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with t(2)θθ = 4EY0 [G1(Y0, β0)q1(Y0, β0, 0)], t
(2)
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(6.10)

q∗1 denotes the function in (6.3) and q2 was given in (6.6).

This theorem shows that the additional variance over FIML is of the same order for both of these inference

schemes, but of course the PFML estimator is biased unlike the IOML one. In terms of asymptotic root

mean squared error comparisons, any biased estimator such as PFML will always do worse than an unbiased

estimator such as FIML or IOML �irrespectively of how large their variances are� since the variance is of order
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O(T−1) whereas the squared bias is of order O(1) as T goes to inÞnity.

This being said, from the above results, the PFML procedure is relatively much worse for estimating σ2

than for estimating θ. The Þrst order variance term is unaffected for the drift estimator, while for the diffusion

estimator, it is larger than under IOML unless V ar [∆0] = 0 (the deterministic sampling situation, in which

case our three procedures are the same anyway). Also, the impact of bias is much greater when estimating

σ2 using PFML. To illustrate this, consider Þrst the case of ÿσ2, the PFML diffusion estimator. Suppose that

c is some Þxed number small enough that the Þrst order term in the bias (6.4) is a good approximation,

i.e., ÿVσ2 ≈ c ÿV
(1)
σ2 , and similarly for the bias, say σ̄

2 − σ20 ≈ cc, where c is the expression for the Þrst order

term in (6.5). At the same time, let T be big enough that the asymptotic variances and biases are good

approximations. Since the mean squared error MSEσ2 is then given by

MSEσ2 = E
h¡
ÿσ2 − σ20

¢2i
= V ar

£
ÿσ2 − σ20

¤
+ bias2 ≈ cT−1 ÿV (1)σ2 + c

2c2.

In order for T to be big enough for the bias to not dominateMSEσ2 , we therefore need, approximately, that c

be smaller than c1T−1, where c1 = ÿV
(1)
σ2 /c

2. On the other hand, for ÿθ, one needs c to be approximately smaller

than c2T−1/4 and c3T−1/2 for the cases of Theorems 4 and 6, respectively, where c2 and c3 follow from these

theorems. Hence, c can be much bigger for ÿθ than for ÿσ2 without having the bias dwarÞng the variance for

the PFML estimators.

One Þnal remark. We wrote earlier that we were being �generous� with regard to the PFML inference

strategy by evaluating the likelihood function at the unconditional mean of the sampling intervals, E[∆] =

εE[∆0]. We now show that this is indeed the best one can do for the PFML scheme, in the sense that the

choice of any other Þxed value at which to evaluate the likelihood function would result in an estimator with

even worse asymptotic properties. Suppose that we evaluate the likelihood function at εω0, where ω0 6= E[∆0],
so that our moment conditions become

h(y1, y0, β, ε) =

 h1(y1, y0, β, ε)

h2(y1, y0, β, ε)

 =
 úlθ(y1|y0, εω0, β)
úlσ2(y1|y0, εω0, β)

 . (6.11)

instead of (4.23). We then obtain:

Proposition 6. (PFML Estimator When the Likelihood Is Not Evaluated at E[∆]):

(1) If we estimate θ with σ2 = σ20 known, the bias of the drift estimator is an order of magnitude in ε

larger than when ω0 = E[∆0]. Letting θ̄ (ω0) denote the plim of the estimator, we now have θ̄ (ω0) − θ0 =
ε b1 (ω0) +O(ε

2) with

b1(ω0) = (E [∆0]− ω0)
σ20

³
2EY0

h
∂µ
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·³
∂µ
∂θ (Y0, θ0)

´2¸ (6.12)

as opposed to (6.1). The asymptotic variance of the estimator is of the same order as when ω0 = E[∆0].

(2) If we attempt to estimate σ2 with θ = θ0 known, the bias of the PFML estimator does not even go to

zero as c goes to zero. Indeed, if σ̄2 (ω0) is the plim of the estimator, we have σ̄2 (ω0)− σ20 = O(1) instead of
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the usual O(ε); speciÞcally,

σ̄2 (ω0)− σ20 =
µ
E [∆0]

ω0
− 1
¶
σ20 +O (ε) . (6.13)

As a sanity check, we note that the expressions given in (6.12) and (6.13) are, respectively, proportional to

E [∆0]−ω0 and E [∆0] /ω0 − 1, so that they revert to those given in Theorems 4 and 5 respectively when the
likelihood function is evaluated at the unconditional mean of the sampling intervals, i.e., when ω0 = E[∆0].

7 Example: The Ornstein-Uhlenbeck Process

This section studies a speciÞc example of model (2.1), the stationary (θ > 0) Ornstein-Uhlenbeck process

dXt = −θXtdt+ σdWt. (7.1)

The transition density l(y1|y0, δ, β) = ln (p(y1|y0, δ, β)) is a Gaussian density with expected value e−δθy0
and variance

¡
1− e−2δ θ¢ σ2/2θ. The stationary density π(y0, β) is also Gaussian, with mean 0 and variance

σ2/(2θ). In Section 7.1, we determine how accurate our expansions are by comparing them to the exact

expressions which can be obtained for this model. We also compare how the IOML and PFML fare relative

to FIML in Section 7.2. Finally, we report in Section 7.3 the results of Monte Carlo simulations to address

the issue of the adequacy of the asymptotic distributions in small samples.

7.1 Accuracy of the Expansions

We start by determining the accuracy of our expansions. Indeed, this model constitutes one of the rare

instances where we can obtain exact (i.e., non-Taylor expanded) expressions for the asymptotic variance

matrices Vβ, �Vβ and ÿVβ of the three estimators. We can therefore compare the exact expressions for these

matrices to their Taylor expansions of different orders in ε.

The exact FIML expressions, obtained by a direct calculation using the explicit expressions of the transition

and stationary densities, are derived from the information matrix

Iβ =

 E

·
(−1+e2ε∆0θ0)2−4(−1+e2ε∆0θ0)ε∆0θ0+2(1+e2ε∆0θ0)ε2∆0

2θ0
2

2(−1+e2ε∆0θ0)2θ02

¸
E
h

1−e2ε∆0θ0+2ε∆0θ0
−2θ0σ02+2e2ε∆0θ0θ0σ02

i
E
h

1−e2ε∆0θ0+2ε∆0θ0
−2θ0σ02+2e2ε∆0θ0θ0σ02

i
1

2σ04

 (7.2)

where the expectation is taken over the distribution of∆0. The FIML asymptotic variance is Vβ = εE [∆0] I−1β .

Our corresponding expansion in ε for the information matrix Iβ, obtained by applying Theorem 2 with

µ(x, θ) = −θx, is

Iβ =

 εE[∆0]
2θ0

− ε3E[∆0
3]θ0
6 +O(ε4) −εE[∆0]

2σ02
+ ε2E[∆0

2]θ0
6σ02

+O(ε3)

−εE[∆0]
2σ02

+ ε2E[∆0
2]θ0

6σ02
+O(ε3) 1

2σ04

 (7.3)
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For the PFML estimator, the exact calculation of the time series term Tβ is based on

Tβ =
2

E [∆0]
E∆,Y1,Y0 [h(Y1, Y0,∆, β̄, ε)R(Y1, β0, ε)]

where E∆,Y1
£
h(Y0, Y1,∆, β̄, ε)|Y0

¤
= εαq(Y0, β0, ε) ≡ Q(Y0, β0, ε) and

R(Y1, β0, ε) = E [∆0]
∞X
k=1

EYk [Q(Yk, β0, ε)|Y1] = εα−1r(Y1, β0, ε).

This last expression requires the calculation of E[Y 2k |Y1]. To this end, consider Þrst the law of Yk given Y1
and ∆2, ..., ∆k. In this case, Yk is conditionally Gaussian with mean Y1 exp{−θ(∆2+ ...+∆k)} and variance
((k − 1)− exp{−2θ(∆2 + ...+∆k)}) σ2/(2θ). Hence we obtain that

E[Y 2k |Y1] = E[Y 21 exp{−2θ(∆2 + ...+∆k)}+
σ2

2θ
((k − 1)− exp{−2θ(∆2 + ...+∆k)}) |Y1]

= Y 21 E[exp{−2θ∆}](k−1) +
σ2

2θ

³
(k − 1)−E[exp{−2θ∆}](k−1)

´
.

To save space, we only report results for the FIML estimator in Figure 3, and for the exponential

sampling scheme described in Section 5.4. That is, ∆0 is independent of Y0 and has density d0(δ0) =

exp(−δ0/E[∆0])/E[∆0]. The value of the average sampling interval E[∆] = εE[∆0] on the graph ranges

from 0 (the continuous-time limit) to 1/12 (one month). The true parameter values are θ0 = 10 and σ20 = 1.

We Þnd that in all instances the approximation error introduced by using our expansion to evaluate the exact

expression is much smaller than the magnitude of the estimator�s standard error. It is also the case that higher

order Taylor expansions in ε are more accurate than low order expansions, when E[∆] gets large. For high

frequency data (small E[∆], such as a day or less), expansions of order 1 in ε are amply sufficient. But even for

monthly data, one can get very accurate results by using the expansion of order 3 in ε. Similar results hold for

the other estimation methods. Therefore, in practical situations, our expansions can be taken as substitutes

for the exact expressions (which we recall are not known in closed form for most models anyway).

7.2 Comparison of the Different Methods

We now compare the three estimators in terms of their asymptotic bias (if any) and standard error. We report

in Figure 4 the results for the parameters estimated one at a time (i.e., θ knowing σ2 = σ20 and σ
2 knowing

θ = θ0). The complete results are given in full generality in the Theorems contained earlier in the paper, and

specialized to the Ornstein-Uhlenbeck process in Tables 3 (FIML and IOML) and 4 (PFML). The results in

Figure 4 demonstrate that the differences in the asymptotic performance of the estimators can be substantial.

The asymptotic standard error and bias are both scaled by the value of the true parameter.

In Figure 5, we plot the costs of discreteness and the cost of randomness for this model. Recall that the

results coming out of the theory are as follows. For the drift parameters, the cost of randomness (which is of

order ε1) is an order of magnitude in ε larger than the cost of randomness (which is of order ε2); however,

both are smaller than the inescapable variance that is present even if the full continuous time sample path

is observed (which is of order ε0). The difference in the orders of the two costs (linear in ε for the cost of
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randomness, quadratic for the cost of discreteness) when estimating θ is apparent in Figure 5 (Þrst graph).

For the diffusion parameter, the limiting variance in the case of full continuous time sample path observation

is zero. The cost of discreteness is of order ε1. The cost of randomness is also of order ε1; however, the latter

can be made an arbitrary large multiple of the former. Recall also from the discussion in Section 5.4 that in

the case of exponential sampling, the cost of randomness when estimating σ2 is exactly equal to the cost of

randomness. This is visible in Figure 5 (second graph).

7.3 Simulation Evidence on the Small Sample Distributions

Next, we carry out simulations under different values of T and E[∆], again with exponential sampling. Figures

6, 7 and 8 plot the Þnite sample distributions of the estimators (histograms) and the corresponding asymptotic

distribution (solid line). The expressions for the asymptotic bias and variances of the three estimators applied

to this model are given in Tables 3 and 4.

Throughout the simulations, the true parameter values are θ0 = 10 and σ20 = 1. To simulate the sample

paths (M = 5, 000 in each case), we Þrst draw ∆n from the exponential distribution with parameter E[∆]

then, given ∆n and Yn−1, recursively draw Yn conditionally on Yn−1 and ∆n from a Gaussian distribution with

conditional mean exp(−θ0∆n)Yn−1 and variance (1− exp(−2θ0∆n)) σ20/2θ0. To start each simulated series,
we draw Y0 from the unconditional distribution of the process X. To compute the closed-form approximation

of the integrated-out likelihood function �p(y1|y0, β), we apply Proposition 3, with the coefficients cj , j = 0, ...,3
of the explicit transition function given by equation (4.6). The expressions of the cj coefficients are:

c0 (z1|z0, β) = 1
c1 (z1|z0, β) = − θ(−3σ2+θz20)

6σ2 − θ2z0z1
6σ2 − θ2z21

6σ2

c2 (z1|z0, β) = θ2(3σ4−6θσ2z20+θ2z40)
72σ4 +

θ3z0(−3σ2+θz20)z1
36σ4 +

θ3(−2σ2+θz20)z21
24σ4 + θ4z0z

3
1

36σ4 +
θ4z41
72σ4

c3 (z1|z0, β) = − θ3(135σ6−27θσ4z20−45θ2σ2z40+5θ3z60)
6480σ6 − θ4(−27σ4z0−30θσ2z30+5θ2z50)z1

2160σ6 − θ4(−9σ4−45θσ2z20+10θ2z40)z21
2160σ6

−θ5z0(−18σ2+7θz20)z31
1296σ6 − θ5(−3σ2+2θz20)z41

432σ6 − θ6z0z
5
1

432σ6 − θ6z51
1296σ6

When estimating θ, we consider a design where T = 25 years and E[∆] = 1 day (Figure 6). When

estimating σ2 we consider both a low frequency design where T = 10 years and E[∆] = 1 day (Figure 7) and

a high frequency design where T = 1 month and E[∆] = 1/100 day (Figure 8). With high frequency (i.e.,

small E[∆]), small span (i.e., low T ) data, we only consider the estimation of σ2, since the drift parameter

can only be estimated accurately over a long time interval T. In general, the convergence of the small sample

distribution to its asymptotic limit is slower for θ than for σ2. Table 5 reports the Þrst four moments of

the small sample distributions, compared to their asymptotic limits. Overall, the simulations show that the

asymptotic distributions are a fairly accurate guide to the small sample distributions.

8 Conclusions

We have developed a set of tools for analyzing the effect on estimators of discretely-sampled continuous-

time diffusions of random sampling. By Taylor-expanding the different matrices involved in the asymptotic
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distribution of the estimators, we are able to deliver fully explicit expressions of the variance, and, when

applicable, the bias of the asymptotic properties of three likelihood-based estimators. By comparing the

performance of these three estimators, we assessed the relative costs of ignoring the discreteness of the sampling

(i.e., using the continuous-time asymptotics when the data are in fact discrete) versus those of not using the

randomly-spaced sampling intervals, or simply ignoring their randomness (by pretending that the sampling is

done at a Þxed time interval). We found that estimators of the drift and diffusion coefficients not only behave

very differently when the data are discretely sampled, but sampling randomness also affects these estimators

differently.

We documented the relative magnitudes of the costs imputable to the sampling randomness and to the

sampling discreteness respectively. The most common occurrence is one where the loss of efficiency due to not

using the sampling times is of the same order in ε as the loss due to the discreteness of the data itself, but

can be made an arbitrary large multiple of the cost of discreteness. The main implication of our results for

empirical researchers using randomly spaced data is that they should pay as much attention, if not more, to

sampling randomness as they do to sampling discreteness.

Some of the concepts we introduced can prove useful in more general contexts: for example, the notion

of a generalized inÞnitesimal generator which helped us obtain Taylor expansions for our expectations under

random sampling can be readily extended to other types of Markov processes, such as Lévy processes driven by

a non-Brownian process, or in addition to the Brownian process, by replacing the diffusive standard generator

in our generalized generator with its Lévy counterpart. The net result would be to add a difference term to

the differential terms already present in the generator. The rest of our analysis would carry through with

relatively minor modiÞcations.
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Appendix: Proofs

A Proof of Proposition 1

Let U1, ..., Un, ... be an inÞnite sequence of i.i.d. uniform random variables independent of the Xt process.
Without loss of generality, we can assume that ∆i = D(−1)(Ui|Yi−1), i = 1, 2, ..., where D(−1)(·|Yi−1) is the
inverse of the conditional distribution D(·|Yi−1) of ∆i given Yi−1 (the density corresponding to the c.d.f. D
is what we denote as d). For details of the construction, see the second proof of Theorem 14.1 in Billingsley
(1995). Let G be the σ-Þeld generated by the (inÞnite) collection of Ui�s, and set Gt = FXt ∨ G, the smallest
σ-Þeld containing FXt and G.
We shall show that the τ i�s are stopping times with respect to the Þltration {Gt : t ≥ 0}. This will prove

the proposition, since then {τn ≤ s} ∈ Gt for s ≤ t. It follows that Fτt ⊆ Gt, and hence Ft ⊆ Gt, for all t ≥ 0.
However, the independence of G and the Þltration ©FXt : t ≥ 0ª yields that FXt is conditionally independent
of Gs given FXs , for all t ≥ s. By iterated conditional expectations, it follows that FXt is conditionally
independent of Fs given FXs , again for all t ≥ s. This is what we needed to prove.
Finally, to show that the τ i�s are {Gt : t ≥ 0}-stopping times, note Þrst that this is obviously true for τ0 = 0.

Then, by induction, assume that τn−1 is a {Gt : t ≥ 0}-stopping time. Next, it follows from Proposition 2.18
in Karatzas and Shreve (1991) that Xτn−1∧t is Gt measurable. Also, on the set {τn−1 ≤ t},

τn = τn−1 +D(−1)(Un|Yn−1) = τn−1 +D(−1)(Un|Xτn−1∧t),

and so τn1 ({τn−1 ≤ t}) (where 1(·) is the indicator function) is Gt measurable. Since τn ≥ τn−1 everywhere,
{τn ≤ t} ∈ Gt. Since the argument is true for all t, τn is a {Gt : t ≥ 0}-stopping time. Hence the induction
argument is complete.

B Proof of Theorem 1
We wish to prove that (3.14) is the Taylor expansion of the expectation of a function f(Y1, Y0,∆, β, ε). All
the expectations below are taken with respect to the law of the process at the true value β0 so that

EY1 [f(Y1, Y0,∆, β, ε)|Y0 = y0,∆ = δ] =
Z x̄

x
¯

f(y1, y0, δ, β, ε)p(y1|y0, δ, β0)dy1.

By the standard (deterministic) Taylor formula applied to the function of ε deÞned by

φ (ε) ≡ E∆,Y1 [f(Y1, Y0, ε∆0, β, ε)|Y0 = y0]
that is, φ (ε) = φ (0) + εφ0 (0) +O(ε2), we have that

E∆,Y1 [f(Y1, Y0,∆, β, ε)|Y0 = y0] = f(y0, y0, 0, β0, 0)
+ε

³
E [∆0|Y0 = y0]

£
Aβ0 · f(y1, y0, δ, β, 0)

¤
| y1=y0,δ=0,β=β0,ε=0 +

∂f(y1,y0,δ,β,ε)
∂ε | y1=y0,δ=0,β=β0,ε=0

+ ∂f(y1,y0,δ,β,ε)
∂β | y1=y0,δ=0,β=β0,ε=0

× ∂β
∂ε (β0, 0)

´
+O(ε2)

(B.1)
The last term allows for the fact that β may depend on ε (this would be the case for instance if f were
computed at β = β̄, where β̄ is the probability limit of the estimator calculated from discrete data deÞned in
(2.4)). Note that when β is a function of ε, its limit as ε tends to 0 is β0.
We can rewrite (B.1) more compactly as

E∆,Y1
£
f(Y1, Y0,∆, β̄, ε)|Y0 = y0

¤
= f(y0, y0, 0, β0, 0) + ε (Γβ0 · f)(Y0, Y0, 0, β0, 0) +O(ε2).

Indeed, we created the operator Γβ0 in (3.12) in such a way that its iterated action will produce a Taylor
expansion in ε of the function up to any order in ε as long as the partial derivatives of the function f exist.
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To see why, compute

Γ2β0 · f = Γβ0 ·
¡
Γβ0 · f

¢
= Γβ0 ·

µ
∆0Aβ0 · f +

∂f

∂ε
+
∂f

∂β

∂β

∂ε

¶
= ∆20A

2
β0
· f + ∂

2f

∂ε2
+
∂f

∂β

∂2β

∂ε2
+
∂2f

∂β2

µ
∂β

∂ε

¶2
+2∆0Aβ0 ·

µ
∂f

∂ε
+
∂f

∂β

∂β

∂ε

¶
+ 2

∂2f

∂β∂ε

∂β

∂ε

which is the full second order term in the Taylor expansion of f with respect to all its arguments (y1, y0, δ, β, ε),
given that ∆20A

2
β0
· f is the second order term in the Taylor expansion of f with respect to its arguments

(y1, δ) as given in (3.11). Further iterations of the operator Γβ0 will produce higher order Taylor expansions
of f in ε, as long as the necessary derivatives of f exist. The unconditional expectation (3.14) follows from
(B.1) by taking expectations with respect to Y0 and using the Law of Iterated Expectations.

C Proof of Proposition 2

Consider the FIML likelihood ratio of β with respect to β0 using both sets of data Yn and ∆n, that is

LR (YNT
,∆NT

, ..., Yn,∆n, Yn−1,∆n−1, ...Y1,∆1|X0) =
L (YNT

,∆NT
, ..., Yn,∆n, Yn−1,∆n−1, ...Y1,∆1|X0;β)

L (YNT
,∆NT

, ..., Yn,∆n, Yn−1,∆n−1, ...Y1,∆1|X0;β0)

=

QNT

n=1 p(Yn|Yn−1,∆n, β)d(∆n|Yn−1)QNT

n=1 p(Yn|Yn−1,∆n, β0)d(∆n|Yn−1)

=

QNT

n=1 p(Yn|Yn−1,∆n, β)QNT

n=1 p(Yn|Yn−1,∆n, β0)
Recall that we use L as a generic notation for the density of the variables listed as its arguments. The second
equality is due to (4.1), and the simpliÞcation in the third equality follows from the fact that the density d
does not depend on the parameter β. With (4.11), we have

LR (YNT ,∆NT , ..., Yn,∆n, Yn−1,∆n−1, ...Y1,∆1|X0) =
NTY
n=1

LR (Yn|Yn−1,∆n) .

Now consider the likelihood ratio using only the Yn�s, which by the martingale property of likelihood ratios
is given by (4.10). Because Yn is a Markov chain under both probabilities involved in the likelihood ratio, the
likelihood ratio using only the Yn�s is the product of the pairwise conditional likelihood ratios

gLR (YNT , ..., Y1|X0) =
NTY
n=1

gLR (Yn|Yn−1) . (C.1)

This (or its log) is the criterion function to be maximized over β to obtain the IOML estimator.gLR (Yn|Yn−1) can be expressed as
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gLR (Yn|Yn−1) = E∆n [LR (Yn|Yn−1,∆n) |Yn,Yn−1]
=

Z
LR (Yn|Yn−1,∆n)L(∆n|Yn, Yn−1;β0) d∆n

=

Z
p(Yn|Yn−1,∆n, β)
p(Yn|Yn−1,∆n, β0)

L(∆n|Yn, Yn−1;β0) d∆n

=

Z
p(Yn|Yn−1,∆n, β) L(Yn−1,∆n;β0)

L(Yn, Yn−1,∆n;β0)
L(Yn, Yn−1,∆n;β0)
L(Yn, Yn−1, β0)

d∆n

=

Z
p(Yn|Yn−1,∆n, β)L(∆n|Yn−1;β0)L(Yn−1;β0)

L(Yn|Yn−1;β0)L(Yn−1;β0)
d∆n

=
1

L(Yn|Yn−1;β0)
Z
p(Yn|Yn−1,∆n, β) d(∆n|Yn−1) d∆n. (C.2)

Since �p is deÞned by the property (4.12),namely

�p(Yn|Yn−1, β) =
Z
p(Yn|Yn−1,∆n, β) d(∆n|Yn−1) d∆n,

one can take β = β0 ingLR (Yn|Yn−1) which makes the ratio one by deÞnition. This shows that
�p(Yn|Yn−1, β0) = L(Yn|Yn−1;β0). (C.3)

However, there is nothing in the deÞnition ofgLR that requires β0 to be the true parameter. Hence (C.3) is in
fact true for all β, not just the true parameter β0. Therefore �p(Y1|Y0, β) is the conditional density of Y1 given
Y0.

D Proof of Proposition 3
We have that Z +∞

0

exp
³
−γ−1
∆

+ γ0∆
´
∆j−1/2 d∆ = 2

µ
γ−1
γ0

¶(2j+1)/4
Bj+(1/2)

¡
2
√
γ−1γ0

¢
(D.1)

where γ−1 and γ0 are positive constants. Then with

γ−1 =
(Y1 − Y0)2
2σ2

, γ0 =
1

E[∆|Y0] ,

the result for �p(J) follows from an integration term by term of
R+∞
0

p(J)(Y1|Y0, δ, β) d(δ|Y0) dδ, with p(J) given
by equation (4.5).

E Proof of Proposition 4

Given (4.13), the IOML likelihood ratio

gLR (y1|y0) = �p(y1|y0, β)
�p(y1|y0, β0)

= exp {λ(y1|y0, β)− λ(y1|y0, β0)}

is related to the FIML likelihood ratio

LR (y1|y0, δ) ≡ p(y1|y0, δ, β)
p(y1|y0, δ, β0)

= exp {l(y1|y0, δ, β)− l(y1|y0, δ, β0)}
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by equation (4.10), namely gLR (Y1|Y0) = E∆ [LR (Y1|Y0,∆) |Y1,Y0]
with the expectation evaluated, as always, over the distribution of ∆ given (Y1, Y0) evaluated at the true
parameter values.
That is

φ (β) ≡ exp{λ(y1|y0, β)− λ(y1|y0, β0)} = E∆ [exp {l(Y1|Y0,∆, β)− l(Y1|Y0,∆, β0)} |Y1 = y1, Y0 = y0]
which we Þrst differentiate with respect to β to obtain

úφ (β) ≡ úλ(y1|y0, β)φ (β) = E∆
h
úl(Y1|Y0,∆, β) exp {l(Y1|Y0,∆, β)− l(Y1|Y0,∆, β0)} |Y1 = y1, Y0 = y0

i
then evaluate at β = β0 to obtain

úφ (β0) ≡ úλ(y1|y0, β0) = E∆
h
úl(Y1|Y0,∆, β)|Y1 = y1, Y0 = y0

i
which is (4.19).
A second differentiation with respect to β, followed by an evaluation of the result at β = β0, yields

λ̈(y1|y0, β0) + úλ
2
(y1|y0, β0) = E∆

h
l̈(Y1|Y0,∆, β0) + úl(Y1|Y0,∆, β0) úl(Y1|Y0,∆, β0)0 |Y0 = y0, Y1 = y1

i
(E.1)

from which (4.20) follows.

F Proof of Theorem 2

To calculate the I matrix, we apply Theorem 1 to the stochastic expansion of the log-likelihood in ∆, and
calculate each of the terms. This expansion can be obtained in two ways. First, the Hermite expansion (4.5)
for p(Y1|Y0,∆, β), although valid for all ∆, can be interpreted as a Taylor expansion in ∆ from which an
expansion of its ln is obtained by expanding

ln

1 + JX
j=1

cj

µ
Y1
σ
|Y0
σ
, β

¶
∆j

j!


in ∆ around 0. The result is the Taylor expansion of the log of the transition function l(Y1|Y0,∆, β) =
ln p(Y1|Y0,∆, β) given by

l(3)(Y1|Y0,∆, β) = −1
2
ln(2π∆σ2)− (Y1 − Y0)

2

2∆σ2
+

Z Y1

Y0

µ(z, θ)

σ2
dz

+ f1(Y1, Y0, θ, σ)σ
2∆+ f2(Y1, Y0, θ, σ)σ

4∆2 + f3(Y1, Y0, θ, σ)σ
6∆3 +Op(ε

4) (F.1)

where the coefficients fj , j = 1, 2, ... are functions of the cj coefficients in (4.6). They are deÞned recursively
and are all closed-form. SpeciÞcally, the Þrst three coefficients, which are the only ones required for the order
three Taylor expansions in ε we are calculating, are:

f1(Y1, Y0, θ, σ) = (Y1−Y0)−1
R Y1
Y0
κ(w, θ, σ2)dw

f2(Y1, Y0, θ, σ) =
f1(Y1,Y0,θ,σ)−f1(Y0,Y0,θ,σ)

4(Y1−Y0)2 + 1
4(Y1−Y0)

∂f1(Y1,Y0,θ,σ)
∂Y1

f3(Y1, Y0, θ, σ) =
1

12(Y1−Y0)3

½R Y1
Y0
(w − Y0)2

µ³
∂f1(w,Y0,θ,σ)

∂w

´2
+ ∂2f2(w,Y0,θ,σ)

∂w2

¶
dw

¾ (F.2)

An alternative, provided by Dacunha-Castelle and Florens-Zmirou (1986), is to apply Girsanov�s Theorem and
expand the Radon-Nikodym derivative in ∆, with the result expressed as functionals of a Brownian Bridge
process.
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Functions f that are polynomial in y1 near the boundaries of S, and their iterates by repeated application
of the generator, retain their polynomial growth characteristic near the boundaries; so they are all in L2

and satisfy (3.9). This follows from the exponential divergence of s (y1;β) near both boundaries whereas
polynomials and their iterates diverge at most polynomially under Assumption 3. Indeed, µ and its derivatives
have at most polynomial growth; multiplying and adding functions with polynomial growth yields a function
still with polynomial growth). The fact that the scale function diverges exponentially is a consequence of the
fact that near an ∞ boundary s (x;β) ≥ exp(k|x|γ) for some k > 0 and γ ≥ 1, and near the 0+ boundary
s (x;β) ≥ exp(k|x|−γ) again for some k > 0 and γ ≥ 1. By the same method as Proposition 2 of Aït-Sahalia
(2002), p and its β−derivatives have at most exponential growth and l and its β−derivatives have at most
polynomial growth. Thus l̈ will be in DK .
The reason we can replace l = ln p by ln p(J) (and similarly for the Þrst three derivatives with respect to

β) follows from (4.7), and the similar result for the β−derivatives. By applying Theorem 1, the asymptotic
distribution of FIML can be obtained in Taylor series form starting with an expansion at order K of the
inverse of:

I = −E∆0,Y1,Y0

h
l̈(Y1|Y0, ε∆0, β)

i
= I

(0)
β + I

(1)
β ε+ ...+ I

(K−1)
β εK−1 +O

¡
εK
¢
.

Suppose now that we apply the same calculation to the Taylor expansion of the likelihood l(J) (which is
also in DK) instead of l, yielding:

I(J) = −E∆0,Y1,Y0

h
l̈(J)(Y1|Y0, ε∆0, β)

i
= I

(J,0)
β + I

(J,1)
β ε+ ...+ I

(J,K−1)
β εK−1 +O

¡
εK
¢
.

Then, from ¯̄̄
E∆0,Y1,Y0

h
l̈(Y1|Y0, ε∆0, β)

i
−E∆0,Y1,Y0

h
l̈(J)(Y1|Y0, ε∆0, β)

i ¯̄̄
= O

¡
εJ
¢
,

it follows that if the order the approximation of p is high enough (J ≥ K) then I(J,k) = I(k) for all k =
0, 1, . . . ,K − 1. In other words, replacing p (resp. l) by p(J) (resp. l(J)), or their Þrst two derivatives, for the
purpose of calculating a Taylor expansion of the FIML distribution at order K in ε is inconsequential.
From (F.1), we calculate úl(3)(Y1|Y0,∆, β) and then l̈(3)(Y1|Y0,∆, β). The two score components in the

vector úl(3) are, for the drift parameters θ

úl
(3)
θ (Y1, Y0,∆, β) =

Z Y1

Y0

úµ(z, θ)

σ4
dz + úf1,θ(Y1, Y0, θ, σ)σ

2∆

+ úf2,θ(Y1, Y0, θ, σ)σ
4∆2 + úf3,θ(Y1, Y0, θ, σ)σ

6∆3 +Op(ε
4)

and, for the diffusion parameter σ2,

úl
(3)
σ2 (Y1, Y0,∆, β) = −

1

2σ2
+
(Y1 − Y0)2
2∆σ4

−
Z Y1

Y0

µ(z, θ)

σ4
dz

+
∂

∂σ2
[f1(Y1, Y0, θ, σ)σ

2∆+ f2(Y1, Y0, θ, σ)σ
4∆2 + f3(Y1, Y0, θ, σ)σ

6∆3] +Op(ε
4)

Finally, the Taylor expansion for

I = −E∆,Y1,Y0
h
l̈(Y1|Y0,∆, β)

i
= E∆,Y1,Y0

h
úl(Y1|Y0,∆, β) úl(Y1|Y0,∆, β)0

i
is calculated by applying Theorem 1 to the function úl(3)× úl(3)0 (or equivalently to the function l̈(3)) instead of
úl × úl0 (or l̈). The result of these lengthy computations is given in (5.1)-(5.2).

G Proof of Theorem 3

We deÞne J to be the expected covariance matrix

J = EY0,Y1

h
V ar∆

h
úl(Y1|Y0,∆, β)|Y0, Y1

ii
. (G.1)
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We will apply Theorem 1 to calculate the leading terms of a Taylor expansion of the matrix J, which requires
an argument substantially more involved than that of the proof of Theorem 2. As we will show below, these
terms are functions of f1(Y1, Y0, θ, σ) in (F.1), which is given in (F.2). As in the proof of Theorem 2, the
actual calculations are all performed by replacing l (resp. úl and l̈) by l(3) (resp. úl(3) and l̈(3)) but from now
on we will not make a distinction between the true function and its order 3 Taylor expansion since as shown
above the difference is irrelevant as far as computing expansions of order 3 or below of the moments we need.
Write Z = (Y1 − Y0)/ (σ√ε), and note that

úlθ = úf1,θσ
2ε∆0 + terms that do not depend on ∆0 +Op(ε2) (G.2)

where úf1,θ = ∂f1(Y0 + σ
√
εZ, Y0, θ, σ

2)/∂θ. Similarly,

úlσ2 =
Z2

2σ2∆0
+ terms that do not depend on ∆0 +Op(ε). (G.3)

It is apparent from (G.1) that we need to get expressions for Cov(∆p0,∆
q
0|Y0, Y1) = Cov(∆p0,∆

q
0|Z,Y0) in a

form where the dependence on ε is explicit. We shall see that

Cov∆(∆
p
0,∆

q
0|Y0, Y1) = CovQ(∆p0,∆q0|Z, Y0) +Op(ε) (G.4)

where, under Q, the law of Z|∆0 is N(0,∆0) and the law of ∆0 is as under the original distribution. Under
(G.4), the Þrst term on the right hand side in (G.3) is independent of ε and all other quantities in our system
except the sampling scheme. It then follows that

Jσ2σ2 = EY0,Y1

h
V ar∆

h
úlσ2 |Y0, Y1

ii
=

1

4σ4
EQ

·
Z4V arQ

·
1

∆0
|Z, Y0

¸¸
+Op(ε)

Similarly,

Jθθ = EY0,Y1

h
V ar∆

h
úlθ|Y0, Y1

ii
= ε2σ4EY0,Y1

·³
úf1,θ

´2¸
×EQ [V arQ [∆0|Z, Y0]] +Op(ε3)

where the method of Section 3.3 yields

EY0,Y1

·³
úf1,θ

´2¸
=

1

4σ6
EY0

"
σ20

µ
∂2µ

∂y∂θ
(Y0, θ0)

¶2
− 2

µ
∂µ

∂θ
(Y0, θ0)

¶2
∂µ

∂y
(Y0, θ0)

#
.

Finally,

Jθσ2 = EY0,Y1

h
Cov∆

³
úlθ, úlσ2 |Y0, Y1

´i
=
ε

2
EY0,Y1

h
úf1,θ
i
×Cov∆

µ
∆0,

Z2

∆0
|Y0, Y1

¶
+O(ε2) = O(ε2)

since we obtain that EY0,Y1
h
úf1,θ

i
= O(ε2) using again Theorem 1. It follows that the J matrix is of the form

J =

Ã
j
(2)
θθ ε

2 +O(ε3) j
(2)
θσ2ε

2 +O(ε3)

j
(2)
θσ2ε

2 +O(ε3) j
(0)
σ2σ2 +O(ε)

!
.

The expressions involving J that we give in (5.4) are obtained by setting χ2 = Z2/∆0.above Obviously,
Z/
√
∆0 is standard normal and independent of ∆0 and Y0, and hence the distribution and properties of χ2, a

chi-squared variable with one degree of freedom, follow. In particular, V ar
£
χ2
¤
= 2 and

Z4V arQ
£
∆−10 |Z, Y0

¤
= V arQ

£
Z2∆−10 |Z, Y0

¤
= V ar

£
χ2|χ2∆0, Y0

¤
. (G.5)

The rationale behind (G.4) is as follows. It is enough to show this for conditional moments, i.e.,

E∆ [∆
p
0|Y0, Y1] = EQ [∆p0|Z, Y0] +Op(ε) (G.6)
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where Q is the distribution under which Xt is a Brownian motion starting at Y0 and with volatility σ, i.e.,
Xt = Y0+σ �Wt. To see this, observe that, by Girsanov�s Theorem (see, e.g., Theorem III.21 in Protter (1992)),
and in analogy with (G.2), the Radon-Nikodym derivative dP/dQ can be written

dP

dQ
= EQ

"
exp{ 1

σ

Z ∆

0

µ(Xt, θ)d �Wt − 1

2σ2

Z ∆

0

µ(Xt, θ)
2dt} | Y0, Z,∆

#

= exp{
Z Y0+σ

√
εZ

Y0

µ(z, θ)

σ2
dz + f1(Y0 + σ

√
εZ, Y0, θ, σ)σ

2∆+Op(ε
2)}

= exp{terms that do not depend on ∆0 +Op(ε)}.
Hence

E [∆p0|Y0, Y1] =
EQ

h
∆p0

dQ
dP |Y0,Z

i
EQ

h
dQ
dP |Y0,Z

i = EQ [∆
p
0|Y0,Z] (1 +Op(ε))

= EQ

h
∆p0|∆1/20 N(0, 1), Y0

i
(1 +Op(ε)) (G.7)

since, under Q, Z/
√
∆ is distributed as N(0, 1) where the normal variable is independent of ∆0 and Y0. This

yields (G.4).
To see that the score with respect to σ2 is Taylor-expandable in ε, note that from (G.7), úλσ2 takes the

form

úλσ2 = E
h
úlσ2 |Y0, Y1

i
=

1

2σ2

µ
EQ[

Z2

∆0
|Z, Y0]− 1

¶
− 1

σ40
(Y1 − Y0)µ(Y0, θ0) +Op(ε)

=
1

2σ20

¡
E[χ2|χ2∆0, Y0]− 1

¢− 1

σ40
(Y1 − Y0)µ(Y0, θ0) +Op(ε), (G.8)

where χ2 is independent of ∆0.

H Proof of Proposition 5
With D0 denoting the c.d.f. of the distribution of ∆0,

P
¡
χ2∆0 ≤ b|χ2

¢
= D0

µ
b

χ2

¶
,

from which it follows that

fχ2∆0|χ2(b|χ2) =
1

χ2
d0

µ
b

χ2

¶
,

and hence

fχ2∆0,χ2(b, χ
2) =

1

χ2
d0

µ
b

χ2

¶
fχ2(χ

2).

where fχ2∆0|χ2 is the conditional density of χ
2∆0 given χ2, and fχ2∆0,χ2 their joint density. Hence

E[χ2q|χ2∆0 = b] = m2−2q(b)
m2(b)

. (H.1)

Now since
E
£
V ar

£
χ2|χ2∆0

¤¤
= 3−E £E[χ2|χ2∆0]2¤ , (H.2)

equation (5.16) follows. Meanwhile,

E
£
∆0|χ2∆0 = b

¤
= bE

£
χ−2|χ2∆0 = b

¤
] = b

m4(b)

m2(b)
, (H.3)

from which equation (5.17) follows.

41



I Proof of Theorem 4

Let h1 denote the Þrst component of the vector h in (4.23). We have for β − β0 = Op(ε):

E∆,Y1 [h1(Y1, Y0, β, ε)|Y0] = E
h
úlθ(Y1|Y0, E [∆] , θ, σ2)|Y0

i
= E

h
úlθ(Y1|Y0,∆, θ, σ2)|Y0

i
(I.1)

−ε2σ40V ar [∆0]
µ
1

2σ20

∂2λ(Y0, β0)

∂y∂θ
µ(Y0, θ0) +

1

4

∂3λ(Y0, β0)

∂Y 20 ∂θ

¶
+O(ε3).

Note that the ε2 term on the right hand side of this equation integrates exactly to zero under the stationary
distribution. For the bias computation, with β̄ = (θ̄, σ20)

0, apply the mean-value theorem to obtain

β̄ − β0 = −(E∆,Y1,Y0
h
úh(Y1, Y0, ùβ, ε)

i
)−1E∆,Y1,Y0 [h(Y1, Y0, β0, ε)] (I.2)

where ùβ denotes a value between β0 and β̄ and úh denotes differentiation with respect to the parameter vector
β. With

θ̄ = θ0 + εb1 + ε2b2 + O(ε3)

recall that
E∆,Y1,Y0

£
h1(Y1, Y0, β̄, ε)

¤ ≡ 0 (I.3)

deÞnes β̄.We then apply (3.14) to the function f = h1 and determine (b1, b2) by setting the Þrst two terms of
the Taylor expansion of h1 to zero.
Then by applying Theorem 1 to Taylor-expand the quantities Dβ and Sβ,0 in (4.25), we obtain that

Dθ = −ε E[∆0]
σ20

EY0

·³
∂µ
∂θ (Y0, θ0)

´2¸
+O(ε3)

Sθ,0 = ε E[∆0]
σ20

EY0

·³
∂µ
∂θ (Y0, θ0)

´2¸
+ ε2 V ar[∆0]

4σ20

µ
2EY0

·³
∂µ
∂θ (Y0, θ0)

´2
∂µ(Y0,θ0)

∂y

¸
−σ20EY0

·³
∂2µ(Y0,θ0)
∂y∂θ

´2¸¶
+O(ε3)

which we write as Dθ = εD
(1)
θ +O(ε3) and Sθ,0 = εS

(1)
θ,0 + ε

2S
(2)
θ,0 +O(ε

3).
This leaves with evaluating the time series term Tθ = Sθ− Sθ,0. For this purpose, let us now show that

E∆,Y1
£
h1(Y1, Y0, β̄, ε)|Y0

¤
= εα1q∗1(Y0, β0, 0) + op(ε

2), (I.4)

where α1 = 2, and q∗1(Y0, β0, 0) is Þnite. This follows from Theorem 1 applied to Taylor-expand in ε the
conditional expectation of the particular function f = h1:

E∆,Y1
£
h1(Y1, Y0, β̄, ε)|Y0

¤
= ε2q∗1(Y0, β0, 0) + op(ε

2)

SpeciÞcally, we obtain that

q∗1(y, β0, 0) = −σ40V ar [∆0]
µ
1

2σ20

∂2λ(y, β0)

∂y∂θ
µ(y, θ0) +

1

4

∂3λ(y, β0)

∂y2∂θ

¶
= −1

2
σ20V ar [∆0] (Aβ0 · úλθ)(y, β0). (I.5)

which reduces to (6.3) when expressed as a function of the drift function µ.
Let =k denoting the σ-Þeld generated by {Y0, ..., Yk} , i.e., by the Þrst k observations. We have
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Tθ = Sθ − Sθ,0 = 2
∞X
k=1

Sβ,k = 2
∞X
j=1

E[h1(Y1, Y0, β̄, ε)h1(Yk+1, Yk, β̄, ε)]

= 2
∞X
k=1

E
£
h1(Y1, Y0, β̄, ε)E

£
h1(Yk+1, Yk, β̄, ε)|=k

¤¤
= 2

∞X
k=1

E
£
h1(Y1, Y0, β̄, ε)ε

2q∗1 (Yk, β0, ε)
¤

= 2ε2
∞X
k=1

E
£
h1(Y1, Y0, β̄, ε)E [q

∗
1 (Yk, β0, ε) |Y1]

¤
= 2ε

1

E [∆0]
E∆,Y1,Y0 [h1(Y1, Y0, β̄, ε)r1(Y1, β0, ε)] (I.6)

where

r1(y, β0, ε) = εE [∆0]
∞X
k=1

EYk [q
∗
1(Yk, β0, ε)|Y1 = y] (I.7)

→ r1(y, β0, 0) =

Z ∞

0

EXt [q
∗
1(Xt, β0, 0)|X0 = y]dt as ε→ 0. (I.8)

By a standard martingale argument, at ε = 0, r1(y, β0, 0) is the solution of the ordinary differential equation

µ(y, θ)
∂r1(y, β0, 0)

∂y
+
1

2
σ2
∂2r1(y, β0, 0)

∂y2
= −q∗1(y, β0, 0) (I.9)

that satisÞes EY0 [r1(Y0, β0, 0)] = 0. Still using Theorem 1, the rest of the analysis is based on expanding
r(y, β, ε) in powers of ε. We get the order of Tβ through the Taylor expansion

r1(Y1, β0, ε) = r1(Y0, β0, 0) + (Y1 − Y0)
∂r1(Y0, β0, 0)

∂y
+
1

2
(Y1 − Y0)2 ∂

2r1(Y0, β0, 0)

∂y2
+ ε

∂r1(Y0, β0, 0)

∂ε
+ op(ε),

(I.10)
in (I.6) to obtain

Tθ = 2ε
1

E [∆0]
E∆,Y1,Y0

£
h1(Y1, Y0, β̄, ε)r1(Y0, β0, 0)

¤
+2ε

1

E [∆0]
E∆,Y1,Y0

·
(Y1 − Y0)h1(Y1, Y0, β̄, ε)∂r1(Y0, β0, 0)

∂y

¸
+ε

1

E [∆0]
E∆,Y1,Y0

·
(Y1 − Y0)2h(Y1, Y0, β̄, ε)∂

2r1(Y0, β0, 0)

∂y2

¸
+2ε

1

E [∆0]
E∆,Y1,Y0

·
h1(Y1, Y0, β̄, ε)

µ
ε
∂r1(Y0, β0, 0)

∂ε
+ op(ε)

¶¸
. (I.11)

>From this it follows that Tθ = T
(2)
θ ε2 + O(ε3) with

T
(2)
θ = 4EY0 [q

∗
1(Y0, β0, 0)G1(Y0, β0)] (I.12)

where
g1(y0, β0) = ∂h1(y1, y0, β̄, ε)/∂y1|y1=y0, β̄=β0, ε=0 ≡ (∂h1/∂y1) (y0, y0, β0, 0). (I.13)

and G1 is its primitive (because q∗1 has mean 0, the constant of integration in G1 is irrelevant for (I.12)). Given
the expression of h1, g1 simpliÞes to g1(y0, β0) = úµ(y0, θ0)/σ

2
0 and thus

G1(Y0, β0) = σ−20

Z Y0

úµ(z, θ0)dz.
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Simplifying further,

T
(2)
θ = 4EY0 [q

∗
1(Y0, β0, 0)G1(Y0, β0)] = −2EY0 [ úq∗1(Y0, β0, 0)] .

Since

úq∗1(y, β0, 0) = −
1

2
σ20V ar [∆0]

(
(Aβ0 · λ̈θ)(y, β0) + úµθ(y, θ0)

∂ úλθ(y, β0)

∂y

)
, (I.14)

we obtain:

T
(2)
θ = σ20 V ar [∆0] EY0

·
∂µ

∂θ
(Y0, θ0)

∂2λ

∂y∂θ
(Y0, β0)

¸
.

>From the expressions for Dθ, Sθ,0 and Tθ, (6.2) follows.

J Proof of Theorem 5

Consider now h2, the second component of the vector h in (4.23). For reasons of mathematical convenience,
let us replace h2 by εh2 in what follows. Premultiplying a moment condition by the nonrandom quantity ε
does not affect any of the results regarding the properties of the resulting estimator. The technique we use is
similar to that applied to the analysis of h1. We now have

E∆,Y1 [h2(Y1, Y0, β, ε)|Y0] = EY1 [ε úlσ2(Y1|Y0, E[∆], θ, σ2)|Y0]

= −ε 1
2σ4

(σ2 − σ20) − ε2
(
σ40
σ4
E
£
∆20
¤

E [∆0]
λ(Y0, β0)

+ E [∆0]
1

σ4

µ
µ(Y0, θ)µ(Y0, θ0)− 1

2
µ(Y0, θ)

2 +
1

2
σ20
∂µ(Y0, θ0)

∂y

¶¾
+Op(ε

3)

To compute the bias of the diffusion estimator, we have in this case β̄ = (θ0, σ̄2)0 and write σ̄2 = σ20 +
εb1 + O(ε2). Now it is the equation

E∆,Y1,Y0
£
h2(Y1, Y0, β̄, ε)

¤ ≡ 0 (J.1)

that deÞnes β̄. We then apply (3.14) to the function f = h2 and determine b1 by setting the Þrst term of the
Taylor expansion of h2 to zero, yielding b1 = (i

(0)
σ2σ2)

−1ùb where

ùb = −V ar[∆0]
E [∆0]

EY0 [λ(Y0, β0)] =
V ar[∆0]

4σ20E [∆0]
EY0

£
µ(Y0, θ0)

2
¤
. (J.2)

Replacing i(0)σ2σ2 by its value, b1 reduces to (6.4). Note that since
ùb > 0 (with ùb = 0 only if ∆0 is non-random),

the bias in the estimator of σ2 is always of positive sign.
Then by applying Theorem 1, we obtain that

Dσ2 = −ε 1
2σ40

+ ε2 V ar[∆0]
2σ40E[∆0]

EY0

h
∂µ
∂y (Y0, θ0)

i
+O(ε3)

Sσ2,0 = ε
2
³
3V ar[∆0]+2E[∆0]

2

4σ40E[∆0]
2

´
+ ε3 1

4σ40E[∆0]
3EY0

h
∂µ
∂y (Y0, θ0)

i³
−6V ar [∆0]2

+
³
3
³
E
£
∆30
¤−E [∆0]3´− 5V ar [∆0]E [∆0]´E [∆0]´+O(ε4)

which we write as Dσ2 = εD
(1)
σ2 + ε

2D
(2)
σ2 +O(ε

3) and Sσ2,0 = ε2S
(2)
σ2,0 + ε

3S
(3)
σ2,0 +O(ε

4).

To evaluate Tσ2 = Sσ2 − Sσ2,0, we Þnd that in this case (I.4) becomes

E∆,Y1
£
h2(Y1, Y0, β̄, ε)|Y0

¤
= ε2 q2(Y0, β0, 0) + Op(ε

3)
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with

q2(y, β0, 0) = −V ar[∆0]
E [∆0]

(λ(y, β0)−EY0 [λ(Y0, β0)]) ,
replacing q∗1 . This expression for q2 reduces to (6.6) when expressed as function of µ. Note that in this case
(I.13) reduces to G2(Y0, β0) =

R y0 g2(z0β0)dz0 = 0.
DeÞne the function r2 analogously to r1 in (I.7) except that q2 is used in place of q∗1 . By the same reasoning,

we have that

Tσ2 = 2ε
1

E [∆0]
E∆,Y1,Y0

£
h2(Y1, Y0, β̄, ε)r2(Y0, β0, 0)

¤
+2ε

1

E [∆0]
E∆,Y1,Y0

·
(Y1 − Y0)h1(Y1, Y0, β̄, ε)∂r1(Y0, β0, 0)

∂y

¸
+ε

1

E [∆0]
E∆,Y1,Y0

·
(Y1 − Y0)2h(Y1, Y0, β̄, ε)∂

2r1(Y0, β0, 0)

∂y2

¸
+2ε

1

E [∆0]
E∆,Y1,Y0

·
h1(Y1, Y0, β̄, ε)

µ
ε
∂r1(Y0, β0, 0)

∂ε
+ op(ε)

¶¸
. (J.3)

and we need to Taylor-expand the function h2. For that purpose, we need to compute the partial derivatives
of h2, evaluated at (y0, y0, β0, 0) :

∂h2(Y0, Y0, β0, 0)

∂y1
= g2(Y0, β0) = 0,

∂2h2(Y0, Y0, β0, 0)

∂y21
=

1

σ40E [∆0]
,

∂3h2(Y0, Y0, β0, 0)

∂y31
= 0

∂h2(Y0, Y0, β0, 0)

∂ε
= − 1

2σ20
,

∂2h2(Y0, Y0, β0, 0)

∂y1∂ε
= −µ(Y0, β0)

σ40
∂h2(Y0, Y0, β0, 0)

∂σ2
= 0,

∂2h2(Y0, Y0, β0, 0)

∂y1∂σ2
= 0.

We identify separately the order ε3 contribution to Tσ2 from the four terms in (J.3). They are in the form
of a coefficient of ε2, to be premultiplied by ε. The coefficient of ε2 contributed by the Þrst term is

A1 ≡ EY0 [q2(Y0, β0, 0)r2(Y0, β0, 0)].
Similarly, from the second term comes

A2 ≡ 3
2σ

2
0E
£
∆20
¤
EY0

h
µ(Y0, θ0)

∂2h2(Y0,Y0,0,β0,0)
∂y21

∂r2(Y0,β0,0)
∂y

i
+E [∆0]EY0

h
µ(Y0, θ0)

∂h2(Y0,Y0,0,β0,0)
∂ε

∂r2(Y0,β0,0)
∂y

i
+ σ20E [∆0]EY0

h
∂2h2(Y0,Y0,0,β0,0)

∂y1∂ε
∂r2(Y0,β0,0)

∂y

i
=

3V ar[∆2
0]

2σ20E[∆0]
EY0

h
µ(Y0, θ0)

∂r2(Y0,β0,0)
∂y

i
then from the third term

A3 ≡ 3
2σ

4
0E
£
∆20
¤
EY0

h
∂2h2(Y0,Y0,0,β0,0)

∂y21

∂2r2(Y0,β0,0)
∂y2

i
+ σ20E [∆0]EY0

h
∂h2(Y0,Y0,0,β0,0)

∂ε
∂2r2(Y0,β0,0)

∂y2

i
= 1

2E[∆0]

³
3E
£
∆20
¤−E [∆0]2´EY0 h∂2r2(Y0,β0,0)∂y2

i
and from the fourth and last term

A4 ≡ 1
2σ

2
0E [∆0]EY0

h
∂2h2(Y0,Y0,0,β0,0)

∂y21

∂r2(Y0,β0,0)
∂ε

i
= 1

2σ20
EY0

h
∂r2(Y0,β0,0)

∂ε

i
= 0

since EY0 [r2(Y0, β0, ε)] = 0 from (I.7) and EY0 [q2(Y0, β0, ε)] = 0.

Hence EY0
h
∂r2(Y0,β0,0)

∂ε

i
= ∂

∂εEY0 [r2(Y0, β0, ε)] = 0, and in particular for ε→ 0. So Þnally we obtain

Tσ2 =
2

E [∆0]
ε3
½
A1 +A2 +

1

2
A3

¾
+O(ε4). (J.4)

Collecting the results for Dσ2 , Sσ2,0 and Tσ2 gives (6.5).
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K Proof of Theorem 6

We are now using both moment functions in the vector h = (h1, h2)0 of equation (4.23), with h2 again replaced
by εh2, to estimate jointly β = (θ, σ2)0. Regarding Þrst the bias, we have that

θ̄ − θ0 = −
i
(1)
θσ2

i
(1)
θθ

(σ̄2 − σ20) +O(ε2). (K.1)

which becomes

−ε i
(1)
θσ2

i
(1)
θθ i

(0)
σ2σ2

ÿb+O(ε2) = εb1 +O(ε
2)

if σ2 is unknown (and O(ε2) otherwise, as in the Þrst situation considered in this Theorem where b1 = 0 when
σ2 = σ20 is known). When σ

2 is estimated, b1 is given by the expression in (6.8). In any event, the bias of
the estimator of σ2 is identical whether θ is known or has to be estimated.
DeÞne q1 by E∆,Y1

£
h1(Y1, Y0, β̄, ε)|Y0

¤
= ε2q∗1(Y0, β0, 0) + op(ε2). Compared to q∗1 , the extra term in q1

due to the estimation of σ2 is given by

q1(y, β0, 0)− q∗1(y, β0, 0) = −2σ20V ar [∆0]EY0
£
κ(Y0, θ0, σ20)

¤µ i(1)
θσ2

i
(1)
θθ

³
∂µ
∂θ (y, θ0)

´2
− 1

2
∂2µ
∂y∂θ (y, θ0)

¶
(where q∗1 is deÞned in (I.5)). The result is given by (6.10) as function of µ.
By applying Theorem 1 further, the structure of the matrices Dβ, Sβ and Tβ is as follows:

Dβ =

µ
dθθ dθσ2
dσ2θ dσ2σ2

¶
, Sβ,0 =

µ
sθθ,0 sθσ2,0
sσ2θ,0 sσ2σ2,0

¶
, Tβ = Sβ − Sβ,0 =

µ
tθθ tθσ2
tσ2θ tσ2σ2

¶

dθθ = εD
(1)
θ + ε2

V ar[∆0]EY0 [
∂µ
∂y (Y0,θ0)]

µ
2EY0

h
(∂µ∂θ (Y0,θ0))

2
i2
+3σ20EY0

h
∂µ
∂θ (Y0,θ0)

∂2µ

∂θ2
(Y0,θ0)

i
EY0

h
∂2µ
∂y∂θ (Y0,θ0)

i¶
4σ20EY0

h
(∂µ∂θ (Y0,θ0))

2
i

− V ar[∆0]EY0 [
∂µ
∂y (Y0,θ0)]EY0

h
∂3µ

∂y∂θ2
(Y0,θ0)

i
4

!
+O(ε3)

dσ2σ2 = εD
(1)
σ2 + ε

2D
(2)
σ2 +O(ε

3)

dθσ2 = − ε
E[∆0]EY0

h
∂2µ
∂y∂θ (Y0,θ0)

i
2σ20

+ ε2

Ã
V ar[∆0]EY0 [

∂µ
∂θ (Y0,θ0)]EY0

h
∂2µ
∂y∂θ (Y0,θ0)

i³
2EY0

h
(∂µ∂θ (Y0,θ0))

2
i
+σ20EY0

h
∂2µ
∂y∂θ (Y0,θ0)

i´
8σ20 EY0

h
( ∂µ∂θ (Y0,θ0))

2
i

− E[∆0]
2
³
EY0

h
∂µ
∂θ (Y0,θ0)

∂2µ

∂y2
(Y0,θ0)

i
+2EY0

h
∂2µ
∂y∂θ (Y0,θ0)

∂µ
∂y (Y0,θ0)

i´
12σ20

!
+O(ε3) ≡ εd(1)θσ2 + ε2d(2)θσ2 +O(ε3)

dσ2θ = −ε2
E[∆0]EY0

h
∂2µ
∂y∂θ (Y0,θ0)

i
2σ20

+O(ε3) ≡ ε2d(2)σ2θ +O(ε3)

sθθ,0 = εS
(1)
σ2,0 + ε

2
³
S
(2)
σ2,0

−
V ar[∆0]EY0 [

∂µ
∂y (Y0,θ0)]

µ
2EY0

h
(∂µ∂θ (Y0,θ0))

2
i2
+σ20EY0

h
∂µ
∂θ (Y0,θ0)

∂2µ

∂θ2
(Y0,θ0)

i
EY0

h
∂2µ
∂y∂θ (Y0,θ0)

i¶
2σ20EY0

h
(∂µ∂θ (Y0,θ0))

2
i

+O(ε3)
sθσ2,0 = sσ2θ,0 = ε

2
E[∆0]EY0

h
∂2µ
∂y∂θ (Y0,θ0)

i
2σ20

+O(ε3) ≡ ε2s(2)σ2θ,0 +O(ε3)
sσ2σ2,0 = ε

2S
(2)
σ2,0 + ε

3S
(3)
σ2,0 +O(ε

4)

As for the time series terms,

tθθ = ε
2
³
T
(2)
θ − 2EY0 [( úq1(Y0, β0, 0)− úq∗1(Y0, β0, 0))]

´
+O(ε3) ≡ ε2t(2)θθ +O(ε3)

tσ2σ2 = ε
3T

(3)
σ2 +O(ε

3)

tθσ2 = tσ2θ = ε
2 (2EY0 [G1(Y0, β0)q2(Y0, β0, 0)]) +O(ε

3) ≡ ε2t(2)θσ2 +O(ε3)
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The leading terms of tθθ and tσ2σ2 are identical to their one-parameter counterparts, except that q1 is different
from the one-parameter case. That is,

t
(2)
θθ = 4EY0 [G1(Y0, β0)q1(Y0, β0, 0)]

= −2EY0 [ úq1(Y0, β0, 0)]
= −2EY0 [ úq∗1(Y0, β0, 0)]− 2EY0 [( úq1(Y0, β0, 0)− úq∗1(Y0, β0, 0))]

= T
(2)
θ − 2EY0 [( úq1(Y0, β0, 0)− úq∗1(Y0, β0, 0))]

whereas t(3)σ2σ2 =T
(3)
σ2 . The expression for t

(1)
θσ2 follows by gathering the terms:

t
(2)
θσ2 = 2EY0 [G1(Y0, β0)q2(Y0, β0, 0)].

L Proof of Proposition 6

(1) We proceed as in the proof of Theorem 4, using the h1 moment alone. We now have for θ − θ0 =
b1 (ω0) ε+O(ε2):

E∆,Y1,Y0 [h1(Y1, Y0, β, ε)] = E∆,Y1,Y0

h
úlθ(Y1|Y0, εω0, θ, σ2)|

i
= ε2

µ
ω0b1(ω0)

σ20
EY0

·³
∂µ
∂θ (Y0, θ0)

´2¸
+ ω0(E[∆0]−ω0)

12

³
2EY0

h
∂µ
∂y (Y0, θ0)

∂2µ(Y0,θ0)
∂y∂θ

i
+EY0

h
∂µ(Y0,θ0)

∂θ
∂2µ(Y0,θ0)

∂y2

i´´
+O(ε3).

(L.1)

The bias term b1 (ω0) is such that the leading term in (L.1) is zero. This gives the result (6.12).
Next, by applying Theorem 1 to Taylor-expand the quantities Dβ and Sβ,0 in (4.25), we obtain that

Dθ = −ε ω0
σ20
EY0

"µ
∂µ

∂θ
(Y0, θ0)

¶2#
+O(ε2)

Sθ,0 = ε
E [∆0]

σ20
EY0

"µ
∂µ

∂θ
(Y0, θ0)

¶2#
+O(ε2)

which we write as Dθ = εD
(1)
θ +O(ε2) and Sθ,0 = εS

(1)
θ,0 +O(ε

2). Note that D(1)θ now contains ω0 whereas S
(1)
θ,0

still contains E [∆0] .
This leaves us with evaluating the time series term Tθ = Sθ− Sθ,0. For this purpose, we show that

E∆,Y1
£
h1(Y1, Y0, β̄, ε)|Y0

¤
= εα1q∗1(Y0, β0, 0) + op(ε

2), (L.2)

where α1 = 1 (instead of α1 = 2 when ω0 = E[∆0]) and q∗1(Y0, β0, 0) is Þnite:

q∗1(y, β0, 0) = (E [∆0]− ω0)
1

σ20

µ
µ(y, θ0)

∂µ(y, θ0)

∂θ
+
σ20
2

∂2µ(y, θ0)

∂y∂y∂θ

¶
. (L.3)

From this it follows that Tθ = T
(1)
θ ε1 + O(ε2) with

T
(1)
θ = 4EY0 [q

∗
1(Y0, β0, 0)G1(Y0, β0)] +

2

E [∆0]
EY0 [q

∗
1(Y0, β0, 0)r1(Y0, β0, 0)] (L.4)

where
g1(y0, β0) = ∂h1(y1, y0, β̄, ε)/∂y1|y1=y0, β̄=β0, ε=0 ≡ (∂h1/∂y1) (y0, y0, β0, 0), (L.5)

G1 is its primitive and r1(y, β0, 0) is the solution of the ordinary differential equation

µ(y, θ)
∂r1(y, β0, 0)

∂y
+
1

2
σ2
∂2r1(y, β0, 0)

∂y2
= −q∗1(y, β0, 0) (L.6)
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that satisÞes EY0 [r1(Y0, β0, 0)] = 0. From the expressions for Dθ, Sθ,0 and Tθ, the asymptotic variance of the
estimator is

ÿVθ = ÿV
(0)
θ + ÿV

(1)
θ ε+O(ε2)

with
ÿV
(0)
θ =

³
S
(1)
θ,0 + T

(1)
θ

´
/
³
D
(1)
θ

´2
.

(2) We now proceed as in the proof of Theorem 5, using the h2 moment alone. We have from (G.3) that

E∆,Y1 [h2(Y1, Y0, β, ε)|Y0] = EY1 [ε
úlσ2(Y1|Y0, εω0, θ0, σ2)|Y0]

=
1

2s(0)

µ
σ20E[∆0]

ω0s(0)
− 1
¶
ε+Op(ε

2).

where
σ̄2 (ω0) = s

(0) + s(1)ε+O(ε2).

Hence

E∆,Y1,Y0 [h2(Y1, Y0, β, ε)|Y0] =
1

2s(0)

µ
σ20E[∆0]

ω0s(0)
− 1
¶
ε+Op(ε

2). (L.7)

By deÞnition of β̄ = (σ̄2 (ω0) , θ0), s(0) is the value which makes the leading term of (L.7) zero, that is:

s(0) =
E [∆0]

ω0
σ20 (L.8)

and so we have

σ̄2 (ω0) =
E [∆0]

ω0
σ20 +O (ε) . (L.9)
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Parameter Order FIML (∆ Included) Variance IOML (∆ Integrated Out) Variance
in ε

0 σ20E[∆0]
³
E∆0Y0

h
∆0 (∂µ(Y0, θ0)/∂θ)

2
i´−1

σ20E[∆0]
³
E∆0Y0

h
∆0 (∂µ(Y0, θ0)/∂θ)

2
i´−1

Drift
θ 1 0 non-zero

(can be made arbitrarily large)

2 non-zero non-zero

0 0 0
Diffusion

σ2 1 2σ40E[∆0] 2σ40E[∆0]
¡
1− 1

2E
£
V ar

£
χ2|χ2∆0

¤¤¢−1
(can be made arbitrarily large)

2 non-zero non-zero

Table 1: Summary of Results: FIML vs. IOML

For each estimator and parameter to be observed, the term of order 0 in ε represents the variance due to the sampling
noise that would be present even if the full continuous sample path were observed (i.e., in the limit ε = 0). This variance
would be present even if the full continuous sampling path were observed. When estimating σ2, the continuous-time
sample path fully reveals the diffusion parameter, hence this variance is 0. The leading term in the variance is of order
1 in ε. This is not the case however for the drift, where even the complete sample path does not remove all uncertainty
regarding θ. Relative to the limiting variance for continuous observation (the term of order 0 in ε), any correction term
of higher order in ε in the variance of FIML represents what we call the cost of discreteness of the sampling intervals.
Then, because FIML makes the most efficient use of the joint discrete observations on the state variable Yn and the
sampling intervals ∆n, any further increase in the variance of IOML relative to the variance of FIML represents what
we call the cost of randomness of the sampling intervals. It represents the price to pay, in variance terms, for not
observing the ∆n�s. The conclusion from the table is that for the drift estimator, the cost of discreteness is an order of
magnitude (ε2) smaller than the cost of randomness (ε1). For the diffusion estimator, they are both of the same order
(ε1), but the cost of randomness can be an arbitrarily large multiple of the cost of discreteness. For clarity, we do not
include in this table the exact expressions for the higher-order terms that are marked �non-zero�; they are given later
in the paper. In the IOML Þrst-order variance for the diffusion estimator, χ2 represents a chi-squared variable with
one degree of freedom and independent of ∆0.
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Moment ∆0 ∼Uniform ∆0 ∼Exponential

E[∆20]
4
3E[∆0]

2 2E[∆0]
2

E[∆30] 2E[∆0]
3 6E[∆0]

3

E[∆40]
16
5 E[∆0]

4 24E[∆0]
4

m0(b)
1

E[∆0]

³
1−Φ

³q
b

2E[∆0]

´´
1

E[∆0]
e−
√
2b/E[∆0]

m2(b)
1

E[∆0]

µq
E[∆0]
πb e

− b
4E[∆0] +Φ

³q
b

2E[∆0]

´
− 1
¶

1√
2bE[∆0]

e−
√
2b/E[∆0]

m4(b)
1

3E[∆0]

µ
1 +

³
2E[∆0]

b − 1
´q

E[∆0]
πb e−

b
4E[∆0] −Φ

³q
b

2E[∆0]

´¶
1
2b

µ
1 +

q
E[∆0]
2b

¶
e−
√
2b/E[∆0]

Table 2: Moments of the Sampling Process

For the sampling schemes considered, the Þrst four moments of ∆ and the functions mq , q = 0, 2, 4, in (5.16)-(5.17) are
all explicit. By using these expressions in Proposition 5, the cost of randomness is obtained explicitly. Φ denotes the
N(0, 1) c.d.f.
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FIML (∆ Included) IOML (∆ Integrated Out)

Dθ −ε
³
E[∆0]
2θ0

´
+ ε3

³
E[∆0

3]θ0
6

´
+O

¡
ε4
¢ −ε

³
E[∆0]
2θ0

´
+ ε2

µ
E[V ar[∆0|χ2∆0]]

2

¶
+O

¡
ε3
¢

Sθ,0 ε
³
E[∆0]
2θ0

´
− ε3

³
E[∆0

3]θ0
6

´
+O

¡
ε4
¢

ε
³
E[∆0]
2θ0

´
− ε2

µ
E[V ar[∆0|χ2∆0]]

2

¶
+O

¡
ε3
¢

Tθ 0 0

Ωθ 2θ0 + ε
2

µ
2θ30E[∆3

0]
3E[∆0]

¶
+O

¡
ε3
¢

2θ0 + ε

µ
2θ20E[V ar[∆0|χ2∆0]]

E[∆0]

¶
+O

¡
ε2
¢

θ̄ − θ0 0 0

Dσ2 − 1
2σ04

−2−E[V ar[χ2|χ2∆0]]
4σ04

+O(ε)

Sσ2,0
1

2σ04
2−E[V ar[χ2|χ2∆0]]

4σ04
+O(ε)

Tσ2 0 0

Ωσ2 ε
¡
2σ40E [∆0]

¢
ε
³

4σ40E[∆0]
2−E[V ar[χ2|χ2∆0]]

´
+O

¡
ε2
¢

σ̄2 − σ20 0 0

Table 3: Ornstein-Uhlenbeck Process Estimated Using Likelihood Methods

These expressions follow from applying Theorems 2 (FIML) and 3 (IOML) to the Ornstein-Uhlenbeck process. Note
that if ∆ is actually not random, then integrating out ∆ is identical to FIML. Our expressions in the second column
indeed reduce to those of the FIML case (Þrst column) when E

£
V ar

£
∆0|χ2∆0

¤¤
= E

£
V ar

£
χ2|χ2∆0

¤¤
= 0. DeÞning

for the log-likelihood score vectors h = úl (FIML) or h = úλ (IOML)

Dβ ≡ E∆,Y1,Y0

h
úh(Y1, Y0,∆, β̄)

i
Sβ,0 ≡ E∆,Y1,Y0

£
h(Y1, Y0,∆, β̄)h(Y1, Y0,∆, β̄)

0¤
Sβ. = Sβ,0 + Tβ

Ωβ = εE [∆0]
¡
D0
βS

−1
β Dβ

¢−1
.

we have for both FIML and IOML, β̄ − β0 = 0, Tβ = 0 and Dβ = −Sβ,0 where
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PFML (∆ Pretended Fixed)

Dθ −ε
³
E[∆0]
2θ0

´
+O

¡
ε3
¢

Sθ,0 ε
³
E[∆0]
2θ0

´
− ε2

³
V ar[∆0]

2

´
+O

¡
ε3
¢

Tθ ε2 (V ar [∆0]) +O
¡
ε3
¢

Ωθ 2θ0 + ε
³
2θ20V ar[∆0]
E[∆0]

´
+O

¡
ε2
¢

θ̄ − θ0 −ε2
³
θ30V ar[∆0]

6

´
+O

¡
ε2
¢

Dσ2 −ε
³

1
2σ04

´
− ε

³
θ0V ar[∆0]
2σ40E[∆0]

´
+O

¡
ε3
¢

Sσ2,0 ε2
³
2E[∆0]

2+3V ar[∆0]

4σ40E[∆0]
2

´
+ ε3

µ
θ0(3E[∆0]

4−3E[∆0]E[∆3
0]+5E[∆0]

2V ar[∆0]+6V ar[∆0]
2)

4σ40E[∆0]
3

¶
+O

¡
ε4
¢

Tσ2 ε3
µ
θ0V ar[∆0](4E[∆0]

2+V ar[∆0])
8σ40E[∆0]

3

¶
+O

¡
ε4
¢

Ωσ2 ε

µ
σ0

4(4E[∆0]
3+6E[∆0]V ar[∆0])
2E[∆0]

2

¶
+ ε2

µ
θ0σ

4
0(6E[∆0]

4−6E[∆0]E[∆3
0]+6E[∆0]

2V ar[∆0]+V ar[∆0]
2)

2E[∆0]
2

¶
+O

¡
ε3
¢

σ̄2 − σ20 −ε
³
θ0σ

2
0V ar[∆0]
2E[∆0]

´
+O

¡
ε2
¢

Table 4: Ornstein-Uhlenbeck Process Estimated While Pretending that ∆ is Fixed

These expressions follow from applying Theorems I and J to the Ornstein-Uhlenbeck process. When estimating σ2 with
known θ using the ∆ pretended Þxed method, recall that h2 is premultiplied by ε; hence h2 is no longer a likelihood
approximation, and Dσ2 and Sσ2,0 are no longer of the same order, as seen in the Table. This has no incidence on the
asymptotic variance Ωσ2 and the bias σ̄

2 − σ20. Finally, if we use the PFML estimator, and ∆ is actually not random,
then this method reduces to FIML. This can be seen in our expressions, which indeed reduce to those of the FIML
case when V ar [∆0] = 0 and E

£
∆i
0

¤
= E [∆0]

i = ∆̄i
0 (see Table 3).
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Design Parameter Estimator Mean Std. Dev. Skewness Kurtosis

FIML 0.08 0.91 0.26 3.13
T = 25 (0) (0.90) (0) (3)
years

Drift IOML 0.08 0.92 0.25 3.10
�θ − θ0 (0) (0.91) (0) (3)

E[∆] = 1
day PFML 0.08 0.92 0.25 3.09

(−0.003) (0.91) (0) (3)

FIML −0.00014 0.0286 −0.0056 3.061
T = 10 (0) (0.0282) (0) (3)
years

Diffusion IOML 0.00081 0.0397 0.11 3.006
�σ2 − σ20 (0) (0.0398) (0) (3)

E[∆] = 1
day PFML −0.019 0.0437 0.14 3.04

(−0.018) (0.0426) (0) (3)

FIML −0.0003 0.0308 0.02 3.03
T = 1 (0) (0.0308) (0) (3)
month

Diffusion IOML 0.0006 0.044 0.09 2.98
�σ2 − σ20 (0) (0.043) (0) (3)

E[∆] = 1/100
day PFML −0.00006 0.049 0.13 3.08

(−0.0002) (0.049) (0) (3)

Table 5: Monte Carlo Simulations

This table reports for the centered parameter estimates the Þrst four moments of the small sample distribution and,
below each small sample moment, in parentheses, its corresponding asymptotic value. The small sample moments are
estimated by the sample statistics from the 5, 000 Monte Carlo simulations. Closed-form expressions for the asymptotic
moments are given in Tables 3 and 4. Std. Dev. refers to the standard deviation of the respective distributions.
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Figure 1

The Distribution of the Sampling Intervals: Nokia, January 2000

Times Between Trades

10 20 30 40 50
seconds

0.02

0.04

0.06

0.08

0.1

0.12

density



Figure 2

The Conditional Distribution of Sampling Intervals: Nokia, January 2000

The Univariate Conditional Mean Time Between Trades: E[∆n|Yn-1]

�5�16 �3�16 �1�16 1�16 3�16 5�16
Yn�1 � price change

8

9

10

11

12

E
�
�
n
�
Y
n
�
1
�
i
n
s
e
c
o
n
d
s

The Bivariate Conditional Mean Time Between Trades: E[∆n|Yn-1,∆n-1]

�5�16

�3�16

�1�16

1�16

3�16

5�16

Yn�1 6

8

10

12

�n�1

8

9

10

11

E��n�Yn�1,�n�1�

16

�3�16

�1�16

1�16

3�16
Yn�1



Figure 3

Accuracy of the Asymptotic Variance Expansions

Exact
Expansion of Order 3
Expansion of Order 2
Expansion of Order 1

FIML Drift Estimator With Unknown Diffusion

1 hour 1 week 1 month
average sampling interval � E���

0.65

0.675

0.7

0.725

0.75

0.775

a
s
y
m
p
t
o
t
i
c
s
t
a
n
d
a
r
d
e
r
r
o
r
o
f
F
I
M
L

FIML Diffusion Estimator With Unknown Drift

1 hour 1 week 1 month
average sampling interval � E���

0

0.1

0.2

0.3

0.4

0.5

a
s
y
m
p
t
o
t
i
c
s
t
a
n
d
a
r
d
e
r
r
o
r
o
f
F
I
M
L



Figure 4

Comparison of Estimators when the Sampling is Exponential

FIML
IOML
PFML

Drift Estimators Diffusion Estimators

1 hour 1 day
average sampling interval � E���

0.448

0.45

0.452

0.454

0.456

a
s
y
m
p
t
o
t
i
c
s
t
a
n
d
a
r
d
e
r
r
o
r

1 hour 1 day
average sampling interval � E���

0

0.02

0.04

0.06

0.08

0.1

0.12

a
s
y
m
p
t
o
t
i
c
s
t
a
n
d
a
r
d
e
r
r
o
r

1 hour 1 day
average sampling interval � E���

-0.00025

-0.0002

-0.00015

-0.0001

-0.00005

0

b
i
a
s

1 hour 1 day
average sampling interval � E���

-0.02

-0.015

-0.01

-0.005

0

b
i
a
s



Figure 5

The Cost of Discreteness Compared to the Cost of Randomness
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Figure 6

Small Sample and Asymptotic Distributions for the Drift Estimators
Exponential Sampling, T = 25 years, E[∆] = 1 day
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Figure 7

Small Sample and Asymptotic Distributions for the Diffusion Estimators
Exponential Sampling, T = 10 years, E[∆] = 1 day

FIML Estimator

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Σ�
2
�Σ0

2

2.5

5

7.5

10

12.5

15

density

IOML Estimator

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Σ�
2
�Σ0

2

2

4

6

8

10

density

PFML Estimator

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Σ�
2
�Σ0

2

2

4

6

8

density



Figure 8

Small Sample and Asymptotic Distributions for the Diffusion Estimators
Exponential Sampling, T = 1 month, E[∆] = 1/100 day
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