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1. Introduction

Large, recurring seasonal movements are a prominent feature of many economic data series,
such as GDP, hours worked, and consumption. For many variables, seasonal fluctuations
are even larger than business cycle fluctuations. Despite this, conventional business cycle
analysis simply puts seasonality out of sight and out of mind: the data are seasonally adjusted
at the source, and aseasonal models are used for the analysis. In effect, private agents are
treated as though the seasonally adjusted data are what they see and choose. This paper
is motivated by a concern that conventional practice may, by discarding information about
the seasonal, distort the analysis of business cycles.

One can describe well-specified economic environments which rationalize the conventional
treatment of seasonality. We illustrate this with a simple example. However, it has three very
restrictive features: (i) seasonality is perfectly forecastable and enters the exogenous shocks
additively; (ii) seasonal adjustment is accomplished by regression on seasonal dummies; and
(iii) the optimal policies of agents are linear in the exogenous shocks. There is universal
agreement that none of these features hold exactly in realistic applications. Still, in what
Thomas Sargent (1978) calls “economists’ ancient hunch”, conventional practice implicitly
assumes the conditions are satisfied as a rough approximation. In this paper, we devise and
apply a method to study the quality of that approximation.

We begin by constructing a seasonal business cycle model that captures broad features
of US seasonally adjusted and unadjusted macroeconomic data. We then use the model to
generate artificial data that we treat as if they were the true US seasonally unadjusted data.
These data are seasonally adjusted using a version of the method used by the US government.
The data are then given to a hypothetical analyst, who studies them using the conventional
practice. In particular, the analyst applies the Hodrick and Prescott (1997) (HP) filter to the
artificial data and computes various second moments.! The analyst constructs an aseasonal
model, parameterizes it using standard calibration methods, and then computes the model’s
business cycle implications. We show that the second moment properties in the (artificial)
data match those of the analyst’s model very closely. We interpret this as indicating that,
in our model, the ancient hunch is verified.

For the implications of our model to be of relevance to applied work, it is critical that
it be empirically credible. We thus devote a considerable portion of the paper to explaining
and defending the model’s construction. The degree to which seasonals are forecastable is
particularly important to the outcome of our analysis (see Plosser (1979)) and is also highly
controversial (see, e.g., Franses, Hoek, and Paap (1997), Hylleberg, Jorgensen, and Sorensen

ITo insure robustness, we repeat our analysis with the HP filter replaced by the first-difference
filter. Our basic conclusions are not substantively affected by this change.



(1993)). As a result, we pay particular attention to this issue.

The plan of the paper is as follows. The first section below presents a very simple example
to illustrate a set of restrictions on a model and data that rationalize the conventional
treatment of seasonality. We indicate there what factors are likely to lead to distortions,
so that we may be mindful of them as we construct the seasonal model used in the main
analysis. Section 3 describes that model. Section 4 discusses how we chose values for its
parameters. Some points of potential independent interest emerge in this discussion, such
as that the seasonal pattern in hours worked and productivity is very sensitive to how hours
worked are measured. Section 5 provides evidence on the goodness-of-fit of our seasonal
model. Section 6 describes the models estimated by the hypothetical analyst who applies
the conventional practice. Section 7 presents our basic results and describes how well the
analyst using the conventional practice is able to understand the business cycle properties
of the data. Section 8 presents concluding remarks.

2. Conventional Practice, and Where It Can Go Wrong

We describe an environment in which the implicit assumptions underlying the conventional
treatment of seasonality are exactly true. We then highlight the three restrictive features
in the example that were noted in the introduction, and point out why they are unlikely to
be satisfied in practice. This motivates the analysis in the remainder of the paper, which
abandons environments in which these features are satisfied exactly.

2.1. A Simple Model

In the model, consumption, Yy, and the beginning of period stock of capital, K, solve the
following problem:

max Fj Zﬂt In(Cy), (2.1)
t=0
subject to:
}/t = Ct ‘I‘ Kt+1 — (1 — 6)Kt, }/t = ethta, (22)

where Fjy denotes the date 0 conditional expectation, K is given and,

T, = xp%+a2d
T = pal® 4 ey, &~ N(0,0%), (2.3)
r! = —s, todd

! = s, teven.



Here, «, p, 3 € (0,1). We think of the time period in the model as being 6 months, so that it
is a simple model of seasonality. When ¢ = 1, then the equilibrium stock of capital for this
model evolves as follows:

InK, 41 =Inaf+aln K, + 2 + 27, (2.4)

given Ky and for t = 0,1,2,... . Equilibrium Y; and C; are found by substituting the
equilibrium capital stock into (2.2).

The capital stock that solves (2.4) can be expressed as the sum of what it would be if
there were no seasonal, plus a pure seasonal term, after taking natural logs. Specifically,

In K, = In K" + d¥ (2.5)

where K}'%, t =0,1,2,..., solves (2.4) with z? =0 and log Kj* = log Ky — d¥. Also,

1
t 1 Oéajtu P

To verify that (2.5) is a valid decomposition of In Ky, it is sufficient to confirm that df}, =
adlf +xd fort =0,1,2, ... .
We can obtain a similar decomposition for gross output, Y;, based on the production
function, (2.2):
InY, =InY™ +d;, (2.6)

where

Y d K
d, = z;+oad,,

InY™ = 2 +aln K.

Here, Y;"® is the level of output that would occur if there were no seasonal. Actual output
is this term, plus a seasonal dummy, after taking logs.

2.2. Conventional Practice, Rationalized

We now describe a stylized representation of conventional practice in the business cycle
literature. Consistent with the treatment of 3 in that literature, we simply assume the
analyst knows its true value without having to estimate it. We also assume the analyst
knows the basic structure of the model. We suppose the analyst knows the true value of
« because, say, the share of income earned by capital in the economy is published in a



set of national income accounts. The parameters of the time series representation of z}* is
estimated based on the seasonally adjusted data.

We suppose that the government in this economy compiles observations on K; and Y.
Before providing the data to the business cycle analyst, seasonal adjustment is carried out
by first computing the residuals from a least squares regression of In K; and InY; on seasonal
dummies, and then adding back the sample averages of the raw data. With this seasonal
adjustment procedure (applied in a large sample of data) the data available to the analyst
are In K** and In Y,

With the seasonally adjusted data in hand, we suppose the analyst follows conventional
practice by computing technology shocks as In Y,"* —a In K7'*. Note that this produces exactly
xp®. With a large sample of data, the analyst can then find p and ¢ in (2.3) by using standard
regression analysis.

Having calibrated the model, the analyst compares the business cycle properties of the
model with the business cycle properties in the (seasonally adjusted) data. In this example,
the analyst finds that the model and the data mesh exactly. This is true, whether or not the
seasonally adjusted and logged data are both HP filtered.

2.3. Potential Pitfalls for Conventional Practice

In the example, the seasonally adjusted data available to the analyst, together with the
implied values for the exogenous shocks and parameters, solve the true model. The example
rationalizes conventional practice perfectly. But, should these implications of the example
be taken seriously?

In practice, none of the three crucial features of the example (features (i)-(iii) highlighted
in the introduction) are likely to be satisfied. For example, suppose seasonality did enter
additively in the exogenous shocks, as in (i), but that the seasonal component were not
perfectly predictable. In this case, agents must guess whether a given movement in exogenous
shocks reflects a change in the seasonal or nonseasonal component, forcing them to respond
to any movement, seasonal or nonseasonal, as though it reflects a mixture of both. So, the
seasonally adjusted version of agents’ consumption, investment, employment, etc., decisions
will be a function, in part, of the seasonal component of the exogenous shocks.?

Consider the role of the seasonal adjustment procedure. Our analysis of the dummy
seasonal adjustment method exploits its properties of idempotency (i.e., h[h(x)] = h(x),
where N is the filter and x denotes the raw data) and linearity (h(z + y) = h(z) + h(y)).?

2See Ghysels (1988), Plosser (1979) and Sargent (1987, pp. 336-342) for further discussion.
3For a discussion of the idempotency and linearity of the dummy seasonal adjustment pro-
cedure, see Lovell (1963).



These properties are at best only approximately true when a procedure like the official Census
X-11 procedure is applied.

Finally, unlike (2.4), the policy rules that solve models analyzed in practice are not
exactly linear. At the very least, we can expect coeflicients on endogenous variables to
vary with the seasons. If agents’ decision rules were a nonlinear function of the seasonal
and nonseasonal components, then conventional seasonal adjustment procedures would not
separate their decisions into a part exclusively related to the seasonal component and a part
exclusively related to the nonseasonal component. An example is consumption, C;, in the
model economy described above. It is not a linear or log-linear function of the exogenous
shocks. As a result, it does not have the exact decomposition depicted in (2.5) or (2.6).

These criticisms of the conventional practice are not conclusive because the considera-
tions raised above may not be quantitatively important.* Although their position is not
universally accepted, Barsky and Miron (1989) argue that the seasonal component in many
macroeconomic time series can be well represented by deterministic shifts in constant terms.
Regarding the seasonal adjustment filter, Cleveland and Tiao (1976), Wallis (1974), and
Young (1968) argue that the Census X-11 procedure is nearly linear.” Also, while not ex-
actly idempotent, the procedure may be nearly so. Finally, it has been noted that the
decision rules that solve many modern macroeconomic models are very close to linear (see
Christiano 1990). Near dummy seasonality plus near linear decision rules plus a seasonal
adjustment procedure that is nearly linear and idempotent would presumably imply little
distortion.

3. Our Seasonal Model

This section presents the main seasonal model used in our analysis. We begin by presenting
our assumptions on preferences and technology. We then discuss the time series representa-
tions for the exogenous shocks.

4We wish to differentiate this defense of standard practice from Hansen and Sargent (1993)
and Sims (1976)’s defense. They emphasize that modeling seasonality explicitly, but with an
incorrect specification of the seasonal, also leads to distortions. These distortions, they argue,
can exceed those that arise from the standard practice. We do not consider their argument in
this paper. But, we view it as potentially complementary to our finding that the distortions in
standard practice may be small.

5Ghysels, Granger and Siklos (1996) argue that there is a sense in which the X-11 is not so
close to linear. As noted by a referee, the nonlinearity in the Census X11 procedure reflects,
in part that it involves a sequence of discrete decisions (whether to adjust or not, whether to
adjust multiplicatively or additively, etc.).



The preferences of the representative household are as follows:

Eo> B [ In(C) +In(T — )], 0< A< 1. (3.1)

t=0

where n; denotes hours worked, 7; is a taste shock process whose time series representation
is presented below and T" is the time endowment.
Per capita output, Y%, is produced via the Cobb-Douglas production function

}/t = Kta (Ztnt)lia s (32)

where z; is an aggregate shock to technology and 0 < o < 1. The technology shock has the
representation
2 = zp_1€, (3.3)

and the time series model for \; is described below.
Investment projects require four quarters to complete. Projects started in period ¢, S,
contribute to the evolution of the capital stock as follows:

Kt+4 - (1 - (S)KH,?, — St; 0 < (S < 1, (34)

where, as in the previous section, ¢ denotes the depreciation rate on capital. Period ¢ starts
require the application of wgS; resources in the current quarter; wy ;S in the next quarter;
we Sy in the following quarter and ws;S; in the final quarter of the project. We use the
time subscripts in the w;;’s to accommodate seasonal variation, as discussed below. Total
investment in period f is the sum of resources required by projects started in the current and
previous three quarters:

I = wo St +wip 1Si-1 +war 25 9 +ws 35k 3. (3.5)
The aggregate resource constraint is:
Y, <Ci+ I, + Gy, (3.6)

where (G, denotes government consumption. We adopt a modified version of Christiano and

Eichenbaum’s (1992) model of G:
Gy = gzt (3.7)

We now discuss the time series representation of g; and the other exogenous shocks, 7;
and A;. The considerations emphasized in the introduction suggest that we must be flexible



regarding the degree of predictability in the seasonal component of these variables. The time
serles representations used in Barsky and Miron (1989) suit our purposes:

Inz, = 2% + 274, (3.8)

for z = 7,),g. In (3.8), 2¢ is a deterministic sequence of seasonal dummies with period
4, and z7 is the following zero-mean covariance stationary process:

(1—¢1L— ¢ L?)(1 — 0LY)x) = &, (3.9)

where £; is a mean-zero, independent and identically distributed Normal variable with vari-
ance o2. Here, L denotes the lag operator. The representation for z7¢ in (3.9) allows for
an indeterministic seasonal component when 0 # 0. We call (3.8)-(3.9) our baseline shock
model. The version of our model that incorporates this representation of the shocks is called
the baseline seasonal model.

To guard against bias in favor of models with deterministic seasonality, we also consider
an alternative shock model in which all seasonality is forced into the indeterministic part
of In z;. In that model, z¢ is simply a constant for all ¢ and 2% has a high-order autore-
gressive representation. Modifications of our baseline seasonal model that incorporate this
representation for one or all of the shocks yield our alternative seasonal models.

The endogenous variables of the model maximize (3.1) subject to the various constraints
described. The method we use to approximate the model’s solution corresponds to the one
implemented by Braun and Evans (1995). It is important to emphasize that, although our
solution method is based on linearization, it does not force the solution to linearly decompose
into the sum of seasonal and non-seasonal components. Our model solution procedure (log-
) linearizes around the model’s seasonally varying steady state growth path.® Thus, the
solution takes the form of four distinct decision rules, one for each season. In principle,
this is consistent with a linear decomposition, if all the seasonal variation appeared in the
constant terms. However, the solution method also permits seasonal variation to appear
in slope terms, in which case the data cannot be linearly decomposed into seasonal and
nonseasonal parts.

4. Parameterizing the Seasonal Model

This section discusses how we picked the parameter values for our seasonal models. There
are two types of parameters, those that vary with the seasons and those that do not. For

80ur method is similar to the one implemented by Braun and Evans (1995).



the latter, we simply adopt the values in Christiano and Eichenbaum (1992): T = 1369,
6 =.021, B =1.03"%% and a = 0.34. Their rationale for choosing these parameter values
applies in our context too. The seasonal parameters — the time-to-build weights and those
that describe the time series representations of the exogenous stochastic processes — must be
estimated using seasonally unadjusted data. The data that we use are described in the first
subsection below.

The second subsection estimates our baseline shock models. Our point estimates at-
tribute much of the seasonal movements in the taste and technology shocks to deterministic
dummies. We discuss the interpretation of the temporal pattern of these dummies, which
we find plausible. Indeterministic seasonality plays a relatively more important role in the
government consumption shock process.

The discussion in section 2 suggests that our baseline point estimates may tilt our re-
sults in favor of the conventional practice on seasonality. To inoculate ourselves against
bias we undertake an additional estimation exercise in the third subsection below. There,
we estimate our alternative shock models, which are purely indeterministic and which ex-
clude deterministic seasonality altogether. These models are subjected to statistical tests
in Appendix B. The tests reject the alternative shock model in the case of the taste and
technology shocks, but do not reject it in the case of the government spending shock.” We
interpret the outcome of this test as consistent with the notion, suggested by our baseline
shock model estimation results, that deterministic seasonality is important in the taste and
technology shock processes. Still, robustness considerations lead us to use both our baseline
and alternative shock models in the analysis reported in later sections.

The final subsection below estimates the time-to-build weights of our seasonal model.
These are selected to ensure that the model replicates the observed seasonal pattern in
investment. The resulting estimated weights are consistent with microeconomic evidence on
investment projects.

4.1. The US Data

With one exception, we use the seasonally unadjusted quarterly data compiled by Barsky
and Miron (1989) for the period 1946-85. The exception is the data on total hours worked.
We argue in Appendix A that the Barsky and Miron data, based on the establishment
survey for the period 1964-85, are misleading for the purpose of understanding seasonal

"Without further restrictions, descriminating between indeterministic and deterministic sea-
sonality is not possible in a finite data set. In our test we impose the restrictions that the
indeterministic and deterministic models are particular parametric representations of the data.
With these additional restrictions, our test is a meaningful one. For further discussion, see
Appendix B.



fluctuations. We claim there that a better measure of hours worked is the one based on
a survey of households, and adjusted for workforce composition by Gary Hansen (1993).
Hansen’s quarterly efficiency hours data start in 1955 and were converted into per capita
terms by dividing by the population aged 20-65. The other data used in this analysis were
also converted into per capita terms in this way. Finally, the investment data series that we
construct from the Barsky-Miron data set corresponds to business fixed investment, while
the consumption data corresponds to consumption of nondurables and services.

4.2. Baseline Shock Models

Given the aseasonal parameter values taken from Christiano and Eichenbaum (1992) and
the equations of our model, we use the data to compute an implied time series for each of
our exogenous shocks. We then use these time series to estimate our baseline time series
representation, (3.9), for each exogenous shock process. In each case, we estimate model
(3.8)-(3.9) in two steps. The first step involves regression on seasonal dummies. The second
step fits model (3.9) to the fitted disturbances from the step-one regression using standard
time series methods.

4.2.1. Taste Shocks

Consider the taste shock first. To compute the implied time series for the taste shock, we
used the intratemporal first-order condition corresponding to the hours decision. In terms
of the variables defined in the previous section, this is expressed as

Ciny
YT —n)(1 —a)

Tt =

The logarithm of the taste-shock data is displayed in Figure la. Note how the last few
observations rise substantially, as though they were drawn from a different population than
the preceding observations. Because of this, and in order to avoid issues of potential non-
stationarity, we dropped the last 8 observations for purposes of estimating a time series
representation for these series. We also dropped the first 12 observations, to maintain con-
sistency with the periods of apparent stationarity of the government shock series (see below).

The R? of the regression of the log-taste shock on dummies is 0.57, suggesting that
the dummy variables account for more than 50 percent of the variation in the taste shock.
We tested the joint null hypothesis that all the dummies are equal. The resulting test
statistic, 359, is a realization from a Chi-square with three degrees of freedom under the



null hypothesis.® Thus, the null hypothesis is overwhelmingly rejected. This evidence is
consistent with the hypothesis that there is an important deterministic seasonal in the data.’

Panel A of Table 1 reports the estimation results for the taste shock model. Note that
the parameter indexing the indeterministic seasonal, 0, is not significantly different from
zero. We nonetheless retain the point estimate of § in our baseline shock model.'® The
taste dummies appear to have a reasonable interpretation. They imply that the relative
preference for consumption versus leisure is almost constant in quarters 1 and 2. There is a
shift in favor of leisure in quarter three, and then a stronger shift back to consumption in
the fourth quarter. We interpret the shift in favor of leisure in quarter three as a preference
for vacations in the summer, and the shift in favor of consumption in the fourth quarter as
reflecting the effects of the winter holiday season.

4.2.2. Technology Shocks

To compute the technology shock series, ¢, we used the model’s production function:

Iny, —alnk, — (1 —a)l
M=Inz—Inz 1, Inz = [lny —a nlt (1-a) nnt]‘
—

For this calculation, we used our value of o« = 0.34, the effective household hours series for
n¢, and Barsky and Miron’s GNP series for y,. For k, we used Christiano’s (1988) capital
stock series.!!

The A; time series, graphed in Figure 1b, shares some features of the taste shock series.
It seems to be strongly seasonal but otherwise can be viewed as potentially stationary except
near the ends of the sample. We used the same time interval and econometric method as for

8The test was implemented in RATS using the Newey-West procedure for adjusting for het-
eroscedasticity and for autocorrelation up to order 6. For this, we used the ROBUSTERRORS
option with DAMP=1 and LAGS=6 in the RATS regression procedure, LINREG.

9There is evidence that the R? statistic may spuriously inflate the importance of deterministic
seasonals (Franses, Hylleberg, and Lee 1995). To avoid being misled by this possibility, we take
two steps. First, as emphasized above, we repeat our analysis with purely indeterministic
representations for the exogenous shocks. Second, Appendix B develops additional statistics for
assessing the importance of a deterministic component in seasonality.

10Tn calculations not reported here, we verified that setting to zero all insignificant coefficients
in estimates of equation (3.9) for 7 (and also for A\) does not significantly change our results on
the effects of standard business cycle practice.

HStrictly speaking, this capital stock series is inappropriate for backing out a seasonal tech-
nology shock, because it is constructed from seasonally adjusted data. The shock series we
construct may thus exaggerate the seasonality in productivity, although we believe the effect is
small because seasonal variations in the capital stock are probably very small.

10



the taste shock to estimate the baseline shock model, (3.8)-(3.9). The R? in the first-step
regression is (.88, suggesting that the seasonal dummies explain about 88 percent of the
total variation in the growth rate of technology. We again tested the joint null hypothesis
that all the dummies are equal. The resulting test statistic, 667, is a realization from a Chi-
square with three degrees of freedom under the null hypothesis. This is a strong rejection
and is consistent with the notion that there is an important deterministic component in the
technology seasonal.

The results in Panel B of Table 1 suggest, as in the case of the taste shock series, that the
seasonal in technology is primarily deterministic. To see this, note that 6 is not statistically
different from zero. The results there show that the other autoregressive coefficients are also
not statistically different from zero. Nonetheless, for our baseline shock model for technology
growth we use the point estimates in Panel B.

The estimated quarterly dummies in Panel B of Table 1 indicate that technology growth
turns sharply negative in the first quarter, rebounds substantially in the second quarter, and
then continues at a moderate pace in quarters 3 and 4. The first quarter plunge in technology
has been linked to winter weather (Barro 1990, p.273).1> Overall, the seasonal pattern of

dummies seems consistent with the interpretation of A as an exogenous technology process.'?

4.2.3. Government Consumption Shocks

We used our z; data and Barsky and Miron’s G, data to construct g, using (3.7). The g,
data are graphed in Figure lc. Regression analysis shows that seasonal dummies explain
relatively little (the R? is 12 percent) of the total variation in government spending. When
we tested the null hypothesis that the dummies in each quarter are identical, we obtained a
test statistic of 29, which is a realization from a Chi-square distribution with three degrees
of freedom under the null hypothesis. As before, we reject the hypothesis that there is no
deterministic seasonal. However, we do so less massively than before. This is consistent with
the notion that the deterministic component of the seasonal in government consumption is
relatively smaller than it is in the other shock series.

The baseline government shock model is shown in Panel C of Table 1. In this model, there
is relatively more evidence of serial correlation in the fitted disturbances (the Q statistic has
significance level 0.09), but it is adequate for our purposes.

2The importance of winter weather as an explanation of the first quarter dip in productivity
has been challenged (Beaulieu and Miron 1991).

BWhen A is computed using the Barsky-Miron hours worked data, the interpretation of the
result as exogenous technology is more problematic. In Appendix A we argue that the problems
stem fundamentally from the fact that their hours worked data are inappropriate in the present
context.

11



4.3. Alternative Shock Models

In this section, we estimate our alternative shock models, which specify that all seasonality
is indeterministic. We do this by fitting autoregressive representations, with constant terms
but no dummies, to each shock series, using the same data and time period as before. In
selecting the lag length for these representations, we used the Schwarz (1978) criterion.
To conserve space, we do not report our results in detail. The Schwarz criterion selected
lag lengths of 8, 8, and 9, respectively, for the taste shock, the technology shock, and the
government consumption shock, although a 4-lag specification for technology was a close
second. As expected, the coefficients on seasonal lags in these autoregressions were generally
positive and statistically significant. Conventional goodness-of-fit measures suggest that
these indeterministic models fit the data about as well as our baseline shocks models.

However, further tests executed in Appendix B decisively reject the alternative shock
model for taste shocks. The alternative shock model is generally also rejected for the tech-
nology shocks, although not by all the tests. Finally, we could not reject the alternative shock
model using government consumption shocks. In light of these findings and out of concern
for robustness, we analyze alternative seasonal models in which the exogenous shocks are
represented by the alternative shock models.

4.4. Time-to-Build Weights

The only parameters that remain to be estimated are the time-to-build weights. Our strategy
for doing this is to match the steady state seasonal movements in the model’s investment data
with the analogous movements in the data. In the model and the data, these movements are
characterized by four numbers. In the model, these are the four values of logged, HP-filtered
investment that occur in the nonstochastic steady state of the baseline seasonal model.'

By non-stochastic steady state, we mean the model variables along a deterministic growth
path in which all shock innovations are held equal to their unconditional mean of zero.

To compute the model’s implications for HP-filtered, log investment in nonstochastic steady
state, we proceed as follows. Let g(L) denote the lag-operator representation of the HP filter
as derived in, say, King and Rebelo (1993). Here, L is the lag operator, so that Lix, = Ty j.
Then, compute the weights, g;, in the two-sided, infinite-ordered expansion, g(L) = Zj gij .
Let 4, for £ = —00, ..., 00 denote the two-sided, infinite sequence of log, scaled investment. This
is constructed from four seasonal numbers, one for each quarter in the year, repeated in each
year. Given the simple pattern in ¢; and the g;’s, it is straightforward to compute ¢g(L)i;. This
is also a doubly infinite sequence, constructed from four numbers, one for each season in the
year. This gives us HP-filtered, log scaled investment. To undo the effects of the scaling, we add
the HP filter of the logged scale variable, evaluated in nonstochastic steady state, to obtain the
result that we seek.

12



In the data, the four numbers are the average percentage deviation of log investment from
its HP-trend in each quarter. The latter are exhibited in the row of Table 2 associated
with investment, /. That row indicates that logged investment is about 9 percent below its
HP-trend in the first quarter and about 3 percent above in the other three quarters.

To implement our strategy we have to drastically reduce the number of free parameters
in the time-to-build weights, {w;,}. We reduce the number of parameters to four by imposing
the following restrictions:

wig = w;>0,fori=1,23, allt
1 = wot+wi+ws+ws, if t is not in the first quarter of a year
woy > 0 forallt.

The weights in stages 1, 2 and 3 are allowed to be different, but they do not depend on the
quarter of the year in which the project was started.!® The only weight that is allowed to
vary with time is wo ;. We used a nonlinear equation solving routine to find values of the four
choice variables to hit the four targets.

The time-to-build weights obtained by this procedure, shown in Table 3, differ signifi-
cantly from the fixed weight of 0.25 used by Kydland and Prescott (1982) in their original
time-to-build model. Most importantly, our weights display the slow start-up, or time-to-
plan, property highlighted by Christiano and Todd (1996). That is, the resource cost of
the first stage of a project is much lower than the subsequent stages. See Christiano and
Todd for a review of the microeconomic evidence on investment projects, which favors this
specification. Another feature of the estimated weights is that the cost of starting a project
in the first quarter, though still low, is higher than in other quarters. We conjecture that this
feature of the weights is important in matching the data because it helps offset the disincen-
tive to invest in the model’s first quarter arising from the seasonally low state of technology
in that quarter. It does so in two ways. First, for a fixed seasonal pattern of starts, the
increase has a direct, positive effect on first quarter investment. Second, by raising the total
resource requirement of projects started in the first quarter, it creates an incentive to push
starts into other quarters. This has the effect of shifting the more resource intensive stages
of investment projects towards the first quarter.

5Some sort of variation in the wi¢’s by stage of project, %, is necessary in our model, to
accommodate the seasonal variation in investment. It is easily verified that if the weights did
not vary with 7, then even if starts exhibited a seasonal pattern, steady state investment would
not.
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5. Empirical Evaluation of the Baseline Seasonal Model

For our analysis to be credible, it is necessary that the model used represent a reasonable
abstraction of reality. In part, this requires that the laws of motion of the exogenous shocks—
particularly their deterministic seasonal component—have a plausible interpretation. The
previous section argues that the baseline seasonal model passes this test. This section evalu-
ates the baseline seasonal model in terms of its ability to account for various first and second
moment properties of the data. We argue that the model again does reasonably well.

5.1. First Moments

We consider two types of first moments. The first measures the scale over the seasons of
various variables of interest. The second measures average deviations from trend over the
seasons.

Table 4 reports measures of scale. The right side shows, for the baseline seasonal model,
the non-stochastic steady-state values of hours worked and the ratios of investment, con-
sumption, capital stock and government spending to output. The left panel reports the
corresponding statistics, obtained by regressing the US data on quarterly dummies. (We do
not report empirical results for the capital to output ratio, since we do not have seasonally
unadjusted data on the capital stock.) With one exception, the match between model and
data is good. The exceptional case is the investment to output ratio, which is higher in the
model than in the data. Primarily, this reflects the absence of durable goods purchases from
the Barsky-Miron investment data.

The right side of Table 5 reports, for the baseline seasonal model, the percent deviation,
in non-stochastic steady state, of the indicated variables from their HP trend values. The
left side reports the empirical analog, copied from Table 2 for ease of comparison. Note
that the investment numbers line up exactly. That simply reflects our method for selecting
the time-to-build weights. More significantly, the model captures many of the other basic
features of the seasonal data. For example, output is weak in the first quarter and strong in
the fourth, the volatility of the seasonal component of consumption roughly matches that of
output, those two variables are highly seasonally correlated, and hours worked dips in the
third quarter.

5.2. Second Moments: The Seasonal Cycle

Table 6 reports various second moment properties of seasonally unadjusted US data (Panel
A) and of our baseline seasonal model (Panel B). The second moment properties of US
seasonally unadjusted data were obtained by logging the data, HP filtering them, and then
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computing the second moments shown. For our baseline seasonal model, the results were
computed by applying the same transformations to a synthetic data set of 2,000 observations
generated from our baseline seasonal model.

The model has both strengths and weaknesses. On the strength side, note that the overall
volatility of output in the model and the data are close, around 3.5-3.8 percent. This is a
plus for the model, since the overall volatility of output played no direct role in selecting the
model parameter values. Note also how consumption is roughly as volatile as output, both in
the model and the data. The volatility of seasonally unadjusted consumption, discussed by
Ghysels (1994b), shows how the seasonal cycle differs in some important respects from the
business cycle. A key feature of the latter is that consumption is considerably smoother than
income and output (see below for further discussion). Generally, the absolute and relative
amounts of volatility in the model variables are in line with the data.

The model does reasonably well on dynamics. Note how it captures the persistence in
output and the fact that productivity leads hours by two quarters.

A shortcoming of the model is that it overstates the contemporaneous correlations be-
tween productivity and hours and between government spending and output. We are less
concerned about the latter, because the government spending shock plays a relatively small
role in the model dynamics.

5.3. Second Moments: The Business Cycle

We now evaluate the model’s ability to account for basic business cycle facts. The results in
Table 7 allow us to compare the business cycle implications of the model (Panel B) with the
data (Panel A). The business cycle properties of US data were obtained by first seasonally
adjusting our data (see section 3.a) using a standard procedure, then logging it, HP filtering
it, and computing the second moments shown.!® The results resemble those reported in the
existing business cycle literature (see, for example, Cooley and Prescott (1995).)!" Panel B
reports the analogous statistics, computed from 2,000 synthetic data observations generated
using our baseline seasonal model.

The baseline seasonal model has shortcomings, as well as successes. Turning to the suc-
cesses, note that the model captures in a rough way the relative volatility and dynamic

6We seasonally adjusted the data using Estima’s RATS386x EZX11 implementation of the
US government’s Census X11 multiplicative procedure.

"There is one sense in which the results are different. The volatility reported for output,
2.4 percent, in Table 7 is greater than the usual estimate of about 2 percent reported in the
literature. This leads to a relatively low estimate for the relative volatility of hours worked to
output. Presumably, the high estimate for the volatility of output reflects the price index (the
CPI) used to convert nominal GNP to real GNP in the Barsky-Miron data.
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correlations of most of the variables. Also, it is quite successful in capturing the dynamic
correlation of hours worked and productivity. In both the model and the data, the con-
temporaneous correlation is quite low. The model result is consistent with the argument
in Christiano and Eichenbaum (1992), who claim that a business cycle model with multiple
shocks is needed to match the observed low correlation of productivity and output. The
fact that productivity leads hours worked in the model, as it does in the data, reflects the
time-to-plan structure of the investment weights. This is discussed at length in Christiano
and Todd (1996).

Now consider some of the model’s shortcomings. First, it overstates the volatility of
consumption and understates its dynamic correlation with output. Evidently, the seasonal
adjustment procedure substantially reduces the relative volatility of consumption in the data
(compare Tables 6 and 7), but not in the model. Second, the model implies that investment
lags output over the cycle, while our empirical measure of investment is contemporaneous
with output. As explained in Christiano and Todd (1996), this implication of the model
reflects the time-to-plan feature of the investment weights. This has the effect of introducing
a delay in the response of investment to a shock. The fact that our empirical measure
of investment is coincident with output over the cycle reflects that it includes residential
investment, which leads the cycle somewhat (see Christiano and Todd (1996) for a discussion
of the empirical evidence). Business investment in structures and durables do lag the cycle-
probably for the type of time-to-plan considerations incorporated in our model.'® So, we
think there is some wisdom in the model’s implications for investment. As a result, we
think the mismatch between model and data regarding the output - investment dynamics is
overstated in Table 7. Finally, as in the business cycle statistics, the model isn’t close on the
dynamic correlations of government consumption. But, as before, we discount this because
the results below are not very sensitive to our choice of model for this series.

Although the model has the empirical minuses just stated (in one case, qualified), overall
it appears to do reasonably well. Our reading of Table 7 is that, despite clear shortcomings,
our model’s ability to replicate business cycle statistics is good enough to support our goal
of analyzing the effects of seasonal adjustment with an empirically relevant data generating
mechanism.

B Time-to-plan considerations presumably have relatively less direct impact on business in-
vestment in durable goods. However, it may have an important indirect impact via complemen-
tarities between investment in business structures (where there is an important time-to-plan
component) and durables.
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6. Constructing Aseasonal Analog Models

We now have a baseline and an alternative seasonal model to use as laboratories for quan-
tifying the distortions in the conventional practice with respect to seasonality. The models
will be used to generate artificial data, which will be seasonally adjusted and provided to
a hypothetical business cycle analyst. The analyst uses the data to estimate an aseasonal
business cycle model and evaluate its ability to account for the business cycle facts. This
section discusses the analyst’s estimation method and results.

The analyst’s model has two types of parameters: those that pertain to the exogenous
shocks, and those that do not. The latter parameters include the discount rate, the time-to-
build investment cost weights, capital’s share in the production function, and the depreciation
rate. The conventional way to estimate these uses the first-moments of the data. Since these
properties are not significantly distorted by seasonal adjustment, with one exception we
assume the analyst knows their true values. The exception pertains to the time-to-build
weights. In this case, we specify that the analyst’s estimates are the weights that apply
to projects initiated in quarters 2, 3, and 4 (see Table 3). We thereby introduce a small
distortion into the analysis, since presumably an actual analyst’s estimates of the weights
will also be influenced somewhat by the slightly different weights that apply to projects
initiated in the first quarter.

To obtain data needed for purposes of estimating the parameters of time series models
for the exogenous shocks, the analyst is assumed to follow conventional practice. The shocks
are deduced using the model parameters already estimated, the intratemporal Euler equa-
tion, the production function, and the seasonally adjusted data on consumption, output,
employment, capital, and government consumption. Each shock series was modeled as the
sum of a constant term and an autoregression. For the constant term, the analyst uses the
sum of the seasonal dummies. This is roughly the sample average that the analyst would
estimate using a large sample.

In choosing the lag length for the autoregessions of the exogenous shocks, we have to con-
front a technical problem. The true autoregressive representation of the seasonally adjusted
shocks is in fact of very high-order and has a seasonal pattern in its coefficients. Figures 2a
- 2¢ use data from the baseline seasonal model to illustrate this point. The figures report
log spectra for In 7, A, and In g;. The lines indicated by *’s are the spectra of the seasonally
adjusted data used by the analyst. For comparison, the solid line is the spectrum of the
seasonally unadjusted data. Both spectra are computed based on an artificial data set of
2,000 observations generated using the baseline seasonal model.!® Note the seasonal peaks
in the spectra of the seasonally unadjusted data. More significant, from the present stand-

9The spectrum was estimated by the following procedure. Let y; denote the logged data. We
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point, are the seasonal dips in the spectra of the seasonally adjusted data. That standard
seasonal adjustment methods, like the Census X-11 method that we use, produce these dips
is well known, and indeed it has been shown that such dips are characteristic of seasonal
adjustment procedures that are optimal under common assumptions (Grether and Nerlove
1970). To represent data with dips like these requires high-order lags with seasonal patterns
in the coefficients.?®

In view of the previous considerations, a careful time series analyst with a large sample
of seasonally adjusted data would fit high-order autoregressions.?! In the shorter samples
available in practice, high-order seasonal coefficients in autoregressions cannot be accurately
estimated and the possibility of seasonal dips in seasonally adjusted data is ignored. Because
we want to study the consequences of conventional practice, we have our hypothetical analyst
ignore seasonal dips and instead fit low order autoregressions to the exogenous shock data.
We set the lag length to three on the basis of evidence that an econometrician using seasonally
adjusted data generated from the baseline seasonal model would probably not have gone to
higher order lags in data sets of standard size.??

estimated the following regression by least squares:

N
Y=+ Z?biytfi + &4
i=1

Let 0 denote the estimated standard error of the fitted residual in this regression, and let

2
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The figure displays the graph of In S(z) against w, where w = w* /7. In the calculations, we use
T = 400 and N = 8. We also tried NV = 12, but that made little substantive difference.

20Sims (1993) has called this pattern in the coefficients of high order autoregressions fit to
seasonally adjusted data “unraveling of the seasonal adjustment.” Maravall (1995) provides a
general discussion of this problem and an example based on US GNP data.

21Obviously, the phenomenon just described for the baseline model applies to the alternative
model too.

22For each shock series, we divided our sample of 2000 quarterly observations into 10 segments
of length 200. On each of these, we used the Schwarz criterion to determine the appropriate lag
length of an autoregressive model. Optimal lag lengths were almost always less than or equal
to three.
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The log spectra of the third-order autoregressions estimated by the econometrician using
baseline seasonal model data are reported as dashed line in the figures. Note how those lines
essentially interpolate the spectrum of the seasonally adjusted data and miss the seasonal
dip.

7. Results

In section 4 we used US data to construct various data generating mechanisms: the baseline
seasonal model and alternative seasonal models. In section 6, we described the aseasonal
models that an analyst using conventional business cycle methods would estimate using
seasonally adjusted, artificial data from these data generating mechanisms. This section
evaluates the distortions implied by these methods: we compare the differences between the
business cycle properties of the artificial data and of data generated by the econometrician’s
estimated model. We find almost no distortion when the data are generated by the baseline
seasonal model.

We perform various experiments to evaluate the robustness of this result. We consider
what happens when second moment properties are computed based on first differencing the
data rather than applying the HP filter. We also consider what happens when the data are
generated by the alternative seasonal models.

When the first difference filter is used and the data are generated by the baseline model,
then distortions are again very small. However, distortions do emerge when the alternative
seasonal models are used to generate the artificial data. These distortions are magnified when
the first difference filter is used. Thus, significant distortions can be found working with the
alternative seasonal model and using the first difference filter. However, these results should
be kept into perspective. First, the alternative model is statistically rejected. Second, in
practice the first difference filter is only rarely used in the analysis of business cycle models.??

We first describe the results based on the baseline seasonal model. We then consider the
alternative seasonal models.

7.1. Results Based on Baseline Seasonal Model

Business cycle statistics computed from seasonally adjusted data generated by the baseline

seasonal model are copied from Panel B of Table 7 to Panel A of Table 8. Panel B of Table

23This is because the first difference filter magnifies the very high frequency components of
the data, while reducing the relative importance of business cycle frequencies. By comparison,
the HP filter resembles a high pass filter that isolates the business cycle frequencies and higher
(see, e.g., Christiano and den Haan (1996, section 3) and Singleton (1988)).
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8 displays the corresponding statistics computed from the data generated by the aseasonal
analog of the baseline seasonal model. The two sets of statistics are only trivially different.
In results not reported here, we found that this is also true when seasonal adjustment is
done by using deterministic dummies, rather than X11. This failure to find effects linked to
seasonality supports the typical practice of specifying aseasonal RBC models and evaluating
them with seasonally adjusted data.

7.2. Robustness Checks

In this subsection we consider robustness of our results to first differencing and to the alter-
native seasonal models. The effects of first differencing in the baseline model may be seen
by comparing Panels A and B in Table 9. Note that the differences are quite small. So, our
key finding that there is no distortion when the artificial data are generated by the baseline
model is robust to the use of the first difference filter.

Next, we analyze results for an alternative seasonal model in which the exogenous shock
processes for taste, technology and government consumption are switched from their baseline
representations to no-dummy representations with a constant term and, respectively, 8, §,
and 9 autoregressive lags. Business cycle statistics computed from seasonally adjusted and
HP-filtered data generated by this model are reported in Panel C of Table 8. Panel D
displays the corresponding statistics computed from the seasonally unadjusted, HP-filtered
data generated by the aseasonal analog of this alternative seasonal model. The differences
between the two sets of statistics are not always as trivial as before. The analyst computes
a contemporaneous hours-productivity correlation in Panel D that is 0.17 higher than the
corresponding number in Panel C. Several other dynamic correlations are off by 0.10 or more,
especially for investment and output. Furthermore, the analyst substantially understates the
volatility of investment. Also, the analyst’s points estimates imply that investment lags the
cycle, although it is coincident with the cycle in the analyst’s “actual” data (see Panel C).
Overall, however, the distortions in Panels C and D of Table 8 do not seem dramatic.?*

More dramatic distortions result when the data are generated by the alternative seasonal
model and the HP filter is replaced in the analysis by the first difference filter. These

24This conclusion is sensitive to the length of the autoregressive process for productivity.
Recall that the 4-lag representation was ranked as a close second to the 8-lag representation
by the Schwarz criterion. When we adjust the alternative seasonal model solely by shortening
the length of the productivity autoregression to 4, certain distortions become much larger. For
example, the “true” correlation between hours today and productivity yesterday drops from .41
to .15, while the analyst’s correlation rises from .57 to .61. The gap between the analyst and
the truth thus rises from a moderate .16 in Panel D, Table 8, to a substantial .46, solely due to
the shorter autoregressive representation for productivity.
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results are reported in Panels C and D of Table 9. Note there that the analyst understates
the volatility of investment by half. Generally speaking the distortions in the dynamic
correlations are now larger than they were in Panels C and D of Table 8.

In results not reported here, we found that the technology process is critical to the
increased distortions implied by the alternative seasonal model. The results reported in
Table 8 change very little if we return the taste and government shock series to their baseline
representation but leave the technology series in its alternative representation. If instead we
just return the technology shock to its baseline representation, then the distortions become
small again, like those in the top two panels of Table 8. So, the evidence of distortion that we
find is driven by the alternative seasonal representation of the technology shock. In assessing
these distortions, it is important to recall our finding that this representation is rejected by
the data.

8. Concluding Remarks

We were frankly surprised that a defensible model could be constructed which supports
the conventional practice with respect to seasonality in the business cycle literature. Still,
there are at least two reasons why our analysis does not settle the issue. First, our seasonal
model has shortcomings. We cannot rule out that a superior model that corrects these
shortcomings will imply bigger distortions. In exploring modifications, it would be interesting
to focus on alternative specifications of the exogenous shocks, such as autoregressions with
periodic or stochastically evolving coefficients.?? Another plausible route is to explore model
modifications which enhance endogenous sources of seasonality. This is consistent with
recent findings that seasonal patterns vary with the business cycle (see Canova and Ghysels
1994, Cecchetti, Kashyap, and Wilcox (1997), and Ghysels (1994a).) Second, our analysis
has focussed on a fairly simple, basic equilibrium model of business cycles. We think this
is valuable for the purpose of setting a benchmark. Still, the literature on equilibrium
business cycle models includes wage contracting, heterogeneity of agents, multiple sectors,
tax shocks, monetary factors, and modifications designed to reproduce features of asset
markets. Whether our findings are relevant for these cases is an open, quantitative, issue
that can be addressed using the procedures implemented in this paper.

%5See, for example, Boswijk and Franses (1995,1995a), Franses and Papp (1994, 1999), Ghy-
sels, Hall, and Lee (1996), Ghysels, McCulloch, and Tsay (1998) and Hylleberg and Pagan
(1997).
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A. The Appropriate Measure of Hours Worked For Seasonal Anal-
ysis

Previous studies of aggregate seasonal fluctuations have focused on a measures of hours
worked and productivity derived from the establishment survey of employment. With this
measure of employment, labor productivity is low in the third quarter and then very high in
the fourth quarter (see row 2 in Table Al). This is puzzling, because it is hard to think of
plausible technological factors that can account for this. The observation stimulated various
modeling efforts, including attempts to explain the pattern as reflecting increasing returns
in technology and /or labor hoarding (see Braun and Evans (1998)).

Table Al shows that the puzzling productivity results are an artifact of using the es-
tablishment employment data. This series treats people on paid vacation as though they
were working and experienced workers as though they were no more productive than new
employees. Our employment measure, based on a survey of households and adjusted by
Gary Hansen (1993) for labor force composition, represents a better indicator of work ef-
fort because it measures hours actually worked and adjusts for worker efficiency. According
to Hansen’s measure, work effort in the third quarter drops substantially, as experienced
workers go on vacation and summertime temps are employed (see row 3). The drop in ef-
fective hours worked is sufficiently large that our estimate of labor productivity does not
display the puzzling seasonal pattern in the third and fourth quarters that results when the
establishment-based hours data are used (row 4).

B. Goodness-of-Fit of the Alternative Shock Representation

In this appendix, we inquire whether the alternative shock models of Section 4.3 can account
for the evidence of deterministic seasonality that we find in the shock processes. For this,
we use a style of test applied in Christiano and Ljungqvist (1988). In particular, we develop
several statistics that quantify the amount of deterministic seasonality in the exogenous
shock data, and we ask how hard it is for the alternative seasonal models to account for
them. We find that in the case of the taste and (to a lesser extent) technology shocks, the
alternative seasonal models can do so only with very low probability. On this basis we reject
the purely indeterministic autoregressive representation for these two series. We find that
we cannot reject the purely indeterministic representation for the government consumption
shock, however.

To carry out our test, we use two types of statistics that characterize the evidence on
deterministic seasonality in the exogenous shock processes. We use (i) the t-statistic on the
indeterministic seasonal coefficient, 0, in the baseline seasonal models, reported in Table 1.
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This is small in the case of all shocks except the government consumption shock. We also
use (ii) statistics that characterize the evidence that the seasonal pattern of ups and downs
in the data is stable over time.

The following describes the first of our two statistics of type (ii). For each calendar
year we compute the percentage deviations (log difference) of each quarter’s observation
from the sample mean for that year. We also compute the percentage deviation of each
quarter’s seasonal dummy from the average of the seasonal dummies. Then, for each year,
we compute the correlation between the two series. The average of these annual correlations
is our magnitude measure of seasonal stability. For the preference shock, the productivity
shock, and the government consumption shock series computed from US data, we obtained
magnitude measures of seasonal stability of 0.93, 0.98, and 0.63, respectively. Thus, for the
first two shocks, the pattern of seasonal ups and downs is very stable over time, as would
be expected for a process whose seasonal is primarily deterministic. With a seasonal that is
primarily indeterministic we might expect to see some drifting in the seasonals, which would
produce a low value for the magnitude measure of seasonal stability.

In our second statistic of type (ii), we rank each quarter in a calender year according to
the size of the percent deviations discussed in the previous paragraph. The highest quarter
in a given year is ranked 1, the second highest 2, and so on. (We also experimented with
ranking both middle quarters 2.5, to allow for seasonal patterns in which middle quarters
are not sharply different, but the results changed little and are not reported.) We also rank
each quarter’s observation according to the magnitude of that quarter’s dummy. For each
calendar year, we then compute the Spearman rank correlation between the ranking of that
year’s quarters and the overall ranking based on the dummies. Our rank measure of seasonal
stability is the average of these correlations over the whole sample. For the preference shock,
the productivity shock, and the government consumption shock series computed from US
data, we obtained rank measures of seasonal stability of 0.91, 0.92, and 0.51, respectively.

To check whether the indeterministic models of seasonality are consistent with the statis-
tics discussed above, we simulated 5,000 artificial data sets, each of the same length as our
US data time period (25 and a half years, corresponding to 58:3 to 83:4), for each of the
estimated purely autoregressive seasonal representations. In each case the period 58:3 to
61:2 was set equal to the actual values in our US data series, and the remaining observations
were simulated using the fitted purely indeterministic seasonal models and bootstrapping
(whereby disturbance terms are obtained by sampling, with replacement, from the fitted
residuals). Using the same computations described above, we computed a t-statistic and
the two measures of seasonal stability for each simulation. That is, for each autoregressive
representation, we obtained 5,000 artificial t-statistics and 5,000 pairs of seasonal stability
statistics.
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For the government consumption shock, the artificial ¢-statistics were smaller than the
empirical one 17.2 percent of the time. Thus, even at a 10 percent critical level, the au-
toregressive seasonal representation is not rejected. For the taste shock and productivity
shock, however, less than 1 percent of the simulations yield a t-statistic smaller than the
empirical one, indicating that their estimated autoregressive representations cannot explain
away the empirical evidence in favor of deterministic seasonality. In other words, this test
rejects the autoregressive seasonal representation for taste and productivity shocks at the 1
percent level.

The results for the magnitude measure of seasonal stability are similar. For government
consumption, 12.2 percent of the simulations produced percentage deviation statistics as
high as the empirical one. For the taste and productivity shocks, by contrast, less than 1
percent of the simulations did so.

The rank measure of seasonal stability was slightly different. The autoregressive seasonal
model for government consumption again was not rejected; 22.4 percent of the simulations
produced Spearman measures as high as the empirical one. The opposite was again true
for the taste shock, again at the 1 percent critical level. For the technology shock, however,
5.8 percent of the simulations produced Spearman seasonal stability statistics equal to or
greater than the empirical measure. At a 5 percent critical level for this statistic, one would
(barely) not reject the autoregressive seasonal representation for the productivity shock.

To summarize our results: (i) the tests strongly reject the indeterministic model using
taste shocks; (ii) two tests reject the indeterministic model using productivity shocks and
one does not; (iil) the tests do not reject the purely indeterministic seasonal model using
government consumption.

It is important to emphasize one final point. If we had allowed even longer lags, we could
have produced purely indeterministic models consistent with the evidence on deterministic
seasonality. This is because long autoregressions can arbitrarily well approximate represen-
tations like our baseline models with seasonal dummies.?® Such long autoregressions are
not of interest in applied work, since they are difficult to estimate with precision in typical
postwar data sets.

26This requires some explanation. Formally, we can think of the spectral density of our
baseline time series representation as the sum of the spectrum of z¢ and z7¢ in (3.8). The latter
is well defined. We define the former as the Fourier transform of the covariance function of
the dummies that would be computed from a long sample of dummies. This Fourier transform
is composed of Delta function spikes. So, the spectrum implied by our baseline model can be
thought of as the sum of a smooth part and a Delta function part. A sequence of spectra implied
by longer and longer lag autoregressions can approximate this pattern arbitrarily well.
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Table 1: Exogenous Shock Models'

Panel A: Preferences, t

S; o ¢ 0 ¢t e’ e’ et Q DW
Equation 3.9 017 49 30 13 303 302 290 312 73 2.00
4.96) (3.03)  (1.16) (24)

Panel B: Technology, &

O O (03 0 d; d> ds ds Q DW
Equation 3.9 021 -.17 .10 .08 -.095 .063 .025 021 87 1.99
(-163)  (98)  (76) (24)

Panel C: Government, g

S; o ¢ 0 ¢t e’ e’ et Q DW
Equation 3.9 024 68 12 21 2739 2663 2632 2628 09 192
632) (1.18)  (1.90) (24)

1Equation 3.9 results are for fitting the model, x; = d;d;; + dady + ddae + dada + [(1-(|)1L-(|)2L2)(1-6L4)]'let to x;, where x, = logt,, A, logg,, as indicated, dj is
1 in quarter i and zero otherwise, i =1, 2, 3, 4 and o is the standard deviation of .. Calculations done in two steps: dummy coefficients are obtained in
step one by OLS over 1958:3 to 1983:4, and in step two the remaining coefficients are obtained by applying RATS procedure BOXJENK to the residuals.
The step two regressions are over 1960:1 to 1983:4. With one exception, numbers in parentheses are t-statistics. The exception is the column pertaining to
Q, which consists of the number of lags in the Box-Pierce statistic computed on the fitted disturbances. Q is the p-value of the Box-Pierce statistic, with a
number below 0.05 indicating rejection at the 5 percent level. DW is the Durbin-Watson statistic.



Table 2: Seasonal Deviations from Trend , U.S. Data1

Average Percentage Deviation by Quarter Dummies' Correlations

Q1 Q2 Q3 Q4 Dummies' With Y With Y/n

Std. Dev. Dummies Dummies
Y -3.76 -02 -.53 431 2.87 1.00
C -3.53 -.56 -93 5.02 3.12 99
I -9.37 2.99 3.36 3.02 5.39 75
G -3.45 -45 94 2.97 233 94

n -07 .86 -2.90 2.14 2.14 52 -17

Y/n -3.76 -48 227 1.76 2.74 72

'Y=real GNP, C=real consumption of nondurables plus services, I=real fixed investment, G=real government consumption. From Hansen (1985): n=effective
household hours. Other data from Barsky-Miron (1989). Real variables are Barsky-Miron nominal variables divided by their CPI series. All data were originally in
not seasonally adjusted form. They were seasonally adjusted with the default settings in RAT's EZX11, and then logged and HP filtered. The efficiency hours data
were provided to us by Gary Hansen. Data period is 1948-85, except 195585 for hours and productivity. Where possible, results are reproduced from Barsky and
Miron, Table 1. Results for consumption of nondurables and services, C, and for hours worked and productivity were computed by us. Results obtained by first
logging and then HP-filtering the data. The transformed data were regressed on seasonal dummies. The table based on the resulting coefficients, after multiplication
by 100.

Table 3: Time-to-Build Weights by Season and Stage of Project’

Season (calendar quarter)
Stage of Project Ql Q2 Q3 Q4
Stage Zero 0237 0171 0171 0171
Stage One 3924 3924 3924 3924
Stage Two 1552 1552 1552 1552
Stage Three 4353 4353 4353 4353

"Entries in column headed Qi represent the relative share of resources put in place for investment projects initiated in quarter i. The
weights add to 1.0 in quarters 2, 3, and 4.



Table 4: Steady States vs. Sample Averages

Barsky-Miron Data’ Baseline Seasonal Model”
Q1 Q Q3 Q4 Q1 Q Q3 Q4
hours 367.1 370.6 357.0 375.5 367.8 374.7 366.3 379.0
worked
Y 14 15 16 15 25 27 27 26
CY 54 54 54 55 54 53 52 53
K'Y n.a. n.a. n.a. n.a. 11.2 10.6 10.5 10.2
G/Y 21 20 21 20 21 21 21 21
'Dummy coefficients in regression of indicated variables on quarterly dummies. For I/Y, C/Y, G/Y the sample period is 1950Q1-1985Q4.
For hours worked, the efficiency-based measure was used, and the sample period was 1955Q3-1985Q4.
*Nonstochastic steady state values of indicated variables.
Table 5: Seasonal Cycle, Model and Data
Data> Baseline Seasonal Models'
Q1 Q Q3 Q4 Q1 Q Q3 Q4
Y -3.76 -02 -53 4.31 -4.37 59 16 3.61
C -3.53 -.56 -93 5.02 -2.39 -31 -1.69 4.39
1 -9.37 2.99 3.36 3.02 -9.37 2.99 3.36 3.02
n -.07 .86 -2.90 2.14 -1.11 74 -1.52 1.89
G -3.45 -45 94 2.97 -3.22 -.08 .84 246
K n.a n.a n.a n.a 78 33 -.66 -45

"Deviation from HP-trend of logged data (multiplied by 100) along steady state growth path.

*Taken from Table 2 for convenience.




Table 6: Selected Statistics, Seasonally Unadjusted Data

Panel A: U.S. Data for 1948-85

Dynamic Correlations

Relative
Variables Volatlityl X1(t) with X2(t4) for j=
X1 X2 3 2 1 0 -1 -2 -3
Y Y 038 -20 29 .00 1.00 .00 29 -20
Y C 92 -21 17 -26 88 -.14 15 -35
Y I 2.17 -27 30 38 78 -.05 32 18
Y n 67 -11 58 -30 63 16 77 -33
Y G 148 -28 -11 -12 34 -11 10 09
n Y/n 1.16 -25 .59 26 -.06 -33 42 .05

Panel B: Baseline Seasonal Model

Y Y 035 -27 25 -15 1.0 -15 25 -27
Y C 94 -12 33 -46 .80 -.09 27 -.56
Y 1 1.98 -39 .09 11 81 -22 16 07
Y n 53 -24 50 -41 72 -07 60 -42
Y G 1.21 -.06 16 -.08 75 .04 12 -.09
n Y/n 1.35 -27 43 14 27 -34 29 -02

1/Entry corresponding to Y is the standard deviation of (logged, detrended) output. Entries in the following five rows are the standard deviation of the X2 variable
relative to the standard deviation of the X1 variable.




Table 7: Selected Business Cycle Statistics, Seasonally Adjusted Data

Panel A: US Data for 1958-85

Dynamic Correlations
Relative
Variables Volatlityl X1(t) with X2(t4) for j=
X1 X2 3 2 1 0 -1 -2 -3
Y Y 024 32 .59 .85 1.00 .85 .59 32
Y C 52 A2 .59 75 .82 71 53 31
Y I 2.55 34 57 77 .87 78 .56 32
Y n 68 14 37 64 79 79 70 .56
Y G 2.07 -15 -.10 -.04 .00 17 26 30
n Y/n 93 .50 54 A48 17 25 .02 -.16
Panel B: Baseline Seasonal Model

Y Y 019 39 61 79 1.00 79 61 39

Y C 94 27 A4 52 66 35 26 14

Y I 2.15 26 40 57 71 76 62 A4
Y n 62 18 31 A5 72 69 .58 A1

Y G 1.85 29 A2 57 71 Sl 37 21

n Y/n 1.14 43 53 .56 13 23 14 .09

1/Entry corresponding to Y is the standard deviation of (logged, detrended) output. Entries in the following five rows are the standard deviation of the X2 variable
relative to the standard deviation of the X1 variable.

Data for Panel B were simulated with the baseline model. For both panels, data were seasonally adjusted with the X11 procedure in Estima's RATS386x
package.




Table 8: Effect of Seasonal Adjustment on Selected Business Cycle Statistics

Panel A: Baseline Seasonal Model

Dynamic Correlations
Relative
Variables Volatilityl X1(t) with X2(t4) for j=
X1 X2 3 2 1 0 -1 -2 -3
Y Y 019 39 61 79 1.00 79 61 39
Y 94 27 A4 52 66 35 26 14
Y I 2.15 26 40 57 71 76 62 A4
Y n 62 18 31 A5 72 69 .58 A1
Y G 1.85 29 A2 57 71 Sl 37 21
n Y/n 1.14 43 53 .56 13 23 14 .09
Panel B: Data From Aseasonal Analog of Model in Panel A

Y Y 019 39 61 78 1.00 78 61 39
Y C 94 27 A2 49 65 34 26 14
Y I 2.16 26 A2 .59 72 75 62 A4
Y n 63 16 32 A5 72 66 55 39
Y G 1.87 30 A4 55 71 .50 37 21
n Y/n 1.11 A4 53 .56 14 25 19 11

Panel C: Alternative Seasonal Model

Y Y 021 43 62 .80 1.00 .80 62 43
Y C 91 41 46 51 .56 34 23 15
Y 1 2.66 14 33 .50 70 .65 54 40
Y n .69 .06 26 45 72 61 52 42
Y G 1.81 37 48 57 .69 52 40 26
n Y/n 1.00 .59 54 41 .03 19 15 .08

Panel D: Data from Aseasonal Analog of Model in Panel C

Y Y 020 47 .65 81 1.00 81 .65 47
Y C .86 36 45 54 .69 39 27 17
Y 1 2.09 31 49 .63 77 .80 70 .55
Y n .60 20 37 48 74 68 .59 47
Y G 1.79 37 49 .59 73 54 42 26
n Y/n 1.14 52 .55 57 20 28 23 13

Panels A and C are based on artificial data simulated from the indicated models and then seasonally adjusted using the Census X-11 procedure implemented in
RATS'EZX11. Panels B and D are based on data simulated from aseasonal analogs to the models underlying Panels A and C. All data were logged and hp-filtered
prior to computing the statistics. See the notes to Table 7 for further discussion of the format of this table.



Table 9: Effect of Seasonal Adjustment on Selected Business Cycle Statistics Using First-Difference Detrending
Instead of HP Filtering

Panel A: Baseline Seasonal Model

Dynamic Correlations

Relative
Variables Volatilityl X1(t) with X2(t4) for j=

X1 X2 3 2 1 0 -1 -2 -3

Y Y 013 09 22 07 1.00 07 23 09
Y C 1.35 .03 21 -.03 71 -24 .10 .02
Y I 2.05 09 02 16 32 .50 19 16
Y n 93 .04 .02 -.12 A5 15 12 .09
Y G 2.19 .06 14 .02 .68 —-.05 11 .00
n Y/n 1.09 .03 .08 46 -47 19 -.01 -.02

Panel B: Data From Aseasonal Analog of Model in Panel A

Y Y 013 .06 23 .03 1.00 .03 23 .06
Y C 1.37 .03 18 -.07 72 =25 A2 -.03
Y 1 1.97 .03 .08 19 32 48 19 20
Y n 95 -.05 07 -.15 48 A1 A2 .06
Y G 2.26 .06 14 -.02 67 -.07 A2 -.02
n Y/n 1.05 13 .08 44 -47 18 .04 02

Panel C: Alternative Seasonal Model

Y Y 015 18 18 .09 1.00 .09 19 18
Y C 1.36 28 07 07 45 —-.08 04 A2
Y 1 347 -.12 08 .03 46 17 A1 07
Y n 1.05 -.14 .04 -.05 55 02 .06 .09
Y G 1.98 21 13 .04 .63 01 12 11
n Y/n 92 27 .09 28 -.51 21 07 .04

Panel D: Data from Aseasonal Analog of Model in Panel C

Y Y 014 20 23 .09 1.00 .09 23 21
Y C 1.31 16 .10 -.01 73 -.17 06 .05
Y 1 1.87 .04 23 17 39 44 27 32
Y n 92 -.05 13 -.15 51 .09 .10 14
Y G 2.15 17 A2 .03 67 -.03 14 .05
n Y/n 1.04 22 .05 42 —-43 18 07 02

Panels A and C are based on artificial data simulated from the indicated models and then seasonally adjusted using the Census X-11 procedure implemented in
RATS'EZX11. Panels B and D are based on data simulated from aseasonal analogs to the models underlying Panels A and C. All data were logged and first
differenced prior to computing the statistics. See the notes to Table 7 for further discussion of the format of this table.




Table Al: Seasonal Deviations from Trend , Establishment versus Efficiency Hours Data

Average Percentage Deviation by Quarter

Dummies' Correlations

Q1 Q2 Q3 Q4 Dummies' With Y With Y/n
Std. Dev. Dummies Dummies
n, est -2.14 21 1.01 1.16 1.53 .82 58
Y/n, est -1.62 33 -1.37 2.71 2.00 93
n, eff -07 .86 -2.90 2.14 2.14 52 -17
Y/n, eff -3.76 -48 227 1.76 2.74 72

"Hours data are distinguished by source

household hours. See notes to Table 2 for further details.

: “est” means establishment survey and “eff” means Hansen's (1985) effective
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