
�	�����
��&��+����)
)	���	��	�

�������	��
���
��
�	����	�	���������	����
��

�����������������	�
�	�
�	���	
��	���	��	��

����������������

	��� ������!"#��$#

���%�$��#�&' �$�(�)�*� �,-.

%""*/00�����1� �' (0*�*� �0�2,-.

�
����
����	
�����	���������	�	
���

32-2�������%4��""��
5��4�

���1 $�(����
�2,367


4(4�"�,222

�����������	��
��������������������������������������������� ��������!"�#�����#��������$$��

"�$����$���$��������	���������%�&�����'&���	�$�(���"�$����$)������*��
���+�������������$���������

%�������������$��$��$�	������,�������%���������$�,�(������%�-	$&�	�������	�)��

.� �������/�&���/)���	0&�$��$��-�
����/)�1��,�	�,)���',,���2���������*��)��!������	��$��%���+���$���

�+	�����
�����2��������&������3�����
�������+�,�	������&����$���*����������%�,,�	��������$	,���$2�.

$��	������2�*�$����������	�)



����������	
��	�	�
������
����������
���	��������������

�����������	������	������������

�	���������� �	��	�����!	�������"�
	�


#��$�������	
�%�� ���&	'���#���()*

�������(+++

��,�#���-)+���./

��������

����'	'����0'�����	�����
	�����!���������	''��	��������������������	���	������	�������������

1���	''��	�����	����������������	
��	�	�
��������������	�� �23**+��3**.4��!���������������������

�������	���	������	�������������������	���	�����'�����������������������������	
��	�	�
���2��4

���������������������	''��	�����	�������
	��������0�����
��������������� �	��	����"�
	�
�23***�

(+++	4��!�����������������������	���	������	���������������	���0'
�������	����'�������	����'	�	�����

��
����������
�!���	���0�
��������������������������������'
"��������������	
��	�	�
���������

��������"��	�� �������	����������������	��������������	�������	�� �������������������'	'����!�

����"�������
	�����'����!���������!������������������'
����"�������	
����	���������������%�����!

��	�5�234�������� �	��	����"�
	�
��������	������������������	����'�������	����'	�	��������
�����

����
6�2(4������	�� ����������'
�"����������� �	��	����"�
	�
���������������������'	�	�����

��
�����������
�	����'������

�	���������� �	� ��!	�������"�
	�


7�'	������������������ 7�'	������������������

8������"����-��	�� 8������"����-��	��

33(9��	���)*��������� 33(9��	���)*���������

-��	�����,�9+9/: -��	�����,�9+9/:

	���#��$ �;�"�
	�
<����	�������

=;��� �	�<����	������



1 Introduction

A basic problem in evaluating social programs is that we do not observe the same individual in

both the treated and untreated state at the same time. A variety of econometric assumptions are

invoked to undo the consequences of this missing data. The traditional approach to this problem

is to invoke suÆcient assumptions about outcome equations, treatment selection equations, and

their interrelationship to point identify the treatment parameters. A more recent approach to

identi�cation of treatment e�ects is to conduct sensitivity or bounding analyses to present ranges

of estimates for estimated treatment parameters.

This paper exposits and relates two distinct approaches to bounding the average treatment

e�ect. One approach, based on instrumental variables, is due to Manski (1990, 1994), who derives

tight bounds on the average treatment e�ect under a mean independence form of the instrumental

variables (IV) condition.1 The second approach, based on latent index models, is due to Heckman

and Vytlacil (1999,2000a), who derive bounds on the average treatment e�ect that exploit the

assumption of a nonparametric selection model with an exclusion restriction. Their conditions

imply the instrumental variable condition studied by Manski, so that their conditions are stronger

than the Manski conditions. In this paper, we study the relationship between the two sets of

bounds implied by these alternative conditions. We show that: (1) the Heckman and Vytlacil

1Manski also refers to this condition as a level-set restriction. See Robins (1989) and Balke and Pearl (1997) for

bounds that exploit a statistical independence version of the instrumental variables assumption. See Manski and

Pepper (2000) for bounds that exploit a weakened version of the instrumental variables assumption. Heckman,

Smith and Clements (1997) consider bounds on the distribution of treatment e�ects in a randomized experiment.

See Heckman and Vytlacil (2000b) for a discussion of alternative approaches to the evaluation of treatment e�ects,

including a survey of the bounding literature.
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bounds are tight given their assumption of a nonparametric selection model; (2) the Manski

bounds simplify to the Heckman and Vytlacil bounds under the nonparametric selection model

assumption.

This paper is organized in the following way. In Section 2, we introduce notation and the basic

framework. We review the Manski IV bounds in Section 3, and review the Heckman and Vytlacil

nonparametric selection model bounds in Section 4. In Section 5, we show that the Heckman

and Vytlacil bounds are tight under the nonparametric selection model assumption. We compare

the Manski bounds to the Heckman and Vytlacil bounds in Section 6, and show that the Manski

bounds simplify to the Heckman and Vytlacil bounds under the nonparametric selection model

assumption. The paper concludes in Section 7 by relating the analysis of this paper to the analysis

of Balke and Pearl (1997).

2 Switching Regression Framework

For each person i, we observe (Yi; Di;Wi), where Yi is the outcome variable, Di is an indicator

variable for receipt of treatment, and Wi is a vector of covariates. We assume that the outcome

variable is generated by a switching regression,

Yi = DiY1i + (1�Di)Y0i,

where Y0i is the potential outcome if the individual does not receive treatment and Y1i is the

potential outcome if the individual does receive treatment. Y1i is observed if Di = 1 but not

otherwise; Y0i is observed if Di = 0 but not otherwise. We assume access to an i.i.d. sample,
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and henceforth supress the i subscript. For any random variable A, we will use A to denote the

support of A, a to denote a potential realization of A, and FA to denote the distribution function

for A. In this paper, we will maintain the assumption that the outcome variables are bounded

with probability one:

Assumption B. For j = 0; 1, and for a.e. w 2 W, there exists ylw;j; y
u
w;j 2 < such that:

Pr(ylw;j � Yj � yuw;jjW = w) = 1.

In this paper, we examine bounds on the average treatment e�ect (ATE), de�ned for w 2 W

as2

E(Y1 � Y0jW = w):

By the law of iterated expectations:

E(Y1 � Y0jW = w)

=

�
Pr[D = 1jW = w]E(Y1jW = w;D = 1) + Pr[D = 0jW = w]E(Y1jW = w;D = 0)

�

�

�
Pr[D = 1jW = w]E(Y0jW = w;D = 1) + Pr[D = 0jW = w]E(Y0jW = w;D = 0)

�
:

The central identi�cation problem in recovering this parameter from observational samples is that

we do not observe Y0 for individuals with D = 1, and we do not observe Y1 for individuals with

2Another potential parameter of interest is the e�ect of treatment on the treated, E(Y1 � Y0jW = w;D =

1): Heckman and Vytlacil (1999,2000a) construct bounds for the treatment on the treated parameter given the

nonparametric selection model assumption. Manski's analysis can be easily extended to this parameter as well.

One can extend the results of this paper to show that the Heckman and Vytlacil bounds on treatment on the

treated are tight given the assumption of a nonparametric selection model, and to show that the Manski bounds

adapted to the treatment on the treated parameter simplify to the Heckman and Vytlacil bounds on the treatment

on the treated parameter under the assumption of a nonparametric selection model.
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D = 0. Thus, we can identify Pr[D = 1jW = w], E(Y1jW = w;D = 1), and E(Y0jW = w;D = 0),

but cannot identify the counterfactual means E(Y1jW = w;D = 0) or E(Y0jW = w;D = 1).

Assumption (B) immediately implies that E(Y1jW = w;D = 0) and E(Y0jW = w;D = 1)

are bounded, and thus we can follow Manski (1989) and Robins (1989) in bounding the ATE

parameter as follows,3

BL
w � E(Y1 � Y0jW = w) � BU

w ;

where

BL
w =

�
Pr[D = 1jW = w]E(Y1jD = 1;W = w) + Pr[D = 0jW = w]ylw;1

�

�

�
Pr[D = 0jW = w]E(Y0jD = 0;W = w) + Pr[D = 1jW = w]yuw;0

�

BU
w =

�
Pr[D = 1jW = w]E(Y1jD = 1;W = w) + Pr[D = 0jW = w]yuw;1

�

�

�
Pr[D = 0jW = w]E(Y0jD = 0;W = w) + Pr[D = 1jW = w]ylw;0

�
:

For every value in the interval [BL
w; B

u
w]; one can trivially construct a distribution of (Y1; Y0; D;W )

which is consistent with the observed distribution of (Y;D;W ) and such that the average treat-

ment e�ect equals the speci�ed value. Thus, every point in the interval [BL
w; B

u
w] must be contained

in any bounds on the average treatment e�ect, and thus these bounds are tight under the given

3Smith and Welch (1986) construct analogous bounds on E(Y1) using the law of iterated expectations and the

restriction that 1

2
E(Y1jW = w;D = 1) � E(Y1jW = w;D = 0) � E(Y1jW = w;D = 1); where the lower bound is

assumed to be known a priori.
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information structure. Note that the width of the bounds is

Pr[D = 1jW = w](yuw;0 � ylw;0) + (1� Pr[D = 1jW = w])(yuw;1 � ylw;1):

Note that the width of the bounds depends only on Pr[D = 1jW = w] and yuw;j; y
l
w;j; j = 0; 1.

3 Bounds Under an IV Condition

We �rst review the analysis of Manski (1990).4 Partition W as W = [X;Z], where Z denotes

the instrument(s). He considers identi�cation or bounding of the average treatment e�ect under

a mean-independence form of the IV assumption:

Assumption IV. E(YjjX;Z) = E(YjjX) for j = 0; 1.

Note that Assumption IV immediately implies that the average treatment e�ect depends only on

X, E(Y1 � Y0jX = x; Z = z) = E(Y1 � Y0jX = x). Let Zx denote the support of Z conditional

on X = x. Let

P (z; x) = Pr[D = 1jZ = z;X = x]:

4See also Manski (1994) for a further development of these bounds.
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Using the law of iterated expectations and the assumption that E(Y1jX;Z) = E(Y1jX), for any

x in the support of X and z 2 Zx,

P (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yl(x;z);1

� E(Y1jX = x) � P (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yu(x;z);1:

Since these bounds hold for all z 2 Zx, we have

sup
z2Zx

fP (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yl(x;z);1g

� E(Y1jX = x) � inf
z2Zx

fP (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yu(x;z);1g:

Following the parallel argument for E(Y0jX = x), Manski derives the the following sharp bounds

on the average treatment e�ect under the mean independence assumption:

ILx � E(Y1 � Y0jX = x) � IUx ;

with

ILx = sup
z2Zx

fP (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yl(x;z);1g

� inf
z2Zx

f(1� P (z; x))(E(Y0jD = 0; X = x; Z = z) + P (z; x)yu(x;z);0g:

8



IUx = inf
z2Zx

fP (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yu(x;z);1g

� sup
z2Zx

f(1� P (z; x))(E(Y0jD = 0; X = x; Z = z) + P (z; x)yl(x;z);0g;

Let Px denote the support of P (Z;X) conditional on X = x. Let pux = supPx and plx = inf Px:

The width of the bounds is IUx � ILx , a complicated expression to evaluate. Note that the above

bounds exactly identify the average treatment e�ect if IUx = ILx . A trivial modi�cation of Corollary

1 and Corollary 2 of Proposition 6 of Manski (1994) shows that, under assumptions (B) and (IV),

(i) pux �
1
2
and plx �

1
2
is a necessary condition for ILx = IUx .

(ii) If Y ?? DjX, then pux = 1, plx = 0 is a necessary and suÆcient condition for ILx = IUx :

Note that it is neither necessary nor suÆcient for P (z; x) to be a nontrivial function of z for

these bounds to improve upon the [BL
w; B

U
w ] bounds of Section 2. Evaluating the bounds and the

width of the bounds for a given x requires knowledge of P (z; x); E(Y1jD = 1; X = x; Z = z),

E(Y0jD = 1; X = x; Z = z), and yl(x;z);j; y
u
(x;z);j, j = 0; 1, for each z 2 Zx.

4 Bounds Under the Nonparametric Selection Model

We now review the analysis of Heckman and Vytlacil (1999,2000a). They use a nonparamet-

ric selection model to identify or bound the average treatment e�ect, where the nonparametric

selection model is de�ned through the following assumption:

Assumption S D = 1[�(Z;X) � U ], with Z ?? (U; Y0; Y1)jX:

9



This is clearly a stronger assumption than Assumption IV because of the treatment assignment

rule, because of the independence (rather than mean independence) between Z and (Y0; Y1) given

X, and because of the assumed independence between U and Z given X. Without loss of gener-

ality, they impose the normalization that �(z; x) = P (z; x) so that Pr[U � P (Z;X)jZ = z;X =

x] = P (z; x): Note that Z ?? (Y0; Y1)jX immediately implies that the average treatment e�ect

depends only on X, E(Y1 � Y0jX = x; Z = z) = E(Y1 � Y0jX = x), and that yk(x;z);j = ykx;j for

j = 0; 1, k = u; l.

Note that DY = DY1 is an observed random variable, and thus for any x 2 Supp(X), p 2 Px,

we identify the expectation of DY1 given X = x; P (Z;X) = p,

E

�
DY1

����X = x; P (Z;X) = p

�
= E(Y1jX = x; P (Z;X) = p;D = 1)p

= E(Y1jX = x; P (Z;X) = p; P (Z;X) � U)p

= E(Y1jX = x; p � U)p

=

Z p

0

E(Y0jX = x; U = u)dFU jX(ujx);

(1)

where the third equality follows from Z ?? (U; Y0; Y1) j X; and the fourth equality follows from

the law of iterated expectations. By similar reasoning,

E

�
(1�D)Y0

����X = x; P (Z;X) = p

�
=

Z 1

p

E(Y0jX = x; U = u)dFU jX(ujx): (2)

We can evaluate (1) at p = pux and evaluate (2) at p = plx. The distribution of (D; Y;X; Z) contains

no information on
R 1

pu
x

E(Y1jX = x; U = u)dFU jX(ujx) and
R pl

x

0
E(Y0jX = x; U = u)dFU jX(ujx),

10



but we can bound these quantities:

(1� pux)y
l
x;1 �

R 1

pu
x

E(Y1jX = x; U = u)dFU jX(ujx) � (1� pux)y
u
x;1

plxy
l
x;0 �

R pl
x

0
E(Y0jX = x; U = u)dFU jX(ujx) � plxy

u
x;0;

(3)

where we use the fact that Pr[U > puxjX = x] = 1 � pux, and Pr[U � plxjX = x] = plx. Since

Z ?? (Y0; Y1) j X; it follows that E(Y1�Y0jX = x; Z = z) = E(Y1�Y0jX = x). These inequalities

allow Heckman and Vytlacil to bound E(Y1 � Y0jX = x) as in the following way:

SL
x � E(Y1 � Y0jX = x) � Su

x ;

where

SL
x = pux

�
E(Y1jX = x; P (Z;X) = pux; D = 1)

�
+ (1� pux)y

l
x;1

�(1� plx)

�
E(Y0jX = x; P (Z;X) = plx; D = 0)

�
� plxy

u
x;0;

SU
x = pux

�
E(Y1jX = x; P (Z;X) = pux; D = 1)

�
+ (1� pux)y

u
x;1

�(1� plx)

�
E(Y0jX = x; P (Z;X) = plx; D = 0)

�
� plxy

l
x;0:

The width of the bounds is

SU
x � SL

x = (1� pux)(y
u
x;1 � ylx;1) + plx(y

u
x;0 � ylx;0):

11



Trivially, pux = 1, plx = 0 is necessary and suÆcient for SL
x = SU

x .
5 Note that it is both necessary

and suÆcient for P (z; x) to be a nontrivial function of z for these bounds to improve upon the

[BL
w; B

U
w ] bounds of Section 2. Evaluating the width of the bounds for a given x requires knowledge

only of plx; p
u
x, and ylx;j; y

u
x;j, j = 0; 1. The only additional information required to evaluate the

bounds for a given x is E(Y0jX = x; P (Z;X) = plx; D = 0) and E(Y1jX = x; P (Z;X) = pux; D =

1): The simpler structure for the Heckman-Vytlacil bounds compared to the Manski bounds is a

consequence of the selection model structure imposed by Heckman and Vytlacil.

5 Tight Bounds

We now show that the Heckman and Vytlacil bounds are tight given the assumption that the

outcomes are bounded (Assumption B) and the nonparametric selection model (Assumption S).

Theorem 1 Impose the nonparametric selection model, Assumption S, and impose that the out-

come variables are bounded, Assumption B. Then the Heckman-Vytlacil bounds on ATE are tight.

Proof.

The logic of the proof is as follows. We show that the Heckman-Vytlacil bounds are tight

by showing that for any point s 2 [SL
x ; S

U
x ], there exists a distribution with the following

properties: (i) the distribution is consistent with the observed data; (ii) the distribution is

consistent with all of the Heckman-Vytlacil assumptions; and (iii) E(Y1 � Y0jX) evaluated

5That pu
x
= 1, pl

x
= 0 is suÆcient for point identi�cation of the average treatment e�ects is shown by Heckman

(1990).
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under the distribution equals s. Thus, the point s must be contained in any bounds on

the average treatment e�ect. Since this holds for every s 2 [SL
x ; S

U
x ], we have that the

interval [SL
x ; S

U
x ] must be contained in any bounds on the the average treatment e�ect, and

thus [SL
x ; S

U
x ] are tight bounds on the average treatment e�ect. We prove the existence of

such a distribution by constructing one that conforms to conditions (i)-(iii) for any given

s 2 [SL
x ; S

U
x ].

For any random variable A, let F 0
A denote the \true" CDF of A, and let F 0

AjB(�jb) denote

the true CDF of A conditional on B = b. Let s denote any given element of [SL
x ; S

U
x ]. Note

that any element s 2 [SL
x ; S

U
x ] can be written as

s = pux

�
E(Y1jX = x; P (Z;X) = pux; D = 1)

�
+ (1� pux)q

1
x

� (1� plx)

�
E(Y0jX = x; P (Z;X) = plx; D = 0)

�
� plxq

0
x

for some q0x; q
1
x s.t. y

l
x � qjx � yux, j = 0; 1.

For (u; x) 2 Supp(U;X), de�ne

FY1jU;X(y1ju; x) =

8>>><
>>>:
F 0
Y1jU;X

(y1ju; x) if u � pux

1[y1 � q1x] if u > pux

FY0jU;X(y0ju; x) =

8>>><
>>>:
F 0
Y0jU;X

(y0ju; x) if u � plx

1[y0 � q0x] if u < plx:

13



De�ne

FY0;Y1;U;X;Z(y0; y1; u; x; z)

=

Z �Z u

0

FY0jU;X(y0jtu; tx)FY1jU;X(y1jtu; tx)dF
0
U jX(tujtx)

�

� 1[tx � x; tz � z]dF 0
X;Z(tx; tz):

Where F 0
X;Z and F 0

U jX
are the \true" distributions of (X;Z) and of U conditional on X.

Note that F is a proper CDF and that F is a distribution satisfying the conditions that

Y1, Y0 are bounded conditional on X, and satisfying the property that Z is independent of

(Y0; Y1; U) conditional on X.

By construction, FX;Z;U(x; z; u) = F 0
X;Z;U(x; z; u) so that FX;Z;D(x; z; d) = F 0

X;Z;D(x; z; d). In

addition, using the fact that FY1jU;X(y1ju; x) = F 0
Y1jU;X

(y1ju; x) for u � pux, we have

FY1jX;Z;D(y1jx; z; 1) =
1

P (z; x)

Z P (z;x)

0

F 0
Y1jU;X

(y1ju; x)dF
0
U jX(ujx) = F 0

Y1jX;Z;D
(y1jx; z; 1)

for (x; z) 2 Supp(X;ZjD = 1). By a parallel argument,

FY0jX;Z;D(y0jx; z; 0) = F 0
Y0jX;Z;D

(y0jx; z; 0)

14



for (x; z) 2 Supp(X;ZjD = 0). Combining these results, we have

FY;X;Z;D(y; x; z; d) = F 0
Y;X;Z;D(y; x; z; d);

where Y = DY1 + (1�D)Y0. Thus, F is observationally equivalent to the true F 0.

The expected value of Y1 � Y0 under F equals the given point s 2 [SL
x ; S

U
x ]:

E(Y1 � Y0jX) =

Z �Z
y1dFY1jU;X(y1ju; x)

�
dF 0

U jX(ujx)

�

Z �Z
y0dFY0jU;X(y0ju; x)

�
dF 0

U jX(ujx)

= Pr[U � pux]

Z �Z pu
x

0

y1dF
0
Y1jU;X

(y1ju; x)

�
dF 0

U jX(ujx) + Pr[U > pux]q
1
x

�Pr[U > plx]

Z �Z 1

pl
x

y0dF
0
Y0jU;X

(y0ju; x)

�
dF 0

U(u)� Pr[U � plx]q
0
x

= puxE(Y1jX;P (Z) = pux; D = 1) + (1� pux)q
1
x

�plxE(Y0jX;P (Z) = plx; D = 0)� plxq
0
x

= s:

Since the expected value of Y1�Y0 under F equals s, and since F satis�es all of the required

properties of the nonparametric selection model and is observationally equivalent to the true

F 0, we have that the point s must be contained in any bounds on the average treatment

e�ect. Since this holds for any point s 2 [SL
x ; S

U
x ], we have that every point in [SL

x ; S
U
x ] must

be contained in any bounds on the average treatment e�ect, and thus the bounds [SL
x ; S

U
x ]

are tight.
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6 Comparing the Bounds

We now compare the Heckman and Vytlacil bounds that exploit the nonparametric selection model

to the Manski bounds that exploit an instrumental variables assumption. The nonparametric

selection model of Heckman and Vytlacil implies the mean independence conditions of Manski,

so that Manksi's bounds hold under the Heckman and Vytlacil conditions. We now show that,

under the nonparametric selection model, the Manski bounds simplify to the simpler form of the

Heckman and Vytlacil bounds.

Theorem 2 Impose the nonparametric selection model, Assumption S, and impose that the out-

come variables are bounded, Assumption B. The Manski mean-independence bounds coincide with

the Heckman-Vytlacil bounds.

Proof.

We �rst show that the �rst term of the Heckman-Vytlacil upper bound on Y1 coincides

with the �rst term of the Manski upper bound on Y1:

inf
z2Zx

fP (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yu(x;z);1g

= puxE(Y1jD = 1; X = x; P (Z) = pux) + (1� pux)y
u
x;1:

Note that Z ?? (Y0; Y1) j X implies that yu(x;z);1 = yux;1. Fix any x 2 Supp(X) and �x any
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z 2 Zx.

�
puxE(Y1jD = 1; X = x; P (Z;X) = pux) + (1� pux)y

u
x;1

�

�

�
P (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yux;1

�

=

�Z pu
x

0

E(Y1jX = x; U = u)dFU jX(ujx) + (1� pux)y
u
x;1

�

�

�Z P (z;x)

0

E(Y1jX = x; U = u)dFU jX(ujx) + (1� P (z; x))yux;1

�

=

Z pu
x

P (z;x)

E(Y1jX = x; U = u)dFU jX(ujx)� (pux � P (z; x))yux;1

=

Z pu
x

P (z;x)

�
E(Y1jX = x; U = u)� yux;1

�
dFU jX(ujx)

� 0:

Since this inequality holds for any z 2 Zx, we have

puxE(Y1jD = 1; X = x; P (Z;X) = pux) + (1� pux)y
u
x;1

� inf
z2Zx

fP (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yux;1g

Using the fact that E(Y1jX = x; U = u)� yux;1 is bounded and the de�nition of pux, we have

that

puxE(Y1jD = 1; X = x; P (Z;X) = pux) + (1� pux)y
u
x;1

� inf
z2Zx

fP (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yux;1g
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and thus

puxE(Y1jD = 1; X = x; P (Z;X) = pux) + (1� pux)y
u
x;1

= inf
z2Zx

fP (z; x)E(Y1jD = 1; X = x; Z = z) + (1� P (z; x))yux;1g:

By the parallel argument, all other terms of the two sets of bounds coincide.

Thus, under the assumption of a nonparametric selection model, the Manski bounds simplify

to the same form as the Heckman and Vytlacil bounds. This result is related to Corollary 2

of Proposition 6 of Manski (1994), which shows the same simpli�cation of the bounds under the

strong assumption that the treatment choice is exogenous so that Y ?? DjX. Note that the Manski

bounds do not simplify if one does not impose additional restrictions. One can easily construct

examples where the Manski bounds do not simplify when the mean independence condition holds

but not the nonparametric selection model does not hold.

Somewhat suprisingly, the assumption of a nonparametric selection model does not narrow the

bounds compared to what is produced from the weaker mean-independence assumption. However,

imposing the nonparametric selection model substantially simpli�es the tight mean-independence

bounds. Note that this simpli�cation implies the following results for the tight mean-independence

bounds under the nonparametric selection model:

1. pux = 1, plx = 0 is necessary and suÆcient for point identi�cation.

2. It is both necessary and suÆcient for P (z; x) to be a nontrivial function of z for the bounds
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to improve upon the bounds that only impose that the outcome is bounded, [BL
w; B

U
w ].

3. Evaluating the width of the bounds for a given x requires knowledge only of plx; p
u
x, and

ylx;j; y
u
x;j, j = 0; 1.

4. Evaluating the bounds for a given x requires knowledge only of plx; p
u
x, y

l
x;j; y

u
x;j, j = 0; 1,

E(Y0jX = x; P (Z;X) = plx; D = 0) and E(Y1jX = x; P (Z;X) = pux; D = 1):

In each case, the result does not hold in general if the nonparametric selection model is not

imposed.

7 Applications to Other Bounds

Our results can be related to the analysis of Balke and Pearl (1997). For the case where Y and

Z are binary, Balke and Pearl consider bounds that impose the same statistical independence

condition as used by Imbens and Angrist (1994):

(Y1; Y0; D0; D1) ?? ZjX

whereDz denotes the counterfactual choice that would have been observed ifZ had been externally

set to z. Note that this independence condition strengthens the Manski assumptions not only by

imposing statistical independence of potential outcomes from Z, instead of mean-independence

from Z, but also by imposing independence of the counterfactual choices from Z. When Z and

Y are binary, Balke and Pearl show that the sharp bounds under their statistical independence
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condition are narrower in general than the Manski bounds, although their bounds and the Manski

bounds coincide for some distributions of the observed data. In the context of binary Z and

Y , Balke and Pearl discuss the Imbens and Angrist monotonicity condition: either D1 � D0

everywhere or D1 � D0 everywhere. They show that this assumption imposes constraints on

the observed data which imply that their bounds and the Manski mean-independence bounds

coincide.6

As demonstrated by Vytlacil (2000), imposing nonparametric selection model (Assumption S)

is equivalent to imposing the independence and monotonicity conditions of Imbens and Angrist.

The Heckman and Vytlacil analysis imposes the nonparametric selection model. Thus, for the

nonparametric selection model, we have from the analysis of Balke and Pearl that the tight bounds

when Y and Z are binary are the Manski mean-independence bounds. Thus, the analysis of this

paper can be seen as an extension of the Balke and Pearl analysis of the special case of binary Y

and Z under the independence and monotonicity conditions. They show that the tight bounds for

binary Y and Z under the independence and monotonicity conditions coincide with the Manski

mean-independence bounds. Our analysis shows that under the independence and monotonicity

conditions, the tight bounds for Y and Z with any support coincide with the Manski mean-

independence bounds while having a much simpler and more readily implemented form than the

Manski mean-independence bounds.

6Robins (1989) also constructs the same bounds under the same conditions for the case of Z and Y binary, but

he does not prove that the bounds are tight.
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