TECHNICAL WORKING PAPER SERIES

WHEN TO CONTROL FOR COVARIATES?
PANEL-ASYMPTOTIC RESULTS FOR
ESTIMATES OF TREATMENT EFFECTS

Joshua D. Angrist
Jinyong Hahn

Technical Working Paper 241
http://www.nber.org/papers/T0241

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
May 1999

We are grateful to Alberto Abadie, Gary Chamberlain, Guido Imbens, and seminar participants at Penn State
University and MIT econometrics luch for helpful suggestions and comments. Any opinions expressed are
those of the author and not those of the National Bureau of Economic Research.

© 1999 by Joshua D. Angrist and Jinyong Hahn. All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is
given to the source.



When to Control for Covariates? Panel-Asymptotic
Results for Estimates of Treatment Effects

Joshua D. Angrist and Jinyong Hahn

NBER Technical Working Paper No. 241

May 1999

JEL No. C14, C23,J31

ABSTRACT

The problem of how to control for covariates is endemic in evaluation research. Covariate-
matching provides an appealing control strategy, but with continuous or high-dimensional covariate
vectors, exact matching may be impossible or involve small cells. Matching observations that have
the same propensity score produces unbiased estimates of causal effects whenever covariate-
matching does, and also has an attractive dimension-reducing property. On the other hand,
conventional asymptotic arguments show that covariate-matching is (asymptotically) more efficient
that propensity score-matching. This is because the usual asymptotic sequence has cell sizes
growing to infinity, with no benefit from reducing the number of cells. Here, we approximate the
large sample behavior of difference matching estimators using a panel-style asymptotic sequence
with fixed cell sizes and the number of cells increasing to infinity. Exact calculations in simple
examples and Monte Carlo evidence suggests this generates a substantially improved approximation
to actual finite-sample distributions. Under this sequence, propensity-score-matching is most likely
to dominate exact matching when cell sizes are small, the explanatory power of the covariates
conditional on the propensity score is low, and/or the probability of treatment is close to zero or one.
Finally, we introduce a random-effects type combination estimator that provides finite-sample

efficiency gains over both covariate-matching and propensity-score-matching.
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1 Introduction

Evaluation research typically begins with treatment-control comparisons. For example, es-
timates of the effect of training programs on earnings compare the earnings of those who
receive training with a candidate control sample of untrained people. Because trainees are
not chosen randomly, candidate control samples may not provide a very accurate picture
of what would have happened to the trainees had they not been trained. This motivates
attempts to reduce and perhaps even eliminate bias by controlling for covariates. Examples
of training program evaluations in this spirit include Ashenfelter and Card (1985), Card and
Sullivan (1988), Dehejia and Wahba (1998), and Heckman, Ichimura, and Todd (1997), all of
which estimate the effects of training programs on earnings or employment after condition-
ing on an array of personal characteristics, including earnings and/or employment histories.
Similarly, Angrist (1998) estimates the effect of voluntary service on the earnings of mili-
tary applicants by conditioning on the personal characteristics used by military recruiters to
select soldiers.

A problem that often arises in studies of this type is how to control for continuously
distributed or high-dimensional covariates. In many training evaluations, for example, the
sample sizes are small, there are many covariates, and some of the covariates, such as past
earnings, are continuous. This leads to small or missing covariate-cells. A number of varia-
tions on exact covariate-matching schemes have been developed to deal with situations like
this. Typically these involve approximate matching or non-parametric smoothing of some
kind.! A practical problem with strategies of this type is that even though different esti-
mators may have very different properties, the existing theory provides little in the way of
specific guidelines as to how to choose between them.

An alternative strategy to control for covariates begins with Rosenbaum and Rubin’s
(1983) observation that bias from covariates can be eliminated by controlling for a scalar-
valued function of the covariates, the propensity score. For a formal statement of this
result, denote the covariate vector for person ¢ by X; treatment status by D;, and define the
conditional probability of treatment, or propensity score, by p (X;) = Pr[D; = 1| X;]. Let
Yy denote the potential or counter-factual earnings of a trainee if he or she had not been

trained, and let Y7; denote potential earnings as a trainee. The assumption that motivates

1See, e.g., Cochran (1965), Rubin (1973, 1979), or Rosenbaum (1995, Chapter 9), for discussions of caliper
and nearest-neighbor matching, and Deaton and Paxson (1998) or Heckman, Ichimura and Todd (1997) for

examples of non-parametric matching.



exact matching is that conditioning on X; eliminates selection bias, ¢.e.,

An implication of Rosenbaum and Rubin’s propensity-score theorem is that if (1) is true,

then it must also be true that conditioning on p (X;) eliminates selection bias,? i.e.,
ElYy p(Xi),Di=1] = E[Yy| p(Xi),Di =0]; t=0,1. (2)
This leads to an estimator of average treatment effects that has the following form:

EYy - Yyl =E{E[Yyl Xi,D;=1]-E[Yy| Xi,D; =0]}
=E{E[Yu| p(Xy),D; =1] - E Yy p(X;),D; =0]}. (3)

The first line of expression (3) is the population analog of an exact-matching estimator,
while the second line matches only on the propensity score. The value of propensity-score
matching is in the dimension reduction generated by regions where p (X;) is constant while
E[Yy] Xi] or E[Yy| Xi] are not constant. In a randomized trial, for example, p (X;) is
constant, so there is no need to control for covariates to eliminate bias.

In practice, propensity-score matching is often based on an estimated propensity score
as well as prior restrictions, such as a constant score or the elimination of certain covariates
from the set of arguments of p (X;). Ultimately, of course, the use of an estimated propensity
score in matching raises the same modeling issues as covariate-matching. However, applied
researchers seem willing to make stronger assumptions about the propensity score than about
the relationship between covariates and outcomes. A number of empirical examples using
the propensity score suggest that this approach works reasonably well (see, e.g., Rosenbaum
and Rubin, 1984 and 1985a; Todd, 1995; Dehejia and Wahba, 1997; Imbens, Rubin, and
Sacerdote, 1997; and Heckman, Ichimura, and Todd, 1998).

This evidence of practical utility notwithstanding, from a theoretical point of view,
propensity-score-based estimators present some puzzles. Hahn (1998, Theorems 1 and 2)
shows that for estimates of average treatment effects, the propensity score is ancillary, in the
sense that knowledge of the propensity score does not lower the semiparametric efficiency
bound. Moreover, covariate-matching is asymptotically efficient, ¢.e., attains the semipara-
metric efficiency bound, while propensity-score matching does not. Finally, these theoretical
results extend to the case where exact matching is not feasible, as with continuously dis-

tributed covariates, and the relevant conditional mean functions are instead approximated

2A premise of the propensity-score theorem and our discussion below is that (Y1, Ys;) is independent of

D; given X;, and not just mean independent.



using some kind of nonparametric regression (Hahn, 1998, Theorem 6). In short, asymp-
totic arguments would appear to offer no justification for anything other than full control
for covariates.

The purpose of this paper is to develop formal theory and present some examples to sub-
stantiate the intuition that, because cell sizes may be small and some cells may be empty,
there is a cost to covariate-matching, even if the covariates are discrete and exact matching
is feasible. In some plausible scenarios, estimators that control only for the propensity score
will in fact be more efficient (in finite samples) than exact-matching estimators, even though
conventional asymptotic theory says otherwise. We make this point by first tabulating the
finite-sample sampling variance of the covariate-matching and propensity-score-matching es-
timators for an analytically tractable special case. These results are also explained by analogy
to well-known finite sample results for random effects panel-data models with non-stochastic
regressors. We then present more general results based on an alternative asymptotic ap-
proximation where cell sizes are fixed but the number of cells becomes infinitely large. The
asymptotic sequence used here is similar to sequences used by Bekker (1994), Bekker and
van der Ploeg (1996) and Angrist and Krueger (1995) to analyze the finite-sample behav-
ior of instrumental-variables estimators. The general results from this analysis show that
propensity-score estimators can be more efficient than matching estimators when cell-sizes
are small, the explanatory value of the covariates is low conditional on propensity score,

1
5

The paper is organized as follows. In the next section, we outline the basic setup

and/or the probability of treatment is far from

and compare the finite-sample behavior of two types of matching estimators in a simple
model. Section 3 develops the panel-data version of the treatment effects problem, and
an alternative asymptotic sequence based on increasing the number of cells of fixed size
(“panel-asymptotics”). This section also discusses the possibility of producing a more ef-
ficient random-effects type estimator from a linear combination of covariate-matching and
propensity-score-matching estimators.  Section 4 discusses the likely generality of these
results and presents some Monte Carlo evidence, which suggests that the new asymptotic se-
quence does indeed provide an accurate description of the relative finite-sample performance
of matching and propensity-score estimators. Finally, Section 5 concludes and offers some

directions for further work. All technical derivations are presented in an appendix.

2 Notation and Motivation

Throughout this paper, we assume that



Assumption 1 Treatment is ignorable (independent of potential outcomes) given covari-
ates: (Yo, Y1) LD; | X,.

We further assume that

Assumption 2 X; is multinomial, and takes K possible values, say =D 2B with
probability +. We call 1(X; =z®) the k'™ cell indicator.

This is a modelling device that allows us to change the number of cells. It is not really
restrictive since z*) can be anything. The multinomial assumption allows for a discrete
approximation to any distribution for large K.

We also assume that
Assumption 3 The propensity score Pr[D; = 1| X;] is known to be fixed at =.

In models with discrete covariates, the difference between covariate-matching and propensity-
score matching estimators arises from how the covariates are handled when the propensity
score is constant. A fixed propensity score allows us to capture this idea very simply. Since
observations are assumed to be independent across cells, the question of overall efficiency
(i.e., in a general setting with variable propensity score) is also addressed by looking at a
single score-value. An analysis with known propensity score may provide an overly optimistic
view of the relative performance of propensity-score-matching over covariate-matching, but
since Hahn (1998) shows that knowledge of the propensity score does not affect the efficiency
bound for average treatment effects, this seems to be a good starting point. Note also that
estimated-propensity-score-matching is obviously equal to covariate-matching almost surely
when X; is discrete. This suggests that the notion of restrictions on the propensity score
lies at the heart of the propensity-score/exact-matching distinction.

The two most commonly discussed parameters in evaluation studies are the effect of
treatment on the treated E [Yy; — Yy;| D; = 1], and the average treatment effect E [Y3; — Yp,].
Since Pr[D; = 1| X;] = 7 in our setup, E [Yy; — Yu:| D; = 1] = E [Y1; — Yp). This equivalence
allows us to sidestep the fact that knowledge of the propensity score can reduce the asymp-
totic variance bound for E [Y3; — Yoi| D; = 1], though this reduction does not come through
matching on the propensity score. The propensity score is useful in this context because it
weights covariate-specific comparisons underlying the effect-on-the-treated parameter.

In most of the paper, we model cell size as fixed, so the sampling framework stratifies on
X

3See, e.g., Chamberlain (1987) for a similar modeling strategy.
4While knowledge of the propensity score does reduce the semiparametric efficiency bound for the effect of

treatment on the treated, the efficient estimator for this parameter still involves covariate-matching and not

4



Assumption 4 Each cell size is equal to M. We adopt the convention that the first n;

individuals are treated in each cell, so that n;; ~ Binomial (M, ).

Stratified sampling is empirically relevant for some studies, but we adopt this assumption
for technical reasons, since it simplifies the arguments and allows us to focus on the random-
ness in treatment status and outcomes within covariate-cells. It should also be noted that
the traditional justification for the selection-on-observables assumption, (Yy;, Y1) LD; | X;,
makes X; ancillary, so little would seem to be lost from stratification in this setting.

The following notation is useful:

Definition 1 Let yor; and yix; denote potential outcomes under control and treatment for
the it individual in the k™ cell. Let yor and yyi, denote the average potential outcomes under
control and under treatment in the k™ cell. Also, let o3, and o, denote the conditional

variance of Yor: and Yy in the k™ cell. Finally, let oy, = yor and Br = yix — Yok-

We now define the two matching estimators considered in this paper. The covariate-

matching estimator, b, is

a ik M
1
b. = 1{(1<ny <M-1) - Al
ZII::] 11<ny, <M-1) Z ( 1k (nlk z:ylk E Yok: )

k=1 i=nig+1

Because the propensity score is constant, matching on the propensity score is equivalent to

ignoring covariates. The propensity-score-matching estimator, b,, is therefore

1 K 1 Nik
by = LI <np)n | =— ) Yk
’ Zf:l 1(1 < ny)mak ; [ Nk ;

K
1
o 1 (nlk < A{ — 1 nOk ( Yoki .
Zi{ﬂ 1(ny <M —1)ng ; [ _ g};ﬂ

There is some probability that matching on covariates and/or the propensity score cannot

be implemented. For example, if all cells consist of only treated individuals, then matching
on either covariates or the propensity score is infeasible. Note that both estimators are

unbiased.?

matching on the propensity score (Hahn, Proposition 7). Heckman, Ichimura, and Todd’s (1998) result that
the propensity score does not necessarily lead to efficiency gains for estimates of the effect on the treated
ignores the gain resulting from the fact that the propensity score is also the weighting function used to

average covariate-specific contrasts.
5In practice, the question of (higher-order) bias is likely to arise in models with continuous covariates,

where propensity-score-matching is based on an estimated propensity score, and covariate-matching is based
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A simple example can be used to illustrate important differences in the finite sample

behavior of b. and b,. Assume that

1. K=2

2. The treatment effect is constant and equal to By, i¢.e., Yori = Qi + €x, and Yy =
Bo + ag + €.

3. E[¢}.] = 1. (a normalization)

In order to understand the finite sample behavior of the two estimators, we consider
three cases. In Case 1, both cells contain treated and control observations. In Case 2, one
of the two cells consists of treated or controls only. In Case 3, each cell consists of treated
or controls only, so b, cannot be computed. We therefore focus on variance comparisons
conditional on the event that b, exists. The efficiency of b, relative to b. is defined to be
\/Var (b / \/Var (by), where Var (b;) and Var (b,) denote the conditional variance of b, and

b, given the event that both are computable. Without loss of generality, we define

2 2
1 1
Var () = 3 E ar — @), where @= 5 E . (4)

Note that the R? in the theoretical regression of the outcomes on covariates (cell indicators)
can be written Var (ay)/ (Var (ax) + 1). We consider the relative efficiency of b, for various
(m, M, R*) combinations. Tables 1 and 2 report the relative efficiency of b, measured by the
ratio /Var (b.) / v/ Var (b,) for 7 = .1 and .5. This is an exact finite sample calculation, the
details of which are discussed in Appendix A. The tables show that the relative efficiency

of b, increases as R? falls, M falls, and 7 falls, and that b, is actually more efficient than b.
for some (w, M, R?) combinations. These exact calculations suggest that conventional (large
cell) asymptotic approximations may provide a poor guide to the relative precision of these
estimators in some applications.

We also ask whether the relative efficiency of b, for some (m, M, R?) combinations is
solely a consequence of the fact that b, typically uses more observations than b.. Consider

the relative efficiency in Case 1, where both estimators use the same number of observations.

on non-parametric estimates of the conditional mean function of outcomes given covariates. Our panel-
asymptotic framework is limited to discrete covariates and situations where the researcher is willing to
assume that the propensity score has known “flat spots”. An analysis of other cases raises statistical and
modeling issues beyond the scope of this paper. See Heckman, Ichimura, and Todd (1998) for an analysis

with continuous X; and estimated p (X;) under (first-order) conventional asymptotics.



Any difference in variance in this case can therefore be attributed to the efficiency with which
each estimator processes information. When M = 2, b, = b, in Case 1, so obviously there is

no efficiency difference. The relative variance in Case 1 when M = 3 is

27
\/(3271’ — 3272) 1?;2 + 27 — 67 + 672

When 7 = .5, this equals

1
5.1962, | | —m——— |
882, +25.5

which shows b, to be moderately more efficient for R? < .15789. Thus, the relative finite-
sample efficiency of b, arises not only because b, uses more observations; the potential
benefit from propensity-score-matching apparently comes partly from the fact that cell-

specific contrasts can be imprecise.

3 Panel Characterization

We now introduce a panel characterization of the evaluation model in the previous section.
The panel analogy enables us to draw on the econometric literature dealing with problems
of this type. See, for example, Wallace and Hussain (1969), Maddala (1971), Chamberlain
and Griliches (1975), Mundlak (1978), Hausman and Taylor (1981), and Chamberlain (1984).
We argue that covariate-matching and propensity-score-matching estimators are within-type
and pooled estimators. Standard results for random-effects panel models with nonstochastic
regressors suggest that neither within-estimators nor pooled estimators are efficient, and that

their precision cannot be ranked unambiguously.

3.1 Random Coefficient Model

The panel equivalent of the evaluation problem looks like this. Let Dy, denote a binary

treatment indicator, and write the observed yi; as

Yri = Driyiri + (1 — Dis) Yori = Yoki + (Yiki — Yoki) D
= a, + BeDri + {(Wori — k) + Y1k — Yori — Br) Dis} -

With e;; defined as the residual in the above equation, we can write

Yki = Qg + BrDri + €, k=1,...,Kji=1...,M (5)



where the parameter of interest is equal to £ [§;]. This is the random-coefficient panel model
considered by Swamy (1970), and Chamberlain (1992).

Consider first the simple model where 5 is fixed at 8y and &; is homoscedastic with vari-
ance o2. Observe that oy is independent of Dy; because of Assumption 1, so Var (| Dy;) =
Var (o) = ¢2. Conditional on the realization of Dy, and assuming that both b, and b,

can be computed, it is easy to see that, under these assumptions, (5) is the traditional

random-effects panel model with nonstochastic regressors
Yki = . + BoDki + g (6)

The efficient unbiased estimator for this model is well-known to be a weighted average of

between and within estimators, or equivalently, within and pooled estimators.® Recall that

K
=35,
k:

where Ek is the OLS estimator of B for the k'® cell. Because b, is the sample average of

estimators using only within-cell variation, b, is also a within-type estimator, though it is

not equal to the traditional within estimator, which can be written in this case as

K
Z% 1—7Tk Zﬂ'kl—ﬂ'k

where 7, = % Zgl Dy;." Note also that b, is the OLS coefficient from a regression of y
on D, and is therefore the traditional pooled estimator that ignores group structure. This
suggests that b, and b, cannot be ranked unambiguously, since neither within-type nor pooled
estimators are efficient for random-effects panel models.

To substantiate this conjecture, we calculate the finite sample variances of b. and b,
treating Dy; as nonstochastic, a; as random, assuming constant treatment effects and ho-
moscedastic errors, and conditional on b, and b, both being computable. In this setting, it

can be shown that

Var(b)—aQ-izK:(-L—i-——L—)
¢ ¢ K? =1 Nk M—nlk ’

6See, e.g., Maddala (1971).
"See, e.g., Angrist (1998).




K M 2
N1k — Mk
Var (b,) = o2 - —
) =2 (ZkK yne KM =300 nuc)

1 1
+o?- + .
: (lec(:l ne KM - Zli{:l nlk)

For example, if K =2, M =3, ny; = 1, and ny2 = 2, we have

Var (b,) = 202 and Var (b,) = gai + 20'2.

g:? £

Hence, the difference between them is

Var (b.) — Var (b,) = 1—12052 — gai,

which is of ambiguous sign.®

How can this ambiguity be reconciled with Hahn’s (1998) result that b, is asymptotically
more efficient than b,?7 Traditional asymptotic arguments fix the data generating process,
and let the number of observations grow to infinity. In our setting, this asymptotic sequence
would have K fixed while M — oo, and the between-cell variation would become noninforma-
tive as the sample size increases. In fact, it is well-known that the random effects estimator
converges to the fixed effects (matching) estimator under this asymptotic sequence, so there
is no contradiction. On the other hand, for small M, a panel-type asymptotic sequence with
M fixed while K — oc may be more appropriate. We turn to this question in the next

section.

3.2 Panel Asymptotics

Rosenbaum and Rubin’s principal motivation for propensity score matching seems to have
been the possibility that some cells have to be dropped in procedures based on covariate-
matching.® The two-cell example in Section 2 shows that propensity-score matching does
more than increasing the number of observations used in estimation, however. To provide a
general statement of this result, we use an alternative asymptotic approximation where cell
sizes are fixed and the number of cells grows to infinity. As noted above, this corresponds

to the usual large-cross-section/small-time-series asymptotic approximation for panel data.

8Here, the oy are assumed to be random variables, whereas the oy, were treated as fixed constants in the

previous section.

9See, e.g., Rosenbaum and Rubin (1984, p. 516).



The analog of the cross-section dimension in our case is K, and the analog of the time-series
dimension is M.

As a regularity condition, we assume that

Assumption 5 The sequence {(yox1, Y1k, - -  Yokrr, Yixnmr) kK = 1,2,... } is i.i.d. Further-

more, for given k, (Y1x1, Yok1)s - - > (Y1kM, Yokar) are i.4.d.
Obviously, Assumption 5 implies that, in the panel characterization, (5),
(ak:ﬁky Dkla s )Dkkf7€k17 s 7€k]W)

is 7.i.d. Note that this means we approximate sampling distributions without assuming
any prior information on ag, and F;. This is consistent with the nonparametric spirit of
matching procedures. As before, our objective is to estimate the average treatment effect,

08 = E [y1xi — Yor:)- The main theoretical result is given below:

Theorem 1 Under Assumptions 1 - 5, we have

VE (be = 8) = N (0,02), VK (b,—8) = N (0,w),

where
W2 = gm, M)E[o}]+9(1 -7, M) E[o] 4 Var (y1x — Yox)
e = 2 , M
(1——7rM—(1—7r)M> 1—7M—(1—m)
and
WP = B [o}] + ————E [o%] + Var (yu — yor)
Mr M1 —m)
+ i Var - + T
M VR 1 Y0k |
where

Proof. See Appendix B. =
The implications of this result for the relative sampling variance of b, and b, can be
summarized using ,/w2/w2. This expression is complicated but can be tabulated, or sim-

plified for special cases. Tables 3 and 4 report the relative efficiency of b, for two values

10



of ™ assuming a constant treatment effect and homoscedastic errors. As before, we define
the theoretical R? as 02/ (02 + o%). Note that b, is predicted to be more efficient if and
only if {/w?/w? > 1. As before, these tables show that the relative efficiency of b, typically
increases as R? falls, M falls, and  falls, and that b, is actually more efficient than b, for
some (m, M, R?) combinations.

In Section 4, we turn to the question of whether Theorem 1 captures the actual finite

sample behavior of b, and b, in samples with random cell sizes.

3.3 Comparison with Conventional Asymptotics

How do panel-asymptotic results differ from conventional asymptotic results, where the num-
ber of cells is fixed and cell sizes are random and increasing? Let N and M™ denote total
sample size and average cell size in a random sample. Using an N — oo conventional asymp-
totic sequence, where M* grows to oo as a consequence while K is fixed, we can show??

that

\/N(bc—ﬁ)—ﬂ\/@,

E [C’i?k] 4 E [C’Ok]

11— -+ Var (ylk — yOk)> and

Elo? E
VN (b, - 8) = N (01 [zlk] 1 [_UO;] + Var (yix — yor) + Var ( ylk + y[)k)) .
So conventional asymptotics approximates finite sample variances as:
E 2
CVar (b,) = N < [7(:““] . [jOk] + Var (y1x — yok)> , (7)

and

+ Ok] + Var (y1x — Yor)

T 1-—
+ Var ( yok)> . (8)

The last term in CVar(b,) can be interpreted as the penalty for failure to control for covariates

CVar (b,) = <E o] | Elo

2|~

ylk +

under conventional asymptotics. Note that, with constant treatment effects, this term equals
zero if the between cell variance is zero.

Panel-asymptotics approximates finite sample variances as:

1 MQ(WM)E[U%IC]+M9(1—7T,M)E[0(2)k]+ M Var (yix — Yox) (9)
N oM MY 1—7rM—(1—7r)M ’
l—m7 (1—m)

10See Hahn (1998).

PVar (b,) =

11



and

1
(wE [72] + —E o] + M Var (yi — yox)

1-—
+ Var ( y0k>> , (10)

where we used the fact that N = KM in the panel-asymptotic sequence. The penalty term

ylk +

in CVar(b,) remains in PVar(b,), but now the terms

E [0} and E (o)
T l—-m
in CVar(b.) become
Mg (m, M) E [0%,] and Mgl —m M)E|[od,]

(21— ) (1=~ (=)’

under panel-asymptotics in (9). This is because the first two terms partly reflect the fact
that some cells may have to be dropped in the computation of b.. Note also that the panel-

asymptotic approximation inflates the third term in CVar(b.) and CVar(b,), which is

Var (ylk - ka)

in both expressions. This term becomes
M Var (y1x — yor)
1—aM—(1-—m)"

. . . M . . . .

in (9) and (10). The inflation factor, o (9), is larger than M in (10). This

partly reflects the fact that the conventional asymptotic approximation is more optimistic

and M Var (y1x — Yox)

about the precision with which realized cell-differences are actually estimated. Note also
that the inflation factor is larger for 7 close to zero or one.

To summarize the difference between the two approximations, we write

(PVar (b.) — PVar (b,)) — (CVar (b;) — CVar (b,))

:é Mg (m, M) MZ—% E'[U%k}
(1—7rM—(1—7r)>
1 Mg(l—m,M) 1
= ——

(1—7rM (1—7) )
1 M
— ~ MV —
+N<1_7rM 1-7) A) ar (yix — Yok)



The first two terms on the right are nonnegative.!! Note that the third term is zero if and
only if Var (y1x — yor) = 0. We therefore expect the finite sample advantage of b, to be larger

with heterogeneous treatment effects.

3.4 Linear Combinations of b, and b,

Since neither b, nor b, is efficient, we now ask whether we can construct a treatment-effects
estimator that is more efficient than both. In this case, a more efficient estimator can be

obtained from the minimum variance linear combination of b. and b,,:12
b* =&b.+ (1 —-&)b,.

The asymptotic variance of b* is minimized by choosing

_ Var, (b,) — Cov, (b, by)
~ Var, (be) — 2 Cov, (b, by) + Var, (by)’

£

where Var, and Cov, denote asymptotic variance and asymptotic covariance under the

asymptotic sequence in Theorem 1. The variance terms are available from Theorem 1.

1Tt can be shown that
Mg (m, M) 1

2 = _ M
(1—7rM~(1—7r)M> s ™

Let Z have the same distribution as nyx ~ Binomial (M, ) conditional on the event that 1 <ny < M — 1.
We then have

E[Z]= iy ()7 (1 - oMk __ Mm— MM
1—aM - (1-m" 1-aM - (1-m)™
and
M- M-k
E [l] _ k=11 (Jivcl)ﬂk (1—m) 3 _ g(m, M)
z 1=mM—(1-m)" 1M (1)

By Jensen’s Inequality, this means

g(m, M) :E[;] 11— (-

> =
1—aM—(1-mM =~ E[Z] Mr—MnM 7
from which the desired relationship follows.
12{Jplike in the traditional random effects model, we cannot claim that the resulting estimator is actually
optimal since we have not derived the semiparametric efficiency bound for the sort of panel model considered
here. Chamberlain (1992, Section 4) presents a bound for such a model, but his bound does not impose

independence of g4, =1,... , M.
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The covariance term is

1
;M‘E (0%

1
Ty
1-— ij—l 1— (1 . 7_(_)1”—1
+ Var (y1x) +
1"7TM—~(]_—71')M (lk) 1——71'M_(1_71—)
-2 _+_7TAI—1 + (1 _ 71_)]\1—1
+ 1—7M—(1- 7r)M Cov (y1k, Yox) -

E [crgk]

7 var (Yox)

See Appendix B for the derivation of this formula. Note that as in Theorem 1, b* was
computed for M fixed.!3
To develop intuition for the weighting formula, suppose as before that (i) the treatment

effect is constant and equal to Gy, i.e., Yori = ar + €ki, and y1p; = Fo + o + €xg; (1) &4 has
2

variance equal to ¢2; and (iii) ox has mean p,, and variance o2. After some algebra, we

obtain following simplification:

1
Vara (bp) — COVQ (bc, bp> = mai,
and
Var, (b.) — 2 Cov, (b, b,) + Var, (b,)
_ g(ﬂ-aM) + g(l_ﬂ-’M) - 1 _ 1 0_2
(1—7TM“—(1—7T)1M)2 (1_7FA,{_(1_7T)A1>2 aM ]\4(1—71') &
1 2
+ Mm (1 - 71')0“'
Therefore, the optimal weight is equal to
12
5* - 71'(1—71')06! '
Mg(m,M) Mg(1—m,M) 1 1 2 1 2
((1—7rM—(1-7r)M) + (1—7rM—(1—7r)M)2 m (l—ﬂ)> T ¥ -

Without loss of generality, we may normalize o2 = 1. Note that (i) &* — 1 as M — oo
(be = b*) ; and (ii) £&* — 0 as 02 — 0 (b, = b*). In other words, the linear-combination
estimator converges to the covariate-matching estimator as the cell size gets large and/or

the between-cell variance gets small. On the other hand, the linear-combination estimator

13In the next section we show that Theorem 1 provides a reasonable approximation to finite-sample
behavior even when cell sizes are random. But we leave the development of an efficient estimator for this

case for future work.
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converges to the propensity-score-matching estimator as the random effects variance gets
small. This is analogous to the behavior of the random effects GLS estimator for traditional
panel models with constant treatment effects: GLS converges to the within-estimator as the
time series dimension gets large and/or the variance of the random individual effects gets

small, while convergence to the pooled estimator occurs in the opposite case.!*

4 Validity of the Approximation

The panel-asymptotic results in Theorem 1 were derived under stratified sampling, for co-
variate cells of fixed size. Much of the discussion also relied on the simplifying assumption
of constant treatment effects. In this section, we compare the finite-sample behavior pre-
dicted by Theorem 1 with actual finite sample behavior under random sampling. We begin
with constant treatment effects, because this assumption allows an analytic derivation of
the finite-sample variance conditional on cell sizes. We then do a Monte Carlo integration
to allow for random cell sizes. Finally, we report the results from Monte Carlo experiments
with heterogeneous treatment effects.

Tables 5 and 6 report actual finite sample behavior under random sampling with constant
treatment effects. We again consider a model where yor; = ag + €, and yix; = 8o + Qy, + €,y
with Var (gx;) = 02 and Var (o)) = o2. We assume that there are K cells, with cell sizes

equal to My, ..., Mg. Let M* denote the average cell size. Note that

K
ZMkl (1 S ik S j\{[k - 1)

= 1 ng 1 My
(-’* iZ:tﬁci - -——————*Mk e Z 5ki> )

1
ZkK:I Mkl (1 S ik S Alk — 1)

bc:/B0+

Nk 3 Rl
with conditional variance given (M, ..., Mg, n11,... ,n1k) equal to
K 2
M, 1 1
2 k
i T 11 <nyp < M—1). (11
5; (ZkK=1Mk1(1§n1kSMk—1)> (nlk Mk_n1k> ( 1 ). (11)

4 Swamy (1970) derives the maximum likelihood estimator of 3 assuming normality of (ax, Bk, €x:), known
error variances, and non-stochastic regressors (Dy;). This estimator is efficient under panel asymptotics if
the error variances are common across cells. Except under constant treatment effects, the Swamy estimator

does not appear to simplify to a linear combination of b, and b..
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Also, note that

M — nyg
b, = Bo + Qg
Z (Zk e S (M - nlk))
M,

1
Zk ZZEM Ek 1 (M — nag) Z Z o

1 ik k=1 i=1 k=1 i=nix+1

with conditional variance equal to

Mk—nlk ? 9 1 1
o, bol . (12
ZKZHW SE (M k—nm) " (an SF (M k—nm) (12

We set K = 100, and assume that (Mi,... , Mg) are generated by a multinomial distri-

bution with equal weights.!> Results using 300 replications of (M,..., Mg, ni1,... 1K)
to integrate (11) and (12) are reported in Tables 5 and 6. As before, we observe that the

Var(b.)

relative efficiency of b,, measured by %’ typically increases as the R? falls, M* falls,

and 7 falls, and that b, is actually more efficient than b, for some (7, M*, R?) combinations.
The relative efficiency calculated allowing for random cell sizes is remarkably close to the
ratio in Tables 3 and 4, calculated using our panel-asymptotic sequence.

We also conducted a small Monte Carlo study of a model with heterogeneous treatment
effects. Figures 1 and 2 compare Monte Carlo sampling distributions under random sampling
with heterogeneous treatment effects to the corresponding panel-asymptotic approximation.
Again, we consider a model where yor; = g +£4;, and yix; = B+ +Exi, With Var (e;) = o2
and Var (o) = 02. Both figures set K = 30, the covariate R? = .1, and the propensity score
=.1. We used 500 Monte Carlo replications. Figure 1 shows results from a model where
B, ~ Binomial ( , 5) independent of oy and ;. Figure 2 shows results from a model where
ay ~ N (a,02) and By = 1 (o < ). In this case, treatment effects are negatively correlated
with untreated outcomes. The panel-asymptotic approximation predicts the Monte Carlo

efficiency ratio reasonably well in both figures.

5 Conclusions and Directions for Future Work

Asymptotic theory provides a powerful and flexible tool for the analysis of the theoretical
properties of alternative estimators, but empirical researchers and econometricians have be-
come increasingly aware that conventional asymptotic results can be misleading. Recent

EK

15We fix the total sample size, then break the sample up into N subsamples with expected size —EI-{'—Mi

This is equivalent to random sampling from a multinomial distribution where Pr (Xi = :r(k)) = p for all 5.
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examples of analyses using alternative approximations include the Chamberlain and Imbens
(1996) and Staiger and Stock (1997) discussions of the bias in two-stage least squares, and
the analyses of instrumental variables and grouping estimators by Bekker (1994) and Bekker
and van der Ploeg (1996).

In this paper, we show that conventional asymptotic arguments may also be misleading
for efficiency comparisons. The particular problem of concern here is whether to control
for covariates in the estimation of treatment effects. Not surprisingly, in many cases that
seem likely to be of practical importance, matching on the propensity score, which suffices
to eliminate bias, is also more efficient than full covariate-matching. The results presented
here, based on an analogy with random-effects models for panel data, provide some general
guidelines for when this is most likely to be true. In future work, we hope to make these
guidelines more specific, and to develop sharper results on an efficiency bound for random-

effects estimators of the type introduced here.
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Appendix

A Finite Sample Variance in 2-Cell Example

This calculation begins with the bias and variance of the two estimators, conditional on ny;
and npo, for cases where both estimators are defined. b, is conditionally biased, though b, is

not.

Al b,

Case 1 In this case, both cells contain treated and control observations. The conditional

. . . . . . 1 1 1 L 1
distribution of b, given (n,1, n12) has bias 0 and variance 3 (nu +iman Tan T i )

Therefore, the conditional mean squared error is

( ) 1 1 + 1 . 1 n 1
w, (. np)=-| —+ ——m— F — F ——— ).
PR 4\nn1 M-nn nip M-—np

Case 2 In this case, either one of the two cells consists of treated or controls only. If the
first cell is discarded but the second one is not, the conditional distribution of b, is such

that the bias is 0 and the variance is equal to 7%12 + Mfﬂﬂ. Therefore, the conditional

mean squared error is

( ) 1 n 1
wsy (T = — 4+ —.
22 ni2 M —np,

Similar comments apply when the second cell is discarded.

Case 3 In this case, each cell consists of treated or controls only. Since this happens

in each cell with probability Pr(niyz =0or M) = 7 + (1 — 7)", with probability

2
(7rM +(1— 7T)M) , the covariate-matching estimator is undefined.
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Now, integrate over the distribution of n;;, and n; using the fact that they are indepen-

dent Binomial (M, 7) random variables:

M-1 M-1
M fom (M o
E E wy (111, M12) < )ﬂ'n“ (1- W)M i < >7rmz (1- W)M "
n11 ni2

ni1=1ni2=1
M M = M n M—ni,
(e =mM) Y walma) ()1 )
2

n
niz=1 1

+ (7TM +(1-— ’/T)M) Mz_:l ws (n11) <::[1> (1 — )M

nyp=1

2
Dividing the above expression by 1 — (7rM + (1 - 7T)M> , we obtain the variance of interest.

A2 b,

We consider the finite sample distribution of b, for cases where b, can be computed.!®

Case 1 In this case,

2 nk 1 2 M

1
by = ——— (ap + B+ ew) — (o + &rs)
. ZizlnlkZZ QM_Zizlnlk;iZ e+ e

k=1 i=1 =nip+1

2M
(n114+n12)(2M —(n11+n12))°

I\/I(n“—-nlg)
(n114+m12)(2M —n11—n12)
Therefore, the conditional mean squared error is given by

( M (n1; — nig) (01— a )>2 4 2M
(n11 + ni2) M —npq — n12) ! 2 (n11 +n12) QM — (n + ni2))

(o — ap), and variance

with conditional bias

Case 2 (i) Consider the case where the first cell consists of all treated, but the second cell

is not dropped by b.. We then have

M ni2 M
1 1
bp=——— > (m+foten)+) (m+B+en))| ———— D (w+e
PO M+ np (i:l (a1 + fo+ ) — (az+5+¢ )> M —nq9 i:n12+1( 2+ ex)
which has the conditional bias -jﬂ_&%; (o — o), and variance ﬁm-l— M_lnw . Therefore,

the conditional mean squared error is given by

(—L(a — ) 2—I— = + !
M + nqa ' 2 M +nig M_n12.

Similar comments apply when the second cell consists of all treated.

16 Technically speaking, we may be able to define propensity score estimator even for case 3. We can have

the first cell consisting of all treated and the second cell all consisting of control.
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Casd 2 (ii) Consider the case where the first cell consists of all controls, but the second

cell is not dropped by the covariate estimator. We then have
1 ni2 1 M Af
b, = — ag + By +E2) — s oy +€1) + Qg + €9;
P gt (Serar s 3 (erra)

i iti ias — =M (q; — « rari 1 41 .
which has the conditional bias —z377— (1 — a2), and variance 53— + ;—. There

fore, the conditional mean squared error is given by

M ( )2+ 1 +1
2M — nyy G 2M —n1y  npp

Similar comments apply when the second cell consists of all controls.

Again, the mean squared error of interest is computed by integrating the mean squared

N2
error with respect to the distribution of (n;;,7;2) and dividing by 1 — (7rM + (1 - 7T)M> .

B Panel Asymptotics

B.1 Covariance Matrix

We compute the joint asymptotic (K — oo) distribution of

[ (1 (I1<nw<M-1) n%k Sty —Pr(l<ny <M -1)- E[ylk])
(1 (1<nyp<M-1) n—(l)k Zﬁnlkﬂ yoki —Pr(1<ny <M —-1)-FE [’yOk])
L (1(1<n <M-1)-Pr(1 <n; <£M-1))
= (101 < mx) S e — B[L (1 < map) masyue])
(1 (nyy <M —1) Z?in1k+1 Yo — B 1 (nye < M —1) 710k90k])
(T <n)nk — E[1(1 < nig) magl)
\ (1(nwx < M = 1) nge — E[1 (n1e < M — 1) ngs]) )

It is easy to see that we are dealing with a sample average of zero mean i.i.d. random vectors.
We therefore need to characterize the variance matrix only. Let V (7, j') denote the (7, j')-th
element of the variance matrix. After some tedious algebra, it can be shown that
2 M M 2 M M2
o V(1,1) = g(r,M)E[0%] + (1 M _(1—7) ) CE[y3] - (1 M (1= 7) ) .
(E [ylk])2

V(22 =g (- m M) Efod+ (1 — (1= )™) Bl (1 - — (- M)
(E [ymc])z
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o V(3,3) = (1 M1 w)“) (7rM +(1- W)M>
V(4,4) = MrE 03] + (Mr (1 — 7) + (M7)*) E [y} — (M) E [yw]*
V(5,5) = M(1—7)E 03]

+ (M7 (1= m) + (M (1=m))°) Elyg] = (M (1= 7))" E [yox]”
V(6,6) = M7 (1 —7)
V(7,7) = Mrn (1 - )

V(1,2) = (1—7rA —(1—7r)M) - E [ywyor] — (l—w“ —(1—7)“1)2E[y1k]E[yod
V(1,3) = (1—71' —(1-7) )( ) m
Vg = (1-m - (1-m" )E[alk]-i—(WJV[—TMJW)E[yIk]

M (1 M- W)M) E [yu)’?

V(1,5) = (— Q-m)MM+M- mw) E [yweyon]

— (1= = (1= mM) (M — 7M) E [yus] E [yor]
)= (=mMM 4w 4 M (1= m)M) E [yl
_ (WA AN — M (1 — 7) ’f) E [y1]
(1—7 —(=m") (7 + (1= m)M) B lyod
= (7M =) M - Elyuyor] = (1= = (1= m)™) M7 - B [yse] B [yos]

1—7M —(1-m) )E[agk]+(—(l—ﬂ)MM-I—M——WM)E[ySk]
)(1—7r —(1=m") - E [yo)

— MM 4 7MY 4 M (1 — ) ) E [you]

MM — MM — 2 M (1 — ) ) E [yox]

/\/‘\/‘\

aAMEN 4 M (1 )M) E [ywe]
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o V(3,5) = (7MM+ (1= m)M M - MM -7 (1= 1)) B lyod

o V(3,6) = MM +7M (1 —m)™

e VB, =mMM+ (1 —-m)M—aMHM —aM (1 - )™

o V(4,5)=7M (M —1)(1 - ) E [ywyor] — M?m (1 = m) E [y1x] E [yo]
o V(4,6)=1M(1—n)E [yu]

o V(4,7) = —1M (1 — 1) E [yu]

e V(56) = —7M (1 —7) E [yox]

o V(5,7) =7M (1 —7)E [yo]

o V(6,7)=—1mM({1-m).

B.2 Delta Method

Let

_ , -

(1—7rM—-(1—7r)M) 0
1
™) 0
~ oy (B sl = Elyod]) 0
A = O 1
M=
0 —
0 —ﬁE [y1x]

i 0 A/[(ll—_yr)E [1/ox] ]

By the delta method, we have the asymptotic variance of (b, bp)' equal to
W ATya- | Y Y
Uy Wy

After some tedious calculation, we obtain

M 1l—7n, M

Uy, = g (m, M) _E [a%k] i g( m, M) -E [ng]
(1 —aM—(1- TI')M) (1 — M — (1 ’/T)M)
4 Var [y1x —~ Yok]
1—7M — (1 —m)™
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Ugp = ——

1

T oM

1

2 2

E[Ulk] +A[(1——7{')E[0-0k]
- Var [y — yor] + — Var [ 4/ 2Ty 44—
T [Y1k — Yok M - Y1k 1~7ry0k ,

E o2+~ [0%]

WM (1 -n) 0

1 —nM-1 1-(1- 7T)M—1
+ T Var (yix) + L (L™ Var (yox)

__2_*_7TAT—1+(1_7T)1\1~1
+ Cov (Y1, Yok ) -
1—7FM—(1—71')M (1 0)
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Table 1: Actual Relative Performance (SD(b.)/SD(b,)) of b, in a Two-Cell Example (n = .1)

Covariate R’
.40 .35 .30 .25 .20 15 10 .05 .00
2 0.90 0.94 0.98 1.02 1.06 1.10 1.13 1.17 1.21
3 0.84 0.88 0.92 0.95 0.99 1.02 1.06 1.09 1.13
4 0.82 0.85 0.89 0.92 0.96 0.99 1.02 1.06 1.09
5 0.81 0.84 0.88 0.91 0.94 0.97 1.01 1.04 1.07
6 0.80 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.05
7 0.80 0.83 0.86 0.90 0.93 0.96 0.99 1.02 1.05
8 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
9 0.79 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
10 0.79 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
11 0.79 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
12 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
13 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
14 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
15 0.80 0.83 0.86 0.89 0.93 0.95 0.¢8 1.01 1.04
M 16 0.80 0.83 0.87 0.90 0.93 0.96 0.98 1.01 1.04
(Cell Size) 17 0.80 0.83 0.87 0.90 0.93 0.96 0.99 1.01 1.04
18 0.80 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.04
19 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.05
20 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.05
21 0.81 0.84 0.87 0.91 0.94 0.97 0.99 1.02 1.05
22 0.81 0.84 0.88 0.91 0.94 0.97 1.00 1.02 1.05
23 0.81 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.05
24 0.81 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.06
25 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.06
26 0.82 0.85 0.88 0.91 0.95 0.97 1.00 1.03 1.06
27 0.82 0.85 0.88 0.92 0.95 0.98 1.01 1.03 1.06
28 0.82 0.85 0.89 0.92 0.95 0.98 1.01 1.04 1.06
29 0.82 0.85 0.89 0.92 0.95 0.98 1.01 1.04 1.06
30 0.82 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.07
80 0.80 0.84 0.87 0.90 0.93 0.96 0.98 1.01 1.04
a0 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.03
100 0.80 0.83 0.86 0.89 0.92 0.95 0.97 1.00 1.03

Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a

constant-treatment-effect homoscedastic model with two covariate cells. Cell size is fixed at M. The
standard errors are based on an exact calculation detailed in Appendix A. The probability of treatment in

this case is 1/10.



Table 2: Actual Relative Performance (SD(b.)/SD(b,,)) of b, in a Two-Cell Example (1 = .5)

Covariate R?
.40 .35 .30 .25 .20 15 10 .05 .00
2 0.91 0.95 0.98 1.02 1.05 1.08 1.11 1.14 1.17
3 0.87 0.90 0.94 0.97 1.01 1.04 1.07 1.10 1.14
4 0.84 0.88 0.91 0.95 0.98 1.01 1.05 1.08 1.11
5 0.83 0.86 0.90 0.93 0.96 1.00 1.03 1.06 1.09
6 0.82 0.85 0.89 0.92 0.95 0.98 1.02 1.05 1.08
7 0.81 0.85 0.88 0.91 0.94 0.98 1.01 1.04 1.06
8 0.81 0.84 0.87 0.91 0.94 0.97 1.00 1.03 1.06
9 0.80 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.05
10 0.80 0.83 0.86 0.90 0.93 0.96 0.99 1.01 1.04
11 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04
12 0.79 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.03
13 0.79 0.82 0.86 0.89 0.92 0.95 0.97 1.00 1.03
14 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.03
15 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.02
M 16 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
(Cell Size) 17 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
18 0.78 0.82 0.85 0.88 0.91 0.94 0.96 0.99 1.02
19 0.78 0.82 0.85 0.88 0.91 0.94 0.96 0.99 1.02
20 0.78 0.82 0.85 0.88 0.91 0.93 0.96 0.99 1.02
21 0.78 0.81 0.85 0.88 0.91 0.93 0.96 0.99 1.02
22 0.78 0.81 0.85 0.88 0.90 0.93 0.96 0.99 1.01
23 0.78 0.81 0.84 0.88 0.90 0.93 0.96 0.98 1.01
24 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.01
25 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.01
26 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.01
27 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.98 1.01
28 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.98 1.01
29 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.98 1.01
30 0.78 0.81 0.84 0.87 0.90 0.93 0.96 0.98 1.01
80 0.78 0.81 0.84 0.87 0.90 0.92 0.95 0.98 1.00
a0 0.78 0.81 0.84 0.87 0.90 0.92 0.95 0.98 1.00
100 0.78 0.81 0.84 0.87 0.90 0.92 0.95 0.98 1.00

Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a

constant-treatment-effect homoscedastic model with two covariate cells. Cell size is fixed at M. The
standard errors are based on an exact calculation detailed in Appendix A. The probability of treatment in

this case is 1/2.



Table 3: Relative Performance (SD(b..)/SD(b,)) of b, Using Panel-Asymptotics (1 = .1)

Covariate R
.40 .35 .30 .25 .20 15 10 .05 .00
2 1.10 1.14 1.18 1.23 1.27 1.30 1.34 1.38 1.41
3 0.95 0.99 1.03 1.06 1.10 1.13 1.16 1.19 1.23
4 0.90 0.94 0.97 1.01 1.04 1.07 1.10 113 1.16
5 0.88 0.91 0.95 0.98 1.01 1.04 1.08 1.10 113
6 0.87 0.90 0.94 0.97 1.00 1.03 1.06 1.09 1.12
7 0.86 0.90 0.93 0.96 1.00 1.03 1.06 1.09 1.1
8 0.86 0.90 0.93 0.96 0.99 1.03 1.06 1.08 1.1
9 0.86 0.90 0.93 0.96 0.99 1.03 1.06 1.08 1.11
10 0.86 0.90 0.93 0.96 1.00 1.03 1.06 1.09 1.11
11 0.86 0.90 0.93 0.97 1.00 1.03 1.06 1.09 1.12
12 0.87 0.90 0.94 0.97 1.00 1.03 1.06 1.09 1.12
13 0.87 0.90 0.94 0.97 1.00 1.03 1.06 1.09 1.12
14 0.87 0.91 0.94 0.97 1.01 1.04 1.07 1.10 1.12
15 0.87 0.91 0.94 0.98 1.01 1.04 1.07 1.10 1.13
M 16 0.88 0.91 0.95 0.98 1.01 1.04 1.07 1.10 1.13
(Cell Size) 17 0.88 0.91 0.95 0.98 1.01 1.04 1.08 1.10 1.13
18 0.88 0.92 0.95 0.98 1.02 1.05 1.08 1.1 1.14
19 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
20 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
21 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
22 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
23 0.89 0.92 0.96 0.99 1.02 1.06 1.09 1.12 1.14
24 0.89 0.92 0.96 0.99 1.02 1.06 1.09 1.12 1.15
25 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
26 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
27 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
28 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
29 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
30 0.89 0.92 0.96 0.99 1.03 1.06 1.09 1.12 1.15
80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.07
a0 0.82 0.85 0.89 0.92 0.95 0.98 1.00 1.03 1.06
100 0.81 0.85 0.88 0.91 0.94 0.97 1.00 1.02 1.05

Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a
constant-treatment-effect homoscedastic model. Cell size is fixed at M. The standard errors are based on
the panel-asymptotic approximation in Theorem 1. The probability of treatment in this case is 1/10.



Table 4: Relative Performance (SD(b.)/SD(b,,)) of b, Using Panel-Asymptotics (1 = .5)

Covariate =4
.40 .35 .30 .25 .20 .15 10 .05 .00

1.10 1.14 1.18 1.23 1.27 1.30 1.34 1.38 1.41
0.95 0.99 1.03 1.06 1.10 1.13 1.16 1.19 1.23
0.90 0.94 0.98 1.01 1.04 1.08 1.11 1.14 1.147
0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
0.87 0.90 0.94 0.97 1.00 1.03 1.06 1.08 1.12
0.86 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11
0.85 0.88 0.91 0.95 0.98 1.01 1.04 1.07 1.09
0.84 0.87 0.90 0.94 0.97 1.00 1.03 1.05 1.08
10 0.83 0.86 0.90 0.93 0.96 0.99 1.02 1.05 1.07

11 0.82 0.86 0.89 0.92 0.956 0.98 1.01 1.04 1.06

12 0.82 0.85 0.88 0.92 0.95 0.97 1.00 1.03 1.06

13 0.81 0.85 0.88 0.91 0.94 0.97 1.00 1.02 1.05

14 0.81 0.84 0.88 0.91 0.94 0.96 0.99 1.02 1.06

16 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.04

M 16 0.80 0.84 0.87 0.90 0.93 0.96 0.99 1.01 1.04
(Cell Size) 17 0.80 0.84 0.87 0.90 0.93 0.96 0.98 1.01 1.04
18 0.80 0.83 0.86 0.90 0.92 0.95 0.98 1.01 1.03

19 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.03

20 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.00 1.03

21 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.00 1.03

22 0.80 0.83 0.86 0.89 0.92 0.95 0.97 1.00 1.03

23 0.79 0.83 0.86 0.89 0.92 0.95 0.97 1.00 1.03

24 0.79 0.83 0.86 0.89 0.92 0.94 0.97 1.00 1.02

25 0.79 0.82 0.86 0.89 0.91 0.94 0.97 1.00 1.02

26 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.02

27 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02

28 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02

29 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02

30 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02

80 0.78 0.81 0.84 0.87 0.90 0.93 0.95 0.98 1.01

90 0.78 0.81 0.84 0.87 0.90 0.93 0.95 0.98 1.01

100 0.78 0.81 0.84 0.87 0.90 0.93 0.95 0.98 1.01
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Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a
constant-treatment-effect homoscedastic model. Cell size is fixed at M. The standard errors are based on
the panel-asymptotic approximation in Theorem 1. The probability of treatment in this case is 1/2.



Table 5: Monte Carlo Relative Performance (SD(b.)/SD(b,)) of b, (1 =.1)

Covariate  R*
.40 .35 .30 .25 .20 15 10 .05 .00
2 1.06 1.10 1.14 1.18 1.22 1.26 1.29 1.33 1.36
3 0.97 1.01 1.04 1.08 1.12 1.15 1.18 1.22 1.25
4 0.93 0.96 1.00 1.04 1.07 1.10 1.14 1.17 1.20
5 0.90 0.94 0.98 1.01 1.04 1.08 1.11 1.14 1.17
6 0.89 0.93 0.97 1.00 1.03 1.06 1.09 1.12 1.15
7 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
8 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
9 0.88 0.92 0.95 0.98 1.02 1.05 1.08 1.1 1.13
10 0.88 0.92 0.95 0.98 1.01 1.04 1.07 1.10 1.13
11 0.88 0.91 0.95 0.98 1.01 1.05 1.08 1.10 1.13
12 0.88 0.91 0.95 0.98 1.01 1.04 1.07 1.10 1.13
13 0.88 0.91 0.95 0.98 1.01 1.05 1.08 1.10 1.13
14 0.88 0.91 0.95 0.98 1.01 1.05 1.08 1.10 1.13
15 0.88 0.92 0.95 0.98 1.02 1.05 1.08 1.11 1.13
M 16 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
Avg. Cell Size 17 0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.14
18 0.88 0.92 0.85 0.99 1.02 1.05 1.08 1.11 1.14
19 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
20 0.88 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
21 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
22 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.1 1.14
23 0.89 0.92 0.96 0.99 1.02 1.06 1.09 1.11 1.14
24 0.88 0.92 0.96 0.99 1.02 1.05 1.09 1.12 1.15
25 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.1 1.14
26 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.1 1.14
27 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.1 1.14
28 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
29 0.89 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14
30 0.88 0.92 0.96 0.99 1.02 1.05 1.08 1.11 1.14

Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a
constant-treatment-effect homoscedastic model. Cell size is random. The standard errors were calculated
by Monte-Carlo integration of analytic formulas that condition on cell sizes and number treated. The
probability of treatment in this case is 1/10.



Table 6: Monte Carlo Relative Performance (SD(b.)/SD(b,)) of b, (1 =.5)

Covariate R*

.40 .35 .30 .25 .20 .15 10 .05 .00
1.04 1.08 1.12 1.16 1.20 1.24 1.27 1.31 1.34
0.95 0.99 1.03 1.06 1.10 113 1.16 1.19 1.22
0.9 0.94 0.98 1.01 1.05 1.08 1.11 1.14 1.17
0.88 0.92 0.95 0.99 1.02 1.05 1.08 1.11 1.13
0.87 0.90 0.93 0.97 1.00 1.03 1.06 1.09 1.12
0.85 0.89 0.92 0.95 0.98 1.01 1.04 1.07 1.10
0.84 0.88 0.91 0.94 0.97 1.00 1.03 1.06 1.09
0.84 0.87 0.90 0.93 0.96 0.99 1.02 1.05 1.08

10 0.83 0.86 0.90 0.93 0.96 0.99 1.02 1.04 1.07

11 0.82 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.06

12 0.82 0.85 0.88 0.92 0.95 0.97 1.00 1.03 1.06

13 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.02 1.05

14 0.81 0.85 0.88 0.91 0.94 0.97 0.99 1.02 1.05

. 15 0.81 0.84 0.88 0.91 0.93 0.96 0.99 1.02 1.04
M 16 0.81 0.84 0.87 0.90 0.93 0.96 0.99 1.01 1.04
Avg. Cell Size 17 0.80 0.84 0.87 0.90 0.93 0.96 0.98 1.01 1.04
18 0.80 0.84 0.87 0.90 0.93 0.95 0.98 1.01 1.03

19 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.03

20 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.00 1.03

21 0.80 0.83 0.86 0.89 0.92 0.95 0.98 1.00 1.03

22 0.80 0.83 0.86 0.89 0.92 0.95 0.97 1.00 1.03

23 0.80 0.83 0.86 0.89 0.92 0.95 0.97 1.00 1.03

24 0.79 0.83 0.86 0.89 0.92 0.94 0.97 1.00 1.02

25 0.79 0.83 0.86 0.89 0.92 0.94 0.97 1.00 1.02

26 0.79 0.83 0.86 0.89 0.91 0.94 0.97 1.00 1.02

27 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.02

28 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02

29 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02

30 0.79 0.82 0.85 0.88 0.91 0.94 0.97 0.99 1.02
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Notes: The table reports relative standard errors for covariate-matching and propensity-score estimates of a
constant-treatment-effect homoscedastic model. Cell size is random. The standard errors were calculated
by Monte-Carlo integration of analytic formulas that condition on cell sizes and number treated. The
probability of treatment in this case is 1/2.
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Figure 1. Panel—asymptotic vs. Monte Carlo s.d.(Be)/s.d.(Bp) for expected cell sizes 2—30
Monte Carlo design: 500 replications, 30 cells;

Covariate Rsquare for y0=.1, treatment probability=.1

Heterogeneous treatment effect equal to 0 or 1 with probability .5
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Figure 2. Panel —asymptotic vs. Monte Carlo s.d.(Be)/s.d.(Bp) for expected cell sizes 2—30
Monte Carlo design: 500 replications, 30 cells;

Covariate Rsquare for y0=.], treatment probability=.1

Treatment effect equals 0 or 1, negatively correlated with y0
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