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ABSTRACT

A wide range of empirical applications rely on linear approximations to dynamic Euler
equations. Among the most notable of these is the large and growing literature on precautionary
saving that examines how consumption growth and saving behavior are affected by uncertainty and
prudence. Linear approximations to Euler equations imply a linear relationship between expected
consumption growth and uncertainty in consumption growth, with a slope coefficient that is a
function of the coefficient of relative prudence. This literature has produced puzzling results:
Estimates of the coefficient of relative prudence (and the coefficient of relative risk aversion) from
regressions of consumption growth on uncertainty in consumption growth imply estimates of
prudence and risk averston that are unrealistically low. Using numerical solutions to a fairly
standard intertemporal optimization problem, our results show that the actual relationship between
expected consumption growth and uncertainty in consumption growth differs substantially from the
relationship implied by a linear approximation. We also present Monte Carlo evidence that shows
that the instrumental variables methods commonly used to estimate the parameters correct some, but

not all, of the approximation bias.
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L. Introduction

The estimation of key parameters in the household’s utility function has been a longstanding
goal of empirical research on consumer behavior. These parameters are of interest because they
furnish a quantitative gauge of theoretically important concepts, such the strength of the
precautionary saving motive, the degree of prudence and risk aversion, and the willingness of
consumers to substitute consumption over time.

In order to estimate parameters from the utility function, a suitable empirical
specification must first be chosen. A wide range of applications employ specifications that rely
on linear approximations to dynamic Euler equations--a virtual cottage industry has been created
from the estimation of linearized consumption Euler equations.' Despite the popularity of this
approach, an important unanswered question is whether linear approximations of Euler equations
produce accurate estimates of key parameters in the consumer’s utility function.

In this paper, we investigate the properties of linearized Euler equations within the
context of one type of empirical application: the large and growing literature on precautionary
saving that examines how consumption growth and saving behavior are affected by uncertainty.
This application typically involves regressing consumption growth on measures of uncertainty in
expected consumption growth, the idea being that, with precautionary motives, future
uncertainty will depress current consumption and raise consumption growth. The estimating
equation is derived from a second-order Taylor expansion of the Euler equation which is the first
order condition for optimal consumption choice, and relates marginal utility today to expected

marginal utility tomorrow. The parameter estimates can be used to measure the strength of

To citejust afew examples, see Hall [1988]; Campbell and Mankiw [1989]; Campbell
and Deaton [1989]; Zeldes [1989]; Kuehlwein [1991]; Dynan [1993]; Attanasio and Weber
[1993]; Lusardi [1996]; Merrigan and Normandin [1996]; Ludvigson [forthcoming].



precautionary saving motives, where in the absence of precautionary motives future uncertainty
should not affect consumption growth.?

The empirical work on precautionary saving has produced some anomalous results.
Whereas some studies which have investigated the effect of income risk on the level of
consumption or wealth suggest that precautionary motives may explain a significant fraction of
wealth accumulation (for example, Skinner [1988]; Lusardi [1993]; Carroll [1994]; Carroll and
Samwick [1995]), the estimated effects of consumption uncertainty on consumption growth are
typically small, indicating that precautionary motives are weak or nonexistent (for example,
Dynan [1993]; Kuehlwein [1991]). For utility functions characterized by decreasing absolute risk

aversion, these latter results also imply implausibly low levels of relative risk aversion. More

1-p
specifically, given that the within-period utility function is isoelastic, such that u(C) = d

2

this literature yields estimates of p that are generally below 1.3, and are often insignificantly
different from zero.

We investigate one possible reason for these small estimates of p. Specifically, the
method of estimating p—which utilizes a second order Taylor expansion of the Euler
equation—relies on linear or loglinear approximations of the Euler equation. If the Euler equation
is sufficiently nonlinear, then these approximations will be poor, implying that estimates of p
may differ from their true values simply because the Euler equation is approximated. We refer to

this divergence between the estimated and true values as “approximation bias”.

As we discuss below, the impetus for precautionary saving in thisliterature is the
existence of "prudence" in preferences, first defined by Kimball (1990). In practice, other factors
may also lead to precautionary accumulation, such as the possibility that borrowing constraints
may bind in the future (see Deaton, 1992).



In this paper, we study how approximation bias due to linear approximation influences
parameter estimates. We take a two step approach. First, we investigate how nonlinear are the
Euler equations, an analysis that can be performed without simulating data. We start with a
standard intertemporal optimization problem, in which a finite-lived consumer with isoelastic
preferences chooses consumption and saving given current wealth and the current shock to
income. For each year of “life,” and for a variety of assumptions about the parameters that
govern preferences and the income process, we solve numerically for the function that relates
consumption to wealth and the income state. We can then contrast the actual relationship
between expected consumption growth and uncertainty in consumption growth, with the
relationship implied by the second order approximation. This step allows us to document how
much the approximate relationship differs from the true relationship across a range of wealth
values, income states, and parametric assumptions. We find that this difference is quite large for
some wealth-income states under some sets of parameters values.

How might the nonlinearities we find influence actual parameter estimates? The second
step in our analysis investigates this issue. In particular, we ask how nonlinearities are likely to
be translated into approximation bias in estimates of p. Typical estimates based on linearized
Euler equations involve using household-level data to regress consumption growth over a given
time period on a measure of variability in consumption growth, such as average squared
consumption growth, using either ordinary least squares or instrumental variables techniques. In
the latter case, squared consumption growth is often instrumented using variables such as
education and occupation indicators; the assumption is that these factors predict variability in

consumption growth but are uncorrelated with the error term. The second step in our analysis



allows us to investigate the extent to which this assumption is likely to be true.

We examine the extent of bias using both ordinary least squares (OLS) and instrumental
variables (IV) estimators by performing a Monte Carlo study in which we choose a utility
function (i.e. a value of p), and simulate panel data on optimal consumption for a large number
of “households.” For our results to be informative about the extent of bias in actual parameter
estimates, it is important that the heterogeneity across our simulated households mimics that
found in true data. To do this, we use income data from the Panel Study of Income Dynamics
(PSID) to estimate the parameters of the income process for households in sixteen different
education/occupation groups. We then solve for the appropriate consumption functions using
each of the sixteen sets of parameter estimates. With these consumption functions in hand, it is
straightforward to simulate data for “households” from the different education/occupation groups
(with the fraction of households from each group in the simulated data equal to the fraction of
households in each group in the PSID). These data are used to investigate the properties of OLS
estimates of p, as well as IV estimates that use occupation and education indicators as
instruments.

Our results indicate that regressions of consumption growth on consumption growth
squared produce estimates of p that are biased down from the true value. OLS estimates produce
the most bias, with estimates of p that are between 12% and 30% of the true value. The IV
estimates fare somewhat better, but are still biased down, with estimates of p that are typically
around 60% of the true value. The reason for the bias is that the instruments (i.e. the occupation
and education indicators that determine the income process parameters) are correlated with the

higher order moments of consumption growth that are in the error term of the linearized



equation.

Another feature of our results is that the extent of bias varies with wealth: when the
sample is split between “low wealth” and “high wealth” households, the estimates of p are biased
down most for the “low wealth” group, and for some estimation techniques are actually biased
up for the “high wealth” group. Differences in estimates of p across wealth groups is often taken
as evidence that poorer households are more liquidity constrained than wealthier households.
Our results indicate that these differences may also arise as the result of approximation bias.

Section II discusses in more detail how approximations to Euler equations have been
used in previous literature, and why estimates based on these approximations may be biased.
Section III describes our methods for computing consumption functions and shows the results of
these computations. In this section, we investigate the extent to which the Euler equation is
nonlinear by documenting how the approximate relationship between consumption growth and
the variance of consumption growth differs from the true relationship across wealth values and
income states. Section IV describes our estimation of income processes for each
occupation/education group using household data, and discusses the simulation results. Section

V concludes.

II. Approximations to Euler Equations

We start with a simple but general model of consumption. Individuals choose consumption and
saving in each period so as to maximize expected lifetime utility. We assume that there is one
asset, 4, and that assets held between ¢ and 7+ earn a gross return of R,,. Decisions are made

conditional on current resources (cash-on-hand) held at the beginning of the time period, and on



information about future incomes and interest rates. Utility is additively separable and is
discounted across periods at rate 8. Sub-utility functions in each period are identical and

isoelastic-elastic. The maximization problem is summarized as:
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Cash-on-hand (x,=4,+y,) evolves according to:

Xt+l - Rt+1[xt - Ct] +yt+1’ (2)

where y,,, is labor income earned in time 7+/.

Following most of the literature on precautionary saving, we assume that the real interest
rate in not stochastic and is fixed at » = R - 1. The only uncertainty consumers face is in labor
income, which fluctuates from period to period. In this case, the Euler equation associated with

utility maximization is:

u'(c,) - (%) E[u/(C,)]. 3

or, in the specific case of isoelastic-elastic utility:

- 1+r
C "=
! ( 1+8

JE[C.A] (4)

Because marginal utility is not linear in consumption in equation (4), it is not possible to derive



an equation that relates expected future consumption to current consumption. Instead,
researchers commonly linearize the right-hand-side of (4) and derive an equation that relates the
expected growth in consumption to the expected squared growth in consumption. Specifically,
taking a second-order Taylor approximation of marginal utility in #+/ around the point C,,

inserting into (4), and rearranging yields:

Et[—cm_ct} = %[r—é} + (1;p)Et[(Ct+l_Ct)2 +V,, (5

C, 1er C,

u ///(Ct) Ct .
——— as defined by Kimball (1990).
u //(Ct)

The error term, v,, is composed of an additive series of moments of consumption growth.’

where 1+p equals the coefficient of relative prudence -

Specifically:

- i Cp.1 - G\l
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Equation (5) indicates that, if precautionary saving motives exist, then uncertainty (as
measured by the conditional expectation of squared future consumption growth) is positively
related to anticipated consumption growth. The intuition underlying this result is

straightforward: prudent individuals will delay consumption until uncertainty about the future is

3An alternate approximation can be obtained by assuming consumption is lognormally
distributed, implying that AInC,,, = p’l(r—6)+1/2pVARt(AInCt+1) , Where VAR isthetimet
variance. Under this distributional assumption, higher order moments do not enter the
approximate loglinear Euler equation. Consistent with the findings we discuss next, however,
normality tests on simulated consumption data (not reported) rejected the hypothesis that
consumption growth islognormally distributed when the driving process (income growth) is

lognormally distributed.



resolved, so that consumers facing more uncertainty will display higher consumption growth on
average.

Equation (5) has been used as the basis for a large and growing body of empirical work.
One set of papers examines the relationship between consumption growth and income risk. As
has been pointed out by Dynan (1993), equation (5) concerns the relationship between
consumption growth and uncertainty in consumption, not in income. However, it makes sense to
establish, as an empirical fact, whether or not those who face riskier income streams have higher
average consumption growth than others. These papers generally find that future income
uncertainty decreases the /evel of current consumption, lending some support to the hypothesis
that precautionary motives reduce the willingness of individuals to consume out of uncertain
future income.*

An alternative approach is to estimate (5) directly. This is done by Dynan (1993), who
uses household-level consumption data from the 1985 Consumer Expenditure Survey. This
survey has a short panel element, with each household surveyed in as many as 4 consecutive
calendar quarters. Dynan estimates (5) by regressing average consumption growth over the
period for each household on (time) average squared consumption growth. She uses instrumental
variables to account for the fact that taste shifters, which are likely to be correlated with the

variance of consumption growth, may be included in the error term, and because the short length

“For example, Carroll (1994) presents evidence using a normalized variance of individual
income, and Kimball’s (1990) "equivalent precautionary premium" as measures of income
uncertainty. Guiso, Jappelli, and Terlizzese (1992) provide similar evidence using a self reported
measure of earnings uncertainty drawn from the 1989 Italian Survey of Household Income and
Wealth. Note that these studies do not depend on linearized Euler equations, but instead rely on
some reduced form solution to the consumption function itself.
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of the panel will make the sample mean of actual squared consumption growth a poor measure of
risk. The instruments include variables such as indicators for occupation and industry and
education measures, which are plausibly related to consumption uncertainty. Dynan’s fairly
precise estimates of the coefficient on squared consumption growth range from .012 to .156,
implying a coefficient of relative prudence in the range of .024 to .312, and a negative value of p
(which also equals the coefficient of relative risk aversion) in the range of -.976 and -.688. As
Dynan points out, this range of values for p is implausible. Merrigan and Normandin (1996),
using British data, and Kuehlwein (1991), using the US Panel Study of Income Dynamics, also
estimate relatively low values for p, in the range of .78 to 1.33 for Merrigan and Normandin.
Kuehlwein uses OLS estimation and obtains a higher value for p, equal to about 4.0, but it is not
statistically different from zero.

If the approximation error, v, is correlated with uncertainty in consumption growth,
regressions of (5) will produce biased parameter estimates if the equation is estimated using
ordinary least squares. Moreover, instruments that are correlated with uncertainty in
consumption growth may be correlated with third and higher order moments of consumption
growth that make up the error term in (5). To build intuition, consider, for example, the first term
in (6), which equals expected cubed consumption growth multiplied by -(1+p)(2+p)/6. If those
who face more uncertainty in consumption growth also have consumption growth that is more
skewed to the right, the first term in v, and expected squared consumption growth will be
negatively correlated. In this case, and ignoring higher-order moments in v,, a regression of
consumption growth on expected squared consumption growth will yield an estimate of (1+p)/2

that is biased down. Although it is not possible to prove analytically that the bias will go in one



direction or the other, our numerical calculations discussed below support the idea that bias due
to approximation error will typically yield estimates of p that are too low. It is important to
emphasize that this bias is not a result of measurement error, data quality, or misspecification of
preferences—even if all variables were accurately measured and the econometrician knew the
individual’s true objective function, the bias would still exist—but is instead solely the result of

approximation error.

II1. Numerical Solutions to Consumption Functions

To assess the extent to which approximation error is a problem, we numerically compute
consumption functions, and contrast the “true” relationships between consumption growth,
consumption uncertainty, and the expected real interest rate, with the relationships implied by
the linear approximations. This is done for a variety of assumptions about the size of p and the
stochastic process that governs the evolution of income.

We start with the model discussed above’. The first step is to choose a utility function
and a stochastic process for income. We choose the commonly assumed isoelastic utility
function, and assume that income growth follows a first-order moving-average process with the

general form:

°In general, there is no closed form solution to the optimization problem presented in (1)-
(2) with risky labor income. However, for specific utility functions, an analytical solution can be
derived. The most notable example is the quadratic utility case. Thisis not a case we want to
analyze in detail since linear marginal felicity functions preclude precautionary savings motives.
As arobustness check however, we used our numerical approach to solve for the optimal
consumption solution when utility is quadratic and the real rate of interest equals rate of time
preference, and verified that it was equivalent to the analytical solution.

10



In(yt) = |n(yt71) tTHTE - d)et—l' (7)

The choice of a first-order moving average process is roughly consistent with evidence from the
micro data, see for example MaCurdy (1982), Abowd and Card (1989), and Pischke (1995).
Although these studies generally suggest individual income changes follow a MA(2) rather than
MA(1) process, the latter is a good approximation which requires one fewer state variables to
solve the model, greatly reducing computational complexity.

As shown in Deaton (1991), the ratio of consumption to income at time ¢ will be
stationary, and can be solved for as a function of two state variables, the ratio of cash-on-hand to
income (denoted w,) and the income growth innovation, ¢.° Let 0, equal the ratio of consumption
to income in ¢ and z, equal the ratio of income in 7 to last period’s income, so that z, equals

H+€ -

e ®€1 The Euler equation can be expressed as:

0,(Wye)® - B[O, ([L+r1[w-0,(w,e)lz1 + 1,€,) P27  dF(e,,) =0, (8)

where 8 equals (1+r1)/(1+9).

®It is now well known that serial correlation in income growth complicates the procedure
for solving for consumption functions, since it means that there will be two state variables (cash-
on-hand and lagged income) rather than one (see Deaton [1991), [1992)). Nonstationarity in
income further complicates matters, since it means that in practice quite a wide range of incomes
(and, therefore, state variables) may be possible. To deal with these problems, we work with
stationary ratios of variables, solving for the optimal level of consumption relative to income.
This specification is computationally more convenient than solving for the level of consumption
itself, because it reduces the range of possible values for cash-on-hand, and implies that the
second state variable in the model is the innovation to income growth, rather than the lagged
level of income.

11



The Euler equations are solved via backwards recursion, starting with a terminal time
period T (which we set to 60.) We choose a grid of 500 values of w;, and solve for a set of
corresponding values of 0. Although it will generally be the case that 0 is a function of the
income innovation € as well as the cash-on-hand to income ratio w, this is not true of the terminal
period: assuming that the consumer dies with no net assets, then consumption in the last period
of life, period 7, equals cash-on-hand, so that 6, equals w; for all values of ¢;. Given this
solution for 6, one can solve for the values of 0., that satisfy the Euler equation for a grid of
possible values of wy, and & ;. Solutions for earlier periods can be found by working backwards,
i.e. solving for 6, as a function of w, and ¢,, given the solutions for 6,,,. Rather than assuming that
the error ¢, has a continuous distribution, we specify the distribution as a discrete 10-point
approximation to a normal distribution, which considerably speeds computation time.’

Figure 1 shows results from what we call our “baseline case.” In this case, we have set
the parameters of the income equation (7) to n equal to .02, ¢ equal to .444, and the standard
deviation of ¢ (denoted ) to .20. The parameters values for p and ¢ are from MaCurdy (1982)
and Pischke (1996). Although their estimate of ¢ is .25, we use a lower value of .20 since at least
part of the estimated error variance is likely to be the result of the presence of substantial
measurement error in recorded income. The baseline interest rate r is set to .03, the rate of time
preference, 9, is set to .05, and the parameter p of the isoelastic utility function is set to 3.

Figure 1 shows characteristics of the consumption function for period t=30. The top left-

“In principle, it is possible to solve for consumption functions for any number of years. In
practice, this is sometimes difficult since the range of possible values of cash-on-hand to income
(eventually) narrows as the solution moves backward in time. In all of our cases we solved for at
least 45 years, i.e., from t=16 to t=60.
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hand panel graphs the ratio of consumption to income against the cash-on-hand to income.® Note
that as many as ten functions could be graphed, one for each of the ten possible values of €. To
avoid clutter, we graph only three. The line marked “k=1" denotes the graph for the lowest value
of'g, “k=5" is the fifth-lowest value, and “k=10" is the highest. As expected, consumption is an
increasing function of cash-on-hand. Furthermore, high realizations of € result in lower values of
the ratio of consumption to cash-on-hand. This does nof imply that good shocks to income lower
consumption, but indicates that good shocks raise cash-on-hand by more than they raise
consumption.

The top right-hand panel graphs the relationship between expected consumption growth
and the cash-on-hand to income ratio. Note that consumption growth(C, , - C,)/C, can also be
expressed as (0,,,2z,, - 6,)/6,. The graph shows consumption growth expected as of time #:

E[ 6t+lzt+1|Wt' 6t] _et(Wt’ et)
, 9
0, (W, €,) ©

which is easily computed for each of the possible values of w, and ¢,. In the same way, we can
compute expected squared consumption growth, which is shown plotted against cash-on-hand to
income in the lower left-hand panel of Figure 1.

These two graphs indicate that a consumer with low cash-on-hand (relative to income)
will have both higher expected consumption growth, and higher expected squared consumption

growth. These results are consistent with the findings of Carroll (1997a) and Carroll and Kimball

® Figure 1 is drawn only for the range of cash-on-hand to income from .5 to 3; although
nothing prevents cash-on-hand from being negative, simulation results indicate that it usually is
not, and the graph focusses attention on the values of cash-on-hand that are most relevant.
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(1996): because poor consumers have a lesser ability to smooth shocks to income, the
conditional variance of their consumption growth will be higher than that for wealthier
households, and precautionary motives work to depress consumption and increase its rate of
growth.

Another feature of Figure 1 is that for any given cash-on-hand to income ratio,
consumption growth is higher for lower values of ¢,. This ordering of the consumption functions
is due to the existence of transitory noise in individual income. Because a negative shock to
income today implies higher income tomorrow, individuals increase the amount of consumption
relative to income out of any given level of cash-on-hand, thereby smoothing out transitory
changes in income by accumulating and de-accumulating assets. However, individuals also
expect higher consumption tomorrow, so the expected rate of growth of consumption increases.

Given the optimal solution for the first and second conditional moments of consumption
growth, we are now in a position to compare their relationship with that implied by the Taylor
expansion (5). This comparison is made in the bottom right panel of Figure 1, which graphs the
relationship between expected consumption growth and expected squared consumption growth.’
The consumption growth equation implied by the Taylor expansion (5), indicates the function
graphed “should” have an intercept equal to %[;;j] and a slope of (p+1)/2=2 given the
baseline parameters. This linearized equation is also shown. To simplify notation in what
follows, we denote the slope of the linearized equation as (p+1)/2, and the slope of the true

consumption growth equation as (p*+1)/2, although it should be kept in mind that p” is not a

There are actually ten different functions relating these two variables, one for each value
of g, and three of these are graphed. However, they are sufficiently similar that they are not
visually discernable on the graph, so that they appear to lie on a single line.

14



fixed number, and varies with the cash-on-hand to income ratio.

A comparison of the two lines indicates that the linearized and true equations are quite
different. In particular, the figure shows that the slope of the true equation is lower than the slope
of the linearized equation. Figure 2 reproduces the lower-right hand panel of Figure 1 for a large
number of time periods, and provides evidence that this result is not a peculiarity of the year
chosen. In addition, the relationships in Figure 2 are graphed over a wider range of cash-on-hand
to income ratios than in Figure 1. When expected consumption growth squared is very small,
cash-on-hand is very large, and difference between the true equation and the linearized equation
is small. This is most apparent in the figures for years later in life (years t-57 through t-24 for
example) because the asset range for those years is large, taking on both very small and very
large values."

Two features of Figure 2 are important. First, the divergence between the slopes of the
linearized and true functions varies with wealth. Specifically, the divergence is larger for higher
values of expected consumption growth and consumption growth squared; this implies that the
divergence in slopes is greatest for less wealthy consumers (for whom expected consumption
growth is highest). It is therefore not be surprising to find that estimates of p differ across groups
of individuals when the sample is split based on wealth or occupation, as in Dynan (1993) and
Merrigan and Normandin (1996). These studies consider the possibility that liquidity constraints

may bias estimates of p downward for less wealthy consumers, and, consistent with this

“Note that asset ranges are not fixed from year to year and shrink as one works
backwards in time. Thisimplies that the figure for year t-12 has a much smaller asset range than
in figure t-57, and there is less variation in both expected consumption growth and expected
consumption growth squared than thereis later in life (e.g. in year t-57). Thus, the figures are not
entirely comparable since the axes vary with the range of cash-on-hand.

15



hypothesis, they report lower values for less wealthy households. Note that these findings are
also consistent with the direction of bias shown in Figure 2, indicating that even without
liquidity constraints, poorer households can be expected to appear less prudent simply because
the linearized Euler equations of less wealthy individuals will be subject to greater downward
approximation bias. Our simulation results, discussed below, confirm this prediction by showing
that estimates of p differ across groups of individuals when the sample is split by wealth.

A second feature of Figure 2 is that the divergence between the linearized and true
consumption growth equations is smaller for time periods that are farther back from the terminal
year T. However, there is no evidence that the differences between the linearized and true
equations disappear.

How large are the differences between the slopes of the linearized and true equations? To
provide summary evidence, we computed the slopes of the true equations, shown in Figure 2,
and then constructed weighted averages of the true slope (p*+1)/2 to the linearized slope
(pt+1)/2. The weights are constructed to reflect the distribution of the cash-on-hand to income
ratio for each year that is implied by the model. Specifically, we simulated income series for
1000 consumers (using the baseline parameters for the income process), and used the policy
functions for consumption to calculate series for consumption and cash-on-hand for each
consumer. The simulated data is used to estimate the joint density of (w,¢) for each year."' This
density function is used to compute the weighted average of the ratio of the true to linearized

slope.

! The density is computed nonparametrically, using a quartic kernel with a bandwidth of
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The results for the baseline case are shown in the first column of Table 1. The top panel
shows the average value of the true slope, (p*+1)/2, divided by (p+1)/2 for a selection of years.
Consistent with Figure 2, this ratio increases as one moves backwards from the end of life,
implying that the linear approximation is better in earlier time periods. However, most of this
change in the ratio takes place in the last 10 time periods: between t=18 and t=48 the ratio
declines by only .035. The lower panel of Table 1 shows the values of p’/p implied by the results
in the top panel; the value of p indicated by the (average) slope of the true consumption growth
equation is between 68% and 82% of its true value.

How sensitive are our results to changes in the baseline set of parameters? Figure 3
shows results that correspond to those in the bottom right panel of Figure 1 (with t=30), but with
changes from the baseline case. Table 1 provides summary statistics for each of the cases for a
selection of years. The results of Figure 3 and Table 1 are summarized as follows. First, the
linearized Euler equation is a better approximation for lower values of o, the standard deviation
of &: when o is reduced from .20 to .125, the ratio of the true slope to that implied by equation
(5) rises relative to the baseline case. For example, for t=30, the ratio equals .858 for the baseline
case and .947 for the case with ¢ equal to .125, implying an increase p'/p from .811 to .930. An
implication is that estimates of p based on the linearized Euler equation may indicate that people
with riskier income streams are less prudent (and less risk averse) than those with less risky
income streams, even if in fact there is no difference across the groups. Bias due to
approximation error may make it difficult to test whether risk aversion affects how individuals
select into different occupations.

Second, reductions in ¢, the moving average parameter, increase the divergence between
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the slopes of the linearized and true equations. When ¢ is lowered from .44 to .30, the ratio of
the slopes (in t=30) falls from .858 in the baseline to .793. Decreases in ¢ imply that income
innovations are more persistent, so that a given shock translates into a larger change in life-time
wealth. It is therefore not surprising that declines in @ have effects similar to increases in c.

The third column of Table 1 shows the effect of increasing the parameter p. When p is
increased from 3 to 4 the amount of bias rises. For example, the average ratio of the true slope to
the linearized slope falls from .858 (for t=30) to .770. Note this implies the value of p which
would be inferred from the true equation is only 72.5 percent of the true value. Thus, the extent
to which the degree of prudence is understated (in percentage terms) is positively related to the
true degree of prudence.

The final two columns show the effects of changing the parameters » and p. The results
indicate that increasing the rate of interest (and keeping the discount rate constant, so that
consumers are more “patient”) has little effect on the extent of bias in the slope. Likewise,
changing p has little effect.

The results in this section show that Euler equations are quite nonlinear, implying that,
for some wealth values and income states, the true relationship between consumption growth and

uncertainty in consumption growth will differ considerably from the linearized relationship.

IV. Approximation Bias in Empirical Estimates

This section examines whether errors caused by linear approximation to Euler equations
result in biased parameter estimates of p, using commonly employed estimation techniques. The

standard method used in the literature discussed in Section Il is to construct measures of
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consumption growth for household 7 in year 7 (denoted cg,, ) and measures of variability in
consumption growth (denoted cgitz) using panel data on households, and then regress
consumption growth on variability in consumption growth:
2
Cg = Bo * By gy + € - (10)

As discussed above, the consumption growth equation based on the linearized Euler equation
(r-9)

(1+1)p

impliesthat 3, equals , and that 3, equals (p+1)/2. Equation (10) istypically estimated
using OL S or IV techniques. The use of instrumental variables makes a great deal of sense, if for
no other reason than to eliminate biases caused by measurement error in consumption. However,
the discussion in Section |1 indicates that it may be extremely difficult to find instruments that
are not correlated with the error term in (10), even in the absence of measurement error.
Equation (6) indicates that the error term includes higher order moments of consumption growth.
Valid instruments must consist of variables that are correlated with variability in consumption
growth, but are not correlated with these higher-order moments. It is difficult to think of
theoretically justifiable reasons why some variables would be correlated with the second
moment but not with higher-order moments. Nevertheless, the extent of bias found in practice
will depend on the extent to which the instruments are correlated with the error term, a factor
that will, in turn, depend on which instruments are used.

The most common instruments employed in practice are variables such as occupation,
education, and industry indicators (e.g., Dynan [1993]). The use of these variables is motivated
by the idea that education and occupation influence the time-series properties of individual's

income, so that (for example) more highly educated people may have higher income growth over

their lifetimes, and self-employed managers may face more income risk than others. These
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differences in income patterns will affect consumption decisions, and are likely to produce
differences in variability in consumption growth. However, if (for example) individualsin
different occupations and educations have different amounts of skewness in consumption
growth, then these variables are not valid instruments, and even IV estimates of the parameters
will be biased.

We assess whether this problem isimportant in practice by conducting a Monte Carlo
analysis. Our approach is to generate simulated data on consumption for "households" who share
common preferences and face the same interest rate, but have different values of the parameters
for the process that generates income. In order to match heterogeneity in income parameters to
heterogeneity found in real data, we use information on income from the Panel Sudy of Income
Dynamics to estimate income equations for individuals in 16 different education/occupation
groups.” We solve for up to 40 years of consumption functions using each of the 16 sets of
parameters, and then simulate consumption data for households in each of the groups. The
simulated data is used to estimate equation (10), above, using both OLS and 1V techniques.

Thefirst step in our analysis was to estimate the parameters of the income equation (7)
for the different education and occupation groups. We used the 1972-1992 waves of the PSID,
and selected a sample of male heads of househol ds between the ages of 25 and 55, inclusive,
who reported labor income for at least 3 contiguous years. Further details on sample selection

arein Appendix A.

“In principle, it is possible to use information on industry, in addition to occupation and
education, for each individual in the PSID. Placing households into categories that are asfine as
those like occupation/education/industry resulted in cell sizesthat are too small for empirical
work. Thus, we chose to focus on groups defined by occupation/education which have larger cell
Sizes.
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In each year, individuals were coded as being in one of the six occupations listed in Table
2. We then constructed a single non-time-varying occupation for each individual, that consisted
of the occupation worked in the mgjority of years. (Ties were broken by assigning individuals to
the "higher" of the occupations using the order in Table 2; for example, a person who spent 3
years as amanager and 3 years as a professional would be coded as a professional.) Individuals
were also assigned to one of three education categories: less than 12 years of school, exactly 12
years of school, and more than 12 years of school. Individuals from two occupation/education
cells were excluded from the analysis, since there were too few people.” The final data set
consisted of 43,067 observations on 5,567 individuals. The distribution of individuals across
occupation/education cellsis shown in Table 2. Cell sizesranged from 78, for professionals with
exactly 12 years of education, to 719, for craftsmen with 12 years of education.

These data were used to estimate the parametérsapdo for each of the
occupation/education groups. We followed the estimation methods discussed in Abowd and Card
(1989); details are provided in Appendix A. The estimates for each cell are shown in Table 2.
The estimates of pu are what might be expected: within each occupation group, those with more
education have higher earnings growth. Within each education group, craftsmen and operatives
had the lowest growth. Somewhat surprisingly, laborers and service workers have higher values
of y than do craftsmen and operatives. The paranpeddso varies across groups; the general
pattern is for those with more education to have lower valués ioflicating more persistence

in shocks. Less skilled clerical and sales workers, and laborers and service workers, display

BThese groups were professional s with less than 12 years of education, and managers
with less than 12 years of education.
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much less persistence. The parameter estimates of o seemed too high to be plausible, and we
halved them for the purposes of the simulations.* The halved values are reported in Table 2.
Thereisremarkably little variation in o across the cells. The rangeisfrom .137, for clerical and
sales workers with less than 12 years of school, to .220, for laborers and service workers with
more than 12 years of education. Values of o cluster between .16 and .19 for nine of the sixteen
cells. Thereis no clear tendency for o to increase or decrease with education.

These parameters were used to solve for consumption functions for each of the cells. We
assumed that the remaining parameters were constant across groups (with p=3, r=.03, and
6=.05,) and solved for 40 years of consumption functions. We then simulated data on income
and consumption for 300,000 "households" for these 40 years, assuming that each individual
started with cash-on-hand equal to income. The numbers of householdsin each
occupation/education cell was set so that the distribution of households across cellsin the
simulated data matched that in the PSID. We discarded the first five years of data, because we
did not want our results to be influenced by our assumptions about initial assets, and the last five
years, when individuals are drawing down assets in anticipation of "death.” The number of years
per household was reduced by one more year after first-differencing consumption, leaving
8,700,000 household/year observations in our simulated data set.

Differences in the income parameters across occupation/education groups produce

“Several authors have pointed out that these measures are likely to be inflated by
substantial measurement error in recorded income (for example, Deaton [1991]; Attanasio et al,
[Forthcoming]). We also follow these authors in not reducing the size of the moving average
parameter, even though this would logically follow in order to increase the role of the permanent
component in income; the variance of the permanent component is already alarge fraction of
overall earnings variance, and alarger value seemsimplausible.
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differences in consumption patterns in the smulated data. Table 2 shows averages of
consumption growth and consumption growth squared for each cell of our simulated data.
Average consumption growth ranges from 0.0016 (for clerical and sales workers with 12 years
of education) to 0.796 (for highly educated professionals). These two groups also had the lowest
and highest average risk in consumption growth.

To estimate the parameters of (10), we use Monte Carlo simulations to create 300
samples of 1000 households per sample, and used these samples to generate 300 sets of
parameter estimates. Two versions of (10) were estimated. "Model A" refersto aregression of
consumption growth between year t-1 and t on squared consumption growth between the same
period. The data are kept in panel form, with multiple observations per household. In "Model B,"
consumption growth and consumption growth squared were averaged over time for each
household. This latter model is more similar to that estimated by Dynan (1993), who averages
consumption growth and squared consumption growth over 4 quarters of the Consumer
Expenditure Survey.

Both Model A and Model B were estimated using OLS, and using IV with three
instrument sets. The first instrument set includes a set of dummies for each of the 16
occupation/education groups. The second set includes 6 occupation and 3 education dummies.*
The third set is the same as the second, only it adds the lagged value of the ratio of assetsto
income. For model A, thisisthe value of the asset to incomeratio at t-1; for Model B, itisthe

value in thefirst year of the sample. The rationale for including this as an instrument is that

It is common in empirical work to exclude interaction terms between the indicatorsin
the instrument set.
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consumers with more liquid assets may be better able to smooth consumption, and will have
lower variability in consumption growth.*

Asafina exercise, we split the samples for each model into two equally sized groups of
consumers:. those with "high" and "low" values of lagged ratio of income to assets. As discussed
above, lower estimates of p for households with lower assets are taken as evidence of liquidity
constraints. However, it islikely that approximation biases in the estimates also varies with
wealth, and it is useful to seeif the estimates of p vary across groups when, by construction, all
househol ds have the same value of p and no liquidity constraints exist.

Our primary interest is whether the slope parameter 3, differsfrom the valuesimplied by
the linearized equation, i.e. B,=(p+1)/2=2. The OLS results, summarized in the top panel of
Table 3, indicate that the estimated values of 3, arein most cases biased down. Model A, using
the full sample, yields estimates of 3, with an average of .968 and a standard deviation of .389.
The top left panel of Figure 4 shows a histogram for the 300 OL S estimates of 3,, and indicates
that although there are many casesin which 3, islower than .5, in no case does it exceed 1.7.
The estimate of p implied by the average estimate of 3, is.936, less than one third of the true
value of 3. Theresultsfor Model B (full sample) indicate even more bias. The average estimate
of B, equal to .688 implies an estimate of p of .376, only 12.5% of the true value.

The OLS estimates aso perform badly when the sampleis split by wealth. For Model A,
the average estimate of 3, for the low-wealth sample is .864, lower than for the full sample. (The

histogram of estimates for this caseis shown in Figure 5.) Estimates for the high-wealth sample

®Dynan (1993) included the amount of interest and dividend income earned by the
household during the 12 months prior to the survey as a proxy for liquid asset holdings.
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are actually biased up: they all exceed 2, and imply on average avalue of p equal to 3.9. The
results for Model B are also yield estimates of p for the low-wealth sample that are lower than
for the high-wealth sample, although for both groups there is downward bias.

Do IV estimators perform better than OL S estimators? Results using the three different
instrument sets are in the second through fourth panels of Table 3, with histograms for each
column of the table in Figures 4 though 9. The results can be easily summarized: First, the three
sets of instruments produce very similar results. All of the instrument sets are good predictors of
variability in consumption growth. Furthermore, within each model and sample, the instrument
set makes little difference to the parameter estimates. Second, the IV estimates of 3, are
generaly larger than the OL S estimates. However, they are still biased down. For example, in
Model A, the average IV estimate of 3, (using the first instrument set) is 1.408, in contrast to the
average OL S estimate of .968. The IV resultsimply an estimate of p equal to 1.81, whichis
60% of the true value. (Note that because the variables in the first two instrument sets do not
vary over time, the full sample 1V estimates for Model A and Model B areidentical.) Third, the
use of instrumental variables reduces, but does not eliminate, differencesin the estimates of f3,
across the wealth groups. Using the first instrument set, the values of p implied by the results are
1.77 for the low wealth group, and 2.10 for the high wealth group.

A common method of cross-checking the plausibility of a set of instrumentsisto test any
overidentifying restrictions that have been made (for example, Dynan [1993]). We computed
chi-sguare tests of the null that the overidentifying restrictions are valid. The number of
rejections of the null were not frequent: they ranged from only 1 out of 300, to 45 out of 300

tests. We al so examined whether the instruments are correlated with the third (noncentral)
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moment in consumption growth. As discussed above, linearization of the Euler equation implies
that cubed consumption growth is one of the components of the error term in (10). When using
the full samplesfor Models A and B, the hypothesis that the instruments explained none of the
variation in cubed consumption growth was rejected in at least 235 out of 300 cases. In
particular, the estimation output of Model A (where there is atime series element to the sample)
using instrument set 3 (which includes lagged cash-on-hand) shows that, although lagged cash-
on-hand is agood predictor of expected consumption growth squared, it is also a good predictor
of expected cubed consumption growth, aterm that isincluded in the regression error of the
linearized equation. Consequently, that specification produces rejections of the hypothesis that
the instruments do not explain the variation in cubed consumption growth almost 100 percent of
the time, yet the OID tests are rejected only 144 times out of 300 in the full sample. The results
demonstrate that an inability to reject over identifying restrictions does not guarantee the validity
of aset of instruments.

In summary, Monte Carlo analysis demonstrates that OL S estimation of consumption
growth on uncertainty in consumption growth islikely to produce estimates of p that are biased
down, and that 1V estimation may eliminate some, but not al, of this bias. Recently, there has
been a growing interest in investigating the extent to which linearizing consumption Euler
equations might influence researcher’s ability to recover parameters, and it is useful to compare
our results to those of others.

Carroll (1997b) addresses this issue by simulating a model of individual consumer
behavior, solved for three alternative values of the interest rate, the rate of time preference, the

mean rate of permanent income growth, and the variances of permanent and transitory
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components of income growth. He creates household groups of equal population which vary
according to these parameter values, and then performs instrumental variables regressions of
consumption growth on consumption growth squared using dummy variables that indicate group
membership as instruments. In general, he finds afar greater degree of approximation biasin p
than we find, and both the magnitude and direction of bias he findsis highly dependent on the
empirical specification he analyzes. This may be due in part to the fact that he considers a
different model of consumer behavior than that which we investigate, one often referred to asa
"buffer stock™ model. It differs from the present framework by imposing an impatience
requirement: households prefer to do most of their consuming early in life.”

Other researchers have investigated the extent of biasin p in models that also differ from
ours, but find results that are closer to those we present. Laibson (1997) investigates a standard
buffer stock consumption model of the type considered by Carroll (1997a) and Deaton (1991)
and finds that the value of p implied by the linearized regression is about 80 percent of itstrue
value. Laibson, Repetto and Tobacman (1998) find that p is biased up by about 7 percent. While
these results are closer in magnitude to our own, it is not surprising that they vary to some degree
from our findings because there are meaningful differences between the model we consider and
those that Laibson (1997) and Laibson, Repetto and Tobacman (1998) investigate; both of those
studies investigate buffer stock behavior and so impose the impatience restriction. In addition,

those studies assume an first order autoregressive process for the level of income, rather than an

YThis requirement places arestriction on the values of key parameters--such as the
standard deviation of income growth, the rate of time preference relative to the real interest rate,
and the coefficient of relative prudence. This restriction makes the buffer stock model
considerably less general than the model considered here.
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MA(1) for the first difference of incom#&.

V. Conclusion

This paper investigates nonlinearities in dynamic Euler equations. We also study the extent to
which nonlinearities may induce bias in parameter estimates obtained when the estimating
equation is a linear approximation to the nonlinear equation. We find that, for some wealth and
income states, the Euler equation is sufficiently nonlinear that linearized approximations are
poor and may imply a value for the coefficient of relative prudence (or risk aversion) that is
lower than the true value. Simulation results confirm the prediction that ordinary least squares
regressions of consumption growth on uncertainty in consumption growth are likely to produce a
downward bias in the estimate @fMoreover, the degree of bias varies with wealth, with less
wealthy households displaying more downward bias. In addition, our results indicate that
researchers may be able to eliminate some, but not all, of the bias that would arise in ordinary

least squares estimation by instrumenting for consumption risk using education/occupation

8The differences in results between ours and Carroll’s may also be attributable to the
different estimators we consider. We have argued above that bias in the actual estimators will be
a function of both the estimation technique and the particular choice of instruments, implying
thatit is important that heterogeneity across simulated households mimic that found in true data.
Indeed, Carroll's results are quite sensitive to which set of group dummies he uses as
instruments. But because his instruments are not observed and are not benchmarked on the data,
it is difficult to know how the biases he finds may be translated into biases in practice. By
contrast, the Laibson, Repetto and Tobacman study follows an approach more similar to ours by
creating group dummies that are benchmarked to data and used in actual empirical studies: they
create three education groups by estimating their income process using the PSID over education
groups. This may explain why our results are in the same ball park as those of Laibson, and
Laibson, Repetto, and Tobacman despite the fact that we investigate different models of
consumer behavior.
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dummies.

Our findings help to resolve some puzzles in literature on consumption behavior. For
example, much of the empirical literature on precautionary saving suggests that incomerisk is an
important factor in determining how much wealth consumers hold or how much they save,
indicating that precautionary motives may be important. Y et studies which use linearized Euler
equations often find that uncertainty in consumption growth has very little impact on
consumption growth, suggesting that precautionary motives may be weak. Our results indicate
that approximation error is likely to result in measures of the degree of prudence that are biased
down. The analysis may also help explain why estimates of parameters of the utility function
(using micro-level data) often differ across sub-samples of the population, split according to
wealth or the degree of income uncertainty. Bias associated with the use of linear approximation
varies with wealth and income risk, so that what would appear to be genuine differencesin

behavior across sub-groups may be an artifact of approximation error.
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Appendix A: Estimation of income parameters.
1. Data definitions and sample selection

The sample was drawn from the 1972-1992 waves of the Panel Study of Income Dynamics. For
an observation to be included in the sample, an individual had to be a male head of household
between the ages of 25 and 55, inclusive, in the survey year. The individual also had to have
positive labor income, annual work hours that were positive but no greater than 4,680, have non-
missing occupation and education information, and have average hourly labor earnings (i.e.
annual labor earnings/annual hours) that were greater than or equal to $1 and less than or equal
to $100. (Money values are in 1985 dollars.) After these exclusions were made, individuals were
kept if they were in the sample for at least three contiguous years. The final sample had 43,067
observations on 5,567 individuals

The income measure used for the analysis was total labor income. Labor income is a variable
constructed by the PSID, and equals includes income from wages and salaries, bonuses,
overtime, commissions, a professional trade or practice, the labor components of farm and
business income, and income from roomers and boarders and market gardens.

The occupation measure is based on the question on “occupation on the main job.” Occupation
was given a 1-digit code in the early years of the survey (i.e. pre-1976), and the coding was then
altered to a 2-digit and then to a 3-digit code. The occupation measures from the later years were
recoded to be consistent with the earlier 1-digit measure; the possible occupation categories are
in Table 2. We then defined our measure of occupation to be the “major occupation,”, i.e. the
occupation in which the person worked the most number of years. Ties were broken by
allocating people to the “higher” of the occupations for which there was a tie, where “higher”
occupations are listed earlier in Table 2. There is a moderate amount of occupational change: of
the 5,567 people represented in the sample, 37.93 percent never changed occupation (so that
major occupation always equaled current occupation). However, only 27% had more than 2
changes in occupation, and for many of these the changes were back and forth between only 2
occupations. Within each occupation group, we classified people according to whether they had
less than 12 years of schooling, 12 years of schooling (i.e. a high school degree), and more than
12 years of schooling. The sample size did not permit classifying people into finer educational
categories.

2. Estimation methods
The model we estimated for the individuals in each occupation/education group was:
Vip = Aln(y,) -1 = € - be (A1)
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where it is assumed that the shocks €, are not correlated across time for individuals, have a zero
mean, and a constant variance of o”. Equation (A1), together with these assumptions, implies
that:

var(v,,) = o?(1+¢) (A2)
and

cov (Vi, Vi, 1) = ~do?. (A3)

We used the following strategy to estimate the parameters p, ¢, and ¢. First, following Abowd
and Card (1989), who worked with experience-adjusted wage measures, we first regressed the
change in the logarithm of labor income on a set of age dummies to sweep out age effects. (Since
all individuals in the group are in the same education category, the age effects are close to being
the same as experience effects.) We measured the growth term p as the intercept plus the age
effect for 30-year-olds, i.e. the average change in the logarithm of income at age 30. An
alternative would have been to measure u as the mean value of AIn(y,). Doing so would have

produced measures of p about half the value of the measures we used, but with the same ranking
of growth across different occupation/education groups.

Second, we used the residuals from the regression described above to construct estimates of

var (v,) and cov (V,V;,_,); these estimates are simply the averaged squared residual, and the
average of the residual times its lagged value. These were substituted into (A2) and (A3),
respectively, and we then solved for o* and ¢. The standard errors of these estimates were
obtained using the delta method. As discussed in the text, we used values of ¢ that are half of
those estimated, on the grounds that the estimates seem implausibly high, and are likely to reflect
measurement error. Measurement error in income that is i.i.d. should produce estimates of ¢ that
are also too high, i.e. income innovations will appear to be less persistent than they actually are.
We experimented with estimating 6* and ¢ under the assumption that income has an i.i.d.
measurement error component with a variance that is 1/4 the value of ¢*. This resulted in
plausible estimates of ¢* , but values of ¢ that were extremely low and, in one case (for
professionals with 12 years of school) negative. We decided that the most sensible strategy was
to use our original estimates, halving the estimate of c.
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The estimates and standard errors of the parameter estimated are listed in the following Table,
with standard errors in parentheses:

¢ c’

Professional, technical and kindred

12 years of education 0.1589 (0.523) 0.0940 (0.275)

more than 12 years of education 0.2878 (0.144) 0.0870 (0.031)
Managers (self-employed and employees)

12 years of education 0.3416 (0.1406) 0.1244 (0.038)

more than 12 years of education 0.3968 (0.090) 0.1083 (0.017)
Clerical and sales

less than 12 years of education 0.4068 (0.518) 0.0747 (0.056)

12 years of education 0.8093 (0.280) 0.0895 (0.019)

more than 12 years of education 0.3139 (0.214) 0.1427 (0.069)
Craftsmen and kindred

less than 12 years of education 0.3291 (0.165) 0.1541 (0.056)

12 years of education 0.3412 (0.118) 0.1157 (0.029)

more than 12 years of education 0.2737 (0.167) 0.1164 (0.055)
Operatives (transport and non-transport)

less than 12 years of education 0.4317 (0.142) 0.1169 (0.024)

12 years of education 0.3661 (0.111) 0.1157 (0.025)

more than 12 years of education 0.2991 (0.218) 0.1259 (0.070)
Laborers and service workers

less than 12 years of education 0.5626 (0.149) 0.1317 (0.022)

12 years of education 0.4642 (0.162) 0.1750 (0.046)

more than 12 years of education 0.2633 (0.247) 0.2066 (0.163)
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Table 1 : Comparisons of linearized and true consumption growth functions
Time period Baseline 0 =.125 $=.30 p=4 r=.05 p=.01

Weighted averages of ratio of true slope to linearized slopep(i#el)((p+1

~—

18 0.865 0.943 0.799 0.771 0.840 0.869
21 0.860 0.944 0.796 0.775 0.840 0.870
24 0.858 0.944 0.799 0.777 0.837 0.866
27 0.857 0.945 0.796 0.770 0.837 0.866
30 0.858 0.947 0.793 0.770 0.836 0.867
33 0.857 0.947 0.796 0.766 0.835 0.865
36 0.852 0.950 0.796 0.765 0.831 0.861
39 0.854 0.945 0.788 0.750 0.830 0.858
42 0.846 0.940 0.788 0.745 0.830 0.853
45 0.840 0.930 0.774 0.735 0.824 0.847
48 0.830 0.915 0.757 0.731 0.817 0.838
51 0.821 0.899 0.737 0.704 0.809 0.828
54 0.808 0.882 0.643 0.673 0.799 0.814
57 0.763 0.839 0.680 0.643 0.762 0.787

Ratio of p” to p

18 0.820 0.924 0.732 0.714 0.787 0.826
21 0.813 0.926 0.729 0.718 0.787 0.826
24 0.810 0.925 0.731 0.721 0.783 0.821
27 0.809 0.926 0.728 0.713 0.783 0.821
gg 0.811 0.930 0.725 0.713 0.781 0.822
% 0.809 0.929 0.728 0.708 0.780 0.820
29 0.803 0.933 0.729 0.706 0.774 0.814
19 0.805 0.927 0.717 0.687 0.773 0.811
45 0.795 0.920 0.717 0.681 0.773 0.804
48 0.786 0.906 0.699 0.668 0.765 0.796
51 0.773 0.887 0.676 0.664 0.756 0.784
54 0.761 0.865 0.649 0.630 0.746 0.771
57 0.745 0.843 0.525 0.591 0.732 0.752

0.685 0.786 0.574 0.554 0.682 0.716

Notes: The parameters for the baseline case are: 6=.20, p=3, $=.44, r=.03 and p=.02. The
method of computing weighted averages is described in the text. The results are from a model
with T=60.
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Table 2: Descriptive statistics and parametric

assumptions

(9,000,000 obervations on 300,000 "individuals', 30 years per individual)

<12 years 12 years school >12 years school
school
Professional, technical and kindred
u 0.047 0.082
o 0.153 0.147
¢ 0.159 0.288
% sample 1.40 14.46
Mean and (Std.dev.) din(c,) .0497 (.173) .0796 (.225)
Mean and (Std.dev.) akln(c,)]? .0325 (.051) .0571 (.298)
Managers (self-employed and employeeg)
M 0.027 0.056
o 0.176 0.165
¢ 0.342 0.397
% sample 3.95 9.90
Mean and (Std.dev.) ain(c,) .0294 (.137) .0507 (.129)
Mean and (Std.dev.) aklh(c,)]? .0196 (.026) .0338 (.112)
Clerical and sales
u 0.038 0.038 0.053
o 0.137 0.150 0.188
¢ 0.407 0.809 0.314
% sample 0.93 3.22 5.89
Mean and (Std.dev.) ain(c,) .0250 (.129) .0016 (.064) .0581 (.187)
Mean and (Std.dev.) aklh(c,)]? .0172 (.057) .0041 (.012) .0383 (.071)
Craftsmen and kindred
M 0.024 0.025 0.034
o 0.196 0.170 0.171
[0} 0.329 0.341 0.273
% sample 6.29 12.92 6.48
Mean and (Std.dev.) ain(c,) .0324 (.144) .0264 (.132) .0374 (.152)
Mean and (Std.dev.) aklh(c,)]? .0216 (.029) .0180 (.024) .0245 (.034)
Operatives (transport and non-transport)
u 0.020 0.025 0.047
o 0.171 0.170 0.177
0.432 0.366 0.299
% sample 6.93 9.83 3.25
Mean and (Std.dev.) ain(c,) .0191 (.115) .0254 (.129) .0495 (.173)
Mean and (Std.dev.) akln(c,)]? .0137 (.018) .0173 (.032) .0326 (.062)
Laborers and service workers
M 0.046 0.048 0.050
o 0.182 0.210 0.220
0.563 0.464 0.263
% sample 5.39 5.80 3.36
Mean and (Std.dev.) ain(c,) .0342 (.147) .0492 (.174) .0631 (.197)
Mean and (Std.dev.) aklh(c,)]? .0228 (.065) .0325 (.087) .0247 (.062)
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Table 3: Monte Carlo results

Model A Model B
2 T T
Yy = B+ B1CYy + € iz cg, = By+ Bllz Cgit2 +y,
T T
full low high full low high
samp. wealth | wedth | samp. wealth wealth
Obs per regression 29,000 14,500 | 14,500 | 1,000 500 500
# samples drawn 300 300 300 300 300 300
OLS estimates
Average estimate of {3, 0.0145 0.0223 | -0.0201 | 0.0225 0.0345 0.0038
Average estimate of 3, 0.968 0.864 2461 0.688 0.514 1.299
Standard deviation of 0.389 0.349 0.036 0.233 0.188 0.232
estimate of 3,
# rejections of 3,=(p+1)/2 300 300 300 300 300 299

IV, Instrument Set 1: 15
occupation/education

dummies

Average estimate of f3, 0.0016 0.0026 | -0.0014 | 0.0016 0.0026 -0.0003
Average estimate of 3, 1.408 1.383 1551 1.408 1.383 1.494
Standard deviation of 0.128 0.147 0.174 0.128 0.151 0.189
estimate of 3,

# rejections of 3,=(p+1)/2 300 300 245 300 300 265
#times OID test isrejected 25 18 18 13 1 44

# rgjections instruments are 300 297 300 300 296 300
jointly insignificant

#rejections instruments are 250 183 300 265 117 216

jointly insignifcant in a
regression of consumption
growth cubed on instruments
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Table 3 (continued)

Model A Model B
2 T T
Cy = Bo+B1CY; + € 1 1 2
=Y co,=PB-+B,=) cqg. +V
th:; glt ﬁO Bl Tt2:1: glt i
full low high full low high

samp. wealth wealth samp. wedlth wealth

IV, Instrument Set 2: 6
occupation and 3 education

dummies
Average estimate of 3, 0.0018 0.0031 -0.0016 0.0018 0.0029 -0.005
Average estimate of {3, 1.401 1.371 1.559 1.401 1.375 1.503

Standard deviation of estimate of | 0.130 0.151 0.189 0.130 0.153 0.190
B,

# rejections of 3,=(p+1)/2 300 300 222 300 300 258
(5% level)

#times OID test isrejected (5% | 27 11 24 27 4 34

level)

# rejections instruments are 300 298 300 300 298 300

jointly insignificant

#regjections instruments are 271 216 300 235 110 215

jointly insignifcant in aregression
of consumption growth cubed on
instruments

IV, Instrument Set 3: 6 occ, 3 ed
dummies and lagged

assetg/income
Average estimate of f3, 0.0046 | 0.0095 |-0.0016 |0.0017 | 0.0029 | -0.0004
Average estimate of 3, 1.304 1.203 1.559 1.403 1.375 1.501

Standard deviation of estimate of | 0.159 0.181 0.189 0.130 0.155 0.190
B.

# rejections of 3,=(p+1)/2 300 300 220 300 300 259
(5% level)

#times OID test isregjected (5% 144 101 20 21 5 28

level)

# rgjections instruments are 300 300 300 300 298 300

jointly insignificant

#rejections instruments are 299 300 300 255 113 209

jointly insignifcant in
regression of consumption
growth cubed on instruments
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Figure 1: Baseline case, t=30, income states 1, 5 and 10
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Figure 2: Baseline case, k=5, selected years
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baseline =125

P= r =.05

Figure 3: Deviations from baseline case, t=30, state=5
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OLS IV, set 1

Figure 4: Distribution of OLS and 1V estimates of 3,, Model A, full sample
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OLS IV, set 1

Figure 5: Distribution of OLS and 1V estimates of 3,, Model A, low-wealth sample
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Figure 6: Distribution of OLS and IV estimates of 3,, Model A, high wealth sample
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Figure 7: Distribution of OLS and IV estimates of 3,, Model B, full sample



OLS IV, set 1

Figure 8: Distribution of OLS and IV estimates of 3,, Model B, low wealth sample
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Figure 9: Distribution of OLS and IV estimates of 3,, Model B, high wealth sample
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