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I. Introduction

The purpose of this note is to present a compact and easily understood exposition of a
convenient and practical procedure for solving linear rational expectations (RE) models. The
procedure, which is applicable to a class of modéls that is broad enough to include most cases of
practical interest, can be implemented by means of a MATLAB routine provided by Paul Klein
(1997).! The present exposition departs from Klein’s, however, by relying upon the elementau"y
undetermined-coefficients (UC) approach discussed in McCallum (1983). Indeed, the current
exposition can be viewed as only an extension of the appendix to this last paper. It is, however,
an extension that is nontrivial and essential for practical purposes. Here it is accomplished by
use of the generalized Schur decomposition theorem discussed by Klein. The UC reasoning
utilized in the present paper is much more elementary mathematically than Klein’s and in

addition is useful for consideration of alternative criteria for the selection of a single RE solution.

2. Undetermined Coefficient Setup

Let y, be a Mx1 vector of non-predetermined endogenous variables, k, be a Kx1 vector of
predetermined variables, and u, be a Nx1 vector of exogenous variables. The model can then be

written as

(1) Ay Ey. =By, + Bk + Cu,

2) u, = Ru,, +¢

' Klein’s (1997) approach builds upon earlier contributions of King and Watson (1995) and Sims (1996). Other
significant recent contributions are Uhlig (1997) and Binder and Pesaran (1995), which use UC analysis. The Uhlig
paper also features a useful procedure for linearizing models that include nonlinear relationships.



where A,, and B,, are square matrices while ¢, is a Nx1 white noise vector.” Thus v, is formally a
first-order autoregressive process, which can of course be defined so as represent AR processes
of higher orders for the basic exogenous variables. Also, for the predetermined variables we

assume

(3) Ky = By, + Bpk + Couy,

If only once-lagged values of y, were included in k,, then we would have B,, =1, B,, =0, and
C, = 0, but the present setup is much more general. Crucially, the matrices A,;, B,,, and B,, may
be singular.

In this setting a UC solution will be of the form

4 y=Qk+TIy

(5) kt+1 = Hlkt + qut’

where the Q, T, I'1,, and I, matrices are real. Therefore, Eyy,,, = QEk,,, + ['Eu,,, = Q(I1 k+1u)

+ I'Ru,. Substitution into (1) and (3) then yields

2 Here Ey,., is the expectation of y,,, conditional upon an information set that includes all of the model’s variables
dated t and earlier.



6)  Au[QULk+Tu) +T'Ru] =B [Qk+Tu] + Bk + Cy,
and

0 (I k) = By (Qk+Twy) + Byk, + Cou,

Collecting terms in k,, it is implied by UC reasoning that

o (R
0 I|| 13, B, B, |1

whereas the terms in v, imply

® AQIL+A,TR=B, I+,

(10y IL,=B,I+C,.

3. Solution

Let A and B denote the two square matrices in (8), and assume that I B-AA| is nonzero for

some complex number A. This last condition will not hold if the model is poorly formulated

(i.e., fails to place any restriction on some endogenous variable}; otherwise it will be satisfied

even with singular A,,, B,,, B,,.> Then the generalized Schur decomposition theorem guarantees

the existence of unitary (therefore invertible) matrices Q and Z such that QAZ =S and QBZ =T,

} See King and Watson (1995) or Klein (1997).



where S and T are triangular.* The ratios ty/s; are generalized eigenvalues of the matrix pencil
B - AA;’ they can be rearranged without contradicting the foregoing theorem. Such
rearrangements correspond to selection of different UC solutions as discussed in McCallum
(1983, pp. 145-147 and 165-166). We shall return to this topic in Section 4; for the moment let
us assume that the eigenvalues t,/s; (and associated columns of Q and Z) are arranged in order of
their moduli with the largest values first.

Now premultiply (8) by Q. Since QA = SH and QB = TH, where H = Z'!, the resulting

equation is

SZI SZZ HZI H22 1—II T21 T22 Hzl H22 I
and its first row can be written as
(12) S, (H, Q+H)IT, = T, (H,)Q+H,,).

The latter will be satisfied for Q such that

13y Q= 'HillHu = 'Hiil(— HnZuZ;) = Z|2Z'2‘2 ,

* See Golub and Van Loan (1996, p. 377).

5 Or, in the terminology used by Uhlig (1995), are eigenvalues of B with respect to A.



where the second equality results because HZ = 1. Thus we have a solution for Q, provided that

-1 : 3
7, exists.

Next, writing out the second row of (11} we get

(14)  Sy(HyQHH)IT, + Syy(Hy Q+H,,) T = Ty, (Hy Q+H ) + Ty(Hy Q4 Hy).

Then using (13) and HZ =1 we can simplify this to

(15) Sy Z-zlz I1, =Ty Z-zlz

so since S, exists by construction ’ we have

(16) [II,=Zy Szlz Ty Z-zlz-

To find I" and IT, we return to (9) and (10). Combining them we have

(17) Gr+A,[R=F

¢ This is the same condition as that required by Klein (1997, p. 13} and King and Watson (1995, pp. 9-11). It
appears to provide no difficulties in practice. The King and Watson example of a system in which the condition
does not hold is one in which B,, = 0 in my notation so the MSV solution has 2 = 0 and the other solution matrices
follow easily.

? By the arrangement of generalized eigenvalues, S,, has no zero elements on the diagonal (and is triangular).



where G = A,,QB,, - By and F = C, - A,,QC,. If G exists, which it typically will with

nonsingular B,,, the latter becomes

(18) T'+G'A,TR=G'F.

This can be solved for " by the steps given in McCallum (1983, p. 163) or can be obtained as

(19)  vee(T) = [[ + R®G']" vee(G'F),

as in Klein (1997, p. 28).® Finally, I, is obtained from (10). In sum, the UC solution for a given

ordering of the eigenvalues is given sequentially by equations (13), (16), (19) and (10).

4. Solution Criteria

Different values of ), and thus different solutions, will be obtained for different
orderings of the generalized eigenvalues t;/s;. What ordering should be used to obtain the
economically relevant solution? Many writers, following Blanchard and Kahn (1980), arrange
them in order of decreasing modulus and conclude that a unique solution obtains if and only if
the number with modulus less than 1.0 (“stable roots”) equals K, the number of predetermined

variables. The minimal-state-variable (MSV) procedure of McCallum (1983), by contrast, is to

choose the arrangement that would yield Q = 0 if it were the case that B, = 0—this step relying

® This uses the identity that if A, B, C are real conformable matrices, vec(ABC) = (C®A) vec(B). See Golub and
Van Loan (1996, p. 180).



upon the continuity of eigenvalues with respect to parameters.” Uhlig (1997, p. 17) correctly
notes that this procedure is difficult to implement and also that in most cases it will lead to the
same solution as the Blanchard-Kahn stability criterion. Adoption of the decreasing-value
arrangement will therefore usually be attractive, even for MSV adherents. In such cases it seems
unnecessary, however, to limit one’s attention to problems in which there are exactly K stable
roots. If there are fewer than K stable roots, the MSV criterion would produce a single explosi{/e
solution whereas if there are more than K stable roots, it would yield the single stable solution
that is bubble-free—both of these being solutions that may be of particular scientific interest. In
those exceptional cases in which an MSV analyst suspects that the Blanchard-Kahn and MSV
criteria would call for different solutions, he/she could plot eigenvalues for various values of B,
and then adjust the ordering if necessary. But usually the decreasing-value arrangement will be

appropriate.

® With B, = 0, k, does not appear in the system (1) (2), so k, represents extraneous variables of a bootstrap, bubble,
or sunspot nature.
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