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ABSTRACT

This paper introduces an instrumental variables estimator for the effect of a binary treatment
on the quantiles of potential outcomes. The quantile treatment effects (QTE) estimator
accommodates exogenous covariates and reduces to quantile regression as a special case when
treatment status is exogenous. Asymptotic distribution theory and computational methods are
derived. QTE minimizes a piecewise linear objective function for which a local minimum can be
obtained using a modified Barrodale-Roberts algorithm. The QTE estimator is illustrated by

estimating the effect of childbearing on the distribution of family income.
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1. INTRODUCTION

Understanding the effect of an event or intervention on distributions of outcomes is of
fundamental importance in many areas of empirical economic research. A leading example
in labor economics is the impact of union status on the distribution of earnings. Ome
of the earliest studies of the distributional consequences of unionism is Freeman (1980),
while more recent studies include Card (1996), and DiNardo, Fortin, and Lemieux (1996),
who have asked whether changes in union status can account for a significant fraction of
increasing wage inequality in the 1980s. Another application where distribution effects are
important is the range of government training programs funded under the Job Training
Partnership Act (JTPA). Policy makers hope that subsidized training programs will work
to reduce earnings inequality by raising the lower deciles of the earnings distribution and
reducing poverty (Lalonde (1995), US Department of Labor (1995)).

Although the importance of distribution effects is widely acknowledged, most evaluation
research focuses on mean outcomes, probably because the statistical techniques required
to estimate effects on means are easy to use. Many econometric models also implicitly
restrict treatment effects to operate in the form of a simple “location shift”, in which
case the mean effect captures the impact of treatment at all quantiles.' Of course, the
impact of treatment on a distribution is easy to assess when treatment status is assigned
in controlled randomized trials and there is perfect compliance with treatment assignment.
Because randomization guarantees that individual outcomes in the treatment group are
directly comparable to those of individuals the control group, valid causal inferences can be
obtained by simply comparing the distributions of interest in treatment and control groups.
The problem of how to draw inferences about distributions in observational studies with
non-ignorable or non-random assignment is more difficult, however, and has received less

attention.?

ITraditional simultaneous equations models and the two-stage least absolute deviation estimators in-
troduced by Amemiya (1982) and Powell (1983) fall into this category.

2Discussions of average treatment effects include Rubin (1977), Rosenbaum and Rubin (1983), Heckman
and Robb (1985), and Imbens and Angrist (1994). Heckman, Smith and Clements (1997), Manski (1994),
Imbens and Rubin (1997) and Abadie, (1997a) discuss effects on distributions.



In this paper, we show how to use a source of exogenous variation in treatment status -
an instrumental variable — to estimate the effect of treatment on the quantiles of the distri-
bution of the outcome of interest in non-randomized studies (or in randomized studies with
imperfect compliance). The treatment effects in this framework are only identified for a
subpopulation. We refer to individuals in this subpopulation as compliers because in ran-
domized trials with partial compliance, these are people who comply with the treatment
protocol.®> More generally, the subpopulation of compliers consists of individuals whose
treatment status can be changed by the instrument. The identification results underlying
this local average treatment effects (LATE) approach to instrumental variables (IV) mod-
els were first established by Imbens and Angrist (1994) and Angrist, Imbens, and Rubin
(1996). Imbens and Rubin (1997) extended these results to the identification of the effect
of treatment on the distribution of outcomes for compliers, although they did not develop
simple estimators, or a scheme for estimating the effect of treatment on quantiles.

We demonstrate our approach to estimating quantile treatment effects (QTE) in an
empirical example based on Angrist and Evans (1998), who use the sex composition of the
first two siblings as an instrument for the effect of having a third child on labor supply and
earnings. This instrument is based on well-documented parental preferences for a mixed
sibling sex composition. In particular, parents of two boys or two girls are significantly and
substantially more likely to have a third child than parents of a boy-girl pair. Since sex is
virtually randomly assigned at birth, it seems unlikely that an indicator for same-sex sibling
pairs is associated with parents’ labor market outcomes for reasons other than changes in
family size. Angrist and Evans’ IV estimates show that childbearing reduces labor supply
and earnings much more for some groups of women than for others, so it is interesting to
consider the effect of childbearing on the distribution of family income. The QTE estimates

reported here show that childbearing reduces family income at all quantiles below 0.9, with

3See, e.g., Bloom et al. (1997, p. 555}, who discuss instrumental variables estimation of average effects
for compliers (treatment group members who would not have enrolled if assigned to the control group) in
their analysis of the Job Training Partnership Act. An alternative approach develops bounds on average
treatment effects for the overall population rather than focusing on compliers. See Manski (1990), Robins
(1989) or Balke and Pearl (1997).



effects at low quantiles larger than those estimated using quantile regression.

The paper is organized as follows. Section 2 presents a lemma that provides a foun-
dation for the identification of quantile treatment effects. Section 3 outlines the QTE
estimation strategy, which allows for a binary endogenous regressor and reduces to the
standard Koenker and Basset (1978) approach when the regressor is exogenous. This
section also presents distribution theory based on empirical processes (for a review, see
Andrews (1994)). Section 4 discusses the empirical example. The QTE estimator can
be computed by minimizing a piecewise linear objective function using a modification of
the Barrodale-Roberts algorithm widely used for quantile regression (see, e.g., Buchinsky
(1994) and Chamberlain (1991)). Details related to the computation of estimates and the

estimation of asymptotic standard errors are discussed in appendices.

2. CONCEPTUAL FRAMEWORK

Throughout the paper, the setup is as follows. The data consist of n observations on a
continuously distributed outcome variable, Y, a binary treatment indicator D, and a binary
instrument, Z. For example, in a study of the effect of unions, Y is a measure of wages or
earnings, D indicates union status, and Z is an instrument for union status, say a dummy
indicating individuals who work in firms that were subject to union organizing campaigns
(Lalonde, Marschke and Troske (1996)). Another example is the Angrist (1990) study of
effects of veteran status, where Y is annual earnings, D indicates veteran status, and £
is an indicator of draft-lottery eligibility. In Angrist and Evans (1998) and the empirical
example used here, Y is log family income in families with 2 or more children, I? indicates
families with more than two children, and Z indicates families where the first two children
are of the same sex. We also allow for an A x 1 vector of covariates, X.

As in Rubin (1974, 1977) and earlier work on instrumental variables estimation of causal
effects (Imbens and Angrist (1994), Angrist, Imbens, and Rubin (1996)), we define the
causal effects of interest in terms of potential outcomes. In particular, we define potential

outcomes indexed against Z and D, Yzp, and potential treatment status indexed against



Z, Dz. Potential outcomes describe possibly counterfactual states of the world. Thus, D,
tells us what value D would take if Z were equal to 1, while Dy tells us what value D would
take if Z were equal to 0. Similarly, Y, tells us what someone’s outcome would be if they
have Z = z and D = d. The objects of causal inference are features of the distribution of
potential outcomes, possibly restricted to particular subpopulations.

The observed treatment status is:
D:D0+(D1—D0)Z

In other words, if Z = 1, then D, is observed, while if Z = 0, then D) is observed. Likewise,

the observed outcome variable is:
Y = [Yoo + (Yor — Yoo) - Do) - (1 — Z) + [Yio + (Y11 — Yio) - Dy] - Z. (1)

The reason why causal inference is difficult is that although we think of all possible coun-
terfactual outcomes as being defined for everyone, only one potential treatment status and

one potential outcome are ever observed for any one person.*

2.1. PRINCIPAL ASSUMPTIONS

The principal assumptions underlying the potential outcomes framework for IV are stated

below:
Assumption 1 With probability one,

(i) (INDEPENDENCE) (Y11, Y10, Yo1, Yoo, D1, Do) is jointly independent of Z given X.

(ii) (ExcLusioN) P(Yip =Yyp|X) = 1.

4The idea of potential outcomes appears in labor economics in discussions of the effects of union status.
See, for example, Lewis’ (1986) survey of research on union relative wage effects (p. 2):

At any given date and set of working conditions, there is for each worker a pair of wage
figures, one for unionized status and the other for nonunion status. Unfortunately, only one
wage figure is observable, namely, that which corresponds to the worker’s actual union status
at the date. The other wage figure must be estimated, and the estimation task is formidable.



(iii) (NON-TRIVIAL ASSIGNMENT) P(Z = 11X) € (0,1).
(iv) (FIrRsT-STAGE) E[D1|X] # E[Do| X].
(v) (MoxoroNniciTY) P(D; > Dyl X) = 1.

Assumption 1(ii) means we can define Yp = Yip = Yop, and this is the notation we
use in the remainder of the paper. The random variable Y; represents potential outcomes
if treated, while Y represents potential outcomes if not. Assumptions 1(i) and 1(ii) are
analogous to the conventional instrumental variables assumptions of instrument-error in-
dependence and an exclusion restriction. Assumption 1(i) can be thought of as saying that
Z is “as good as randomly assigned” given X. Assumption 1(ii) means that the only effect
of Z on Y is through D.

Assumption 1(iii) requires that the conditional distribution of the instrument not be
degenerate. The relationship between instruments and treatment assignment is restricted
in two ways. First, as in simultaneous equations models, we require that there be a rela-
tionship between D and Z; this is stated in Assumption 1(iv). Second, Imbens and Angrist
(1994) have shown that Assumption 1(v) guarantees identification of a meaningful average
treatment effect in any model with heterogeneous potential outcomes that satisfies 1(i)-
1(iv). This monotonicity assumption means that the instrument can only affect D in one
direction. Monotonicity is plausible in most applications and it is automatically satisfied
by linear single-index models for treatment assignment.®

The inferential problem in evaluation research requires a comparison of observed and
unobserved outcomes. For example, many evaluation studies focus on estimating the dif-
ference between the average outcomes of the treated (which is observed) and what this

average would have been in the absence of treatment (which is counterfactual). Outside

5A linear single-index model specification for participation is

1 ifX+Z -2 —n>0,

D=YX+Z-X—1n> 0} = { 0 otherwise,

where Ag and A; are parameters and 7 is an error term that is independent of Z. Then Dy = 1{Xo > 7},
Dy =1{X + A1 > n}, and either Dy > Do or Do 2> D, for everyone.



of a randomized trial, the difference in average outcomes by observed treatment status is
typically a biased estimate of this effect:
E[Vi|D = 1] - E[Yo}D = 0] = {E[Vi|D = 1] - E[Y,|D = 1]}
+{E[}o|D = 1] - E[¥,|D = 0]}.
The first term in brackets is the average effect of the treatment on the treated, which can
also be written as E[Y; — Yp|D = 1] since expectation is a linear operator; the second is the
bias term. For example, comparisons of earnings by union status are biased if the average
earnings of nonunion workers do not provide a guide as to what the average earnings of
union members would have been if they had not been unionized.
An instrumental variable solves the problem of identifying causal effects for a group
of individuals whose treatment status is affected by the instrument. The following result

(Imbens and Angrist (1994)) captures this idea formally:

Theorem 1 Under Assumption 1 (and assuming that the relevant expectations are finite)

E[Y|Z =1,X]~ E[Y]|Z =0, X]
E[D|Z=1,X)- E[D|Z =0, X]

= E[Y'l — YE]'X, Dl > D(]]

The parameter identified in Theorem 1 is called Local Average Treatment Effect (LATE).
We refer to individuals for whom D; > Dy as compliers because in a randomized clinical
trial with partial compliance, this group would consist of individuals who comply with the
treatment protocol whatever their assignment. In other words, the set of compliers is the
set of individuals who were affected by the experiment induced by Z. Note that individuals
in this set cannot usually be identified (i.e., we cannot name the people who are compliers)
because we never observe both D; and Dy for any one person. On the other hand, we can

identify certain individuals as non-compliers, as will be shown below.®

6In the special case when Dy = 0 for everyone, such as in a randomized trial with non-compliance in
the treatment group only, all treated units {i.e. units with D = 1) are compliers. In such cases, LATE is
the effect of treatment on the treated {Imbens and Angrist (1994)).



9.9. TREATMENT STATUS IS IGNORABLE FOR COMPLIERS

The purpose of randomization is to ensure that treatment assignment is independent of
potential outcomes, possibly after conditioning on some covariates. Independence of treat-
ment and potential outcomes is sometimes called ignorable treatment assignment (Rubin
(1978)). Ignorability implies that differences in the distribution of outcomes by treatment
status can be attributed to the treatment. Although we have assumed that the instruments
are independent of potential outcomes, the actual treatment received is not ignorable. Nev-
ertheless, Theorem 1 shows that instrumental variables methods identify an average causal
effect for the group whose treatment status is affected by the instrument, the compliers.
The compliers concept is the heart of the LATE framework and provides a simple
explanation for why instrumental variables methods work in this context. To see this,
suppose initially that we could know who the compliers are. For these people, Z=D, since
it always true that D; > Dp. This observation plus Assumption 1 leads to the following

lemma:

Lemma 1 Given Assumption 1 and conditional on X, the treatment status, D, is ignorable

for compliers: (Y1, Ys) L D|X, Dy > Dy.

This follows from Assumptions 1(i) and 1(ii), because these assumptions imply that (Y7, Yo,
Dy, D) T Z|X, s0 (Y1, Ye) L Z|X, Dy = 1,Dp = 0. When D, =1and Dy =0, D can be
substituted for Z.

A consequence of Lemma 1 is that, for compliers, comparisons of means by treatment

status produce LATE even though treatment assignment is not ignorable in the population:
E[Y|D=1,D, > Dy, X| - E[Y|D=0,D; > Do, X] = E[Y1 — Y| X, Dy > Dy). (2)

Of course, as it stands, Lemma 1 is of no practical use because the subpopulation of
compliers is not identified. The reason is that we cannot observe Dy and D for the same

individual. To make Lemma 1 operational, we begin by defining the following function of



D, Z and X:

B B D-(1-2) Z-(1-D)
5~5(D,Z,X)—1—1_E[ZIX]— EZIX] (3)

Note that & equals one when D = Z, otherwise x is negative. This function is useful

because it “identifies compliers” in the following average sense (Abadie (1997b)):

Lemma 2 Let ¢(Y, D, X) be any measurable real function of (Y,D, X). Then, given As-

sumption 1,

E[s-(Y,D,X)] _
P(Dy > Dy) = E[W(Y, D, X)|D1 > Dy).

To see this, define two groups in the population besides compliers: always-takers are
individuals who have D, = D, = 1, while never-takers have D; = Dy = 0. Because of
monotonicity, the expectation of ¢ given X can be written in terms of expectations for
compliers, always-takers, and never-takers as follows:

E[¥|X] = E[¥|X, Dy > Dy] - P(Dy > Dy|X)
+ E[¢|X,D, = Dy =1]- P(Dy = Dy = 1|X)
+ E[|X,D, =Dy =0]- P(D, = Dy = 0| X).

Rearranging terms gives,

1
E[y|X, D1 > Do} = P, > D0|X){E[w|X] — E[$|X, Dy = Dy = 1]- P(D1 = Do = 1|X)

_ E[¢|X, Dy = Dy = 0] - P(Dy = Dy = 0]X)}.

(4)
Now, by monotonicity we know that all individuals with Z = 0 and D = 1 must be never-
takers. Likewise, those with Z = 0, D = 1 must be always-takers. Moreover, since Z is
ignorable given X, we have
EW|X,Dy=Dy=1]=E[W|X,D=1,Z= 0]

1 [D-(1~Z)

T P(D=1X,Z=0) Elpz=ox

-«piX],



and
EW|X,Dy =Dy = 0l=E[@X,D=0,Z = 1]

_ 1 .E[(1~D)-Z.
CPD=0|X,Z2=1) P(Z =1]|X)

]
Monotonicity and ignorability of Z given X can also be used to identify the proportions of

always-takers and never-takers in the population

P(D, =Dy =1|X)=P(D=1|X,Z =0),

P(D, = Dy =0|X)=P(D=0|X,Z =1).

Next plug these results into equation 4, and manipulate to obtain

] - 1 D-(1-2) 1-D)-Z
BI¢IX, Dy > Dol = prp—porsy P [(1‘ P(Z=0]X) P(Z= 1!X)) 'Q/)]X] |

Applying Bayes’ theorem and integrating over X completes the argument.

This derivation shows how monotonicity and ignorability of Z identify expectations
for compliers. Monotonicity allows us to divide the population into three subpopulations:
compliers, always-takers and never-takers. The average ¢ for compliers is then expressed
as a function of the average 1 in the pbpulation and the correspondent averages for always-
takers and never-takers. Finally, ignorability of Z can be used to identify expectations for
always-takers and never-takers, so the same expectations are also identified for compliers.

An implication of Lemma 2 is that any statistical characteristic that uniquely solves a
moment condition involving (Y, D, X) is identified for compliers. This point is explored in
detail in Abadie (1997b).” In next section, Lemma 2 is used to identify the causal effect of

a treatment on the quantiles of ¥; and Y].

"For example, if we define u and a as
(p, @) = argming,, ., E[(Y —m — aD)?|Dy > Dy),

then, 4 = E[Yo|Dy > Dy|, and o = E[Y, — Y5|Dy > Do), so that « is LATE (although g is not the
same intercept that is estimated by conventional IV methods). By Lemma 2, (g,a) also minimizes
Elc- (Y —m—aD)?].



3. QUANTILE TREATMENT EFFECTS

3.1. THE QTE MODEL

Just as conventional IV estimators specialize to ordinary least squares (OLS) in the case
where treatment status is an exogenous variable, the QTE estimator is designed so that it
collapses to conventional quantile regression (Koenker and Bassett (1978)) when there is no
instrumenting. This is accomplished by using a model that restricts the effect of covariates
on quantiles to be linear and additive at each quantile.®

Assume that the conditional quantiles of the potential outcomes for compliers can be

written as

QB(S/O‘Xv Dl > DO) = X’ﬁﬂa

(5)
QG(Y’I|X7 Dl > DO) = g +X’ﬁ9:

where 6 is a quantile index in (0,1). Recall that ¥ = D - Y1 + (1-D)-Y,. By Lemma 1,
D is independent of (Yy,Y:) given X and D; > Dy. The conditional quantile function of

Y given D and X for compliers can therefore be written:
Qe(Y|X,D, D1 > Dy) = agD + X'Be.

Note that the parameter of primary interest in this model, ay, gives the difference in
0-quantiles of ¥} and Y, and not the quantiles of the difference (Y; — Yp). Although, the
procedure outlined here can be used to learn whether a training program causes the 10th
percentile of the distribution of earnings to move up, we cannot know whether people who
were originally at the 10th percentile experienced an increase in earnings. We focus on the
marginal distributions of potential outcomes because it is these that would be identified
by a randomized trial conducted in the complier population. The parameters revealed
by an actual experiment seem like a natural benchmark for identification in observational

studies. Also, economists making social welfare comparisons typically use differences in

8For expositiona! purposes, we follow most of the literature on guantile regression and treat the linear
model as a literal specification for conditional quantiles. However, the standard errors derived below are
robust to misspecification. Chamberlain (1991) discusses quantile regression maodels where the linear model
is viewed as an approximation.

10



distributions and not the distribution of differences (see, e.g., Atkinson (1970)).°
The parameters of the conditional quantile functions in (5) can be expressed as (see

Bassett and Koenker (1982)):
(g, Pp) = argming, 5 E[pg(Y — oD — X'B8)| Dy > Dy),

where pp(A) is the check function, i.e., pp(A) = (# — 1{\ < 0}) - A for any real \. Because
compliers are not identifiable, we cannot use this formulation directly to estimate o, and

B9. However, by Lemma 2, oy and 8y can be defined as

(g, B) = argming, 5 E[k - pg(Y — aD — X'B)).
Assume now that we have a random sample {y;, d;, z;, z}71. Then, following the analogy
principle (Manski (1988)) we can estimate the parameters of interest by

n
(Gg, Ba) = argming, g, Z ki - poly: — ad; — x303). (6)
i=1

Note that when the treatment is assumed to be ignorable and D itself is used as an in-
strument, then k; = 1 for all ¢ = 1, ..., 7 and the problem above simplifies to conventional
quantile regression.

It remains to discuss minimization of equation (6) in practice. Following Powell’s (1994)
approach to a similar weighted quantile regression problem, we first estimate E(Z;|X;) and
then plug this estimate into x;. The minimization is then accomplished using a modification
of the Barrodale-Roberts (1973) algorithm for quantile regression that exploits the quasi -
Linear Programming (LP) nature of this problem. Results were checked using the Nelder-

Mead algorithm. Details are given in Appendix II.

3.2. DISTRIBUTION THEORY

This section contains asymptotic results for the QTE estimator. Proofs are given in Ap-
pendix I. The next assumption formalizes the presentation of the model outlined in the

previous section.

®Heckman, Smith and Clements (1997) discuss models where features of the distribution of the difference
(Y7 — Yy) are identified.

11



3.2.1. IDENTIFICATION

Assumption 2

There exist unique o € A and 3 € O such that

(i) The Oth quantile of the conditional distribution of Yo given X and Dy > Dy is unique
and equal to X'3.

(ii) The 0th quantile of the conditional distribution of Y1 given X and Dy > Dy 1s unique
and equal to o« + X'5.

Theorem 2 (IDENTIFICATION)

Suppose Assumptions 1 and 2 hold. Then the argmin of

E[(l - P(:(; i)dlf() - pi('él:_f})) : (Y —aD -~ X'b) : (a 1Y —aD - Xb< 0(}72}

over (a,b) € (A x ©) is unique and equal to (a, 3).
3.2.2. CONSISTENCY

Assumption 3

(i) Denote W = (Y, D, X', Z). The random variables {W;};_, are independent and iden-
tically distributed.

(ii) For a unique v € T, with T being a subset of RY,
Pr(Z = 1|X) = P(X;),

where for all X and g, P(X; g} 1is bounded away from zero and one, and is continuous

mgel.
(iii) There is a consistent estimator ¥ of .
(iv) ElY| < oo and E||X|| < 0.

12



(v) A and © are compact.

(vi) The function 1{¥Y —aD—X'b < 0} is continuous at each (a, b) in Ax© with probability

one.

Theorem 3 (CONSISTENCY) Suppose that Assumptions 1-3 hold. Then

P . 1 = di'l'—zi 1_di'zi
(&, 0) = argminoes peo Z(l 7 ( ) ! ) ) - p(y; — ad; — z}b),
i=1

1-P(zs7)  Pzs9)
is consistent for (v, 3).
3.2.3. ASYMPTOTIC NORMALITY

Assumption 4

(i) Denote V =(Z,X")'. The estimator ¥ of v solves

1 n
E ZQ(Ui7g) =0
=1

for g with probability approaching one. The vector of functions q(-,g) has the same
dimension as v and El|lg(V,7)||* < oo.

(ii) « € int(A), 8 € int(©) and vy € int(L).

(iit) EJX|?* < .

(iv) There exists a neighborhood B of (e, 8,7) such that for (a,b,g) € B
a. P(X;g) is continuously differentiable with bounded derivative.

b. The vector of functions ¢(-, g) is differentiable with respect to g.

c. The conditional distribution of Y given X, D and Z 1is absolutely continuous at
aD + X'b with respect to the Lebesgue measure. The probability density function
fr1z.p,x(aD+ X'b) is bounded in B and continuous with probability one at D+
X'B.

13



Theorem 4 (AsympToTIC NORMALITY) Denote § = (a, 8), § = (&, 3) and

mWitig) = (5 ) lo)- (0= 1Y = oD~ Xib < )

where | = (a,b). Under assumptions 1 to 4,

v (6-38) 5
A (0,345 B [{m(Wi,6,9) — My @ q(We )} {m(Wi,6,7) = M,Q7 aWau )} M5 )
(8)
where Ms = OF [m(W,8,7)] /O, M, = E[om(W,6,7)/0¢'] and Q, = E [0q(V;,v)/0d'].

4. APPLICATION

In the empirical example, Y is Log family income for a sample of women with two or more
children, D indicates women with three or more children (More than two kids), and Z
indicates whether the first two children are both boys or both girls (Same sex). The vector
of covariates consists of a constant, mother’s age, mother’s age at first birth, mother’s
high school graduation status, mother’s post high school education status, a dummy for
blacks and hispanics, and a dummy for firstborn male children. The relationship of interest
is the causal effect of childbearing on family income. If fertility and earnings are jointly
determined, as suggested by economic theory (see, e.g., Browning (1992)), OLS or quantile
regression estimates of this relationship are not likely to have a causal interpretation. Our
empirical example is based on Angrist and Evans (1998), who show that parents whose
first two children are both boys or both girls are 6-7 percentage points more likely to go
on to have a third child than are parents whose first two children are mixed gender. This
relationship suggests that Same sezx can be used as an instrument for More than two kids.
The data used here consist of a sample of 346,929 women aged 21-35 in the 1990 Census
Public Use Microdata sample (PUMS). For more detailed information about the data see
the Angrist and Evans paper.

The basic finding in earlier work using Same sez as an instrument for More than two

kids is that the third child appears to cause a large reduction in average female labor supply

14



and earnings. On the other hand, while this reduction is especially large for less educated
women, it is not observed for more educated women. And female-headed households are
naturally most affected by a decline in female earnings. The fact that the impact of
childbearing varies with these observed characteristics suggests that childbearing may affect
the distribution of family income in ways other than through an additive shift.

Ordinary least squares (OLS) estimates and quantile regression (QR) estimates of the
relationship between Log family income and More than two kids are reported in Table
I. Column (1) of the table also shows the mean of each variable used in the analysis.
Approximately 36 percent of the sample had 3 or more children. Half of firstborn children
are male and half of the first-two sibling pairs are same sex. The OLS estimate of the effect
of having a third child in family income is -.092. Quantile regression estimates show an
effect at the median of -.066, with smaller effects at higher quantiles and larger effects at
lower quantiles. The largest quantile regression estimate is -.098 at the 0.1 quantile. All of
these coefficients are estimated very precisely.'

The relationship between sibling sex composition and childbearing is captured in the
first column of Table II, which reports first-stage coefficient estimates for the dummy en-
dogenous regressor More than two kids. Parents with a same sex sibling pair are 6.4
percentage points more likely to go on to have a third child. There is also some evidence
of an association between having a firstborn male child and reduced fertility, though this
effect (the coefficient on Boy Ist) is very small. The conventional two-stage least squares
(2SLS) estimate of the effect of More than two kids using Same sex as an instrument is
-.122, with a standard error of .069.

The QTE estimate of the effect of More than two kids at the median is -.065 with a
standard error of .038."! This is smaller (in absolute value) but more precisely estimated
than the 2SLS estimate. It is also remarkably similar to the corresponding quantile re-

gression estimate at the median, though the latter is much more precisely estimated. The

10 Asymptotic standard errors for the QR and QTE estimates were computed using kernel estimates of
the conditional density of Y given D, Z and X. See Appendix III for details.

¥or QTE, the expectations E[Z;|X; = z;] in k; were estimated using a linear model. We also experi-
mented with non-parametric cell-by-cell estimators of those expectations obtaining similar results.
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quantile regression and QTE estimates at the 0.9 quantile are also close, though the QTE
estimate is not significantly different from zero at this quantile. Both of the QTE estimates
at quantiles below the median are larger than the corresponding QR estimates, and much
larger than either the QR or QTE estimates at the median. The QTE estimate at the 0.1
quantile is -0.18 with a standard error of .097; this is almost 6 times larger than the QTE
estimate at the 0.9 quantile and 85% larger than the QR estimate at the 0.10 quantile. The
QTE results therefore suggest, even more strongly than the QR estimates, that childbear-
ing reduces the lower tail of the income distribution considerably more than other parts of

the income distribution.

5. SUMMARY AND CONCLUSIONS

This paper introduces an estimator for the effect of a non-ignorable treatment on quantiles.
The estimator can be used to determine whether and how an intervention affects the income
distribution, or the distribution of any other variable. The QTE estimator is designed
to accommodate exogenous covariates and to collapse to conventional quantile regression
when the treatment is exogenous. QTE minimizes an objective function that is similar to
the check function minimand for conventional quantile regression. The estimates reported
here were computed using a modified Barrodale-Roberts (1973) algorithm that exploits
the quasi-LP nature of the QTE minimand. As with the Iterated Linear Programming
algorithm used by Buchinsky (1994) for censored quantile regression, the computational
algorithm used here does not guarantee a global optimum and improving the algorithm is
a natural avenue for future research.

The QTE procedure estimates a parametric conditional quantile model for individuals
whose treatment status is affected by a binary instrument. Covariate effects and the treat-
ment effect of interest are both estimated for people in this group, whom we call compliers.
In many IV applications, compliers are a small proportion of the sample; in the empirical
example studied here, this proportion is about 6.4 percent. This leads QTE estimates to be

less precise than the corresponding QR estimates. On the other hand, the QTE estimate
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of the treatment effect at the median is more precise than the conventional 25LS estimate.
This suggests that the robustness properties of conditional medians (Koenker and Bassett

(1978)) may extend to the IV model.
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APPENDIX I: ASYMPTOTIC DISTRIBUTION THEORY

Proof of Theorem 2:
Assumption 2 implies that

E[(Y - h(D,X)) (0 —1{Y — h(D, X) < 0})

> Do]

is strictly minimized by choosing h(D, X) to be the fth quantile of the conditional distribution
of Y given D and X, and that this quantile is uniquely equal to aD) + X'B3. Thus, (o, ) is the
unique solution to the problem

. ! . —_ _ _ !
(ay&iﬁer[(YnaD—Xb) (6 - 1Y —aD Xb<0})‘D1>D0]. (9)

Then lemma 2 implies the result. Q@ED.

Proof of Theorem 3:
By theorem 2 the function in equation (7) is uniquely minimized at (o, 3) over (A x ©) compact.
Denote

FWi,l,9) = ki(g) - (0 — 1{Y: —aD; — Xjb < 0}) - (Y: — aD; — X;b).
Then,
SUPIcAx© %Zf(wials '3/) -F [f(W1la'7)]
i=1

< SUPleAx©O

%Zf(wi,l,ir) - E[f(W,1,%)]
i=1

+supieaxo |E[fW, L, 9] — E[f (W, L)l (10)

By assumption 3(i) the data are iid. Assumptions 3(ii) and 3(vi) imply that f(w;,l,g) is con-
tinuous at each (I,g) in A x © x I with probability one. By assumption 3(ii), |x| is bounded
by some real number K. Note that |@ — 1{Y —aD — X'b < 0}| is bounded by one. Since the
optimization is performed over some compact space A x ©, then there exists a finite real I such
that ||f]| <[ for alll € A x ©. Then ||f(W,},7)|| < K - (kYI +1- (14| X]|])). Assumption 3(iv)
implies E [K - (Y| +1{- (1 + [ X|))] < oo. Then, applying Lemma 2.4 in Newey and McFadden
(1994), E[f(W,1, g)] is continuous at each (I, g) and

n

LS flwinkig) — BIS(W,Lo)]

=1

SUP (1.g)eAxOxT

Now, the first term of the right hand side of equation (10) is 05(1). Since ¥ %, v and by continuity

of E[f(W,l,g)], then E[f(W,l,%)] 2 E[f(W,1,7)] uniformly in ! and the second term of the
right hand side of equation (10) is also 0,(1). Theorem 2.1 in Newey and McFadden (1994) shows
that these conditions are sufficient for consistency of (&, 3). QED.

Proof of Theorem 4:
The proof begins with a preliminary lemma:

18



Lemma 3 Under assumplions 1 to 4,
1 n
= Z m(wi: 67;7\,) = Op(l)'
\/ﬁ i=1

Proof: Note that, given consistency and under assumption 4(ii), with probability approaching
one we attain an interior solution for the minimization problem that produces the QTE estimator.
Then, an argument similar to the proof of Lemma A.2 in Ruppert and Carroll (1980) shows that
each element of n= /23" m(w;,d,4) is bounded in absolute value by B, = =n 1230 K-(1+
||X||)-1{yi—~dd,-——a:,ﬂ 0} where K is an upper bound for ||, that exists by assumption 3(ii). Now
assumption 4(iv) implies that fy|p x(eD + X'b) is bounded in B (because P(Z|D, X} € [0,1]), so
with probability approaching one the number of observations such that 1{y; — &d; — z; 8= 0} =1
is not greater than the dimension of (a, ). Finally, E||X||?> < oo implies that E|B,|* — 0, so
B, 5 0, and the lemma follows. QED.

Now, by assumption 4(iv), m(w;,[, g) is differentiable with respect to g (it is the nondifferen-
tiability with respect to [ that is the issue) in a neigborhood B of (o, 3,7). Since & Ha 855
and ¥ LN 7y, then for n large enough the mean value theorem applies,

om(w;, 8, .
opl1) = \/_mel,é"r fzmwz,aw [ZZ;—(—B,J]\/H(T—V% )

for some ¥ in between ¥ and 7 (where 4 differs between rows of dm{w;,8,-)/8¢'). The first
equality in equation (11) follows from Lemma 3. Since (i) the data are i.i.d. (assumption 3(i)),
(ii) @m (W, 1, g)/8g" is continuous with probability one at (d,y) (assumptions 3(ii) and 4(iv)), (iii)
E [sup ugeslldm(W,1,9)/8¢'||]] < oo (assumptions 3(ii), 4(iii) and 4(iv)), and (iv) &, 8 and 4
are consistent, then n=1 3" Bm(wl,J 3)/8¢' & M., (see Lemma 4.3 in Newey and McFadden
(1994)). Define the empirzcal process

vn(l,9) = IZ{m (wi, 1, 9) — E[m(Wy1,g)}}.

Empirical processes play an important role in modern large sample theory (see Andrews (1994)
for a review). From the last definition,

\/_Zm wy, 8,7) = vn(d ZE[ (W;, 8, 'y)] (12)

Note that,
E[( 2 ) -n(fy)~(0—1{Y—aD—X'b<0})]

=B [( Y ) () - (H—E[I{YmaD—X’b<0}EZ,DaX])]

=E [( § ) 57 - (0 - Fyiz.px (aD-i—X’b))]. (13)
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Then, assumptions 3(ii), 4(iii) and 4(iv) allow us to apply dominated convergence,

OE [m(W,1,v)]/8l' = —E [( )D( ) -k(7) - fyz,p,x (aD + X'b) - ( ? )’} -

Now we can apply a Mean Value Theorem as follows:

S b = vl + = 3 B, 6, 9) + I g g, )
v i Vi ok

The next lemma shows that the second term of the right hand side of the last equation is zero.
Lemma 4 Given assumptions 1 to 4, E[m(W,4,v)] = 0.

Proof: First, note that under assumptions 1 to 4 f(-,1,7) is £1.bounded in B and 8f (W, 8,v)/0l =
—m(W,6,7v) € L. Now, let us show that the derivative of the limiting objective function (equation
(7)) with respect to (e,b) is equal to minus E[m(W,l,g)]. Denote

A f(6) = [k(g) - (0 — Y —(c+h) <O} - (¥ — (c+h)]—[x(g) - (0 - H{Y —c <0} - (¥ ~<)].

It can be easily shown that a Weierstrass domination condition, |Aj flaD + X'ﬁ)/izl < K for
h # 0, holds. Then, by assumption 4(iii), E[(1 + [|X]|} - |A;, flaD + X'B)/h|] < oo this implies

OF [f(W,6,7)]
al

Then, Theorem 2 and (a, 8) € int(A x ©) yield E[m(W,3,7)] = 0. QED.

— —E[m(W,5,7)].

By assumption 4(iv) dE[m (Wi, {,v)]/0l' is continuous at §, this implies that 8 E[m{W;, 5,7/
P, Mj. Then,

- (M6 + Op(l)) \/5(8 - 5) = Vn(ga")') + (M7 + Op(l)) \/ﬁ(ﬁ’ - 'Y) + Op(l)
= {un(fi"/) - (9, 7)} + vn(8,7) + Myvn(§ = v) + op(1)-

The first term of the right hand side of equation (15) can be shown to be op(1) by using a
stochastic equicontinuity result. Each element of the vector m(W,{,7) is an Euclidean class with
envelope F' = K(L + ||X]|). By assumption 4(iii), E||X||? < 00 so F is square-integrable. Then,
assumption 3({vi) implies that each component of m(W,1,v) is £? continuous at 6. Under these
conditions {vn(g,'y) — vn(9, 'y)} is 0,(1) (see Lemma 2.17 in Pakes and Pollard (1989)).

On the other hand, it can be easily shown that, under assumption 4(1),
. Ve N]y T 1 v
—_ = — E ——————— i’ .
V(i =) ( [ 5g Tn ?_l g{vi, ) +op(1)
Then,

va(5-8) = -mi' o= >~ {87 = M5 gl ) + (1)

20



Now, under assumptions 3 and 4, E|m(W;,§,7) — M,],Q;lq(V,-,'y)H2 < 00, then

yn (5 - 5) LY
W (0,5 B [{m(W:,6,7) = MyQ;5 (Vi )} {m(Wi,8,7) = 4,05 (Vi)Y ] M5 1) (16)

QED.
ApPPENDIX I1: COMPUTATIONAL ISSUES

It is well-known that conventional quantile regression has a Linear Programming (LP) represen-
tation (see, e.g., Koenker and Bassett (1978)). This LP problem is given by

Min, et
s.t. At =y (17)
T2>0

where A = ((dl: 3 ) ("L‘lv ): (dlv -+ dn )’ (xla ) I, -1 ) c= (0’ O’ 6- L, (1_9) ’):
y = (Y1, 4n), In is the 1dent1ty matrix of size n, o is a h x 1 vector of z€ros and ¢ 1s an n x 1
vector of ones. The solution of this problem is interpreted as 7 = (ao ,ﬁg LG~ ,6 u; ,ﬂ; Y,
where up = y — ag(d1, -, dn) + (Z1,..,Tn) Bs, € denotes the positive part of the real number e
and e~ denotes its negative part. This problem can be solved efficiently using the modification
of the Barrodale and Roberts (1973) algorithm developed by Koenker and D'Orey (1987). This
algorithm is a specialization of the Simplex method that exploits the particular structure of the
quantile regression problem to pass through several adjacent vertices in each Simplex iteration.
A similar representation of QTE sets ¢ = (¢/,0',0-K' (1 —0)-K'), where K is the n X 1 vector
of k;'s. However, QTE is not an LP problem because when «; is negative we have to include the
constraints u;" -u; = 0 to make u = maz{u;,0} and u; = maz{-w;,0} hold. If we do not
include those constraints, the problem is unbounded and the solution method breaks down since
we can reduce the objective function as much as we want by increasing both the positive and the
negative parts of a residual associated with a negative ;. Suppose, for example, that we have a
basic solution with u; = u;" = %4; > 0 and u; = 0. Then, if we make uj' =7; + A and u; = A,
for every A > () we still have u; = uj —u; = u;, so the new solution is feasible. However, the
objective function is reduced by |;|A. As this is true for every A > 0, the problem is unbounded.
One way to incorporate the non-linear constraints uf -u; =0 is to express the minimization
as a Mixed Integer Linear Programming (MILP) problem. To do that, we include two additional
restrictions and one additional parameter, s;, for each observation with a negative &;:

uf’ < Ms;
and

uz_ S M(]. —S,‘).

where s; € {0,1} and M is a (non-binding) high number. This formulation imposes ul -u; =0 for
observations with negative x;. In principle, a global optimum could be attained by using branch

and bound algorithms for MILP problems or for LP problems with Special Ordered Sets (508).
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A special ordered set of type one (SOS1) is a set of nonnegative variables such that at most one
of them may be nonzero (see, e.g., Hummeltenberg (1984)). Clearly, the set formed by both the
positive and the negative part of a number is an SOS1. However, algorithms for MILP or SOS
are very slow for large problems like ours.

Another possible strategy to solve this problem is to combine the Simplex method with a
restricted-basis entry rule (See, for example, Wagner (1975) pag. 565. A restricted-basis entry
rule does not allow the negative part of a residual to enter the basis, that is to take a value greater
than zero, if the positive part of that residual is already in the basis, and vice versa.). Because our
problem is not convex, this strategy does not guarantee a global optimum. However, restricted-
basis entry methods find an optimum among permitted adjacent extreme points; this is a local star
optimum in the terminology of Charnes and Cooper (1957). Because a global optimum is always a
local star optimum, we can search for a global optimum by starting this procedure from different
initial values. In practice, we found that an efficient way to implement restricted-basis entry is by
using a modification of the Barrodale-Roberts algorithm. By construction, the Barrodale-Roberts
algorithm does not allow both the positive and the negative part of residuals and parameters to
be in the basis at the same time. Moreover, in addition to being fast, the modified Barrodale-
Roberts algorithm has access to more vertices at each iteration than the conventional Simplex
method. This feature allows the algorithm to improve over the local star optima found by the
Simplex method with restricted-basis entry.

The main modification we made to the Barrodale-Roberts algorithm is related to the way that
algorithm passes through several vertices in each iteration. The Barrodale-Roberts algorithm
changes the sign of the pivotal row while the marginal cost of the vector entering the basis is
positive after that change. In this way, the algorithm reduces the objective function. When
changing the sign of the pivotal row makes the marginal cost negative, the algorithm performs
a Simplex transformation. For our problem, whether the objective function and the marginal
cost of the vector entering the basis increase or decrease with a change in the sign of the pivotal
row depends on the sign of the x; associated to that row. Taking that into account we choose
the vector to enter the basis as that one which accomplish the larger reduction in the objective
function. Our simulation experiments indicated that the modified Barrodale-Roberts algorithm
is very likely to find the global optimum for the QTE problem, so we chose this procedure for
estimation.

For the empirical application, the modified Barrodale-Roberts algorithm was implemented
using conventional quantile regression estimates as initial values. Then, the same algorithm was
restarted from initial values randomly chosen in wide regions centered at the “best-so-far” points
(in particular, we constructed regions with side lengths equal to twice the absolute values of the
current estimates.) This step was repeated for each quantile until no improvement was attained
in the last twenty trials. Overall, only small changes in some of the coefficients were observed
in this step. Finally, a Nelder-Mead algorithm was started from the solution at this point. This
final step did not decrease the value of the objective function for any quantile.

APPENDIX I1I: ASYMPTOTIC VARIANCE ESTIMATION

For the empirical application we used a linear specification, E[Z|X] = X'y, for the first step.
Since v is estimated by OLS, this yields:

g(V.9) =X -(Z - X'g),

22



Q‘T = _E[XX’L

and

woms{(5) (B2 ) - 1]

We know from Appendix I that

( x ) w0 - frizpx (@D + X'B)- ( x )} |

The matrices @,, M,, and M; were estimated by evaluating the sample counterparts of the
last three equations at (&,/3,%). Note that fy,zp x(eD+ X'8) = fuzpx (0), where U =
Y —aD — X'8. To estimate the density function fi;z p x (0) for each of the considered quantiles,
the data were divided in cells defined by different values of the categorical covariates {same sex,
high school graduate, etc.). Then a normal kernel was used to smooth over the age variables and
the QTE residual within each of the cells. Let Up be the QTE residual for a quantile index equal
to 8. Also let A and A; be the age of the mother and the age of the mother at first birth. For
each of the cells, we estimated fy, 4,4,)(0.4, a1) and fi4 4,y(a,@1) for each realized value (a,a;)
of (A, 4;) in the cell. The conditional densities in M; were then estimated as

Ms=-E

: Fwe.a.40(0,a,01)
ngIAZCl,A]_:ﬂ.l (0) = ( 2 1) *
fra,an (e, a1)

When there is no instrumenting, the asymptotic variance of QTE reduces to the well-known
formula for conventional quantile regression (see e.g. Buchinsky (1994)). The conditional density
terms that appear in the asymptotic variance of conventional quantile regression were estimated
in the same way as for QTE.
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TAaBLE I
CONVENTIONAL QUANTILE REGRESSION AND OLS ESTIMATES

Mean OLS Quantile
(1) (2) 0.10 0.25 0.50 0.75 0.90
Log family income  10.3
(1.39)
More than two kids 363 -.092 -098  -.077 -.066 -.046 -.027

(.481) (.005)  (.008) (.004)  (.003)  (.003)  {.003)

Constant 7.88 6.14 7.54 8.56 9.19 9.53
(.024)  (.035) (.020) (.016) (.015)  (.016)

Mother’s age 30.5 042 .049 .039 .034 .030 027
(3.44) (.0008) (.001) (.0007) (.0005) (.0005) (.0005)
Mother’s age 219 035 056 .042 .030 .026 .029
at first birth (3.48)  (.0008) (.001) (.0007) (.0005) (.0005) (.0005)
High school .625 .493 .746 .050 367 241 189
graduate (.484) (.008) (.013) (.008) {.006) (.005) (.005)
More than .209 .798 1.12 813 .588 462 443
high school (.407)  (.009) (.014)  (.009) (.006) (-006) {.006)
Minority 178 -.623 -993 -721 -.434 -.224 -.141
(.383) (.008)  {.013) (.008) (.006)  (.005) (.005)
Boy 1st 513 -.001 004 .0008  -.0004 -.002 -.005
(.500) (.004) (.007) (.004)  (.003)  (.003) (.003)
Same sex .505
(.500)

Note: The sample includes 346,929 observations on the family income of black or white women aged 21-
35 and with two or more children in the 1590 Census PUMS. Other sample restrictions are as in Angrist
and Evans (1998). Minority indicates black or hispanic; Boy Ist indicates firstborn male children.
Column (1) shows sample means and column (2) shows OLS estimates from a regression of log family
income on the listed covariates. The remaining columns report quantile regression estimates for the same
specification. The numbers reported in parentheses are standard deviations of the variables for column
(1) and standard errors of the estimates for the remaining eolumns. For OLS, robust standard errors
are reported.
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TABLE 11
QUANTILE REGRESSION FOR COMPLIERS AND 2SLS ESTIMATES

First Stage  2SLS Quantile
(1) (2) 0.10 0.25 0.50 0.75 0.90
More than two kids -.122 -.180 -.089 -.065 -.070 -.031
{.069) (.097) (.053) (.038) (.036) (.041)
Constant 439 7.89 8.00 8.33 8.89 9.39 9.44
(.008) (.040) (.597) (.337) (.247) (.228) (.255)
Mother’s age 024 .043 016 .027 .036 .030 .036
{(.0003) (.002) (.021) (.012) (.008) (.007)  (.008)
Mother’s age -.037 .034 034 .032 .020 .020 .019
at first birth (.0003) (.003) (.022) (.014) (.009) (.008) (.010)
High school -.071 491 671 AT76 255 183 186
graduate (-002) (.010) (.207) (.130) (.084) (.069) (.065)
More than -.039 197 941 733 .430 383 382
high school {(.003) (.010) (.245) (.146) (.100) (.086) (.085)
Minority .061 -621  -1.39 -390 -.217  -.158 -.170
(.002) (.009) (.523) (.169) (.112) (.096) (.092)
Boy 1st -.007 -.002 -.032 -054 -.043 -.0004 .035
(.002) (.004) (.102) (.055) (.039) (.036) (.042)
Same sex .064
(.002)

Note: Sample and variable definitions are the same as in Table L. Column (1) reports estimates from

a “first-stage” regression of More than two kids on the listed covariates and the Same sez instrument.

Column (2) shows 2SLS estimates from a regression of Log family income on the listed covariates with

More than two kids treated as endogenous and Same sez used as excluded instrument. The remaining

columns report QTE estimates for the same specification. Standard errors are reported in parentheses.

For 2SLS, robust standard errors are reported.
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