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I. INTRODUCTION
A. Prologue

Many outcomes (y) studied empirically in health economics
have two fundamental statistical properties: (a) y20; and (b) the
outcome y=0 is observed sufficiently frequently that the zeros
cannot be ignored econometrically. Such data structures are
observed in health applications as diverse as health care
utilization/expenditure, the use of unhealthy commodities like
tobacco and alcohol, and physicians' time allocations to
alternative uses. Given exogenous covariates X, econometric
applications in which such data structures are encountered have
typically relied on one oOr more of the following (and, generally,
competing) three well-known strategies.

The two-part model (2PM) assumes that Pr(y>0|x) is governed
by a parametric binary probability model like logit or probit
(part one), and that E[ln(y)|y>0,x] is a linear function of x,
e.g. Elln(y)|y>0,x]=xB (part two).! The sample selection model

(SSM) assumes that there are two linear equations determining the

cbserved outcome. The first equation is z=x£1+v, the second

equation is w=xfy+v, where the error terms (v,v) are typically

assumed to follow a bivariate normal distribution. In this

model, the outcome 1ln(y)=w 1is observed only if z>0; regression

! Tn some instances this has been referred to as a hurdle model.

In addition, other transformations, e.g. E[.y |y>0,x]=xB, have
also been suggested, but (a) the log-transformation is by far the
most commonly used in practice and (b) essentially the same

issues as are discussed below arise whether 1n(y), Jy, or some
other transformation i1s used. See Manning, 1998, for the
particulars as they apply to the 2PM and Carroll and Ruppert,
1988, for a general discussion of transformations.



methods like Heckman's approach (Heckman, 1979) then estimate a
Mills-ratio-corrected linear regression of 1ln(y) on x using only

the subsample of observations for which 2z>0.? Tobit and related

models assume that y*lx~N(xm,12) and that the observed y is given

by y=max(0,y*).

B. Inference with the Two-Part Model

While the choice among these or other competing estimation
strategies is clearly a first-order analytical issue,’® this paper
tackles a set of somewhat more subtle issues in estimation and
inference encountered with applications of two-part models. To

wit: While part two of the 2PM has been demonstrated in many

empirical settings to be a useful estimator of thé parameters §,
how these estimates are used is an altogether separate matter.
In addressing such concerns, this paper has two main purposes.
The first is to suggest that reliable/consistent estimates
of Pp -- while necessary elements of the 2PM framework for
conducting inference about important policy parameters -- will

generally not be sufficient for such purposes. The second is to

? gee Manning et al., 1987a,b for discussion. Note that the

modification for the "true zeros" case rather than the "missing
observations" case is sometimes referred to as the adjusted Tobit
model.

’ Other strategies are, of course, available (some of these are

discussed below) . Indeed, depending on the particular objective
of the analysis, relatively simple strategies like nonparametric
regression (e.g. cell means), linear specification of Ely|x] with

OLS regression, and other approaches may be perfectly acceptable.
The intent here is not to assess the relative merits of such
alternatives but rather to take interest in a two-part estimation
strategy as given and proceed to assess some of the key
implications of such an approach.



demonstrate some alternative approaches that are likely to prove
useful in applications. In particular, since it will often be

the case that many inferential problems of interest invclve

E[y]x] and its associated partial effects 8(x)=[34(x)]=
[OE [y |x]/0x%4] and/or elasticities n(x)=[nyx)1=
(0ln(E[y|x])/dln(x4)1, it is fundamentally important to recognize

that the parameters P are but one feature of such expectations

and related quantities.

That is, how one proceeds from inferences about properties

of E[ln(y)|y>0,x] (where the elements of P are the key to
inference) to inferences about properties of E[y|x] entails at
least two separate considerations. The first is removing the
conditioning on y>0; the second is transforming back from 1ln(y)-
space to y-space. Both issues have been discussed extensively in
the literature and both are involved in the following analysis,
although the perspective here departs materially from that

typically maintained in the literature.

C. Applications

Some prominent areas of potential applicability of the ideas

discussed here are noted at this juncture.

Qutcomes Research

Analysts working in the fields of outcomes research, disease
management, etc., often utilize large samples of individual-level
outcomes on various measures of health care utilization,
expenditures, or outcomes ("claims data"). Such datasets
typically contain information only on individuals for whom some

positive amount of utilization or expenditure 1is observed over



some specific time period. As such, a common objective in such
research is to draw inferences about the determinants of
Ely|y>0,x], perhaps augmenting such inferences with information
about Pr(y>0|x) obtained from other data sources. As the main
arguments of this paper will illustrate, using common methods
like loglinear regression with retransformation must be
approached with care if inferences about properties of Elyly>0,x]
drawn from analysis of claims datasets are to be reliable. The
alternative approaches proposed here should be useful in many

applications of interest to outcomes researchers.

Models of the Demand for Health Care

It is common practice in empirical health economics to model
individuals' demands for health care in a two-part context:
whether, over some time period, the individual obtains or uses
any care at all; and, 1if so, how much care (e.g. how many
physician visits) is obtained. The two components of this
process may differ in their economic determinants as well as
their policy relevance (e.g. Pohlmeier and Ulrich, 1995) .
Consider the example of childhood immunizations (Mullahy, 1997b):
An analyst may be concerned both about whether a child has
obtained any immunizations by age two, as well as the extent to
which the child is on-schedule for immunizations by that age.
Another example 1is screening: Issues may arise regarding both
whether an individual has ever been screened for a particular
disease and, if so, the frequency with which such screening

occurs.

Substance Abuse

In many econometric studies of substance use/abuse (tobacco,



alcohol, illicit drugs), analysts have often examined phenomena
that bifurcate naturally into two components: whether or not
individuals consume the commodity, and how much of the commodity
is consumed by users; or whether or not the use of the commodity
influences labor market participation and, if so, whether or not
the commodity's use affects hours worked or wages earned.® Lost
in much of this discourse, however, is a consideration of what
these two sets of estimates imply overall for key parameters like
E[y|x] and its associated partial effects. In some cases, it may
be the case that parameters other than E[y|x] are of interest
(e.g. Manning et al., 1995), but in other applications the
conditional mean is likely to be a prominent consideration (e.g.
Mullahy, 1997a).

The following sections describe some fundamental properties
of the 2PM model that -- while overlooked often in applications
_- turn out to have critical implications for inference, and
suggest some reformulations of the 2PM that provide for
straightforward inference in the context of some nonlinear

regression structures.

D. Plan for the Paper

The plan for the paper is as follows. Section II presents
the statistical preliminaries and describes in detail the two-
part model. Section III discusses issues involved in inference
based on the 2PM about properties of Ely|x]. Section IV suggests
alternatives to the 2PM, discusses issues involved in their

estimation, and proposes a set of specification tests. Section V

4

See, e.g., French and Zarkin, 1995, and Manning et al., 1995
for applications involving alcohol use.



presents results of a simulation exercise. Section VI reports an
empirical study of doctor visits Dbased on the 1992 Naticnal

Health Interview Survey. Section VII offers conclusions.

II. STATISTICAL PRELIMINARIES: E[y|x] AND THE TWO-PART MODEL
A. Fundamental Statistical Issues
It assumed that the analyst observes a random sample of N

observations on (yj,xi), where xj=(1,xj;) 1is a k-vector of
covariates. There are assumed to be N, observations for which
yi>0 and Ng observations for which y;=0, with N=N,+Np. The index
sets for observations 1 corresponding to these samples are
denoted S,={i]y;>0} and So={i]yi=0}. Unless necessary for
clarity, the "i" subscripts will be suppressed.

With y20, it is meaningful® to write a regression model for

y|x using the decomposition®

Ely|x] = Pr(y>0|x) x Ely|y>0,x]. (1)

Given x, the realizations of y are generated as

 An appropriate caveat to this statement is that it is wvalid so

long as such expectations can reasonably be maintained to exist.
This could at least in principle be a tenuous matter for highly-
skewed distributions of outcomes like cost or utilization. In
general, any distribution f(y|x) falling off to zero more slowly

than at a rate proporticnal to y~2 will have a mean that does not
exist (see Cramer, 1946, for general discussion) .

¢ Cragg, 1971, was probably the first prominent econometric study
to consider the utility of such decompositions; see Mullahy,
1986, for additional discussion.



y = ¥(x) * u (2)

where u is a stochastic error term and where the operator "*x="

can denote either "x" or "4n? If E[u|x]=1-1%0, then W¥(x)
implicitly defines Ely|x]. However, if E[u|x]=h(x) then
Ely|x]=%(x) *h(x). Possible dependence of Elulx) on x is usually
"normalized away," but it is ultimately useful for purposes at

hand to keep this distinction in mind. As a matter of notation,

VY (x) will be used to denote Ely|x] in what follows.

B. The Two-Part Model
Rather than working directly in a regression context like

(2) with the level of Y per se, the 2PM decomposes Ely|x] by

specifying a parametric model for Pr(y>0|x)=n(x;q) (part one),
and then taking the log-transformation

In(y) = In(u(x;B)) + €, y>0 (3)

to characterize part two. Specifying lﬁ(p(x; ))=xB and

Ele|y>0,x]=0 implies

Elln(y) |y>0,x] = xB. (4)

Some basic probability algebra then permits one, in principle, to

’ Whether the error is best modeled as additive or multiplicative

in the case of nonnegative dependent variables is, to a
considerable degree, immaterial. See Wooldridge, 1992, for
additional discussion.



recover E[y|x] as

Ely|x] = ¥(x) (5)

Pr(y>0|x) x Ely|y>0,x]

m(x) x { pu(x) x Elexp(e) |y>0,x] }

m{x) x { p(x) x p(x) },

since y=p(x)exp(e) for y>0 from (3).° For reasons to be
discussed below, the notation p(x) is used in lieu of the more

familiar constant ¢ to emphasize that the error retransformation

is, in general, a function of x as opposed to a scalar constant.

Assuming each component of W(x) in (5) has a parametric

representation, then

Ely|x] = W¥(x;0) (6)

T(x;0) x p(x;B) x p(x;7),

where, for example, Pr(y>0|x)=n(x)=n(x;a) is typically given by a

distribution function with linear index, F (xa). This paper will

concentrate on the logit specification

Pr(y>0|x) = exp (xa)

1 + exp (xa) ’

® It should be emphasized that the analysis undertaken here
encompasses "one-part" models where Pr(y>0|x)=n(x)=1 for all x,
€.g. an application in which y is a measure of cost in a clinical
trial setting where cost is strictly positive for all subjects.



although probit and linear probability models are also obvious
candidates that have been employed in empirical applications of
the 2PM.° It is sometimes useful to refer to (7) as the hurdle
component of the model and (3) as the levels component of the
model.

Equation (5) underscores the fact that Elyly>0,x]#u(x) .

Indeed, from Jensen's inequality on convex functions

E(exp(ln(y)) |y>0,x] = Ely]y>0,x] > (8)
exp(E[ln(y) |y>0,x]) = p(x).

As such, it must be the case that the error retransformation

function p(x) exceeds one at any x.°

C. Fundamental Properties of E[y/x]
Often ignored is that a far more primitive assumption about
data on nonnegative outcomes than offered by either the 2PM or

the SSM is simply that Ely|x]>0. If all realizations of y are

nonnegative, then E[y|x] must clearly be nonnegative. If
E[y|x]=0 then the analytical problem is not interesting. As
such, E[y|x]>0 is the only reasonable assumption in such
instances. In the microeconometric settings familiar to health

economists, focusing on E[ylx] is natural since inference about

the partial effects & (x) is typically one of the major

> Much of the original Rand work used probit models for
describing part one of the 2PM. Eichner et al., 1997, is a
recent example of the use of linear probability models to
characterize part one.

" Again using Jensen's inequality, this is seen to be true since

E[exp(g) |y>0,x] >exp (E[e|y>0,x] ) =exp (0) =1.



considerations in such applications. For example, obtaining
reliable estimates of E[y|x] is obviously a central concern of
analysts wishing to undertake "Ax" policy analysis.

Yet in many applications of the 2PM and related methods,
consideration of issues attending estimation of the quantity
Ely|x] and its associated partial effects has not been as
prominent as (this paper would contend) appropriate. Analysts
are sometimes satisfied conducting inference directly on the
parameters o and B without regard to how such inferences relate
to inferences about quantities like §(x). While methods like the
homoskedastic version of Duan's smearing estimator (Duan, 1983)
have been used widely (and, perhaps, almost too automatically)
with the objective of estimating E[ly|x] and its corresponding
partial effects, this paper suggests that a more direct
consideration of and focus on Ely|x] may be desirable and useful.

As such, on the basis of primitive assumptions about the
structure of E[y|x] -- i.e. E[y|x]>0 -- one might consider as an
alternative to the 2PM and SSM approaches modeling directly the
regression E[y|x] without recourse to transformation and
retransformation. As suggested below in section IV, this might
be accomplished in a single equation context using all sample
observations (y=0 and y>0), or may be undertaken using two-step

methods analogous to those used in most applications of the 2PM.

IITI. INFERENCE WITH THE TWO-PART MODEL
A. Identification and Estimation

Should the data be up to the task of identifying the
parameters o and B, then the 2PM is -- in one sense --

identified. Yet, in the absence of further assumptions (e.g.

10



lognormality of f(y|y>0,x)), it 1is important to note that the
standard specification of the 2PM ((3) and (7)) does not
generally permit one to recover E[y|y>0,x] and, therefore, E [y |x]
since identification of E[ln(y) |y>0,x] (as given in (4)) is not
sufficient to identify E[y|y>0,x]. As such, the 2PM thus
formulated does not have an interpretation as a natural

parametric regression model

y = ¥(x;6) * u, Vy, (9)

where W(x;0)=E[y|x] and E[u|x]=1-1%0.

Estimation of the components =n(x;a) and u(x;B) is generally
not problematic given the assumptions commonly underlying the 2PM
and related estimation approaches. In particular, it should be
emphasized at the outset that this paper accepts one of the basic
econometric underpinnings of the two-part model, i.e. that for
functions of interest y(.), the parameters characterizing

Ely(y) |y>0,x] can be estimated consistently using only the S,

subsample. This has been a matter of some contention in the

1

literature,™ but it will be ignored for the remainder of the

paper. As such, it is assumed that regression of In(y) on x

using observations in S, generates consistent estimates B of B

~

and pu(x;B) of pu(x;B)=exp(xp).
In applications of the 2PM, the main impediment to

consistent estimation of E[y|x]=¥(x;0) -- and, therefore, to

11

Witness the "cake" debates of the 1980s (Hay et al., 1987; Hay
and Olsen, 1984; Manning et al., 1987a; Newhouse et al., 1980;
Newhouse et al., 1987; Welch et al., 1987).

11



consistent estimation of the partial effects &(x) that are

assumed to be of central concern -- concerns the error

retransformation component p(x)=p(x;y). Many applications ignore
this consideration altogether; others have used methods like
Duan's smearing estimator (described below), but have typically

failed to account for the possible dependence of p on x.%?

Two Examples
First suppose v-~U[-.5,.5] and x=[1,x;] with X1 a scalar and

v and xj] statistically independent. Let g=g(x1)v for y>0 with

g(.)>0. As such,

Ele|y>0,x] = Elg(x1)xv]|y>0,x] (10)

g(x1) x Elv]y>0,x]

g(x1) x E[v]|y>0]

= 0.
Moreover,
El[exp (g) |y>0,x] = _[_55 exp (g(xp)v)dv (11)
exp (.5g(x3) ) — exp (-.5g(x7))
glx1) '

For the second example, suppose v~N(0,1) and x=[{1,x7] with

X1 a scalar and v and x; statistically independent. Let

' See Manning, 1998, for discussion. Manning notes that the HIE

studies typically circumvented such biases by using plan-specific
smearing retransformations rather than a single retransformation
based on a full-sample smearing estimate.

12



— .
€=y20rp + xyp) xv  with yg+x1Y1>0 so that &|y>0,x~N(0,2 (yg+x171))

implying E[e|y>0,x]=0. exp(g) |y>0,x 1is, therefore, lognormally
distributed with

E[exp(g) |y>0,x] = exp(.502(x)) (12)

= exp(yo + x171).
which is an ECM formulation for E[exp(g) |y>0,x].

B. Retransformation and Smearing
In typical applications of the 2PM, analysts interested in
recovering estimates of E[y|x] have generally resorted to one of

two alternative methods. The first is to assume that v|y>0,x is
lognormally distributed with constant variance parameter o<.

Given a consistent estimate of B obtained from linear regression

of 1n(y) on x, the Ilognormality assumption then enables
consistent estimation of Elyly>0,x] =exp (xB+.502) via the

aforementioned estimate of B and an estimate of 62 obtained in a
method of moments fashion based on estimated residuals from the
linear regression.

Duan, 1983, suggested that the robustness of
retransformations based on the lognormality assumption could
hinge critically on whether the data on y>0 were, indeed,
conditionally lognormally distributed. As a robust alternative,

Duan suggested the smearing estimator. The idea is that instead
of using the estimated residuals to obtain an estimate of o2 as

in the lognormal case, the estimated residuals é=1n(y)—xﬁ can be

used to provide a consistent estimate of a homoskedastic

13



distribution-robust retransformation factor $=N;lz¥.e s exp [€4) .
+

Since In(y)=xB+¢ is the maintained model for y>0, Ely|y>0,x] 1is

then estimated as $xexp(xﬁ) and an estimate of E([y|x] follows
given an estimate of Pr(y>0|x) from, e.g., the logit model.

To appreciate why this version of the smearing
retransformation can be problematic, however, it is useful to
work through the algebra underlying the retransformation.
Consistent estimation of the maintained model In(y)=xB+e, y>0,
hinges most fundamentally on the orthogonality condition

Ele|y>0,x]=0. No other orthogonality condition need be specified

in order to recover a consistent estimate of B by least squares,
and analysts using linear regression models do not typically
specify restrictions beyond this. In particular, it is not
necessary to maintain that ¢ and x are statistically independent
(conditional on y>0) for consistent estimates to obtain.

As such, it is important to emphasize that the (perhaps
implicitly) maintained assumption E[e]y>0,x]=0 does not imply for
functions y(.) that E[y(g)|y>0,x] is a constant not depending on
X; e.g. g|y>0,x could have a heteroskedastic distribution with

variance Tt(x). Retransforming to recover E[y|y>0,x] would then

use

Ely|y>0,x] E[exp (xP) exp () |y>0,x] (13)

exp (xB) x E[exp(e) |y>0,x]

exp (xB) x p(x),

where p(x) 1is the retransformation factor under the assumption
El[e|y>0,x]=0.

In general, p(x) may depend on x in a nontrivial manner. As

14



such estimates of E[y|y>0,x] and, consequently, of El[y|x] that
fail to recognize the possible dependence of the retransformation
factor on x and that use instead the standard (homoskedastic)
smearing retransformation factor are likely (as shown below) to
yield misleading (i.e. biased) estimates of key parameters of
interest like §(x) and mn(x). This occurs because the effects of
x on E[y|x] that work through p(x) have been ignored.

As a matter of historical context, it should be noted that
much of the seminal work on retransformations and the two-part
model that grew from the Rand Health Insurance Experiment (HIE)
did -- appropriately -- emphasize that ¢ (or p, in present
notation) is in general a function of x (Duan et al., 1983). One
can only speculate as to why most applications have subsequently
sidestepped this consideration, but the fact that the Rand
analysts found that in some (albeit not all; see below) of their
applications it was empirically "cumbersome and noisy" (Duan et
al., 1983, p. 120) to account for the dependence of ¢ on x may
have led some analysts to surmise thereafter that this issue was

not important conceptually.

C. The Structure of p(x)

Parametric Structures
What might be a reasonable parametric model for p(x)? Since

exp(¢) 1s necessarily positive, it might not be unreasocnable to

expect an exponential «conditional mean (ECM) specification
p(x) =exp (xy) . As such, a multivariate version of the smearing
estimate might be obtained by nonlinear regression of exp(é) on
exp(xy) . At least in principle, determining whether the elements

Y1 of y corresponding to x7 (the nonconstant elements of x) are

15



nonzero would provide an indication of whether the dependence of
the retransformation on x was important, or whether the standard
homoskedastic Duan smearing method would be acceptable. Working

out the asymptotics of such a problem is beyond this paper's
scope, but it should be noted that if Y1=0, then this amounts

(albeit circuitously) to the standard homoskedastic smearing

method if indeed p(x) is log-linear in x.

Nonparametric Approaches

If the elements of x are all discrete, then it may be
possible to use a nonparametric approach like that used by the
Rand HIE analysts in some of their applications. That 1is, for

each of p distinct wvalues of the wvector x in S, (or, more

precisely, the p<k-1 distinct values of the subvector of x that
induce variation in p(x)) one would compute the smearing estimate
in each subset S+j, j=1,...,p, as the analog of p(x) for that
particular subset of observations. So long as there are
sufficiently many replicates of x for each of these subset
estimators to have acceptable finite-sample behavior, this
approach could be of practical use.

It might also appear that this would be an ideal case for
nonparametric regression to provide informative estimates. While
this might be so in some circumstances, the particular (and,
presumably, most common) context in which the analyst is
concerned with conducting parametric inference about parameters
like &(x) would not be helped much by the availability of

nonparametric estimates of p(x).

16



D. Biases Arising with the Homoskedastic 2PM

Since it ignores the dependence of p(x) on x, reference to

the homoskedastic 2PM may result in biased inferences. This
discussion considers how both marginal mean predictions -- i.e.
predictions about Ex[¥(x)] -- as well as predictions about the

marginal elasticities and partial effects Exm(x)] and Eyx[d(x)]

will be influenced by failure to consider the structure of p(x).

-~

To begin, it should be noted that B from the homoskedastic

2PM is a consistent estimator of B and, since exp(.) 1is

continuous in its argument, exp(xP) is consistent for exp (xf) by

Slutsky's theorem. Moreover, note that the homoskedastic 2PM

A

smearing estimator ¢ 1is a consistent estimator of Ex[p(x)]

(since ¢=E[exp(e) |y>0]=ExE[exp(e) |y>0,x]=Ex[p(x)]). Finally, it
is assumed that 7 (x)=n(x;d) is a consistent estimator of
T(x;o) . As such, "bias" issues entail not so much whether the

homoskedastic 2PM estimates consistently its structure as they

are concerned with whether the structure being estimated is

informative.

Biases Arising with Marginal Means

Taking (5) as the true specification of Ely|x], consider
first predictions about the marginal mean Eyx[¥(x)]. Truth is
Ely|x] = P(x) = n(x) x p(x) x p(x), (14)

but the homoskedastic 2PM with smearing estimates the quantity

17



Eopm(y|x] = m(x) x p(x) x Exlp(x)]. (15)

For notational shorthand, let A(x)=mn(x)xp(x). Then using the
standard covariance formula E[WxV]=E[W]xE[V]+Cov(W,V) for random

variables W,V, it follows from (14) that the true marginal mean

of y is

ExE [y ]=x] Ex [V (%) ] (16)

Ex[A(x)] x Ex[p(x)] + Covy(A(x),p(x)).

The homoskedastic 2PM with smearing thus estimates the quantity

ExEopm [y |x] Ex[A(x) x Exlp(x)]] (17)

Ex[A(x)] x Exlp(x)]

Ex [W(x)] - Covyx(A(x),p(x)).

As such, the population "mean prediction error" EyEspmly|=x]-

Ex[V(x)] is governed by the quantity Covy(A(x),p(x)), i.e. on

how the "systematic" part of the model A(x)=n(x)xu(x) varies over
x with the retransformation factor p(x). Should it turn out that
p(x) and A(x) covary positively over x -- an intuitively
plausible scenario, but one by no means suggested by economic
theory -- then the homoskedastic 2PM will tend to underestimate
the true marginal mean Ex[¥(x)], i.e. the mean prediction error
would be negative.

Since 2PM estimators are used often with the objective of
predicting marginal means -- the example of health care

expenditure analysis being perhaps most prominent -- nonzero mean

18



prediction error may be a paramount consideration. It should be
noted in this context, however, that one can attain zero MPE for
the homoskedastic 2PM with smearing simply by specifying x to
contain only a constant term,' and that the issue of nonzero MPE
only arises when there is wvariation in x over the sample (for

only then can there be co-variation between A(x) and p(x)).

Biases Arising with Elasticities and Partial Effects

Beyond consideration of mean predictions, the main focus in
many policy analysis and forecasting settings will be on
obtaining estimates of the effect of changes in elements of x on
statistics describing the outcomes vy, e.g. conditional means
(Ely|x]), conditional quantiles (Qqgly|x]), etc. A  central
question that should be of concern to practitioners using the 2PM
is: When it comes to elasticities and partial effects, precisely
what 1is it that the 2PM based on the standard homoskedastic
smearing estimator is actually estimating? |

The analysis for elasticities is straightforward. The j-th

conditional elasticity from the homoskedastic 2PM is given by

0lnEopmlylx]  d1nn@ . 0 1n ux)
0 1n x4 0 1n x4 0 1n x4

x5 [(1-n(x))ag + By1,

whereas the true j-th conditional elasticity is given by

¥ This is also true of the alternative estimators proposed in

section IV.
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0 1n ¥Yx) 0 1n n(x) 0 1n ux) 0 1n p(x)

= - (19
61an élan T 8lan ¥ alan )
0 1n px)
= Xj[(l-ﬂ(X))aj + B]] m

. 01ln

As such, the difference involves only the term ———999, and its
lnx]-

sign 1is not determined a priori. The overall or marginal

J01lnE
elasticity will typically be obtained as Ex|: nalsz[YI X]j|’ so the
n x-
J

difference between what the homoskedastic 2PM estimates and the

0 1ln px)

true elasticity involves only the term Ex[
01ln X

}, which again

is not signed a priori.
Things are more complicated with the partial effects.
Focusing on E[y|x], and on the basis of (6), the true partial

effect Sj (x) is given by

o (20)
3Xj
= m(x)p(x)exp (xP)Py + n(x)exp(xP) oplx) + p(x)exp (xB) on(x)
0% 0x 5
= exp(xf) x {m(x)p(x)B4 + m(x) op(x) v p(x) on(x) ),
axj axj'

whereas the partial effect that would be estimated from the

homoskedastic 2PM is given by
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BEopm [v]x] < A - (%)
pulylxl o % )

7 (x)exp (xP) By + exp(xp) —— (21)
('BXj axj
A ~ . A on
= ¢ x exp(xp) x {R(X)B] + bd}-
an
What can be said about (20) wvs. (21)7? The results above

imply that the 2PM estimator of Sj(x) is consistent for the

quantity

()

%]

pix) x {m(x)By + } x Exlp(x)], (22)

|

which is a well-defined quantity, albeit a quantity not equal to
the true conditional partial effect (20). The difference between

(20) and (22) can be written as

Dj (x) = (23)
on 0
R(x) % {7 B+ ) o {p (k) B [p ()]} + w0 () 2
an BXj
The sign of the bias, Ex[Dj(x)], is ambiguous in general, but
some of its features can be assessed as follows. For notational
omn(x)
shorthand, let Bj(x)=p(x)x{n(x)Bj+ 5 } so that (23) can be
-
]
rewritten as
Op(x)
Dj(x) = By(x) x {p(x) - Exlp(x)]} + n(x)u(x)—a——. (24)
%
J
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Using the same logic as used to obtain (16), and simplifying, it

follows that

Ex [D5 (x) ] (25)
0
= Covg (Bj(x),p(x)) + Exlm(x)p(x) ﬁ] .
an
on 0
= BjCovx(A(x),p(x)) + Covx(p(x)——gg,p(x)) + Ex[A(x)—EEQ]
0% 05
From the earlier discussion, observing the MPE allows a
prediction about the magnitude and sign of Covg(A(x),p(x)), so

the first term in the second line of (25) can be estimated by

appeal to the homoskedastic 2PM estimates (since ﬁj is
consistent for Bj here) . Moreover, in many applications it will
turn out empirically that sgn(Bj)=sgn(&n(x)/8Xj) -- i.e. factors

that positively (negatively) influence the magnitude of the
outcome also positively (negatively) influence the probability of
a positive outcome, all else equal -- although this is clearly
not a restriction always given a priori by theory.'* If so, then
it may be reasonable to expect the second term in the second line
of (25) to have the same sign as the first term. In conjunction

with speculation about (or even estimation of) the sign of

* In some instances, however -- e.g. price effects for non-

Giffen commodities -- it would be predicted that lower commodity

prices (pyex) would tend both to reduce the probabilities of
OPrWTR, < pvljy = 0, %

corner solutions, i.e. Y yl >0, and increase

opy

quantities demanded when positive.
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8p(x)/6Xj, speculation about the direction of bias might then be
possible.®

But the bottom line is that there are no unambiguous general
biases that can be determined from the conditional differences
Dy (x) . The important message is that the extent to which p(x)
varies with x determines the magnitude of any bias that might be
present. If p(x) is constant over x then Dj(x)=0 for any x, bias
disappears, and the 2PM in conjunction with the homoskedastic
smearing estimator 1is -- as would be expected in such

circumstances -- a perfectly satisfactory estimator upon which to

construct estimates of the partial effects or elasticities.

IV. RECONSIDERING ESTIMATION: TWO ALTERNATIVES
A. A Reformuiation: The Modified Two-Part Model (M2PM)
Main Ideas

The central idea of this paper is the following. A model
that captures the basic essence of -- but is in general not
identical to -- part two of the homoskedastic 2PM replaces (4)

with the assumption that

E(y|y>0,x] exp (xBy) (26)

pym ()

so that

!> vYet as the next section demonstrates, there are alternative

estimation strategies that obviate the need for such speculation
and/or auxiliary estimation and that permit direct unbiased (or,
more accurately, consistent) estimation of the means and partial
effects of interest.
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v = exp(xPm) x expleym) ., y>0, (27)

where E[exp(gy) |y>0,x]1=1"° and where the symbol By is used to

distinguish this parameter from f in the homoskedastic 2PM yet to

emphasize that they play similar roles. The contrast between
(26) and (13) is the fundamental distinction between this
reformulation -- which will be referred to as M2PM, the "M"
prefix standing for "modified" -- and the 2PM model retransformed

via the standard homoskedastic smearing estimator.

While dampening the influence of skewness and high-end
ocoutliers on parameter estimates as well as other considerations
have commonly -- and, it should be stressed, not unreascnably --
been advanced as rationales for specification of the log-linear

model (3), the analytical core of the 2PM formulation is the

linear conditional mean function xf for 1ln(y) |y>0,x regardless of
the skewness or other properties of f£(y|y>0,x). Central to this
specification is the fact that y|y>0,x is a positive random
variable whose logarithmic transformation permits an easily-

estimated linear model to properly characterize the conditional

mean without restriction (i.e. xP can be positive or negative
just as 1ln(y) can be positive or negative).

Analogous reasoning suggests that the critical restriction
on Ely|y>0,x] is Ely|y>0,x]1>0. The leading practice for

specification of the conditional mean of necessarily nonnegative

' Assuming that the x vector contains a constant one can then

assume that E[exp(gy) |y>0,x]=1 without any loss of generality.
As a general matter 1in this case, the key requirement on
E[exp(gy) |y>0,x] is that it is a constant not depending on x.
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and perhaps strictly positive random variables is, as in (26), to
specify the ECM model E[y|y>0,x]=exp(xfym)."" It should also be

emphasized that in the leading case considered in the 2PM
literature where f(y|y>0,x) 1is taken to be homoskedastic
lognormal, (26) implies and is implied by (4), with the exception

that the constant terms in P and Pm may differ in the two

specifications owing to the offset by the variance parameter.
By respecifying the 2PM as (7) and (26) it is now possible
to recover E[y|x] from the two parts of M2PM, viz

E[y]=x] Pr(y>0|x) x E[y]|y>0,x] (28)

exp (xoexp xPym)
1 + exp (xa)

exp (x( + Bm))
1 + exp xa)

lPM (x;eM) ’

where Oy=[a,Pym]. Assembling E[y|x] now entails two components,

not three as 1in the 2PM (6). As such, one can write the

regression model as

y = YMm(x;0M) * upy, vy, (29)

where the key orthogonality restriction is E{upm|x]=1-1%0.

" This ECM assumption is prominent in, e.g., the count model

literature. See Pohlmeier and Ulrich, 1995, for a count model

application of two-part models in a health care utilization
context.
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Basic Properties of W¥y(x;0y)
The partial relationship Sj(x) between the conditional

expectation E[y|x]=¥y(x;0y) and the j-th element of x, X5 is

given by
0Py (x;0
TIMEOM) g 000 { Py + (1) g ) 2o
0%
and
¥ xiO)
o]
Wi (xi0) { (B + (L-m(x))ajl2 - m(x) (L-m(x))af). (31)

If sgn(aj)=sgn(BMj) then it 1is «c¢lear from (30} that

sgn(&?M(x;OM)/GXj)=sgn(aj)=sgn(BMj). If sgn(aj)isgn(BMj), then
several possibilities emerge. If abs(aj)<abs(Bj) then
sgn(@PM(x;eM)/6Xj)=sgn(BMj) unambiguously. However, if

abs(aj)>abs(BMj) then there may be values of x5 at which =m(x) is
sufficiently large or small to result in a <change in
sgn(@PM(x;GM)/6Xj) as x§ -- and, therefore, n(x) -- vary. If x4

varies over (-w,+®), this will be true in general.®®

'* The sign of abyM(x;eM)/ax§ -- i.e. the convexity/concavity of

Yy (x;0y) -- is more complicated to determine. If

sgn(aj)=sgn(BMj)=l, then abPM(x;eM)/ax§>O unambiguously for
m({x)<.5. If abs(aj)<abs(Pyj) and sgn(oq)xsgn(Pfyy)=1 then

GZWM(x;GM)/axg is also unambiguously positive. Note finally that
(continued)
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The elasticities of WYy(x;0y) in the M2PM model have a

particularly simple form:

Oln (Wy (x;0n))
Ny (x) = MM = (1-m(x))oyxy + BMij, (32)
61nb%)

i.e. the nj(x) are just the logit probability elasticity plus the

(conditional) ECM elasticity.

Two-Step Estimation (M2PM-2)
The idea underlying two-step estimation of the M2PM model 1is

fully analogous to that of the usual 2PM model. In step one, a

logit (or probit) model is used to estimate a in Pr(y>0|x;a) .

In step two, nonlinear least squares (NLLS) or some comparable
method with residual function y-exp(xPy) is used in the subsample
S, to estimate PBy.*’

The key orthogonality condition for identification here 1is

at m(x)=.5 62?M(x;9M)/ax§ equals simply Wy (x;0v)Bmy (Bmj+oy) .

* The literature on ECM models recognizes that either an
additive or multiplicative error can be maintained since the two

will, in general, be observationally equivalent. See Wooldridge,
1992, for additional discussion. Inference for NLLS is conducted
using the heteroskedasticity-robust covariance estimator

(Davidson and MacKinnon, 1993)
VR = (6'@) leraae(ere) 1,

where G is the (Txp) matrix of estimated gradients [VBMpmnﬁMH

and O is the (TxT) diagonal matrix of squared NLLS residuals.
This basic setup is used for all NLLS estimation undertaken here.
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that py(x)=E[exp(ey) |y>0,x] is a constant not depending on x; the
normalization pyp{x)=1 will again be available so long as x

contains a constant term.

One-Step Estimation (M2PM-1)

Most fundamentally, the M2PM model (28)-(29) is a nonlinear
regression model for all y. As such, direct estimation of (28)
in a single step via NLLS using all N observations might be

contemplated. Such a strategy would maintain the orthogonality
restriction E[uy|x]=1-1%0 as noted after (29). Cast thusly,

estimation via M2PM-1 is a nonlinear regression problem executed
on the full sample of observations on y and x.

Yet it should be pointed out that an identification issue

arises with the M2PM-1 estimator of 0=[a,Pym] .?° Specifically, the
Tx2k gradient matrix G(9M>=[VGMWWNXFQM)] will fail to have full
column rank at the null hypothesis 6=[a,Pm]l=0, although G(Oy)
will generally have full column rank at values of Oy away from
zero. If the true Oy is nonzero, then the model is identified in

the sense of G(fy) having full column rank at the true parameter

value.?!

2 In the empirical example reported below, attempts to estimate
Oy using the starting values [a,Bm] =0 were, not surprisingly,

unsuccessful. Convergence was not problematic, however, when the
starting values used were the converged values from the M2PM-2
estimator, for which convergence was quite rapid (the globally
concave logit component and the ECM specification for
observations y>0).

22 This identification guestion would appear to be a general
(continued)
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B. An Exponential Conditional Mean Model for E[y/x]
Main Ideas

Probably the most straightforward parametric assumption
consistent with the requirement that E([y|x]>0 is to assume that
the distribution of y|x no Ilonger conditional on y>0 has an

exponential conditional mean structure with a linear index

function, i.e. E[y|x]l=exp(xl). 1In this instance, the outcomes vy

are generated by the model

y = Yr(x;0) * ug, vy (33)

exp (x£) * ug, vy,

where E[ug|x]=1-1%0 is maintained.

Properties

If it can reasonably be maintained that E[y|x]=exp(x{) then
it 1is possible to exploit several potentially very useful
properties of ECM sgpecifications. First, with an ECM

specification it is possible to use instrumental variable methods

to obtain consistent estimates of  should some elements of x be
correlated with unobservable determinants of the conditiocnal

mean. That is, with unobservables ®, if

Ely|x,0] = exp(xf + O) (34)

property of any regression model whose conditional expectation
function is defined on two or more linear index functions in the
same covariate vector x. See Ichimura and Lee, 1991, for
additional discussion.
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with E[®|x] some nontrivial function of x, then standard methods

like nonlinear least squares or quasi-ML will be inconsistent for

g. However, given classical instruments z, a GMM-type IV
estimator can circumvent this difficulty and provide consistent
estimates (see Mullahy, 1997a). It should be stressed that this
estimation strategy is not available with most nonlinear

expectation function specifications.

Second, the ECM specification results in linear
elasticities:
0ln (Yg(x;Q)
Ny (x) = i Sl x4C5 - (35)
alnb%)

These are markedly simpler, and perhaps more tenable a priori,
than the elasticities from the 2PM and even the M2PM which --
from (6) and (28) -- obviously consist of three and two summands,
respectively.

Finally, in keeping with the idea that the parametric
functional forms considered here are all based on linear index
functions, it should be emphasized that even a relatively simple
specification of the conditional mean Ely|x] like ECM is capable
of capturing important nonlinearities in parameters 1like the
partial effects if sufficiently rich definitions of the covariate
vector x are employed. As such, a choice between a two-part
specification (e.g. M2PM or 2PM) with x containing main effects
only versus a one-part model 1like ECM with =x redefined to
include, e.g., low-order polynomials in and interactions between
the main effects might ultimately suggest a preference for a one-

part estimation strategy (although, as discussed below, this 1is
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largely a testable proposition) .

C. Specification Testing

M2PM vs. 2PM

A central implication of the preceding discussion is that if
p(x) 1is constant over x then both the 2PM and the M2PM estimates
of the slope parameters f; and Py; should converge in the limit

to the same (true) wvalue. Conversely, if the 2PM and M2PM
estimates of these slope parameters diverge significantly, this
would be a strong indication that the M2PM estimate is absorbing

some of the effect of x that works through p(x) which, of course,

the 2PM estimate fails to do at all.

A simple diagnostic for such departures can be conducted via

a split-sample test, as follows. Randomly split the S, sample
into two subsamples of approximately N,/2 observations each (e.g.

assign each observation to one or other subsample as a pseudo-

random uniform variate is greater or less than .5). In the first
subsample regress 1ln(y) on x via linear regression to estimate f;
in the second subsample estimate By in exp(xPy) via nonlinear
regression. Denote the respective estimates of the slope
parameters ﬁl and ﬁMl and their corresponding
(heteroskedasticity-robust) covariance matrix estimates Vv, and

VM1 - Since the subsamples are independent by construction, then

the test statistic

22 0f course, richer definitions of the covariate vector x can be

used in any of the linear index function formulations considered
here.
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~ -~ ~ ~

wo= (By - Bm)' (V4 + V)1 (By - Bmy) (36)

can be treated as a xi_l) Wald test statistic under the null

hypothesis of parameter equality.

M2PM vs. ECM

Note that the M2PM model nests two important models. If the

data suggest o1=0 then covariates are not important features of

the hurdle process. Alternatively, if ByM1=0 then only the hurdle

part of the model 1s significantly affected by covariates.
Perhaps the key point to note here is that the M2PM model (28)
effectively reduces to the ECM model (33) under the restriction

exp (@q)

oq=0. Letting A=Bp+1ln| —mmMmmm—
1 J Po (l + exp (ag)

), expression (28) reduces to

(exp (og) x exp xPym)

=exp (x1PM1+A) -- an ECM specification -- when
1 + exp (ag)

o1=0.

Goodness of Fit

Considerations of how well the estimated model fits the data
may also be of importance in some applications. Since the
estimation .strategies considered here are based most

fundamentally on specifications of the conditional mean functions
Ely|x;0] as opposed to specifications of the likelihood functions
£(0|y;x), formal Y2 or probability-based goodness-of-fit tests
(Andrews, 1988) are not available. This does not imply, however,

that analysts should not conduct alternative forms of goodness-

of-fit testing such as graphical analysis of predicted values vs.
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residuals, RESET-type Conditional Moment (CM) tests (Pagan and
Vella, 1989), etc.

The goodness-of-fit tests undertaken here are operationalized

as CM sgpecification tests. For CM tests, moment functions
m(y,x,0) are specified such that ENIm(y,.x,08) |x]=0 under the null
("Nm) hypothesis of correct moment specification but
E4[lm(y,x,0) |x]#0 under the alternative ("A").hypothesis of moment
function misspecification. Then EN[g(x) 'm(y,x,0)]1=0
unconditionally while Egqlg(x)'m(y,x,0)]1=0 in general given

23

suitably defined 1xr vectors g(x). Given a consistent estimate

0 of 9, the empirical analog of F(®)=Elg(x)m(y,x,0)],

r6)-= 12: :qul nﬂyi,xi,é), is used as the basis of a test.

Under the null hypothesis of correct specification, the statistic

~

w(B:R) = (R[(8)) " (RVWI®))IR') " L(R[(H)) (37)

will have a 2 distribution, where ﬁﬂﬂ@) is the estimated
Xrank(®)

covariance matrix of TI'(8), and R is a sxr (s<r) selection

matrix.?*

2 'The choice of g(x) influences the power of the test.
¢ Often R=I,, but the more general formulation will be useful for
the empirical application presented below. Note that if R picks

out only one element of I'(.), then the signed Vw(6;R) serves as a
"t-statistic" for that particular orthogonality test.
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The particular concern here is with proper specification of

the conditional mean function El[y|x]. As such, m(y,x,0) 1is

specified as

m(y,x,0) =y - ¥(x;6). (38)

g(x) will be specified to contain linear and quadratic terms in,
and interations between, elements of x, as will be described
below. These goodness-of-fit tests will be conducted for the
2PM, M2PM-2, and ECM models as well as for an OLS specification
that serves as a useful benchmark. It should be stressed that
these CM tests are nonnested in the sense of not being able to
offer an unambiguous recommendation of one functional form

relative to any other. However, the relative magnitudes of the

estimated yx2 statistics should still provide a useful assessment
of the performance of each individual specification and an

indication of any particular shortcomings each may suffer.

Prediction Biases with M2PM and ECM

It should be noted that the mean prediction errors for M2PM-
2 and ECM estimators will generally be nonzero. Note first that
even the conditional MPE for part two of M2PM-2 will not

generally be forced to zero, which is evident from the first-

order conditions defining By :

Zi €S, [vi - exp xiBm)] x exp &xiPM) x x; = O. (39)

Even if x4 contains a constant term, there is no feature of these
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solution equations that sums up the prediction errors vy;-

exp (x{Pm) over S, to be zero. Similarly, the €first-order

conditions solved by ECM's ( do not result in a MPE that 1is

forced to zero over all observations,

Zie{S+USO} [Yi - exp (xiQ] x exp ;8 x x; = 0. (40)

In both cases, however, it 1s possible to use weighted
variants of the estimating equations (39) and (40) to attain zero

MPE -- conditional on y>0 in the former case -- as well as
consistent estimates of fy and (. For instance, a standard
Poisson regression estimation algorithm amounts to using weights
exp(-xiBfm) and exp(-xj{), respectively, 1in (39) and (40),

vielding the estimating equations

Zies+ [Yi - exp (xiBM)] x xi =0 (41)
and

Zie{s+uso}[yi - exp ;0] x % =0, (42)
respectively. If =xi{ contains a constant term, then the

respective first-order conditions force a zero mean prediction
error (as is the case for logit, least squares, etc.).

For M2PM-2, however, even a =zero conditional (on y>0) MPE
will not generally yield an exact zero overall MPE. A bit of

algebra shows that the M2PM-2 sample MPE based on the mean

. . -1N P
prediction N zi=17‘i“Mi equals
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—-1+<vN Ao = _
N Zi:lnl“’Ml - Y =

Cov(nty, imi) + [% x @.— §)><(E§B-— ﬁ;;:ﬂ, (43)

where ¥ is the full sample mean of the Vi, 7 ois the sample mean

of the #;, fmg and [y, are the Spo and S, subsample means of

the predicted ﬁMi: and the Cov(.) expression is the sample

covariance (normed by N-1, not (N-1) 1) between the predicted

probabilities and predicted conditional means. As such, even if

the M2PM-2 estimate 7t of Exln(x)] gives exactly the marginal

proportion of positive y values (as would logit) and even if the

M2PM-2 estimate [y, of Exlnm(x)] gives exactly the marginal mean

of the y conditional on y>0 (as would the weighted strategy
suggested above) the overall mean prediction will generally not

precisely equal ¥ .

D. Kindred Results from the Count Data Literature
The conditional mean function Wm(x;8y) given in (28) and

the specification test for M2PM vs. ECM discussed above have
well -known counterparts in the econometric literature on count
data. In particular, one prominent class of models developed in
that literature to accommodate conditional probability
distributions of counts where an excess® of zero outcomes is
observed is the so-called "zero-inflated" or "with-zeros" clasg,

with the zero-inflated Poisson ("ZIP") model probably the leading

> "Excegs™ is, of course, defined relative to some null, like

the Poisson.
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example (Cameron and Trivedi, 1996: Lambert, 1992; Mullahy,

1986). Letting Prxo(y|x) denote a null Poisson distribution for

ve{0,1,2,...}, the ZIP model is given by the conditional

probability distribution

Przrp(y|x) = (44)

1(y=0)p(x) + (1 - Q(x))Prp(ny), ve{o,1,2,...},

where it is usually specified that ¢(x)e(0,1).? The conditional

mean function for the ZIP model is given by
Ezrplylx] = (1 - 9(x))Ey [y|x]. (a5)

If, as is standard, Ego[ylx] is specified as exp(xﬁgﬂ and ¢ (x)
is specified as a logit function exp (xoz1p) / (1+exp (xaz1p) ), then
it is readily apparent that Ezrply|x] has the same functional
form as the M2PM conditional mean function Ym(x;0y) in (28).

Moreover, if -- as sometimes maintained -- ¢(x) 1is taken to be
constant over x (¢(x)=¢ for any x), then EzIply|x] reduces simply
to an ECM specification like (33), differing from

Ep[y¢x}=exp(pr) only by the constant term parameter in 59.27

2¢ Some range of negative values for ¢(x) can be admitted to

accommodate a deficit of zeros relative to the null, but this is
not typically a consideration.

27

It might be noted, too, that (26) has the same structure as
would arise if the y were generated by a Poisson(A) mixture (on
N) of binomial (N,p) variates; see Johnson et al., 1992, chapter
9.5 for discussion.
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E. 2PM vs. M2PM and ECM: Summing Up

If contemplating a two-part modeling strategy, the preceding
arguments suggest that the analyst should, at a minimum, confront
directly the question: Why not just start out in the first

instance with the M2PM specification? That is, since the M2PM
model maintains that y=exp (xBym) exp (gy) for y>0, and that
E[exp(ey) |y>0,x]=1, then nonlinear least squares applied toc the

residual function y-exp (xPy) should provide a consistent estimate

of By as well as a consistent estimate of Ely|y>0,x] (=exp(xﬁM))
without any further recourse as to how x affects the shape of the
probability distribution of ¢.

Two distinct but obviously related issues should be
considered at this juncture. The first is whether the estimation
strategy being contemplated can result in consistent estimates of
the parameters (f or BM) of the index function in Ely|y>0,x].
For the homoskedastic 2PM, the key requirement for consistent
estimation of f is the orthogonality condition Ele|y>0,x]=0, as
discussed above. For the M2PM model estimated in two steps, the
key orthogonality condition is that E[exp(ey) |y>0,x] is a
constant not depending on x.

The second issue is whether the contemplated estimation
strategy can provide consistent estimates of important quantities
like the partial effects §(x) or elasticities N (x) The mecdels
under consideration for Ely|y>0,x] and, therefore, E[y|x] are
nonlinear so these partial effects will involve more than just
the parameters B4 or Pyj. In the case of the 2PM, the joint
requirements that E[g|y>0,x]=0 and that Elexp(e) |y>0,x] is a

constant not depending on x suggest that statistical independence
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between €& and x may be the only reasonable assumption
sufficiently general to support such joint requirements. For the
M2PM specification, the assumption that El[exp(ey) |y>0,x] is a
constant not depending on x is already the basis of consistent
parameter estimation. No additional assumptions need be made to
support consistent estimation of quantities like &(x) and/or

ni{x) .

V. A SIMULATION EXPERIMENT

One clear implication of the preceding discussion is that
while the 2PM may be a consistent estimator of the parameters f3,
its wutility as concerns estimation of the partial effects
OE[y|y>0,x]/0x and, therefore, &(x), may be limited. A brief
simulation experiment wunderscores the importance of this
distinction. (For purposes of this section, B will denote both B
from 2PM as well as Py from M2PM.)

The design is intentionally one where neither the 2PM nor
the M2PM-2 estimator will be a consistent estimator of the
partial effects 6E[y[y>0,x]/6Xj. However, the 2PM estimator will
be consistent for B, whereas the M2PM-2 estimator will not (due
to violation of the orthogonality condition that
p(x)=El[exp(ey) |y>0,x] is a constant not depending on x). The
objective of this exercise is to assess the extent to which even
a consistent estimator of f (2PM) may provide misleading

inferences about the partial effects 6E[y|y>0,x]/GXj relative to

an estimator that is known to be inconsistent for B but that at
least absorbs to some degree the dependence of p{x) on x (which

2PM based on the homoskedastic smearing estimator does not).
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The design is as follows. The model is

y = exp(Bg + Bix1 + €), y>0 (46)

with x; a scalar and Bg=f;=.5. As in Example 1 in section III.A
above, let v-~U[-.5,.5] and x;~U[0,1] be statistically independent
pseudo-random uniform variates. Define e=xqv. As such,
Ele|y>0,x]=E[x{Vv]|y>0,x]= X1E[v]|y>0,x]=x1E[v]|y>0]=0, so the

orthogonality condition required for 2PM to be consistent for B

is satisfied. However, note that

E[exp(g) |y>0,x] = j‘_S.S exp (xjv)dv (47)
.5 - -.5
_ exp (.5%x1) — exp ( xl), .y
X1
which is clearly a nontrivial function of x. As such, the

fundamental orthogonality requirement for consistency of part two

of the M2PM-2 estimator 1is violated. Moreover, since
Elexp(g) |y>0,x] does not have a representation as an ECM function
here, it thus does not follow that the y parameters in p(x;y) get

"rolled in" to the P parameters in p(x;p).
The simulation uses 1,000 replications of a sample size of

N=5,000 observations. The vector xi is drawn once and then held
constant across the 1,000 draws of the wvector v. To be
accumulated are the 2PM and M2PM-2 estimates of f; at each

replication as well as the sample median estimate of the true

partial effects at each replication
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CEly|y>0,x  ¥BA-)+.5A0+)] - Al-)

= , (48)
ox 2
1 %X
where A(-)=exp (Bg+B1x1+.5) -exp (Bo+P1x1-.5) and Al+) =
exp(Bo+B1x1+.5) +exp (Bp+P1x1-.5) . Based on the single draw of xq,

and given the true parameters fg=B1=.5, the sample mean and
median of these partial effects are 1.186 and 1.160,
respectively. The estimates of B and of the partial effects are
then summarized by the sample means and medians of these
estimates over the 1,000 replications. The pértial effects are

computed using the estimates of exp(Bg+Bix1)B; for M2PM-2 and

¢xexp (Bg+P1x1)Py for 2PM, with ¢ estimated by the standard
homoskedastic smearing method.
The results are provocative. Not unexpectedly, the 2PM

estimates of B outperform those obtained via M2PM-2: mean/median

.500/.500 wvs. .544/.545, respectively. However, the superior

performance in estimation of PB; is swamped by the failure of the

homoskedastic 2PM smearing estimator of p(x) to account for any
dependence of p{(x) on x. For the homoskedastic 2PM, the mean and
median of the partial effect estimates are 1.074 and 1.074. For
M2PM-2, the mean and median partial effect estimates are 1.169
and 1.169, far closer to the true sample mean and median values.
As such, despite the fact that the M2PM-2 estimator 1is the
"wrong" estimator for this design, the fact that it incorporates
some degree of dependence of El[exp(e)|y>0,x] on x results (at
least 1in this example) 1in its superior performance as an

estimator of the partial effects of interest.

41



VI. AN EMPIRICAL EXAMPLE OF HEALTH CARE UTILIZATION

This section presents some empirical illustrations of the
concepts and issues discussed in the previous sections. The
various estimators are compared and contrasted in terms of their
performance in a single sample, and the results of some

specification tests are reported.

A. Sample and Estimators

The estimation sample of N=36,111 observations on
individuals ages 25-64 is drawn from the 1992 National Health
Interview Survey. The dependent variable is the number of doctor
visits in the twelve-month period prior to the survey. For this
measure of the dependent variable, y=0 in Ng=8,513 cases (23.6%)

and y>0 in N,=27,598 cases (76.4%). The list of covariates is as

described in table 1 and the sample frequency distribution of the
visits measure is presented in table 2.7

The five models estimated here are as follows:

(1) ECM estimated on the full sample (&) ;
(2) two-step M2PM (M2PM-2) (a,fwm);
(3) M2PM conditional mean function estimated in one

step on the full sample® (M2PM-1) (a,PBpm):

*® In a preliminary specification, Age Squared was included as a

covariate but 1in some cases (ECM) was not statistically
significant. To facilitate interpretation of the results, it 1is
not included in the specifications reported below. Whether its

exclusion 1is statistically significant should be determined in
part by the results of the CM specification tests.

2 The M2PM-2 estimates were used as starting values here.
Convergence was problematic when alternative arbitrary starting
(continued)
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(4) standaxd logit/loglinear 2PM with standard

homoskedastic smearing retransformations («,fB);
(5) standard logit/loglinear 2PM with a nonlinear

regression for an ECM smearing retransformation,

i.e. p(x)=exp(xy).

B. Results
The point estimates are reported in table 3. Columns 1 and

2 report the estimates of o from the usual logit estimator and
from the M2PM-1 estimator, respectively. In all cases the signs
of the point estimates are the same, although in some cases the
magnitudes and/or the significance levels differ markedly (e.g.
Male, Schooling). As a general matter, but not unexpectedly, the
M2PM-1 point estimates are noisier than the logit estimates even

though the estimates are computed off the same sample.
Columns 3-5 of table 3 report the estimates of B and Py

obtained from 2PM, M2PM-1, and M2PM-2. For 2PM and M2PM-2 the

estimates are based on the S, subsample whereas the M2PM-1

estimates use the entire sample. With one exception (Male for
M2PM-1) the signs of the point estimates are the same across the
three estimators. The magnitudes and significance levels are,
again, quite variable across the three sets of results, with the
2PM results tending to have markedly larger asymptotic ¢t-

statistics than M2PM-2 and, particularly, M2PM-1.°°

values were used. The ECM and M2PM models were estimated in part
using programs written by the author. Stata versions of the ECM

program and of the dataset are available on request, preferably
via email.

30 All t-statistics reported here are based on
(continued)
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Estimates of the.ECM formulation of E([y|x] are reported in
column 6 of table 3. The signs of the individual point estimates
are the same as the 2PM and the M2PM point estimates, and the
magnitudes are quite similar as well. Since over 76 percent of
the observations in this particular sample are on y>0, this
similarity of results is not terribly surprising. In a different

sample where the fraction of observations on y=0 is larger, it 1is
a fairly safe bet that the ECM results for { would tend to
diverge more dramatically from the 2PM and M2PM estimates of J
and PBy.

The last column of table 3 reports the results of a NLLS
estimation where the 2PM exponentiated residuals are the

dependent variable, the assumption being that p(x)=exp(xy).
While some caution should probably be exercised in interpreting

the estimated standard errors, the signs and magnitudes of the
point estimates of Yy are informative. For instance, for Age,
Married, and Excellent the M2PM point estimates of pyj are
markedly larger (in absolute value) than the 2PM estimates. This
result may be reconciled in part by the corresponding negative
point estimates of y§ which, when added to the corresponding 2PM
estimates of ﬁj would bring the two sets of estimates more
closely in line. Conversely, for Male the 2PM point estimate of
Bj is larger in magnitude than the M2PM-2 point estimate.
However, the positive point estimate of y4 in this case again

serves to partially reconcile the estimates. In all cases,

discrepancies between the 2PM and M2PM point estimates and their

heteroskedasticity-robust covariance estimators.
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(at least partial) reconciliation on the basis of the estimates
of y underscore the importance of accounting for the possible

dependence of p(x) on x 1f sound inferences are to be

forthcoming. It should be reiterated (yet again) that the M2PM

approach embeds the dependence of p(x) on x as a maintained

assumption while the ECM model circumvents the issue altogether.
Table 4 computes for ECM, M2PM-1, M2PM-2, and homoskedastic

2PM the estimated partial effects Sj(x) for the continuous

covariates Age and Schooling. These partial effects are computed

for each observation in the full sample (N=36,111), with the
sample quartiles and sample mean reported in table 4. For both
Age and Schooling the results are striking. The quartiles and

means of the estimated effects from the ECM specification are
gquite <close to those from M2PM-1 and M2PM-2. For both
covariates, however, the estimated magnitudes of the partial
effects for the 2PM model diverge dramatically from those
obtained using the other three methods. Of course, the usual 2PM
estimator of El[y|x] based on a homoskedastic  smearing
retransformation is the only one of these estimators that does
not account -- either implicitly or explicitly -- for the
possible nontrivial dependence of the distribution of gly>0,x on
x.’! The approximate comparability of the three other estimators
suggests that consideration of such dependence is (at least in
this example) of paramount importance, perhaps even moreso than

correct specification of the functional form of the conditional

3 For example, figure 1 plots the estimated exponentiated

residuals from the standard 2PM against Schooling, giving a

rather strong impression that p(x) is a nontrivial function of at
least one of its components.
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mean function itself.

C. Specification Tests
With reference to the specification tests discussed above in
section IV.C, the split-sample test statistic for equality of the

point estimates of P71 from 2PM and PBy; from M2PM-2 is 38.3 on 8

d.f. (p<.00005), suggesting compellingly rejection of the null
and supporting an inference that p{(x) is a nontrivial function of
x in these data.™

Second, for testing ECM against M2PM, the test of the null

hypothesis Hp:a1=0 from the M2PM-1 model gives a xé) statistic of

16.8 (p=.032). As such, there is some, albeit not

3

overwhelming,’® evidence against the ECM model in favor of the

M2PM formulation.

The results of the CM tests for misspecification of Y¥(x;0)

are summarized in tables 5 and 6. The test statistics are

> The split-sample test was based on independent subsamples of

sizes 13,844 and 13,754. To assess whether this single split-
sample result might have somehow been anomalous, a simulation
exercise was undertaken. The sample splitting was repeated

randomly over 1,000 replications. The .05, .25, .50, .75, and
.95 quantiles of the 8 d.f. test statistics were 21.7, 28.6,
34.5, 41.3, and 51.0, respectively. Even the .05 quantile test
statistic over these replications would have a p-value less than
.01. As such, it is probably safe to conclude that the 2PM and

M2PM point estimates of B and Py; diverge significantly.

33

A p-value of .032 on a sample of N=36,111 does not offer
tremendously compelling evidence against the null. It should be

noted, however, that the corresponding xé) statistic from the

logit model (column 1 of table 3) is 2177.2 with a p-value less
than .00005.
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computed for four estimators: standard 2PM Dbased on the
homoskedastic smearing estimator, M2PM-2, ECM, and a baseline OLS
specification. In constructing [(0), g(x) 1is specified to
contain all 1r=35 of the possible linear, quadratic, and
interaction terms of the elements of the covariate vector x
(excluding the constant term). The statistics are given by

equation (37) with the selection matrix R defined alternatively
as: Ri=I, (all elements of I'(8)); Rp=[Ix.1,0k-1,r-k+1] (terms in
[ (M) corresponding only to the linear elements of g(x)); Rz=

(0r-k+1,k-1-Ir-k+1] (terms in I'(8) corresponding only to the
interaction and guadratic elements of qx)); and

R4j=[O,O,...O,1,O...O] (individual elements of ['(6) are selected

to be tested by t-tests given by the signed Vw (8 ;R)) . The

~

covariance matrix estimate V(I'®)) is obtained wvia a simple
bootstrap covariance estimator based on b=1,000 bootstrap
replications (Efron and Tibshirani, 19%83).

The first noteworthy summary statistics in table 5 are the
L -1N A
mean prediction error MPE=N Zi_l(‘P(xi;G) - yij) and mean squared

error MSE:N_ljif_lchd;é)— yﬂz for the four estimators. (Note

that only OLS forces the MPE to zero.) While the MPEs for the
M2PM-2 and the ECM estimators are quite small, the MPE for the
2PM (=-0.175) is quite large (approximately 3.5% of the sample

mean of the dependent variable), suggesting that -- at least for

3% pFor the OLS specification, only the test statistics
corresponding to Ry and to the Rg5 for j>r are interesting

because of its defining orthogonality restriction x' (y-x0)=0.
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these data -- the homoskedastic 2PM systematically underpredicts
the mean level of the dependent variable.’® The corresponding
MSEs suggest a preference ordering of M2PM-2 > ECM > OLS > 2PM on
this criterion.

Despite the fact that the CM tests are formally nonnested

across the four model specifications, the preference ordering

M2PM-2 > ECM > 2PM again would appear to hold for any of the

selection matrix specifications Rj, Ry, or R3. In no instance

does any 2 test statistic fall short of even the .0001 critical

value. Of course, rejection of the null is not surprising given
the fairly large sample size. If the less conservative and
sample-size-sensitive Schwartz criteria (rank (R) x1n (N) ; see

Schwartz, 1978) are used instead of the standard 2 critical
values to determine model acceptability, the M2PM-2 and ECM
specifications are comfortably inside the acceptable range
whereas the 2PM specification would have to be considered

tenuous. When the OLS specification is considered with the R3

selection matrix, it is seen that its performance is roughly
comparable to that of ECM but decidely inferior to that of M2PM-

2. Finally, while ECM does not appear to perform quite as well

as M2PM-2 in terms of %2 scores, it should be noted that it

represents a much more parsimonious specification (k parameters

instead of 2k parameters), and should in fairness be assessed
3* Recalling the discussion around equation (17), this suggests a
positive correlation over x of A(x) and p(x). Indeed, fitting

p(x) as an ECM model based on the exponentiated least-squares
residuals from the regression of ln(y) on x for y>0 gives a full

sample covariance of 0.197 between px) and Ax), quite close to
the observed |MPE| of 0.175.
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accordingly.
The CM tests for the individual elements of g{(x) (i.e. those

corresponding to the R4j) are presented in table 6. These

statistics provide an indication of the extent to which any
particular orthogonality restriction built into the estimators
may be questionable. The statistical significance might be
judged by classical methods (|t|>1.96) or by the appropriate
Schwartz criterion (given here by |t]|>3.24).

Most striking is the fact that violations of orthogonality
for the homoskedastic 2PM estimator are found 1in the vast
majority of cases. Conversely, M2PM-2 appears to perform
reasonably well, with significant t-statistics under the Schwartz
criterion found in only two of the 35 cases. ECM again performs
less well than M2PM-2. For both M2PM-2 and ECM, particular
trouble spots would appear to be with respect to variables and
interactions involving Male and Schooling. The OLS results again
represent a middle ground; interestingly, the problems with the
Male interactions seen for M2PM-2 and ECM do not seem quite so

prominent with OLS.

VII. SUMMARY AND DISCUSSION

Both the algebraic and the empirical results presented here
suggest that one should approach use of the standard
(homoskedastic) 2PM with considerable caution in microeconometric
applications where interest centers on E[y|x] and its associated
partial effects. The basic identifying assumption for B in that
model, namely El[g|y>0,x]1=0, is not sufficiently powerful to
identify other parameters of interest -- Ely|x], &(x), etc. --

even if m(x) is properly specified and identified. One may make
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the stronger assumption' that € and x are statistically
independent, but such an assumption is of little use -- and will
actually tend to be counterproductive -- when p(x) is in fact a

nontrivial function of x.
The requirements for identifying By as well as Ely|x] and

§(x) are far less stringent when the M2PM estimator is used.

Again, a single orthogonality condition is the basis of the
identification of Py, namely Elexp(ey) |y>0,x]=1. In this case,
however, and unlike the 2PM, this single restriction is alsoc
sufficient to identify Ely|y>0,x] and its associated partial
effects. As such, unless there are some a priori bases on which
the analyst can be comfortable with the assumption that € and x
are statistically independent (or at least that p(x) is constant

over x), there would seem to be a clear preference for using M2PM
over 2PM if parameters apart from P or By per se are of interest

and if their consistent estimation is the prime objective. On
the basis of the applied work undertaken here, there would seem
to emerge a preference for using the two-step estimator M2PM-2
over the one-step version M2PM-1. Estimation of the former is
only marginally more time-consuming than 2PM, requiring a logit
or probit regression (as does 2PM) and a nonlinear least squares
exponential regression, which in practice tends to converge
rapidly.

The question of whether "truth" is really a one-part or a
two-part model should be confronted squarely in applications.
One simple specification test for M2PM against ECM was suggested
here and, as suggested earlier, goodness-of-fit tests of wvarious
sorts might be contemplated as well. As a general premise, an

ECM specification for E[y|x] captures perhaps the single most
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prominent feature of E(y|x], namely E[y|x]>0. Given a rich
specification of the covariate vector x (e.g. low-order
polynomials in and interactions between the main covariates), an
ECM specification of E[y|x] with a linear index function may be
sufficient to capture any important nonlinearities in parameters
like the partial effects without recourse to a two-part
structure.

Finally, contemplation of an estimation strategy should
include considerations of some of the key rationales that
motivated development of the 2PM in the first place. Perhaps
most prominent here are considerations of the robustness of point
estimates to thick upper tails and/or high-end outliers. The
arguments advanced here suggest that there are likely to be some
bias-robustness tradeoffs involved in such considerations, but
assessing the nature of such tradeoffs is beyond the scope of

this paper.
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Table 1

Descriptive Statistics: 1992 NHIS 12-Month Doctor Visgits,

(N=36,111)
Variable Mean Min - Max
Visits 4.91 0 370
Age 41.8 25 64
Schooling 13.0 0 18
Male .378 0 1
White .819 0 1
Married .680 0 1
Excellent .341 0 1
Very Good .300 0 1
Good .241 0 1
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Table 2

Sample Frequency Distribution: Visits (N=36,111)

Visits Sample Freq. Sample Pct.
0 8513 23.57
1 8260 22.87
2 5155 14.28
3 3044 8.43
4 2312 6.40
5 1389 3.85
6 1369 3.79
7 493 1.37
8 617 1.71
S 197 0.55

10 848 2.35

11 108 0.30

12 1000 2.77

13 109 0.30

14 136 0.38

15 417 1.15

16 116 0.32

17 49 0.14

18 92 0.25

19 27 0.07

20+ 1860 5.15
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Table 3

Estimation Results: Alternative Estimators
(robust asymptotic t-statistics in parentheses)

Variable Logit  M2PM-1 2PM M2PM-1  M2PM-2 ECM 2pM*¢
Constant .793 1.161 1.814 2.652 2.749 2.328 .871
(8.6) (0.5) (42.5) (4.8) (21.2) (7.1} (11.5)

Age .007 .024 -.003 -.012 -.009 -.007 -.004

(5.9) (1.9) (4.8) (2.0) (4.9) (3.7) (3.8)

Male -.913 -1.441 -.188 .109 -.047 -.199 .044
(35.4) (2.7) (15.2) (0.3) (1.1) (4.2) (1.7)

White .151 -.109 .154 .183 .132 .175 .014
(4.4) (0.3) (9.7) (2.2) (2.5) (3.2) (0.4)

Schooling .103 .038 .024 .049 .037 . 0585 .002
(23.1) (0.9) (11.3) (3.5) (5.5) (7.7) (0.5)

Married .120 .318 -.041 -.191 -.148 -.130 -.065
(4.3) (1.2) (3.1) (2.0) (3.6) (3.0) (2.4)

Excellent -1.394 -1.575 -1.304 -1.504 -1.612 -1.828 -.218
{(24.7) (1.2) {56.5) (6.5) (33.8) (37.4) (5.3)

Very Good -1.056 -1.667 -1.083 -1.129 -1.340 -1.480 -.184
(18.86) (1.2) (47.2) (4.5) (29.8) (32.1) (4.7)

Good  -.898 -1.171 -.752 -.776 -.856 -.973 -.062
(15.8) (0.9) (32.1) (5.4) (19.4) (21.7) (1.5)

N. Obs. 36,111 36,111 27,598 36,111 27,598 36,111 27,598

3 This estimator is the ECM estimator in which the exponentiated
estimated residuals from the 2PM are the dependent variable.
Asymptotic t-statistics for this estimator are based on standard
heteroskedasticity-robust formulae but may still be misleading.

57



Table 4

Summary of Partial Effects 6E[y|x]/GXj for Age and Schooling;

25th, 50th, 75th Sample Percentiles and Sample Mean
(Computed on full sample, N=36,111)

Estimator
varisbie  mem | weew-z w1 2w
Age
25th Pctl. -.040 -.043 -.039 -.015
50th Pctl. -.027 -.028 -.019 -.0081
75th Pctl. -.020 -.019 -.0011 -.0025
Sample Mean -.036 -.038 -.030 -.011
Schooling
25th Pctl. .15 .18 .17 .28
50th Pctl. .20 .22 .23 .32
75th Pctl. .30 .32 .32 .42
Sample Mean .27 .28 .29 .38
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Table 5

Conditional Moment y2 Tests for Misspecification of Elyl|x],
Mean Prediction Errors, and Mean Squared Errors

Test Statistic 2PM M2PM-2 ECM OLS
CM Test xz
All Covariates 334.2 188.0 222.2 --
(d.£.=35)
Linear Terms Only 105.5 32.3 62.0 --
(d.£.=8)
Higher-Order Terms Only 281.9 132.6 197.4 193.2
(d.£.=27)
Mean Prediction Error -0.175 -0.009 0.010 0
Mean Squared Error 151.92 151.04 151.12 151.54

x2 Critical Values:

Schwartz
d.£. .05 .01 .0001 Criterion
35 49.8 57.3 74.9 367.3
27 40.1 47.0 63.2 283.3
8 15.5 20.1 31.8 84.0
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Table 6

CM Tests for Misspecification of E{y|x]: t-Statistics

Variables 2PM M2PM-2 ECM OLS
Age 5.7 1.7 0.5 --
Schooling 7.3 -0.8 -2.8 --
Male 4.8 -2.6 -3.9 --
White 3.8 1.6 -0.1 --
Married -0.3 1.1 0.6 --
Excellent -6.9 2.5 -0.7 --
Very Good -3.9 1.5 -0.8 --
Good 4.2 -0.7 -1.6 --
Age? 5 .0 1 8
Schooling? 6.4 -0.5 -1.8

AgexSchooling 4.8 0.3 -0.8 -0.3
AgexMale 5.3 -0.8 -2.1 4.4
AgexWhite 2.0 1.4 0.1 -1.3
AgexMarried -2.1 0.2 -0.2 -4.0
AgexExcellent -8.8 0.5 -1.3 0.6
AgexVery Good -4.4 1.7 0.5 2.5
AgexGood 4.0 1.4 0.6 2.4
SchoolingxMale 3.7 -3.7 -4.8 -3.0
ScheoolingxWhite 4.0 1.5 -0.0 1.4
SchoolingxMarried 0.1 1.2 0.7 1.8
SchoolingxExcellent -7.3 -0.0 -3.4 -6.5
SchoolingxVery Good -3.3 0.9 -1.3 -2.5
SchoolingxGood 4.5 -0.1 -0.8 2.0
MalexWhite 2.9 -3.0 -4.2 -2.0
MalexMarried 2.3 -1.1 -1.9 1.2
MalexExcellent -3.3 ~2.7 -4.7 0.8
MalexVery Good -3.0 -3.4 -4.5 -1.4
MalexGood 2.6 -0.7 -1.5 -0.5
WhitexMarried -0.2 1.8 .2 0.8
WhitexExcellent -6.0 2.0 0.1 -2.0
WhitexVery Good -3.6 1.0 -0.3 -1.2
WhitexGood 4.3 1.5 1.0 2.1
MarriedxExcellent -4.9 6 1.9 3.3

MarriedxVery Good -2.3 .8 2. .
MarriedxGood -0.4 -1.6 -1.8 -2.4
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Fig. 1. Standard 2PM: exp(residual) and Schooling
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