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MONOTONE INSTRUMENTAL VARIABLES: WITH AN APPLICATION TO THE RETURNS TO SCHOOLING

Charles F. Manski and John V. Pepper

Abstract

Econometric analyses of treatment response commonly use instrumental
variable (IV) assumptions to identify treatment effects. Yet the credibility of
IV assumptions is often a matter of considerable disagreement, with much debate
about whether some covariate is or is not a "valid instrument” in an application
of interest. There is therefore good reason to consider weaker but more credible
assumptions. To this end, we introduce monotone instrumental variable (MIV)
assumptions. A particularly interesting special case of an MIV assumption is
monotone treatment selection (MTS).

IV and MIV assumptions may be imposed alone or in combination with other
assumptions. We study the identifying power of MIV assumptions in three
informational settings: MIV alone; MIV combined with the c¢lassical linear
response assumption; MIV combined with the monotone treatment response (MTR)
assumption. We apply the results to the problem of inference on the returns to
schooling. We analyze wage data reported by white male respondents to the
National Longitudinal Survey of Youth (NLSY) and use the respondent’s AFQT score
as an MIV. We find that this MIV assumption has little identifying power when
imposed alone. However combining the MIV assumption with the MTR and MTS
assumptions yields fairly tight bounds on two distinct measures of the returns

to schooling.



1. Introduction

Econometric analyses of treatment response commonly use instrumental
variable (IV) assumptions to identify treatment effects. Yet the credibility of
IV assumptions is often a matter of considerable disagreement, with much debate
about whether some covariate is or is not a "valid instrument" in an application
of interest. There is therefore good reason to consider weaker but more credible
assumptions. To this end, we introduce monotone instrumental variable (MIV)
assumptions, study their identifying power, and give an empirical application.

Whereas an IV assumption is a mean-independence condition holding that mean
response is constant across the subpopulations of persons with different values
of an observable covariate, an MIV assumption supposes that mean response varies
weakly monotonically across these subpopulations. MIV assumptions may be imposed
alone or in combination with other assumptions. We first characterize the
identifying power of MIV assumptions alone, extending the Manski (1989, 1990,
1994) analysis of the identifying power of IV assumptions alone. We next study
the identifying power of MIV assumptions in combination with two assumptions
restricting the shapes of response functions -- the linear response assumption
of classical econometric analysis and the monotone treatment response assumption
of Manski (1997). We then give an empirical application to the problem of
inference on the returns to schooling.

The findings that we report add to the emerging literature developing
nonparametric bounds on treatment effects. Several contributors to this
literature have examined the identifying power of IV assumptions and of
variations on the IV theme. Manski (1990) reported sharp bounds on mean outcomes
and average treatment effects under the IV assumption alone. Robins (1989) and

Balke and Pearl (1997) have considered the statistical independence assumption
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that holds in classical randomized experiments; that is, response functions are
statistically independent of assigned treatments, not just mean independent.
Robins (1989) reported the same bound as Manski (1990), but Balke and Pearl
(1997) later showed that this bound, although sharp under the IV assumption,
sometimes is not sharp under the statistical independence assumption (see also
Robins and Greenland, 1996).

Hotz, Mullins, and Sanders (1997) have studied contaminated instrument
assumptions, which weaken IV assumptions in a different way than MIV assumptions
do. They suppose that an IV assumption holds in a specified population, but the
observable population is a probability mixture of this population and another one
in which the IV assumption does not hold. Applying results in Horowitz and
Mangki (1995) to the resulting contaminated sampling problem, they derive sharp
bounds on average treatment effects in the specified population.

This paper uses the same formal setup and notation as Manski (1997). We
assume there is a probability space (J, Q, P) of individuals. Each member j of
population J has observable covariates x; € X and a response function yil-):
T - Y mapping the mutually exclusive and exhaustive treatments t € T into
outcomes y;{t) € Y. Person j has a realized treatment z; € T and a realized
outcome y; = yj(z;), both of which are observable. The latent outcomes y;(t), t #
z; are not observable. An empirical researcher learns the distribution
B(x, z, y) of covariates, realized treatments, and realized outcomes by observing
a random sample of the population. The researcher’s problem is to combine this
empirical evidence with assumptions in order to learn about the distribution
Ply(-)] of response functions, or perhaps the conditional distributions
Ply{(-)|x].

With this background, we may formally define IV and MIV assumptions. Let



X = (w, v) and X = W x V. Each wvalue of (w, v) defines an observable
subpopulation of persons. The IV (or mean-independence) assumption is that, for
each t € T and each value of w, the mean value of y(t) is the same in all of the

subpopulations (w, v = u), u € V. Thus,

IV Assumption: Covariate v 1is an instrumental variable if, for each t € T, each

value of w, and all (u, u’) € (V x V),

(1) Ely(t)|w, v = u'l = Ely{t)|lw, v = ul.

MIV assumptions weaken the IV idea by replacing the equality in (1) by an

inequality. Thus

MIV Assumption: Let V be an ordered set. Covariate v is a monotone instrumental
variable if, for each t € T, each value of w, and all (u,, u,) € (V x V) such

that u, > uy,

(2) Ely(t)|w, v = w,] > Ely(t)|w, v = ul.

Researchers contemplating application of IV and MIV assumptions should have
a clear understanding of their content. With this in mind, Section 2 examines
what these assumptions do and do not assert. The key 1is to integrate the
concepts of treatments and covariates in the analysis of treatment response. We
use the integrated framework to suggest MIV assumptions that might credibly be
applied in analyses of the returns to schooling.

In Sections 3 through 5, we study the identifying power of MIV assumptions
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in three informational settings. 1In Section 3 we consider an MIV assumption
alone and report sharp bounds on the conditional mean responses Ely(t)|w, v = u],
u € V and the marginal mean E[y(t)|w]. The MIV bounds are informative if the
outcome space Y is bounded and if the no-assumptions bounds of Manski (1989) are
not monotone increasing in u. The MIV bounds take a particularly simple form in
the case of monotone treatment selection (MTS), where the realized treatment z
is itself an MIV.

In Section 4, we combine an MIV assumption with the linear response

assumption

where e; is an unobserved covariate. Classical econometric analysis of treatment
response (see Hood and Koopmans, 1953) combines an IV assumption with assumption
(3). The central finding is that assumptions (1) and (3) together identify the
response parameter (3, provided that z is not mean independent of v. We find here
that when the IV assumption is weakened to an MIV assumption, the value of 3 is
no longer identified but is bounded.

In Section 5, we combine an MIV assumption with the monotone treatment

response (MTR) assumption studied in Manski (1997). This is

MTR Assumption: Let T be an ordered set. For each j € J,

(4)  t,

[\

£, = yvi(ta) 2 yy(tl).

The MIV and MTR assumptions make distinct contributions to identification. When



imposed together, the two assumptions can have substantial identifying power.
Combining the MTR and MTS assumptions yields a particularly interesting finding.
Whereas the MTR-MIV bounds are generally informative only when Y is a bounded
outcome space, the MTR-MTS bounds are informative even if Y is unbounded.

In Section 6, we present an empirical case study applying the findings of
Sections 3 through 5 to inference on the returns to schooling. Here we analyze
wage data reported by white male respondents to the National Longitudinal Survey
of Youth (NLSY) who are employed full time in 1994. We propose using the
respondent’s AFQT score as an MIV and find that this assumption has little
identifying power when imposed alone. However substantively interesting findings
emerge when we combine this MIV assumption with the MTR and MTS assumptions. We
obtain an upper bound on the returns to schooling that is only slightly above the
point estimates commonly reported in the literature.

In Section 7, we draw conclusions and call attention to two variations on
the MIV theme. One might weaken the statistical independence assumption of
classical randomized experiments to an assumption of weak stochastic dominance.
Fuzzy instrumental variables weaken the mean independence of the standard IV
assumption to some form of approximate mean independence.

To simplify the exposition in Sections 2 through 5, we henceforth leave
implicit the conditioning on w maintained in the definitions of IVs and MIVs.
Moreover, to keep the focus on identification, we treat identified, consistently
estimable quantities as known. In the empirical analysis of Section 6, we
explicitly condition on specified covariates w. There we discuss statistical
considerations and use bootstrapped confidence intervals to measure the sampling

precision of the estimates.



2. What Are IV And MIV Assumptions?

The concepts introduced in Section 1 suffice to define IV and MIV
assumptions and to analyze their identifying power. Imbedding these concepts
within a broader framework, however, helps to understand the meaning of these
assumptions. Section 2.1 sets out this broader framework. Section 2.2 uses it

to suggest MIV assumptions that might credibly be imposed when analyzing the

returns to schooling.

2.1. Treatments and Covariates

The discussion of Section 1 suggests a sharp distinction between treatments
and covariates. Treatments have been presented as quantities that may be
manipulated autonomously, inducing variation in response. We have been careful
to use separate symbols for the conjectural treatments t € T and for the actual
treatment z; € T realized by person j. Covariates have been presented only as
realized quantities associated with the members of the population, with no
mention of their manipulability. We have used vy € V to denote the covariate
value associated with person j. We have given no notation for conjectural values
of this covariate.

A symmetric perspective on treatments and covariates emerges if, as in
Manski (1997, Section 2.4), we enlarge the set of treatments from T to the
Cartesian product set T x V and introduce a generalized response function
y5(, -): T x V - Y mapping elements of T x V into outcomes. Now, for each
(t, u) € T x VvV, y5(t, u) is the outcome that person j would experience if she

were to receive the conjectural treatment pair (t, u). The treatment pair
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realized by person j is (z;, vy) and her realized outcome is y; = y% (2, v;). The
response function y;(:): T -~ Y introduced as a primitive in Section 1 is now a
derived sub-response function, obtained by evaluating y*;{(-, -) with its second

argument set at the realized treatment value vj; that is,

*

(5) Yj(') = vy, Vj)-

In this broadened framework, a covariate is synonymous with a realized treatment.
With this as background, observe that the familiar statement “covariate v
does not affect response” has two distinct formal interpretations. One

interpretation is that v is an IV and the other is that outcomes are constant

under conjectural variations in v. The IV interpxetation, rewritten here using
the y" (-, -) notation, states that for each t € T,
(1) Ely'(t, v)|v = u']l = Ely{t, v)[v=ul, Yuev, u €V.

The other interpretation is that for each j € J and t € T,

(6) vy, u) = y'y(t, vy, VY u e V.

The second interpretation, which has not vyet been named, will be called a
constant treatment response (CTR) assumption.

Similarly, the familiar statement: "response is monotone in v' has two
interpretations. One is that v is an MIV and the other is that outcomes vary
monotonically under conjectural variations in v. The MIV interpretation is that

for each t ¢ T,



(2') v, =2 wu - Ely" (¢, v)|v = u,] =2 E[y(t, v)lv = u,].

The other is that for each j € J and t € T,

*

(7)) v, =z u = vy, u) 2 yi5(t, u).

The second interpretation is an MTR assumption as in (4), but here applied to u
rather than to t.

Digtinguishing appropriately between IV/MIV assumptions and CTR/MTR
assumptions 1is critical to the informed analysis of treatment response. We
cannot know how often empirical researchers, thinking loosely that “covariate v
does not affect response,” have imposed an IV assumption but really had a CTR
assumption in mind. Introducing MIV assumptions here, we want to squelch from

the start any confusion between MIV and MTR assumptions.

2.2. Application to The Returns to Schooling

Labor economists studying the returns to schooling commonly suppose that
each individual j has a wage function y;(t), giving the wage that j would receive
were she to obtain t years of schooling. Observing realized covariates,
schooling, and wages in the population, labor economists often seek to learn the
expected returns to the t'™ year of schooling, namely Ely(t)] - Ely(t-1)].

Researchers often use personal, family, and environmental attributes as
instrumental variables for wages. See, for example, Angrist and Kreuger (1991),
Blakemore and Low (1984), Blackburn and Neumark (1993, 1995), Butcher and Case

(1994), Card (1993, 1994), Frazis (1993), Griliches (1977), Garen (1984), Kenny
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et al. (1979), Lang and Ruud (1986), Osterbeek (1990), and Willis and Rosen
(1979) . Yet the validity of whatever IV assumption may be imposed seems
inevitably to be questioned.
Some formal analysis suggests covariates that might plausibly serve as MIVs
in analyses of the returns to schooling. We present a Lemma giving conditions
sufficient for v to be an MIV. We then pose some covariates to which the lemma

might be applied.

Lemma: Assume that person j‘s earning function has the form

(8) Ytj(tl u) = g(t, u, o, €j)'

Here t ¢ T is years of schooling and u € V is another treatment taking values in
the ordered set V. The quantities (o, €;) are person j’s realizations of the
unobserved covariates (o, «). Covariate o measures some form of ability and
takes values in an ordered set A, while e is unnamed and takes values in some
space E. Assume that, for each t € T and each realization of e, the sub-response
function g(t, +, +, €): V x A - R' 1is weakly increasing in u and «. Assume that
e is statistically independent of (o, v). Assume that the distribution P(a|v)
of ability conditional on v is weakly increasing in v; that is, u; 2 u; implies

that P(nlv = u.) weakly stochastically dominates P(alv = u) Then v is an MIV. W

Proof: Let u, > u,. We need to show that E[y'(t, v)|v = w] 2> Ely'(t, v)|v = u]l

Let u € [u;, u,;]. The assumptions imposed imply that
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Elg(t, v, a, €)|v = u,] - Elg(t, v, o, €)|v = u;]

[fg(t, u;, a, €)dP(ale, v = u,)dP(e|lv = u,)

- ffglt, u,, a, e)dP(ale, v = u,)dP(e|v = u,)

J [g(t, v, «, €)dP(a|v = u,) - [glt, v, o, e)dP(x|v = u,)1dP(e)

> [ [fg(t, u, a, e)dP(alv = u,) - [g(t, u, o, e)dP(ajv = u,)1dP(e)

The first equality applies (8). The second equality writes the expectations

explicitly as integrals. The third equality applies the assumption that e is

statistically independent of (o, V). The fourth inequality applies the
assumption that g(t, -, o, &) is monotone in u. The fifth inequality applies the
assumption that g{t, u, -, ) is monotone in « and that P(x|lv = u,;) weakly

dominates P(alv = u;).

Empirical studies of the returns to schooling have commonly maintained the
assumptions of this lemma within parametric response models that also impose
strong functional form assumptions on g(-, -, -, -) and strong distributional
assumptions on («, e€). BAmong various classes of covariates that plausibly fit
the conditions of the lemma, perhaps the most obvious are achievement measures --
standardized test scores, grade point averages, and the like. The lemma shows

that sufficient conditions for an achievement measure to be a valid MIV are
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(1) Holding fixed (t, o, e), wages g(t, -, o, e€) are a weakly increasing
function of measured achievement u.

(ii) The distribution of ability among persons with higher measured achievement
weakly dominates the distribution of ability among persons with lower
measured achievement.

These seem to us to be easily understood and plausible assumptions. Assumption
(i) permits measured achievement to have either no direct impact on wages or a
direct positive impact, as is implied by signaling models in which employers use
measured achievement to predict ability. Assumption (ii) does not require that
measured achievement be identical to ability, only that it be a weakly positive

predictor of ability in the sense of weak stochastic dominance.

3. Identification Using an MIV Assumption Alone

The identifying power of an IV assumption alone, with no other assumptions

imposed, has been studied in Manski (1990, 1994). We examine here the
identifying power of an MIV assumption alone. We focus on the problem of
inference on the conditional means E[y(t)|v = ul, u € V and the marginal mean
Ely(t)]. The findings are sharp bounds on these quantities.

Section 3.1 gives the general results. Section 3.2 applies these results
to an important special case 1in which the form of the bounds simplifies
considerably. This is the case of monotone treatment selection, which weakens
the familiar assumption of exogenous treatment selection from an IV to an MIV.

Section 3.3 discusses multi-dimensional IV and MIV assumptions.



12

3.1. General Case

The starting point for determination of the identifying power of both IV

and MIV assumptions is the no-assumptions bound on Ef{y(t)|v] reported in Manski

(1989). Let [K,, K;] denote the range of the outcome space Y. Let u € V. Use
the law of iterated expectations and the fact that E[y(t)|v = u, z = t] =
E(ylv = u, z = t) to write

(9) Ely(t)|v =ul = E(y|lv=u, z = t)-P(z = t|v = u)

The sampling process identifies each of the quantities on the right side except
for the censored mean E[y(t)|v = u, z # t]. 1In the absence of assumptions, all
that is known about this censored mean is that K, < Ef{y(t)|v = u, z # t] < K..

This implies the sharp bound

(10) E(ylv = u, z = t)-P(z = t|v = u) + K,*P(z # t|v = u)
< Ely(t)|lv = ul <
E(ylv = u, z = t)-P(z = t]v = u) + K-P(z * tlv = u).
This bound is informative if the treatment selection probabilitv P(z = t'v = u)

is positive and if Y is a bounded outcome space, so K, and K, are finite.

Under the IV assumption, E[y{t)|v = u]l is constant across u € V. It
follows that the common value of E[y(t)|v = ul, u € V lies in the intersection
of the bounds (10) across the elements of V. Any point in this intersection is

feasible. Thus, for all u € V, we obtain the common sharp bound
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(11) sup [E(ylv = u’, z = t)-P(z = t|v = u’') + K;-P(z # t|v = u’)]
u'e v
< Ely(t)|v = ul <
inf [E(y|lv = u’, z = t)-P(z = t|v = u’) + Ky*P(z # t |v = u")].
u’ €V
This is also the sharp bound on the marginal mean E[y(t)]. See Manski (1990,

1994) for further discussion.

The IV bound (11) is necessarily a subset of the no-assumptions bound (10).
It is a proper subset for some u € V if and only if the no-assumptions bounds for
u € V do not all coincide. This is a rank condition in the spirit of, but
formally distinct from, the familiar rank condition associated with classical
econometric analysis of treatment response (see Section 4).

Now consider an MIV assumption. In this case, El[y(t)|v = ul need not be
constant across u € V but we do have the inequality restriction

(12) u, < u < u, - Ely(t)|]v = uy,] < Ely(t)]v = ul < Elyl{t){v = u,l.

Hence E[y(t)|v = ul 1is no smaller than the no-assumption lower bound on
Ely(t)|v = u;] and no larger than the no-assumption upper bound on Ely(t)|v = u,]
This holds for all u, < u and all u, » u. There are no other restrictions on

Ely(t)|v = u]. Thus we have
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Proposition 1: Let the MIV Assumption (2) hold. Then for each u € V,

(13) sup [E(y)|v = u;, z = £)-P(z = t|v = u;) + K;-P(z # t|v = u)]
u, < u

< Ely(t)|v = ul

IA

inf [E(y|lv = u;, 2 = t) Pz = t|v = u,) + K*P(z = tv = u)].
u, > u

In the absence of other information, this bound is sharp. W

The MIV bound on the marginal mean E[y(t)] is easily obtained from

Proposition 1. Assume for simplicity that the set V is finite. Then we may use

the law of iterated expectations to write

(14) Ely(t)] = ¥ P{v = u) -Ely(t)|v = u]
S

P
\%

Equation (13) shows that the MIV lower and upper bounds on Ely(t)|v = u]l are

weakly increasing in u. Hence the sharp joint lower (upper) bound on
[Ely(t)|]v = u), u € V} is obtained by setting each of the quantities
Ely(t)|lv = u]l, u € V at its lower (upper) bound as given in (13). Inserting

these lower and upper bounds into (14) yields
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Proposition 1, Corollary 1: Let the MIV Assumption (2) hold. Then

(15) ¥ P(v = w){ sup [E(y|lv = u;, z = £)-P(z = t|v=u) + K;-P(z # t|v = u)]}
ueyv u; < u

< Ely(t)] =«

Y P(v = u{ inf [E(y|v = u,, 2z = t)-Plz = t|v = u,) + K -P(z * t|v = u;)1}.
€

u \% u, 2z u

In the absence of other information, this bound is sharp. B

If V is not finite, the result continues to hold with the summation replaced by
a Lebesgue integral, subject to measurability considerations.

The MIV bounds in Proposition 1 and Corollary 1 necessarily are subsets of
the corresponding no-assumptions bounds and supersets of the corresponding IV
bounds. The MIV bounds and no-assumptions bounds coincide if the no-assumptions
lower and upper bounds on E[y(t)|v = u]l weakly increase with u. In such cases,
the MIV assumption has no identifying power. The MIV bounds and IV bounds
coincide if the no-assumptions lower and upper bounds on E[y(t)|v = ul weakly
decrease with u. In such cases, the MIV assumption has the same identifying
power as does the IV assumption.

Figures 1 through 4 illustrate how the identifying power of the IV and MIV
assumptions depend on the way the no-assumptions bound on Ely(t)|v = u)l varies
with u. 1In Figure 1 the no-assumptions bound is (0.3, 0.7] for all values of u,
so neither the MIV nor the IV assumption has identifying power. In each of
Figures 2 through 4, the no-assumptions bound varies sufficiently with u that

their intersection contains only one point, namely 0.5. Hence the IV assumption
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reveals in each case that E[y(t)|v = u]l] = 0.5 for all u.

The identifying power of the MIV assumption varies considerably from Figure
2 to Figure 4. 1In Figure 2, the no-assumptions bound weakly increases with u,
so the MIV assumption has no identifying power. In Figure 3, the no-assumption
bound varies non-monotonically with u, so the identifying power of the MIV
assumption varies with u. In particular, the MIV assumption has no identifying
power at v = 1 and at v = 10, but substantially narrows the no-assumption bound
at v = 5. In Figure 4, the no-assumptions bound weakly decreases with u, so the

MIV assumption reveals that E[y(t)|v = ul = 0.5 for all u.

3.2. Monotone Treatment Selection

Certainly the most prominent IV assumption in the literature is that of

exogenous treatment selection (ETS), in which the instrumental variable v is the

realized treatment z. Then the IV assumption (1) becomes

ETS Assumption: For each t € T,

(16) Ely(t)|z = u']l = E[y(t)|z = ul, YueT, u' e€T.

It is well known that the IV bound (11) reduces to an equality in this case.

Observe that P(z = tiv = u’) = P{(z = tjz = u’) = 1 if u’ = t and equals zero

otherwise. Hence ({(11) becomes

(17) E(ylz = t) < Ely(t)|z = u]l < E(ylz = t).
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Thus we obtain the equality

(18) Ely(t)|z = ul = E(ylz = t).

Let us now weaken equation (16) to an inequality. This yields a new

assumption which we call monotone treatment selection (MTS):

MTS Assumption: Let T be an ordered set. For each t € T,

(19) u, =2 u = E[y(t)‘z = u,] =2 E[y(t)|z = u,].

Applying Proposition 1 and Corollary 1 now yield these simple sharp bounds on

Ely(t)|z = u]l and Ely(t)]:

Proposition 1, Corollary 2: Let the MTS Assumption (1%9) hold. Then

u = t - Ely(t)|jz = u]l = El(y|z

li
ot

u > t - E(y|lz = t) < Ely(t)|z

li
£
A

=

and

(21} K¢-P(z < t) + E(y|lz = t)-P(z

v
o
IA
23]
<
=

< K, +P(z > t) + Elylz = t) -P(z < t).

In the absence of other information, this bound is sharp. W



18

To illustrate the ETS and MTS assumptions, consider the returns to
schooling. The ETS assumption asserts that persons who select different levels
of schooling have the same mean wage functions. The MTS assumption asserts that
persons who select higher levels of schooling have weakly higher mean wage
functions than do those who select lower levels of schooling. Many economic
models of schooling choice and wage determination predict that persons with
higher ability have higher mean wage functions and choose higher levels of
schooling than do persons with lower ability. The MTS assumption is consistent
with these models but the ETS assumption is not.

Figure 5 shows visually the identifying power of the ETS and MTS
assumptions. The figure displays no-assumption bounds on Ely(t) |z = ul when y(t)
is a binary outcome variable. The no-assumption bound is informative only when
z = t, in which case the conditional expectation is revealed to equal 0.5. The
intersection of the no-assumptions bounds across different values of z also
equals 0.5. Thus the ETS assumption implies that E[y(t)|z = u] = 0.5 for all u.
The no-assumption bound varies non-monotonically with z, so the identifying power
of the MIV assumption varies across the subpopulations receiving different
treatments. When z < t, the MIV lower bound is uninformative and the upper bound
equals 0.5. When z > t, the MIV upper bound is uninformative and the lower bound

equals 0.5.

3.3. Multi-dimensional IV and MIV Assumptions

It is straightforward to combine multiple scalar IV and MIV assumptions.

One simply takes the intersection of the bounds obtained under each assumption

imposed. An illustration will be given in the empirical analysis of Section 6,
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where we use AFQT score as an MIV and also assume monotone treatment selection.
We caution the reader that combining multiple scalar assumptions is not the
same as imposing one multi-dimensional assumption. To make the point it suffices
to consider two scalar covariates, say v, € V, and v, € V,, where V, and V, are
both subsets of the real line. One might assume that v, and v, are each scalar
IVs, or one might assume that the pair (v,, Vvy) is a two-dimensional IV. The

former assumption states that for each t € T,

Ely(t)|v. = u'l = Ely(t)lv, = ul, all (u, u’) € Vv, x V,
Ely(t)|vy, = u'l = Ely(t)|vp, = ul, all (u, u’) € Vv, x Vy
The latter assumption states that
Ely(t)](va, vi) = (u', w')l = Ely(E)[(va, Vo) = (u,, w)l,
all [(u,, uy), (uy’, w')l € (V. x V) x (V, x V).
The latter assumption implies the former one. Hence the IV bound (11) formed

using (v,, Vv,) as a two-dimensional IV 1is necessarily a subset of the

intersection of the bounds formed using v, and v, as two scalar IVs. A direct

proof of this can be based on the reasoning in Manski (1994, note 4, p. 167).
Now consider v, and v, as MIVs. One might assume that v, and v, are each

scalar MIVs; that 1isg,

Ely(t)|v. = u;]

N

Ely(t)|va w,l, all (uy, w) € Vv, x V, s.t. u,

v

U,

El(y(t)]|vy

u,]

v

Ely(t)]vy, = w}, all (u,, u,) € Vy x Vy s.t. u; > u.
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Alternatively, one might assume that the pair (v,, v,) is a two-dimensional semi-
monotone instrumental variable (SMIV).

We define an SMIV in the same manner as an MIV except that the set V is
assumed only to be semi-ordered rather than ordered. The inequality (2) holds
as stated, it being understood that there may exist some pairs of (u,, w,) values
that are not ordered. In the present case, u; = {Ua, Un), WO = (U, W), and we

define u, > u, if and only if u,, > u, and u, 2> uy. So (v,, vy) is an SMIV if

Ely(t) | (va, Vi) = (Us, wy)]l 2 Ely ()| (ve, Vi) = (Wa, uml)i,
all [(uu, Up), (Uaz, Up)]l € (Vo x V) x (V, x V) S.€. Usp 2 Ux and Up 2 Uy
This SMIV assumption does not imply the earlier pair of MIVs, nor vice versa.
Proposition 1 holds as stated for SMIVs, the sup and inf operations being
taken over the pairs of (u,, u) and {u, u,) values that are ordered. With some
increase in notational burden, the analysis in the remainder of this paper can
be extended to SMIVs as well, much in the manner that Manski (1997) extends the

analysis of monotone treatment response to semi-monotone treatment response.

4. Identification Using MIV and Linear Responge Assumptions

The central finding of the classical econometric literature on treatment
response is that the response parameter 3 of the assumed linear response function
(3) is identified given an IV assumption (1) and the rank condition that z is not
mean independent of v. We present a simple proof taken from Manski (1995, page

152) . We then weaken the IV assumption to an MIV assumption and show that this
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renders B unidentified but bounded.

Let u, € V and u; € V be any two points on the support of the distribution

of covariate v. Assumptions (1) and (3) imply that

(22) Ef(e|lv = w) = E(e|lv = u).
Assumption (3) implies that e; = y; - Bz; for each person j. Hence
(23) E(y - Rz|v = u,) = E(y - Bz|v = u,).

Solving (23) for £ yields

E(ylv u,) - E(y‘v

= = ul)
(24) B = .
E(zlv = u,) - E(z|v = )
provided that the dominator is non-zero. The rank condition is that this

denominator should be non-zero for some pair (u,, u,) or, equivalently, that =z
should not be mean independent of v. Each of the quantities on the right side
of (24) is identified and can be nonparametrically estimated. Hence assumptions
(1), (3), and the rank condition identify {3 and make it estimable.

Analyses of treatment response often seek to learn average treatment
effects of the form Ely(t,)] - E[ly(t,)] for specified t; € T and t, € T. When the
linear response mcdel (3) is assumed, the average treatment effect is B(t, - £,)
Hence identification of B is equivalent to identification of the average

treatment effect.

Now replace the IV assumption with MIV assumption (2). Let V be an ordered
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set and let u, > u; be two points on the support of v. Assumptions (2) and (3)

imply that
(25) E(€|v = u,) = E(€|V = U, .
Assumption (3) still implies that e; = y; - $2z; for each person j. Hence

Solving for # yields the inequality

o E(y|v = u;) - E(y\v = u,)
(27a) B < if E(zlv = u;) - E(z*v = u) >0
E(zlv = u;) - E(z‘v = u;)
E(ylv = U} - E(ylv = uy)
(27b) R > if E(z!v = U,) - E(zlv = u) < 0.

E(z|v = u,) - E(zlv = u,)

This proves

Proposition 2: Let the MIV Assumption (2) and the linear response model (3) hold.
Then # lies in the intersection of the inequalities {(27) over (u., u,) € V x V

such that u, > u,. In the absence of other information, this bound is sharp. B

Proposition 2 yields an informative bound on  if and only if z is not mean
independent of wv. Thus the rank condition here is the same as when an IV

assumption is combined with the linear response model. The bound in Proposition
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2 typically does not identify . The sign of f may or may not be identified.

Inspection of (27) shows that sgn(f) is identified as negative if there exists

a u, > u, such that E(ylv = u,) - E(ylv = 1) < 0 and E(z|v = Uu,) - E(zlv = u;) >
0. Sgn(R) is identified as positive if there exists a u, > u, such that E(ylv
= U,) - E(y|v = ;) < 0 and E(z|v = u,) - E(zlv = u;) < 0. Sgn(R) is not
identified if E(y|v = u;) - E(ylv = u) 2 0 for all u, > u,.

Proposition 2 yields a particularly simple conclusion in the case of an MTS
assumption. Let v = z. Then E(z[v = u,) - E(z\v = u) = u, - u. Hence the rank

condition necessarily holds and Proposition 2 yields this upper bound on #:

Proposition 2, Corollary 1: Let the MTS Assumption (19) and the linear response

model (3) hold. Then

[\e]
o]
]
A

inf
(U, u;): u, > u, u, - u,

In the absence of other information, this bound is sharp. N

Equation (24) showed that under the ETS assumption, which is the boundary
case of MTS, 3 = [E(y|z = Uu,) - E(ylz = u)]l/(u, - u), all (u,, uy): u;, > u,.
Corollary 1 reveals that estimates of R obtained under the ETS assumptizsn are

biased upward if the MTS Assumption holds but the ETS Assumption does not.
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5. Identification Using MTR and MIV Assumptions

For many years, empirical researchers have applied linear response models
of the form (3) even though these models are not grounded in economic theory or
other substantive reasoning. The literature has not provided compelling, or even
suggestive, arguments in support of the hypothesis that response varies linearly
with treatment and that all persons have the same response parameter.

Much of the empirical research that has applied linear response models
could more plausibly apply monotone treatment response assumptions of the form
(4), stating that response varies monotonically with treatment. The theory of
the firm suggests that supply functions slope upward. Consumer theory suggests
that demand functions slope downward. Human capital theory suggests that wages
increase with years of schooling. In these and other settings, MTR assumptions
have a reasonably firm foundation.

The identifying power of an MTR assumption alone, with no other assumptions
imposed, has been studied in Manski (1997). Let t € T, let v denote an observed
covariate, and let (4) hold. Corollary M1.2 of Manski (1997) gives this sharp

bound on the conditional mean response E{y(t)|v = ul:

(29) E(y|v =u, t » z)-P(t 2 z|v = u) + Ko-P(t < z|v = u) < Elyl{t)|v = ul

< Elvlv =u, t £ 2)-Plt < zlv = ) + K -P(t > z[v = u).

It is straightforward to combine the MTR assumption with the assumption that v
is an IV or an MIV. We simply repeat the derivation of Section 3.1, with the MIR
bound (29) replacing the no-assumptions bound (10).

Let v be an IV. Then Ely(t)|v = ul is constant across u € V. Hence the
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common value of E[y(t)|v = ul, u € V lies in the intersection of the bounds (29)
across the elements of V. Any point in this intersection is feasible. Thus, for

all u € V, we obtain the common sharp bound

(30) sup [E(yiv =u’, t 2 2)-P(t 2 z|]v =u') + K;rP(t < zlv = u')l
u'e Vv
< E[y(t)|v =u]l <
inf [E(ylv =u’', t < z)-P(t < z|v=1u') + K P(t > z|]v = u’)]l

u’ € v

This is also the sharp bound on the marginal mean E[y(t)].
Now let v be an MIV. In this case, E[y(t)|v = ul need not be constant
across u € V but we do have the inequality restriction given earlier in (12),

namely

Uy

IA
c
IA

U, = Ely(t)|v = uw;] < Ely(t)|v =ul =< Ely(t)|v = ul.

Hence E[y(t)|v

u] is no smaller than the MIR lower bound on E[y(t)|v = u,] and
no larger than the MTR upper bound on Ely(t)|v = u;]. This holds for all u; < u

and all u, > u. There are no other restrictions on E(y(t)|v = ul. Thus we have
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Proposition 3: Let the MIV and MTR Assumptions (2) and (4) hold. Then for each

u € Vv,
(31) sup [E(y|lv = u;, t > z)-P(t 2 z|v = u;) + K;-P(t < z|v = uy)]
U, € u
< Ely(t)|v = ul =
inf [E(y|v = u;, t s z)-P(t < z|v = u,) + K;-P(t > z|v = u,)].

u, 2 u
In the absence of other information, this bound is sharp. B

The MTR-MIV bound on the marginal mean E[y(t)] is obtained from (31).

Recall the application of the law of iterated expectations given in (14), namely

Ely(t)l = y
€

Proposition 3 shows that the MTR-MIV lower and upper bounds on Ely(t)|v = ul are

weakly increasing in u. Hence the sharp joint lower (upper) bound on
{(Ely(t)|lv = ul, u € V} 1is obtained by setting each of the quantities
Ely(t)|v = ul, u € V at its lower (upper) bound as given in (31). Inserting

these lower and upper bounds into (14) vields
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Proposition 3, Corollary 1: Let the MIV and MTR Assumptions (2) and (4) hold.

Then

(32) Y P(v=u { sup [E(ylv =u, t 2> 2) Pt 2 z|v = u) + K-P(t < zlv = u)l}
uev u, < u

< Elyt)l =«

Y P(v = u) { inf [E(y|lv = u;, t < 2)-P(t < zlv = u,) + K -P(t > z[v = u)l}.
u e v u, 2 u

In the absence of other information, this bound is sharp. H

In general, the MTR-MIV bounds on Ely(t)|v = u]l and E[y(t)] are informative

e - .
only if the outcome space Y is bounded. Yet there is an important special case
in which these bounds are informative even if Y is unbounded. This is the case
of monotone treatment selection, in which v = z. BApplication of Proposition 3

yields this MTR-MTS bound on E[y(t)|z ul :

(33) u < ¢t = sup E(y|jz = u;) < Ely(t)|z = ul < inf E(ylz = u,)
u < u u, 2 t

u = t = sup E(ylz = u;) < Ely(t)|z = ul < inf E(ylz = uy)
u, <t u, > t

u > t = sup E(ylz = u;) s Ely(t)|z = ul < inf Elylz = uy)
u; £ € u, > u

It follows from the MTR and MTS assumptions that



(34) u’ < u = E(ylz =u’) = Ely{u’)]z =u’]l < Ely(u)lz = u’l]

< Ely(ul]z = ul = Elylz = u).

Combining (33) and (34) yields these quite simple MTR-MTS bounds, which are

informative even if Y is unbounded:

Proposition 3, Corollary 2: Let the MTR and MTS Assumptions (4) and (19) hold.

Then

(35) u < t = E(ylz = u) < Ely(t)|z = ul < E(ylz = t)
u = t = Ely(t)|z = ul = E(y|z = t)
u > t - E(ylz = t) < Ely(t)]z = ul =< E(ylz = u)
and
(36) Y E(ylz = u)-P(z = u) + E(ylz = £) Pz > t) < Ely(t)]
u < t
< Y Elylz = u)-P(z =u) + E(y|z = t)-P(z < t)

In the absence of other information, these bounds are sharp. B

Equation (34) suggests a simple test of the joint MTR-MTS hypothesis. If
the MTR and the MTS assumptions both hold, then E(ylz = u) must be a weakly
increasing function of u. Hence we should reject the MTR-MTS hypothesis 1if
E(y|z = u) is not weakly increasing in u. This test is a weakened version of the

stochastic dominance test proposed in Manski (1997, p.1327) for testing the joint
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hypothesis that treatment response is monotone and that z is statistically

independent of y{(-).

6. Empirical Analysis of The Returns to Schooling

6.1. Specification and Data

We now apply the propositions developed in Sections 3 through 5 to the
problem of inference on the returns to schooling, discussed earlier in Section
2.2. We have suggested a number of assumptions that are consistent with standard
theories of human capital accumulation, productivity, and wages. In Section 2.2
we suggested that achievement measures are credible MIVs. In Section 3.2 we
suggested that realized years of schooling is itself a credible MIV, so the MTS
Assumption (19) holds. In Section 5 we suggested that wages increase with
conjectured years of schooling, so the MTR Assumption (4) holds. In this section
we use data from the 1979 cohort of the National Longitudinal Survey of Youth
(NLSY) to determine what empirical findings about the returns to schooling emerge
when these weak assumptions are imposed. We also report findings when two strong
assumptions are imposed, the linear response assumption (3) and the ETS
assumption (16) .

In its 1979 base year, the NLSY interviewed 12,686 persons who were between
the ages of 14 to 22 at that time. Nearly half of the respondents were randomly
sampled, the remaining respondents being selected to over-represent certain
demographic groups (see Center for Human Resource Research, 1995). We restrict

attention to the 1,257 randomly sampled white males who, in 1994, reported that
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they were full-time year-round workers with positive wages. We exclude the self-
employed. Thus our empirical analysis of the returns to schooling concerns the
subpopulation of persons who, in the notation introduced in Section 1 but since

left implicit, have the shared observable covariates

(37) w = (white males, full-time year-round workers in 1994, not self-employed) .

We observe each respondent’s 1994 hourly wage and years of schooling. We
also observe the respondent’s Armed Forces Qualification Test (AFQT) score
obtained when the AFQT was administered during the 1979 and 1980 interviews. 1In
terms of our notation, z is the observed years of schooling and v is the AFQT
score, a covariate that measures student achievement. The response variable
y;(t) is the wage that person jJ would experience if he were to have t years of
schooling and y; = y;(2;) is the observed hourly wage.

We examine two distinct features of the returns to schooling. First,
following the tradition in the literature, we use log (wage) to measure outcomes
and report findings on the expected returns to an additional year of schooling,

namely

(38) A, (t) = E{logly(t)l} - E{log[(y(t-1)1}.

Second we examine the effect of an additional year of schooling on the

probability that wage exceeds ten dollars per hour; that is,

(39) A,(t) = Plylt) > 10] - Ply{t-1) > 10]

= E{1ly(t) > 101} - E{1ly(t-1) > 101}.
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'

We report findings for the values t = 12, 15, and 16; that is, on the returns to

the 12th, 15", and 16t" years of schooling.

The indicator functions in (39) take the values 0 and 1, so we set K, = O
and K, = 1 when applying Propositions 1 and 3 to the problem of inference on
A,(t). The log functions in (38) have unbounded range, so we must set K, = -«

and K, = « for inference on A, (t) unless we assume that the distribution of wages
has bounded support. With this in mind, we assume that the lowest possible wage
is $4.25 per hour, which was the official minimum wage in 1994. We assume that
the highest possible wage is $150 per hour, which exceeds the highest wage
reported by any NLSY respondent in 1994, namely $138 per hour. Thus we set K,
= log(4.25) = 1.4 and K, = log(150) = 5.0 for inference on A,(t). A reader who
does not accept these support assumptions should interpret us as reporting
findings on a trimmed mean of log(wage) rather than the mean itself in those
cases where the bound depends on the values of K, and K,. This caveat does not
apply to the bounds derived under the linear response model nor to those that
combine the MTR and MTS assumptions. As shown in Sections 4 and 5, these bounds
do not depend on the values of K, and K;.

Whereas Proposition 2 directly yields sharp bounds on average treatment

effects, Propositions 1 and 3 give sharp bounds on the mean outcomes

E{logly(t)1}, E{logly(t-1)1}, Ply(t) > 10], and P[y(t-1) > 10]. Our objects of
interest are the average treatment effects 4, (t) and »a,(t), which take
differences of these quantities. It suffices to consider 4,(t), as the same

considerations apply to A4,(t).
In the case of Proposition 1, the sharp lower (upper) bound on A (E) is
obtained by subtracting the lower (upper) bound on E{logly(t)]} from the upper

(lower) bound on E{logly(t-1)1}. 1In the case of Proposition 3, we may obtain
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bounds on A,(t) in the same manner but these bounds are not necessarily sharp.
In particular we also know that, under the MTR assumption alone, the lower bound
on A,(t) must be no less than zero (see Manski, 1997, and Pepper, 1997). The
bound that we report uses this information as well as the information yielded by

Proposition 3.

6.2. Statistical Considerations

The bounds developed in Propositions 1 through 3 and their corollaries are
continuous functions of various nonparametrically estimable conditional
expectations. Hence any consistent nonparametric regression method may be used
to obtain consistent estimates of the bounds. Treating the covariates v (AFQT
score) and z (realized years of schooling) as continuous conditioning variables,
we use kernel methods to estimate the relevant conditional expectations, much as
in Manski, Sandefur, McLanahan, and Powers (1992) and in Pepper (1997). In
particular, we use a standard normal kernel with the bandwidths for v and z set,
following some experimentation, to the values 10 and 0.8 respectively. We take
the suprema and infima required by Propositions 1 through 3 only over the integer
values of v and z that are realized in the NLSY data.

Bootstrapping provides an heuristically appealing and computationally
tractable way to form confidence intervals for our estimates of hounds on the
returns to schooling. The bootstrapped sampling distribution of an estimate is
its sampling distribution under the assumption that the unknown population
distribution of (AFQT score, realized years of schooling, realized wages) among
persons with the covariates w specified in (37) equals the empirical distribution

of these variables in the sample of 1,257 randomly sampled NLSY respondents.
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Beneath each [lower bound, upper bound] estimate, we display the interval

(40) (A, B)

(0.05 quantile of bootstrapped sampling distribution of lower bound estimate,

0.95 quantile of bootstrapped sampling distribution of upper bound estimate) .

Let [L, U] denote a [lower bound, upper bound] estimate. By construction,
L < U in all samples. Under the bootstrap assumption that the population and
empirical distributions coincide, Prob(A < L) > 0.95 and Prob(U < B) » 0.95. Now

consider the event (A < L n U < B).

(41) Prob(A < L. N U

'
w
1

Prob(A < L) + Prob(U < B) - Prob(A < L u U

A
w

i\

0.95 + 0.95 - 1 = 0.90.

Hence the interval (A, B) gives a conservative bootstrapped 90 percent confidence

interval for the bound estimate.

We caution the reader that the available asymptotic theory for bootstrapped

sampling distributions does not appear to immediately cover our bound estimates,

which are functions of various kernel estimates. It would be useful to extend
the asymptotic theory of the bootstrap to cover such estimates. It would also
be useful to analyze the finite sample bias of our bound estimates Finite

sample bias may be a particular concern in those cases where the bound estimate
is obtained by taking the suprema or infima of several kernel estimates. We do
not attempt to resolve these statistical questions in the present paper, which

is primarily concerned with identification.

We also caution the reader not to confuse the statistical questions that
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arise in bound estimation with those examined in the large literature on the
sampling distributions of point estimates obtained under the classical
econometric model combining an IV assumption with the linear response assumption
(3). Consider, in particular, the matter of weak instruments examined by Nelson
and Startz (1990), Bound, Jaeger, and Baker (1995), Staiger and Stock (1997), and
others. The classical econometric model is formally identified given a weak
instrument. The problem is that the sampling distribution of the usual estimate
may be poorly behaved.

In our setting, an instrumental variable may be weak in two different
senses. One, which is not a concern in the classical literature, is that the IV
may have little identifying power, in that the IV bound improves little on the
no-assumptions bound. The other sense is that the sampling distribution of an
estimate of the IV bound may be poorly behaved. It is an open guestion whether
classical IV point estimates and our nonparametric IV (or MIV) bound estimates

have poorly behaved sampling distributions in similar situations.

6.3. Findings

Tables 1 and 2 report our findings on A,(t) and A,(t) respectively, for t
= 12, 15, 16. We shall focus our discussion on the findings in Table 1 for
A, (12), the mean log(wage) return to the 12t vear of schooling. The patterns for
the other estimates are similar.

The obvious striking finding is how the widths of the estimated bounds vary
with the assumptions imposed. First we should report some qualitatively
meaningful but quantitatively uninteresting findings. The no-assumptions bounds

show that the data alone reveal almost nothing about the returns to schooling as



35

measured by the difference in mean log(wage) between 11 and 12 years of
schooling. All we can say based on the data alone is that the return to the 12
year of schooling is in the interval [-3.052, 2.497]. The assumption that AFQT
score is an MIV has very little identifying power, the bound being [-2.841,
2.320]. The MTS assumption, namely that the persons who select more years of
schooling have higher mean log(wage) has somewhat more power, the bound now being
[-2.384, 1.362]. The MTR assumption, namely that wages increase weakly with
conjectured schooling, yields a yet narrower bound of [0, 1.333], but this range
of possible values of A,(12) 1is still very wide relative to the conventional
wisdom about the magnitude of the returns to schooling.

Quantitatively interesting findings begin to emerge when the MTR and MTS
assumptions are combined. The MTR-MTS bound on the mean log(wage) effect of the
12" year of schooling is (0.0, 0.199]. 1In Section 5 we observed that the MTR-
MTS assumption is a testable hypothesis, which should be rejected if Elylz = u)
is not weakly increasing in u. Our nonparametric estimates of mean log (wage) do

increase in realized schooling, the estimates being

E(y|lz = 9) = 2.269 E(ylz = 10) = 2.339 E(y|lz = 11) = 2.470
E(y|lz = 12) = 2.505 E(y|z = 13) = 2.554 E(ylz = 14) = 2.644
E(y|lz = 15) = 2.773 E(y|z = 16) = 2.848 E(ylz = 17) = 2.866
El(ylz - 18) = 2.946.

Hence the MTR-MTS assumption is consistent with the empirical evidence.
Under the joint MIV-MTS-MTR assumption, the bound on the mean log(wage)
effect of the 12t" year of schooling is narrowed further to [0, 0.126]. Thus,

by combining three weak assumptions, we are able to conclude -- subject to
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considerations of finite-sample precision and bias -- that the 12" year of
schooling increases mean log(wage) by 0.126 at most. This is a substantively
interesting upper bound on the returns to schooling.

We do not obtain a substantively interesting lower bound on the returns to
schooling. The lower bound under the joint MIV-MTS-MTR assumption is zero, which
is implied algebraically by the MTR Assumption alone. Proposition 3, Corollary
2 shows that combining the MTR Assumption and the MTS Assumption cannot improve
on the MTR lower bound of zero. MIV assumptions other than the MTS one can, in
principle, yield positive lower bounds on treatment effects. In our application,
however, the AFQT variable turns out not to have this kind of identifying power.

The conservative ninety percent bootstrapped confidence interval for the
MIV-MTR-MTS bound estimate is (0, 0.148). This interval is Jjust 17 percent wider
than the bound estimate itself. Inspection of Tables 1 and 2 shows that the
confidence intervals displayed below the bound estimates are generally not much
wider than the estimates themselves. Thus identification appears to be the
dominant problem in our efforts to infer the returns to schocling. Subject to
our earlier caveat about the absence of a demonstrated theoretical foundation for
our applications of the bootstrap, we find that the sampling precision of the
estimates is no more than a second-order concern.

Much of the literature on the returns to schooling assumes that treatment
selection is exogencus and that the log(wage) response functicn is linear in
years of conjectured schooling with a common slope parameter across persons, as
in  (3). Some labor economists combine the linear response model with
instrumental variable assumptions or other identifying restrictions. The
estimates of A,(t) reviewed by Card (1994) typically lie between 0.07 and 0.03.

More recently, Blackburn and Neumark {1995) ,using NLSY data and assuming that
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family background characteristics are IVs, estimate the return to an additional
year of schooling to be 0.08.

The ETS assumption alone suffices to identify the returns to schooling.
Our estimate of A,(12) under this assumption is 0.035. When the ETS assumption
is combined with the linear response assumption, the estimate is 0.077. When the
linear response model is combined with the assumption that AFQT score is an MIV,
we find that an additional year of schooling at most increases mean log(wage) by
0.068. When we combine the linear response model with the MTS assumption, we
find that an additional year of schooling at most increases mean log(wage) by
0.018.

Our estimated upper bound of 0.018 when the linear response model and the
MTS,. assumption are combined lies well below the jpoint estimates of the returns
to schooling reported in the literature reviewed by Card (1994). The reader must
draw his or her own conclusions from the inconsistency of our finding with those
in the literature. Under the hypothesis that the linear response model is
correct, the inconsistency implies either that the MTS assumption is incorrect
or that the IV identifying assumptions made in the literature are incorrect.
However it may be that the linear response model is incorrect. If so, the
inconsistency of the findings carries no implications for the validity of the MTS

assumption or of the IV assumptions in the literature.

7. Conclusion

This paper has introduced the general idea of a monotone instrumental

variable and the important special case of monotone treatment selection.
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Propositions 1 through 3 have characterized the identifying power of an MIV
assumption when imposed alone, when combined with the linear response model, and
when combined with the assumption of monotone treatment response. Consideration
of the problem of inference on the returns to schooling has demonstrated that MIV
assumptions may be credible in situations where IV assumptions are controversial.
Our empirical analysis of the returns to schooling has shown that MIV assumptions
are easy to apply and has given a sense of their identifying power in practice.

It is easy to think of variations on the MIV theme that warrant study and
that may prove useful in empirical research. One direction for future work would
be to combine the MIV idea with the idea of contaminated instruments introduced
by Hotz, Mullins, and Sanders (1997). They assume that the observed population
is a probability mixture of two subpopulations, one that satisfies an IV
assumption and another that does not. A contaminated MIV assumption would hold
if the first subpopulation satisfies an MIV assumption instead.

A second direction for future work would be to begin from the statistical

independence assumption that holds in classical randomized experiments, namely

Statistical Independence Assumption: For each value of w and all (u, u’) €
(V. x V),
(42) Ply(-)|w, v = u’'l = Ply(-)|w, v = ul

Weakening the equality in (42) to an inequality might be interpreted as asserting

a weak stochastic dominance assumption, namely
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Weak Stochastic Dominance Assumption: Let V be an ordered set. For each t € T,

each value of w, all (u,, u,) € (V x V) such that u, > u;, and all ¢ € R,

(43) Ply(t) > clw, v = u,] > Ply(t) > clw, v = u,l.

Whereas statistical independence implies the IV assumption, weak stochastic
dominance implies the MIV assumption. We presently have only a limited
understanding of the identifying power of the statistical independence
assumption. Considering the case of two treatments and a binary outcome, Balke
and Pearl (1997) show that the sharp bound under statistical independence solves
a certain linear programming problem. BAnalysis of the identifying power of the
weak stochastic dominance assumption may pose a challenging task.

Bnother variation on the MIV theme would be to weaken the mean independence
of the standard IV assumption to some form of approximate mean independence. One
way to formalize this notion would be to assert a fuzzy instrumental variable

(FIV) assumption of the form

FIV Assumption: Covariate v is a fuzzy instrumental variable if, for each t € T,

each value of w, all (u, u’) € (V x V), and a specified C 2 0,

(44) Elv(t)|w, v = u]l - Ely(t)|w, v = ull < C.

The constant C, which is specified by the researcher, gives the maximal variation
of the conditional expectation on the covariate space V and so controls the
degree of fuzziness that the researcher wishes to permit. Setting C = 0 yields

the IV Assumption. Setting C = « imposes no restriction at all.
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Table 1: Effect of Years of Schooling on Mean Log(Wage)
Years of Schooling

Prior Information

t=12 years

t=15 vears

t=16 vears

I. No MIV
No Assumptions

[ -3.052, 2.497 ]
(-3.082,2.551)

[-3.312,3.376 ]
(-3.344, 3.399)

[-3.210,3.099 ]
(-3.242,3.137)

[-1.590, 1.211 ]

MTS [-2.384,1.362 ] [-1.563,1.515 ]
(-2.418 , 1.418) (-1.593, 1.562 ) (-1.623,1.250)
MTR [0, 1.333] [0, 2.114] [0, 2.151]
(0, 1.362) (0, 2.147) (0, 2.181)
MTR-MTS [0, 0.199 ] [0, 0.255] (0, 0.256]
(0, 0.222) (0, 0.299 ) (0, 0.296)

ETS 0.035 0.129 0.075

II. AFQT Score as MIV

No Other Assumptions

(0.024 , 0.047)

[-2.841,2.320]
(-2.877,2.370)

(0.091 ,0.169)

[ -3.247,3.340 ]
(-3.297,3.365)

(0.043,0.102)

[-3.206, 2.762 ]
(-3.236, 2.832)

[-1.501, 1.117]

MTS [-2.371,1.217 ] [-1.494, 1.393 ]
(-2.398, 1.273) (-1.535,1.436 ) (-1.543, 1.162 )
MTR [0, 1.010] [0, 1.153] [0, 1.250]
(0,1.059) (0, 1.237) (0, 1.334)
MTR-MTS [0, 0.126] [0, 0.162 ] [0, 0.167 ]
(0, 0.148) (0, 0.197) (0, 0.206)
MIV [, 0.068 [-e, 0.068] [ -, 0.068]
(-, 0.080) (-, 0.080) (-, 0.080)
MTS [-=,0.018] [-=,0.018] [, 0.018]
(-=,0.038 ) ( -, 0.038) (-, 0.038)

ETS 0.077 0.077 0.077

(0.069, 0.085)

(0.069, 0.085)

(0.069, 0.085)

Note: Bound estimates are in brackets. Conservative boostrapped ninety percent confidence intervals for the bound

estimates are in parentheses.
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Table 2: Effect of Years of Schooling on Prob{Wage > $10 per Hour)

Prior Information

Years of Schooling

=12 years

t=15 vears

t=16years

I. No MIV

No Assumptions

MTS

MTR

MTR-MTS

ETS

II. AFQT Score as MIV

No Other Assumptions

MTS

MTR

MTR-MTS

[-0.699, 0.862]
(-0.722, 0.877)

[-0.321, 0.216]
(-0.343, 0.236)

[0, 0.763]
(0, 0.783)

[0, 0.117]
(0, 0.138)

0.032
(0.015, 0.047)

[-0.555, 0.821]
(-0.582, 0.841)

[-0.292, 0.167]
(-0.322, 0.185)

[0, 0.648]
(0, 0.689)

[0, 0.071]
(0., 0.092)

[-0.952, 0.931]
(-0.959, 0.941)

[-0.554, 0.555]
(-0.575, 0.579)

[0, 0.508]
(0, 0.529)

[0, 0.129]
(0, 0.156)

0.071
(0.040, 0.101)

[-0.948, 0.923]
(-0.954, 0.932)

[-0.575, 0.556]
(-0.606, 0.585)

[0, 0.295]
(0, 0.334)

[0, 0.087]
(0,0.113)

[-0.828, 0.948]
(-0.844, 0.956)

[-0.611, 0.597]
(-0.631, 0.623)

[0, 0.483]
(0, 0.506)

[0, 0.132]
(0, 0.160)

0.037
(0.018, 0.061)

[-0.840, 0.928]
(-0.856, 0.941)

[-0.631, 0.615]
(-0.662, 0.642)

[0, 0.294]
(0, 0.336)

[0, 0.106]
(0, 0.130)

Note: Bound estimates are in brackets. Conservative boostrapped ninety percent confidence intervals for the bound

estimates are in parentheses.
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