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Abstract

This paper examines the validity of overidentification tests and exogeneity tests in
the presence of grouped data. We find that even a small intra-group correlation, when

instruments do not vary within groups, may generate a substantial bias in the standard

overidentification tests described in textbooks.

1 Introduction

This paper demonstrates that standard overidentification tests for instrumental variables
estimation are invalid in the presence of grouped data, and proposes a simple remedy. When
instrumental variables vary only between groups, the presence of a small amount of intra-
group correlation generates substantial bias in both commonly used overidentification tests,
the "omnibus” test (Anderson and Rubin, 1950; Basmann, 1960; Hausman, 1983) and the
Hausman test for the validity of a specified subset of instrumental variables (Hausman, 1983;

Spencer and Berk, 1981). Our result is a direct extension of work by Moulton (1986) and

*Preliminary and incomplete



Shore-Sheppard (1996). They show that a grouped error structure combined with no within-
group variation leads to severe underestimation of standard errors and incorrect statistical
inference in, respectively, ordinary least squares and instrumental variables estimation. We
show that overidentification tests that do not allow for a grouped error structure can re-
Ject the overidentifying restrictions far too often, and we generate the correct test statistic
using Generalized Method of Moments (GMM) techniques (Hansen, 1982, Newey, 1985).
Using Monte-Carlo simulations and two recent empirical articles, we demonstrate the seri-
ousness of this problem and the usefulness of the correct test statistic for common empirical

applications. We view this contribution as a practical one.

The recent literature on instrumental variables emphasizes how important it is that the
identifying restrictions are credible-that is, that the model is correctly specified. As a result,
the two overidentification tests mentioned are increasingly likely to be used and reported.
Each is a partial test of whether the identifying restrictions are satisfied. From Moulton and
Shore-Sheppard, we know that OLS and IV standard errors can be severely biased in the
presence of grouped data and even small intra-group correlation; furthermore, we know that
the bias grows with the sample size and the number of groups. It is reasonable to suspect
that similar biases affect the overidentification tests, which are based on the residuals from

the instrumental variables estimation.

There is a long empirical tradition of using instrumental variables that do not vary within
groups. State laws may be used to form instruments for an individual’s marginal tax rate
(Feldstein and Eissa, ), an individual’s job benefits (Gruber, 1992), a company’s unionization
status (Brown and Medoff, 1988), the starting wage a firm offers (Katz and Krueger, 1992),
or teen fertility (Kane and Staiger, 1996; Levine, Trainor, and Zimmerman, 1996). Unem-
ployment rates by industry-occupation cell have been used as instruments for an individual’s
own unemployment status (Murphy and Topel, 1987). Exchange rates by industry-country-

of-origin cell have been used as instruments for the degree of import penetration an area



experiences (Revenga, 1992).  All these examples share the feature that the identifying
instrumental variables are measured at a higher level of aggregation than the unit of analy-
sis.  The potentially endogenous variable may or may not be aggregated at the same level
as the instruments. Although, as described above, empirical use of instrumental variables
has changed considerably over the past several years, grouped instrumental variables have
continued to be useful. For Instance, in a study of the effect of teen childbearing on school-

ing, Angrist and Evans (1996) use variation in the state abortion laws to which teens were

exposed to instrument for their fertility.

The first application in this paper is based on Cutler and Glaeser (1997), who use his-
torical metropolitan area characteristics to instrument for the effect of segregation on the
economic performance of minorities. This application, which employs data from the Public
Use Micro Samples of the U.S. Census of Population (PUMS), illustrates how severely the
overidentification tests are biased when the number of observations (individuals) within each
group (metropolitan area) is very large. The second application, Hoxby (1998), also uses
a common type of data. Using data on students from the National Education Longitudi-
nal Survey (NELS), Hoxby instruments for measures of the degree of competition among
public school districts in a metropolitan areas using topographic data also measured at the
metropolitan area level. This application forms a useful comparison with the other, because
the instrumental variables strategies are similar but the number of individuals within each

group is two orders of magnitude smaller than in Cutler and Glaeser’s.

The rest of the paper is structured as follows. Section 2 describes the problem in a
GMM framework, illustrates that the standard overidentification tests are inconsistent, and
shows how to calculate the correct test statistic. In Section 3 we report the results of several
Monte Carlo simulations, with which we numerically assess the magnitude of the bias under
various assumptions about the number of observations, number of groups, and intra-group

correlation. In Section 4 we present the results from the two applications, and in Section 5



we conclude.

2 Overidentification Tests with Grouped Data

2.1 Some basic GMM results

Let 7r;; = (yij,xgj,zgj) be a vector of observed variables for unit i in group 7, with 7 =

2,.N;j,and j=1,2,..., M. Let T = Z;‘il Nj be the total number of observations in the

sample. Assume that the statistical model implies a set of orthogonality conditions:

E{y (0,75)} =0

where f is the true value of an unknown p X 1 parameter vector, and 9(-) is a differentiable
g-dimensional vector valued function, with ¢ > p. The optimal Generalized Method of

Moments (GMM) estimator 057, is the value of § that minimizes
g(6; r)/W_lg(B; r)

where
1M N

M
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and W is an estimate of the asymptotic covariance matrix of the sample mean of P (6o, 7;)
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Under standard regularity conditions, the asymptotic distribution of the GMM estimator

VT (éGMM - 9(,) 4 N (0, (D’WID)I)
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Moreover, under the null hypothesis that the orthogonality conditions truly hold, g(é; r) =

1 -
T Z Z’(p(@ 7i;) has the following asymptotic distribution:
v
VT (g(é;r)) —% N(0, W)

It then follows that the score statistic gy = Tg(é; r)W~!g(68;r) has an asymptotic

chi-square distribution with ¢ — p degrees of freedom.

2.2  Overidentification Tests in Linear Models

Now consider a linear model
Yij = X0 + w;;
where x;; is a px 1 vector of potentially endogenous explanatory variables, so that E(xiu;;) #

0 and OLS produces inconsistent estimators. Let z;j bea gx1, (¢ > p), vector of instruments,

that are correlated with X;; but uncorrelated with u;;. There are ¢ resulting orthogonality

conditions:

E((Bo,73;)) = E (zigus;) = B (24(ys; — x};00)) = 0

If the disturbances are homoskedastic, uncorrelated, and have variance ol then W =02 (Z/'Z)
(in obvious notation); and the efficient GMM estimator reduces to the Two Stage Least
Squares (2SLS) estimator, By5;5 = (X’PZX)*1 X'P,y, where P is the projection matrix

VAV AR A3 Moreover, the chi-squared statistic 7y takes the form:

__ ﬁlpzﬁ T'&.’Pz’ljb
mT — — = =
Ty u'u

where @ is the vector of 2SLS residuals. Therefore, - is equivalent to T’ times the uncen-
tered /% in a regression of the residuals @ on the set of instruments Z. This is Hausman’s

(1983) form of the “omnibus” test of overidentifying restrictions. A large value of the test



statistic (a rejection of the null) is interpreted as evidence that some of the exclusion restric-
tions identifying the estimates are inappropriate-that is, there are variables that have been
inappropriately excluded from the model. The test is known as the “omnibus” test precisely

because the inappropriately excluded variables are not distinguished in any way.

With grouped data, we are generally unwilling to assume that the disturbances are ho-
moskedastic and uncorrelated. In this case, the above statistic is misspecified and does not,

have an asymptotic chi-square distribution.

With cross-sectional grouped data, one typically assumes that there may be some degree
of intra-group correlation between disturbances, while maintaining the assumption of zero

inter-group correlation’.

In this case, one should form an estimate of W in order to obtain the efficient GMM
estimator and to construct the appropriate overidentification test statistic. This is usually
performed in two steps, although it is also possible to iterate the steps until convergence.
The first step involves obtaining any consistent, but possibly inefficient, estimate of 3. This
can be achieved by performing GMM estimation using any weighting matrix: the identity
matrix and (Z’Z)*] are natural candidates. The residuals from this first stage, Gapy, are

then calculated and used to construct the new weighting matrix W which can be expressed

as .

- 1 Nj Nj
_ — .. A. . Y . ,
W = i Z Zzwu” Zu”zij
J 2

7

YA special case of this assumption is the error components model,

Uiy = T +Elj
E(m) = 0, V(y) =0l
E(ey) = 0, V(ey)=0"

where disturbances are assumed to be equicorrelated within a group. However, most recent cross-sectional

studies do not impose this restriction.



This form of W takes the grouping of the data into account. It also takes into account our
assumption that there is no correlation between disturbances across groups, but that there
may be intra-group correlation. Note, however, that we are not restricting the covariance

matrix of the disturbances to have the block-diagonal form implied by the error components

model.

The GMM methods described above can also be applied to the Hausman test for the
exogeneity of a subset of the explanatory variables, taking the exogeneity of the others as
given. This test is often used when several instrumental variables of differing credibility
are available. The most credible instrumental variables are assumed to be exogenous, and
the exogeneity of the other potential instruments is tested. Under the null hypothesis that
the questionable variables are exogenous, both the vector of questionable instruments Zi;
and the explanatory variable vector x;; are uncorrelated with u;;. We would then have p+q
orthogonality conditions, so that we can derive a GMM estimator and a test of overidentifying
restrictions. With homoskedastic and uncorrelated disturbances, the overidentification test
is asymptotically equivalent to Spencer and Berk’s (1981) single-equation version of the
test?. However, if disturbances are correlated and/or heteroskedastic, the standard test will

be misspecified; and the GMM framework provides a convenient way of reformulating this

test.

“The test is a simple Wald test of the null v = 0 in the regression:
y= X101 + X2 + Xoy +u

where X is the matrix of explanatory variables assumed to be exogenous, X is the matrix of questionable
explanatory variables, and X5 is the matrix of predicted values from a regression of X4 on all the exogenous
variables.

See Greene (1993) p. 618, or Pindyck and Rubinfeld (1991) pp.303-304.



3 Monte Carlo Experiments

To numerically illustrate the problems described above, we ran a series of Monte Carlo
experiments, varying the intra-group correlation parameter p, the sample sizes, and the

grouping of the instrumental variables.

The data were generated as follows:

yz] = + /Bl‘x]ij + ;823:21‘3' + uij

Usj = 1j+ &y

Ty = Aj by 1+ e

Z1; = N+kib;+ H1; + Ty
Zo,, = Aj+ kb + Ha; =+ Ta,,

i = 1,.,N j=1..M

?

The error components, 7,e, A, 8, i1, o, 71, and 75 all have mean zero and variance o2, where
¢ denotes the appropriate Greek letter. k; and k, are either 1 or 0, depending on whether
or not we assume that the instrument is grouped. We fix 02 at 1 and let Jg vary between 0
and 0.2. Define p = ;’;L to be the intra-group correlation parameter. For simplicity, we keep

the number of observations in each group constant, and let N vary between runs.

In order to investigate the performance of the Hausman test, we slightly modify the data
generating process, letting Zy, = \; + &;and §;; = o + Sy + By, + u;;. (Hence, 2y is

uncorrelated with the error term in this case).

Table la reports the results of 1,000 Monte Carlo simulations. The first two rows in

each block display the coverage rate of the 95% confidence interval for the coefficient on

3We also ran some Monte Carlo simulations in which we allowed N to vary between groups, but the

results did not change substantially.



the endogenous variable z,*, using standard errors constructed with the unadjusted and the
adjusted covariance matrix. The second two rows in each block show the rejection rates of
the unadjusted and adjusted “omnibus” overidentification test statistic. The final two rows

show the rejection rates of the unadjusted and adjusted Spencer-Berk test for the exogeneity

Of To.

The first column of the table demonstrates that, if there is no intra-group correlation,
then standard Two Stage Least Squares estimation leads to correct statistical inference, with
the 95% confidence interval covering the “true” parameter 95% of the time and the numerical
size of the tests approximating their nominal size. The adjusted confidence intervals and the
adjusted overidentification tests achieve nearly identical results. However, as we increase the
intra-group correlation parameter p, we see that the performance of the standard procedures
worsens considerably, especially if the instruments are grouped. For a value of p as small as
0.01 the standard overidentification test still does reasonably well if the instruments vary at
the individual level. However, with one instrument grouped, the standard overidentification
test rejects the null hypothesis nearly 25% of the time even though the confidence interval
coverage rate may indicate that the bias is not too severe. With p greater or equal to 0.1,

standard 2SLS estimation can lead to grossly incorrect statistical inference.

The Monte Carlo results for the exogeneity test tell a similar story, with the standard test
rejecting the null more than 70% of the time for large p. Simulations for both the omnibus
test and exogeneity test demonstrate that performance of the standard procedures does not

vary much depending on whether only one or both instruments are grouped.

Tables 1b and lc are analogous to Table 1la, except that they replicate the number of

4The regression equation was

Yij = —5+0.14z; 4+ 0.9z, + g5

as in Shore-Sheppard (1996). The coverage rate was calculated as the percentage of times that the 95%

confidence interval around 35 actually included 0.9.



units in each group. In Table 1b, there are fewer (100) units in group than Table la; in
Table lc, there are more (500). The tables show that the misspecification problem does
indeed become more severe as the number of observations in each group increases. With
N = 500, small intra-group correlation of 0.01 leads to significant overstatement of the test
statistics and to incorrect rejection of the null hypothesis approximately 40% of the time
when one instrument is grouped. Even with p = 0.001 the rejection rate is slightly too high

when at least one instrument is grouped.

Tables 2a and 2b further investigate the effects of sample size and the number of units
in each group on the rejection rates of the overidentification test statistics. In Table 2a,
we keep the intra-group correlation p equal to 0.01, and we compare the performance of
the unadjusted and adjusted test statistics with no grouped instruments and with only one

grouped instrument. Table 2b examines the effect of reducing intra-group correlation by one

order of magnitude to 0.001.

The first panel of each table holds the number of groups constant and lets the number
of units in each group increase from 100 to 500. The second panel holds the total sample
size constant but lets the ratio of groups to units per group vary. The third panel holds the
number of units per group constant, and lets the number of groups vary. Comparing the first
and second panel of each table to the third panel, we see that the unadjusted test statistics
reject too often as the number of units per group increases, but are relatively unaffected by
the number of groups. As before, the performance of the unadjusted test statistics is always
much worse when one of the instruments is grouped. This result is most clear in Table 2a,

in which p = 0.01, but one can also discern a very slight pattern of excessive rejection rates

with p as small as 0.001 in Table 2b.
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4 Two Applications

Two types of data in which the problem of grouped instruments and a clustered error strie-
ture commonly arise are longitudinal datasets with 5,000-50,000 observations (such as the
NELS, Panel Survey of Income Dynamics, Survey of Income and Program Participation,
and National Longitudinal Surveys) and cross-section surveys with 100,000 to 12 million
observations (such as the Current Population Survey and the Micro Samples of the Census

of Population). We have chosen two applications with the purpose of illustrating the scale

of the problem in each type of data.

4.1 “Are Ghettos Good or Bad?”’.

Using data on individuals from the 1% Public Use Micro Sample of the Census of Population,
Cutler and Glaeser attempt to determine whether there is any differential effect of housing
segregation on the educational, social and labor market outcomes of blacks. Cutler and

Glaeser’s basic strategy is to estimate equations of the form:

Y = 61 x Segregation; + 3 x (Segregation; x Blackq;) + X7y + €4

2

where 7 indexes individuals, j indexes metropolitan areas, Segregation; is a measure of hous-
ing segregation that varies only between metropolitan areas, and X;; is a set of variables®.
Segregation may be the result of poor economic outcomes, or may reflect omitted city char-
acteristics. The authors therefore use a set of fiscal variables (the number of governments in
1962, the percentage of revenue from inter-governmental transfers in 1962, and the interac-

tions of these two variables with an indicator variable for black) as instrumental variables to

®We are very grateful to the authors for making their data available.

SThe control variables are age, sex and race indicators, log of MSA population, log MSA median income,
percentage blacks and percentage employed in manufacturing in an MSA, and the interaction of these last

4 variables with the black dummy variable.

11



identify potentially endogenous segregation. Their data are clustered and their instruments
are grouped so that any test of overidentifying restrictions that they performed would be

likely to be misspecified, as described above.”.

In Table 3, we replicate some of Cutler and Glaeser’s results: the first two panels show the
estimated coeflicients and standard errors for the two potentially endogenous variables under
OLS and 2SLS estimation. the next part of Table 3 displays the omnibus overidentification
test statistic, which is distributed asymptotically as a x* random variable with 2 degrees of
freedom. We can see that the standard test statistic strongly rejects the null hypothesis in
every case but one, whereas the test statistic that adjusts for the clustered error structure,

while close to the critical value, fails to reject in every case but one.

We also report the results of tests for the null hypothesis of exogeneity of the two seg-
regation variables. The unadjusted test statistic assumes a homoskedastic error structure,
while the adjusted statistic takes the clustered nature of the data into acéount. The test
statistic is distributed asymptotically as a x? random variable with 4 degrees of freedom.
The final rows of Table 3 show that the unadjusted test would reject the null hypothesis of

exogeneity in all cases but one, whereas the results of the adjusted test are ambiguous.

4.2 Competition Among Public Schools

Hoxby (1998) uses the data on individual students from the National Education Longitu-
dinal Survey in an attempt to determine whether competition among public schools affects
per-pupil expenditure or student achievement. Hoxby measures competition among public

school districts with a Herfindahl index of school districts’ shares of total metropolitan area

TCutler and Glaeser are aware of this problem, and choose not to report the overidentification test
statistic. They explain in a footnote that the “...instruments generally fail the standard test of overidentifying
restrictions,...,[but the test] is based on an assumption of uncorrelated error terms, which is plainly violated

in our data.”
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enrollment. She is concerned that observed school district concentration is not wholly ex-
ogenous: a district’s enrollment may reflect its success, and district consolidation may also
be a function of a school’s success or of the heterogeneity of a metropolitan area’s popula-
tion. She therefore uses variation in the number of natural bodies of water in a metropolitan
area to instrument for school concentration, based on the fact that areas with many natural
boundaries (such as rivers and streams) tended to be divided into more, smaller school dis-
tricts when boundaries were initially created. The two instrumental variables are the number
of large rivers and the number of smaller streams, so that there is one degree of freedom
in the test of overidentifying restrictions®. The endogenous variable and the instruments
are grouped at the metropolitan area level, inducing the potential for bias discussed above.
The OLS and 2SLS coefficients and standard errors are presented in the first two panels
of Table 4, and the unadjusted and adjusted overidentification test statistic are presented
just below. In this case, the adjusted test statistics are substantially smaller »than the unad-
justed test statistics, but even the unadjusted test statistics fail to reject the null hypothesis.
These results illustrate one of the key conclusions of the Monte Carlo exercise: the larger the
number of units in each group, the greater is the extent of the bias. Comparing the Hoxby
application to the Cutler and Glaeser application, we conclude that incorrect calculation of
the overidentification tests is much more likely to be a serious practical problem in analysis
of large datasets, like the Census or Current Population Survey, in which the common levels

of grouping for instrumental variables are the metropolitan area, county, or state.

We also report the results the test for the exogeneity of the topographic instrumental
variables.  These results suggest the same conclusion: the adjusted test statistics are
substantially smaller than the unadjusted ones, but difference is not as likely to be decisive

when there are a smaller number of units in each group.

8The reasoning is that large rivers divide counties, across whose boundaries school districts are almost
never consolidated. Small streams often were of sufficient importance to create natural boundaries when dis-

tricting was performed, but are irrelevant to transportation costs and higher-level jurisdictional boundaries.

13



5 Conclusion

In this paper we show how to calculate the correct overidentification and exogeneity test
statistics in the presence of a grouped error structure. The Monte Carlo experiments illus-
trate that the standard test statistics that ignore the grouped structure of the data may be
severely biased, leading one to reject the null hypothesis far too often. We show that this
problem is exacerbated when the instruments themselves are grouped and do not vary at
the individual level. Finally, using data from two recent applications that are representa-
tive of current empirical methods and common datasets, we illustrate how the incorrect test

statistic may lead to incorrect statistical inference and the usefulness of the corrected test

statistic.

14
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Table 1a °

M =50, N = 200 p

0 00001 0.001 001 01 02

No grouped instruments

95% CI (unadj.) 953 945 941 881 605 .467
95% CI (adj.) 939 939 932 926 952 925

Overidentification Rejection rate (unadj.) .051  .052 049 109 .333 497
Overidentification Rejection rate (adj.) 050 .052 037 .062  .060 .055
Exogeneity Rejection Rate (unadj.) 049 .063 063,129  .530 706

Fxogeneity Rejection Rate (adj.) 052 .04 051 .049 .046 .047

29 grouped
95% CI (unadj.) 956 .940 0934 850 .522 385
95% CI (adj.) 930 .930 932 928 945 927
Overidentification Rejection rate (unadj.) .060  .064 078 242 .591 .736

Overidentification Rejection rate (adj.) 060 .059 054  .060 .037 .059

Exogeneity Rejection Rate (unadj.) 046 062 082  ..262 .729 856
Exogeneity Rejection Rate (adj.) 050  .059 .0b8  .052 .045 .049

z; and z, grouped
95% CI (unadj.) 949 943 925 741 369 .256
95% CI (adj.) 925 935 916 .920  .932 900
Overidentification Rejection rate (unadj.) .057  .050 072 334 649 726
Overidentification Rejection rate (adj.) 061  .050 044 051 .052 .051
Exogeneity Rejection Rate 042 061 085 348  .833 910

Exogeneity Rejection Rate 042 .048 051 .060 .054 .052

9Results from 1000 Monte Carlo simulations described in text. The entries in the table represent the
coverage rate of the 95% confidence interval for B, the rejection rate of the overidentification test statistic

with nominal size 5%, and the rejection rate of the exogeneity test statistic with nominal size 5%.
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Table 1b 1

M =50, N = 100 p

0 0.0001 0.001 0.01 0.1 0.2

No grouped instruments
95% CI (unadj.) 948 954 .953 922 722 608
95% CI (adj.) 940 943 943 945 922 939
Overidentification Rejection Rate (unadj.) .059 .056 051 073 238 343

Overidentification Rejection Rate (adj.) .057  .052 046 041 .048 .053

Exogeneity Rejection Rate (unadj.) 056 .047 063 .084 .349 .503
Exogeneity Rejection Rate {adj.) 057 .050 050 041 .053 .046

z9 grouped
95% CI (unadj.) 946 950 941 902 638 511
95% CI (adj.) 945 940 925 935 929 922
Overidentification Rejection rate (unadj.) .060 .043  .059 .110 .494 619
Overidentification Rejection Rate (adj.) 060 .049 053 037 061 .072
Exogeneity Rejection Rate .060 .045 066 123 .B83 .730

Exogeneity Rejection Rate 056 037 061 042 058 .060

z1 and 2y grouped
95% CI (unadj.) 948 961 0925 832 443 365
95% CI (adj.) 937 947 912 930 904 886
Overidentification Rejection rate (unadj.) .059  .047 069 161 544 619

Overidentification Rejection Rate (adj.) .0p7  .0b4 049 .05 .045 .047

Exogeneity Rejection Rate (unadj.) .053 .048 075 193 728 828
Exogeneity Rejection Rate (adj.) 056 .044 050 .045 .055 058

WResults from 1000 Monte Carlo simulations described in text. The entries in the table represent the
coverage rate of the 95% confidence interval for 3y, the rejection rate of the overidentification test statistic

with nominal size 5%, and the rejection rate of the exogeneity test statistic with nominal size 5%.
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Table 1¢

M = 30, N = 500 P

0 0.0001 0.001 0.01 0.1 0.2

No grouped instruments
95% CI (unadj.) 958 947 929 802 407 321
95% CI (adj.) 945 939 931 940 937 922
Overidentification Rejection rate (unadj.) .045  .062 050 160 .BO7 631
Overidentification Rejection rate (adj.) 044 .056 044 .056 042 062
Exogeneity Rejection Rate (unadj.) 041 .060 046 256 731 834

Exogeneity Rejection Rate (adj.) 040 .060 034 .042 .050 .063

z9 grouped

95% CI (unadj.) 959 950 927 721 319 248
95% CI (adj.) 946 938 934 944 941 922

Overidentification Rejection rate (unadj.) .052  .063 110 370 758 828
Overidentification Rejection rate (adj.) 054 053 061 .054 .038 .073
Exogeneity Rejection Rate (unadj.) .058  .068 101 441 893 924

Exogeneity Rejection Rate (adj.) 044 0589 044 .053 .045 .064

z1 and 2z, grouped
95% CI (unadj.) 960 .940 884 .569 204 169
95% CI (adj.) 921 925 923 932 915 .888
Overidentification Rejection rate (unadj.) .052  .054 100 417 737 .838

Overidentification Rejection rate (adj.) 062 052 048  .055 .046 .056

Eixogeneity Rejection Rate (uandj.) 063 .067 136 572 931 .967
Exogeneity Rejection Rate (adj.) 055 .049 045 .048  .049  .060

HResults from 1000 Monte Carlo simulations described in text. The entries in the table represent the
coverage rate of the 95% confidence interval for G,, the rejection rate of the overidentification test statistic

with nominal size 5%, and the rejection rate of the exogeneity test statistic with nominal size 5%.
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Table 2a 2

p=0.01 No Grouped Instruments One grouped instrument
Overid. Exog. Overid. Exog.

M, N Unadj. Adj. Unadj. Adj. Unadj. Adj. Unadj Adj.

50,100 .085 056 .104 .066 136 052 157 .055
50,200 .089 046 123 042 213 052 237 .044
50,300 129 .053 .164 047 285 .059 304 .0561

50,400 152 .056 193 .037 .326 .063 372 .047
50,500 167 .043 .246 .049 355 .047 446 054
50,600 192 052 .266 046 A1l 068 474 .044
100,100 .089 .059 091 .065 121 038 150 .043
50,200 .093 .040 145 .070 229 .048 289 | .062
40,250 .104 .046 155 065 251 044 281 .054
20,500 152 044 230 047 .369 051 A27 .0568
10,1000 237 .049 311 027 .510 .058 .5b4 .033
100,50 .047 038 .064 .046 087 .046 101 044
200,50 .058 .051 .065 .051 114 .056 112 .0b8
300,50 072 .0563 .058 047 087 .051 .090 051

400,50 .065 .050 059 .047 104 .050 095 .060
500,50 053 042 .067 .056 .095 .050 .090 .043
600,50 .060 .047 .070 .045 .092 .051 102 046

2Results from 1000 Monte Carlo simulations described in text. The entries in the table represent the

rejection rate of the overidentification and the exogeneity test statistics with nominal size 5%.

21



Table 2b 1

p =0.001 No grouped instruments One grouped instrument
Overid. Exog. Overid. Exog.
M,N Unadj. Adj. Unadj. Adj. Unadj. Adj. Unadj. Adj.
50,100 066 .059 062 058 .064 .060 074 .056
50,200 .052 050 .050 .048 .070 .055 .070 .044
50,300 073 .064 .063 .050 .082 057 .084 .059
50,400 057 .050 .057 .043 091 .053 .082 .055
50,500 .064 051 .068 0% .081 .042 087 .046
50,600 058 .038 052 .042 104 .055 118 .059
100,100 .055 .051 .056 .053 .062 .049 .051 048
50,200 .064 057 073 .062 .092 .054 071 7 .045
40,250 067 .053 .066 .052 071 .052 075 .049
20,500 .062 043 .070 .047 081 .048 089 .042
10,1000 072 .054 .081 .042 119 .042 .146 .026
100,50 .049 .054 .048 .052 .050 .050 055 047
200,50 055 .052 050 048 .052 048 .058 .057
300,50 041 .040 .047 .049 .050 .048 .050 .049
400,50 .059 .0b8 .050 .049 .039 037 .053 048
500,50 .067 .071 .055 .058 .052 .047 .055 .049
600,50 045 043 .057 .053 .056 .056 .056 .044

BResults from 1000 Monte Carlo simulations described in text. The entries in the table represent the

rejection rate of the overidentification and the exogeneity test statistics with nominal size 5%.

22



Table 3 ™

Age 20-24 Age 25-30
Dep. Var: Highschoot  College Idle Unmarried High School College Tdle Unmarried
Graduate  Graduate Mother Graduate Graduate Mother
OLS
segregation .0158 067  -.006 .008 .021 -.014 .000 -.023
(.033) (.040) (-019) (.030) (.025) (.087) (.025) (.024)
segregation*black -.323 -.081 324 355 -.257 -.048 277 047
(.043) (.035) (.044) (.063) (.046) (.052) (.039) (.050)
25LS
segregation 129 212 -.046 -.051 077 095 .005 .108
(.044) (.053) (.025) (.038) (.032) (o77y’ (.028) (.035)
segregation®™black -.405 -.202 317 327 -.231 -121 295 B2
(.082) (-.056) (.087) (-101) (.076) (.068) (-062) (.118)
N 97,976 07,976 97,076 49,038 139,715 130,715 139,715 71,531
Overid. Test
Unadjusted 16.67 33.49 3.84 9.18 28.10 133.02 8.65 6.88
Adjusted 5.53 5.57 0.91 5.91 5.12 15.84 3.03 3.36
Exog. Test
Unadjusted 84.38 171.54 19.25 21.56 62.62 196.76  9.50 35.66
Adjusted 17.59 16.18  6.54 8.97 11.35 20.76 3.16 10.95

14 All regression include also race, age and sex dummies, a set of metropolitan area controls (log population,
percentage black, log median income and percentage employed in manufacturing), and trhe metropolitan

area controls interacted with the black dummy variable.
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OLS
Index of public school

competition

2SLS

Index of public school

competition

Overid. Test:
unadjusted
adjusted

Exog. Test,
unadjusted

adjusted

Table 4

15

8th Grade Standardized Score in:

math

reading history

sclence

12th Grade Standardized Score in:

math

reading history science

2.146 1.238 3.597 1.349 -2.481 2.541 -2.104  -2.965
(1.523) (1.391) (1.727) (1.490) (3.1186) (3.088) (3.039) (3.078)
6.814 7.541 10.278  6.329 9.327 10.086 11.752  9.869
(3.478) (3.633) (4.209) (3.513) (5.387) (5.363) (5.658) (5.553)

0.7914 0.4685 0.2981 0.3941  0.5269 0.4592 0.3819 0.4320

0.1834 0.1819 0.1987 0.1479 0.1772 0.1728 0.2611 0.1622

2.1449 1.6766 1.2199 2.0745 2.1376 1.7904 1.3407 2.1902

0.7183 0.6194 0.5987 0.5479  0.6747 0.6062 04887 (.6264

"For the full list of regressors, cfr. Hoxby (1998), Appendix Table 5. The index of public school com-

petition for a metropolitan area is a Herfindahl index based on school districts’ shares of metropolitan area

enrollment.
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