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1 Introduction

How should the length of one’s investment horizon affect the riskiness of his
portfolio? This question confronts startup companies choosing which ven-
tures to pursue before they go public, ordinary investors building a nest egg,
investment managers concerned with contract renewals and executives seek-
ing strong performance before their stock options come due, among others.

Portfolio decisions are the focus of this analysis. However, the horizon-risk
relationship extends beyond finance. Thus, students may vary their strategy
on grades — say how venturesome a paper to write — over the course of the
grading period; presidents may adjust the risk of their political strategies
from early through mid-term and then as they approach an election.

Popular treatments suggest that short horizons often lead to excessively
conservative strategies. Thus, the decisions of corporate managers, graded
on their quarterly earnings, are said to focus too much on safe, short-term
strategies, with underinvestment say in risky R & D projects. Privately-
held firms, it is widely believed, secure substantial benefit from their ability
to focus on longer-term projects. Mutual fund managers, who get graded
regularly, are also alleged to focus on strategies that will assure a satisfactory
short-term return, with long-term expectations sacrified.’

Economists and decision theorists, speculators and bettors, have long
been fascinated by the problem of repeated investment. Thus, long ago
Bernoulli provided the first motivation of utility theory when he confronted
the St. Petersburg Paradox, whose components can be reformulated as pay-
offs from an infinite series of actuarially fair, double-till-you-lose bets. Suc-
cessful speculators must manage their money effectively when making a series
of bets that are actuarially favorable. They must determine how much to al-
locate to each gamble given its odds, future prospects, and the time horizon.?

In recent years, this class of problems has been pursued in two different

I'The experience of the U.S. mutual fund Twentieth Century Giftrust is instructive. It
requires monies to be left with it for 10 years at least. Managers of the fund suggest that
thanks to this 10-year no-withdrawal rule the fund was able to return 24 percent annually
since 1985, nearly 10 points better than the S & P500.(See Newsweek 6/19/95, page 60}

2With n periods, utility function ©(w,) on terminal wealth and initial wealth wo, he
must lay out a contingent strategy of how much to put at risk each period. This dynamic
programming problem becomes tractable with an analytical solution only for HARA utility
functions.



literatures. one on utility theory the other en dynamic investment strate-
gies. A recurring theme in both is that the opportnnity to make further
investments affects how one should invest today. These two literatures have
not merged. in part because a key question has gone unresolved. How should
the length of the investment horizon affect the riskiness of one’s investments?
Some special cases have yielded results, as in the case of logaritmic and power
utility functions. And with any particular utility function and set of invest-
ment. opportunities actual calculations, perhaps using a simulation, could
answer that question within a dvnamic programming framework. But the
central theoretical question of the link between the structure of the utility
function and the horizon-riskiness relationship remained unresolved. This
paper attempts to resolve that question.

In the formal literature, the horizon-riskiness issue has received the great-
est attention addressing portfolios appropriate to age. Samuelson [1989a] and
several others have asked: “As you grow older and yonur investment horizon
shortens, shoild you cut down your exposure to lucrative but risky equi-
ties?” Conventional wisdom answers affirmatively, stating that long-horizon
investors can tolerate more risk because they have more time to recoup
transient losses. This dicturn has not received the imprimatur of science,
however. As Samuelson {1963, 1989a] in particular points out, this “time-
diversification” argument relies on a fallacious interpretation of the Law of
Large Numbers: repeating an investment pattern over many periods does
not cause risk to wash out in the long run.

Early models of dyr.amic risk-taking, such as those developed by Samuel-
son [1969] and Merton [1969] find no relationship between age and risk-taking.
This is hardly surprising, since the models, like most in continuous time fi-
nance, employ utility functions exhibiting harmonic absolute risk aversion
(HARA). This choice is hardly innocuous: If the risk-free rate is zero, myopic
investment strategies are rational iff the utility function is HARA (Mossin,
1968). Given positive risk-free rates, empirically the normal case, only con-
stant relative risk aversion (CRRA) utility functions allow for myopia. A
myopic investor bases each period’s decision on that perio’d initial wealth
and investment opportunities, and maximizes the expected utility of wealth
at the end of the period. The value function on wealth exhibits the same risk
aversion as the utility function on consumption; the future is disregarded.

Judging by empirical evidence, constant relative risk aversion does not
seem to be a reasonable assumption. First, given CRRA, the optimal share



of wealth invested in various assets would be independent of wealth level.
However, as Kessler and Wolff [1991] show, the portfolios of households with
low wealth contain a disproportionately large share of risk free assets. Mea-
suring by wealth, over 80 7% of the lowest quintile’s portfolio was in liquid
assets, whereas the highest quintile held less than 15 % in such assets.?

This work is also linked to the literature on compound risks. Samuelson
[1963], looking at how many replications of an actuarially favorable gamble to
take, opened the utility literature in this area, which considers more generally
the effects of taking one gamble on the willingness to take other independent
gambles. The multiple-period portfolio problem, in essence, considers suc-
cessive sets of independent gambles. In each period the investor can shift his
portfolio, depending on past results and the new time horizon.

A number of recent articles examine portfolio choice given independent,
risks. Pratt and Zeckhauser [1987] investigate the interaction between inde-
pendent risks in a static model. They introduce the concept of proper risk
aversion. Said crudely, risk aversion is proper if adding an undesirable risk
to wealth has a negative impact on the attitude towards other risks. This
concept is clearly related to our problem, with the existence of future risks
making current nisks more or less desirable. However, this concept is not
directly useful to our problem, since future risks that will be undertaken are
inherently desirable (otherwise they would not be undertaken). Moreover,
Pratt and Zeckhauser do not consider problems with dynamic structures.
The new concepts of standard risk aversion (Kimball, 1993) and risk vulner-
ability (Gollier and Pratt, 1995) both directly address portfolio composition
with independent risks. These approaches all relate to required powers on
the third and fourth derivatives of the utility function.

Our analysis focuses solely on investment risks and returns. Thus, it
does not consider a range of background risks that are likely to prove more
significant for a young than an old individual. For example, if both work,
wages when old are more distant for the young individual, hence likely to be
less certain. If work is only conducted when young, then only a young person
faces undesirable background risk for wages. If utility is vulnerable to risk
(Gollier and Pratt [1995)). the risk on human capital increases aversion to

31If individuals have CRRA utility functions but differ in risk aversion, given the ex-
traordinary relative performance of equities in the postwar world, empirically we will find
that those with lesser risk aversion will hold more stocks and hold greater wealth.



other independent risks, this will inhibit risk taking while young.

Guiso, Jappelli, and Terlizzese [1996] tested the relation between age and
risk-taking in a cross-section of Italian households. Their empirical results
show that young people, presumably facing greater income risk than old,
actually hold the smallest proportion of risky assets in their portfolios. The
share of risky assets increases by 20% to reach its maximum at age 61 [Guiso
et al. p. 165).

Bodie, Merton and Samuelson [1992] consider the advantage of young peo-
ple, with more periods to live and work, who can adjust their labor supply
in response to uncertain investment returns. This ability, they find, induces
younger individuals with a CRRA utility function to take on greater invest-
ment risk than older ones. King and Leape [1987] find young people hold
less diversified portfolios than old; they identify the accretion of financial
information over the lifetime as a possible explanation.

This paper consider properties of utility functions. It examines their im-
plications for the horizon-risk relationship, where investors seek to maximize
the expected utility of terminal wealth. Qur holy grail is the set of necessary
and sufficient conditions on u that guarantee that an investor with a longer
horizon will assume more risk in his portfolio. Given such conditions, we say
that duration enhances risk, abbreviated DER. '

To forewarn the reader of our results, if the risk-free rate is zero, DER will
be satisfied iff the Arrow-Pratt measure of absolute risk tolerance Ty(z) =
—u'(z)/u”(2) is convex (this measure is the inverse of the measure of absolute
risk aversion). If the rick-free rate is positive, DER holds iff T, is convex and
T.(0) = 0. The latter condition we label superhomogeneity; it is equivalent
to infinite risk aversion at 0. Convex absolute risk tolerance is a condition
involving the second, third and fourth derivatives of the utility function.

Through Section 4, our analysis considers a two-period model with a zero
risk-free rate, and consumption only at the end of the second period. The
paper is organized as follows: In Section 2, we address a world with complete
markets at every period. The proof of the necessity and sufficiency of convex
risk tolerance is straightforward in that case. The standard portfolio problem
with two aseets and two periods is considered in Section 3. In Section 4, we
analyze the concept of convex risk tolerance and link it to other concepts.
Section 5 introduces three areas of extension for our analysis: a positive risk-
free rate, the possibility of intermediate consumption and production, and
multiple-period models. Section 6 concludes.
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2 A simple model with complete markets

We consider a two-period model in which investors maximize the expected
utility of their terminal wealth. Young investors invest and live for two
periods, old investors merely for one. Each investor is endowed with wealth
w at the beginning of period 1, and has utility function u, which is assumed
to be twice differentiable. increasing and concave. The risk free rate is zero.
At the end of any period t. ¢ = 1,2, the realization of randum variable 3,
is revealed. In order to eliminate intertemporal hedging strategies that are
well-known. we assume that 5, and 3; are independent, but not necessarily
identically distributed. F, denotes the cumulative distribution function of 3,.

At the beginning of every period ¢, each surviving investor has to take a
decision 0, € O, that yields a payoff ¢(5;,6.) at the end of the period. The
problem of the old investor in period t = 1 is written as follows:

max Eu(w + ¢(5,.9)), (1)

where E is the expectation operator. By backward induction, the problem
of the young investor in period t =1 is

max Ev(w + ¢(51,9)), (2)

where the value function v is defined as

v(z) = max Bu(z +¢(52,9)). 3)
IS F)

Variable z hereafter denotes the wealth available at the beginning of the
second period, i.e. 2 = w + ¢(s;,60;). The young investor is less risk-averse
than the old one if v is less concave than u in the sense of Arrow-Pratt. The
concept of decreasing risk aversion is useful for many comparative statics
problems. For example, Pratt [1964] and Dybvig and Lippman [1983] showed
that agent A will always accept more lotteries than agent B if and only
if agent A is less risk-averse than agent B. Determining whether v is less
concave than u only requires considering the second period problem. Since
the comparative statics of an decrease in risk aversion (in period 1) is well-
known, we limit the analysis to the second period problem here and in the
remainder of the paper. This allows us to remove unnecessary time-indexes.



In this section, we assume a complete set of contingent claims markets.
The decision problem is to determine the optimal bundle 8 = «(3) of con-
tingent claims to purchase. The exogenous (probability-adjusted) contingent
price is m(s) > 0. Since the risk free rate is zero, the price schedule must have
an expectation equaling unity: -Ew(5) = 1. Let ¢(s) be the demand for the
contingent claim associated with event s. Problem (2) can now be rewritten
as

1(z) = max Eu(c(s)) (4)
s.t. En(3)e(3) = = (5)

Namely, the problem of the individual endowed in period 2 with wealth 2
Is to maximize the expected utility of his final consumption under budget
constraint (5). The standard first-order condition for (4) is

u'(e(s)) = An(s) (6)
for any s. Parameter A is the Lagrangian multiplier associated to the bud-
get constraint. It is a function of z. Let T,(c) = —u'(c)/u"(c) and T,(z) =
—1/(2)/v"(z) denote the index of absolute risk tolerance for respectively func-
tion u and function v. The following Lemma is instrumental for our result.

Lemma 1 T,(z) = En(3)T,(c(3)), where function c(s) is the solution of
program (4).

Proof: See the Appendix.

The absolute risk tolerance of an individual is a martingale with respect
to risk-adjusted probabilities dG{s) = n(s)dF(s). Cox and Leland [1982]
and He and Huang [1994] obtain the same property in a continuous-time
framework. G is a well-defined distribution function with dG > 0 and
JdG(s) = [m(s)dF(s) = 1. The assumption that the risk-free rate is zero
is central in this interpretation of T,. If £ denotes the expectation operator
with respect to distribution G of 3, we get

T.(2) = ET.(c(3)),
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whereas the budget constraint is rewritten as Ec(3) = z. By Jensen’s in-
equality, T,(z) is larger than Tu(2) = Tu(£c(3)) if and only if T, is convex.
This proves the following result.

Proposition 1 Consider the Lwo-period investmenl problem wilh a complete
set of markets al every period and a zero risk-free rale. Young investors are
less risk-averse than old investors if the absolute risk tolerance of final wealth
is convez. If absolule risk tolerance is not convez, one can find a distribution
of state prices such that young tnveslors are nol less risk-averse than old
tnvestors.

This means that investors with a longer horizon purchase a riskier port-
folio of contingent claims, or duration enhances risk (DER).* Of course, the
converse property also holds: young investors are more risk-averse than old
ones, independent of the state price distribution if and only if absolute risk
tolerance is concave.

3 The standard portfolio problem

In most investment contexts, complete contingent claims markets are not
available. With the “standard portfolio problem”, there are two assets avail-
able in each period. The first offers a zero sure return. The return 5 on the
second asset is random; first-period decisions and outcomes are independent
of second-period returns.

With such an investment program, the existence of the second-period
investment opportunity exerts two effects on first-period risk taking, which
we label the flexibility and background risk effects. In general, the investor
will adjust optimal risk exposure in the second period to the outcome in the
first. With decreasing absolute risk aversion, for example, the better the first-
period outcome the more of the risky asset is purchased in the second period.

4As shown by Gollier {1995], for example, this formally means that the contingent
consumption of the young is more sensitive than the consumption of the old to changes in
the contingent price.



The opportunity to adjust one's portfolio is an advantage; this flexibility
effect always reduces aversion to current risks.

Beyond this, the presence of a second-period risk can be analyzed as a
“background risk” with respect to the first-period choice problem. With a
zero risk-free rate available, the opportunity to make a second-period in-
vestment is weakly advantageous, and is only nentral with a CARA utility
function or when none of the risky asset is ever purchased, i.e.. when £5 = 0.
There is a lively literature on the effect of a background risk on attitudes
towards another risk, but it does not address cases of favorable risks.®

The critical question is when the flexibility effect can be assured to over-
come (be weaker than) a potential negative background risk effect. The
required condition is that absolute risk tolerance be convex (concave). We
shall now conduct the optimization, identify our two effects, and then proceed
to the proposition.

Let 0 = o denote the demand for the risky asset. It depends upon the
level z of wealth available at the beginning of the second period. The investor
selects q(z) which solves program (7).

v(z) == max Eu((z —a) +a(l+3)) = max Eu(z + aj) (7)

The problem is to establish the relationship between the degree of concavity
of u and the degree of concavity of ». If § is a two-state random variable,
markets are complete, and we know from Proposition 1 that the convexity
of T, is necessary and sufficient for a negative effect of age on risk-taking.
We herafter shows that this result is robust to the introduction of additional
states. The first-order condition on a(z) is written as

Esu'(z + a(z)3) = 0. (8)
Fully differentiating this condition yields

da Esu"(z + ad)

dz  E#u(z+0a3)

(9)

*Pratt and Zeckhauser (1987) introduce the concept of properness for situations where
background risk is undesirable. Kimball (1993) develops standardness, when background
risk increases expected marginal utility. Gollier and Pratt (1995) consider background
risks with a non-positive mean. None of these restrictions is satisfied by background risk
a3 under consideration here.



As is well-known, a(z) is increasing, constant or decreasing depending upon
whether absolute risk aversion is decreasing, constant or increasing. The
envelope theorem yields

v'(2) = Ev'(z + as). (10)
Fully differentiating again this equality yields
" " ~ da __ " -
v'(z) = Eu (z+as)+d—-E'su (z + as). (11)

Combining conditions (9), (10) and (11} allows us to write

A Eu"(z + as) + da —Esu(z + a3)
v(z)  Ev(z+a3) dz Ev(z+ad) 19
Eu"(z + ad) (Edu’(z + a3))? (12)

T Eu(z+as)  Efu'(z+ ad)Eu(z+ad)

Notice that by the Cauchy-Schwarz inequality, [E3u"(z + @3§)]® is smaller
than E5%u"(z+ ad) Eu"(z+as). Combining this property with equation (12)
implies that —v” /v’ is positive: a longer time horizon length never transforms
risk-averse investors into risk-lovers.

Our aim in this paper is to compare —v"(2)/v/(2) to —u"(2)/u/(z). Our
two effects emerge from condition (12). The flexibility effect is expressed
by the second term in the right-hand side of (12), which is negative.5 The
background risk effect corresponds to the first term in the right-hand side
of (12). Future risk § =, @3 can be interpreted as a background risk with
respect to the independent current risk. If a would be fixed and independent
of the realization of the first-period risk (i.e. da/dz = 0), the degree of
risk aversion in period 1 would equal —Eu"(z + §)/Ev/(z + §). This can be
either larger or smaller than —u"(z)/v/(z). The next Proposition details the
resolution of these two effects.

Proposition 2 Consider the two-period investment problem with a zero yield
risk-free asset and another risky asset. Young investors are less risk-averse

6Gollier, Lindsey and Zeckhauser [1996] examine the effect of flexibility on the accep-
tance of risk.



than old investors if the absolute risk lolerance of final wealth is conver. If
absolute risk tolerance ts not conver, one can find a disiribution of returns
of the risky assel such that young investors are not less risk-averse than old
inveslors.

Proof: See the Appendix.

The result is reversed if T, is concave, which relates to the Mossin [1968]
result that rational agents will be myopic, i.e. age has no effect on risk
taking, iff the utility function exhibits harmonic absolute risk aversion (linear
absolute risk tolerance).

No information is required whether absolute risk tolerance is increasing or
decreasing — only the second derivative matters — which is surprising since the
second-period investment opportunity raises both average wealth and utility.
Interestingly, though we do not have a condition that an imposed favorable
gamble increases the riskiness of accompanying preferred gamble, we can
deduce a simple formula for examining how the availability of a favorable
second-period gamble affects first-period behavior.

Proposition 2, like Proposition 1, provides a qualitative result. We would
like to know the quantitative magnitude of the duration or age effect on
risk taking, and could determine that if we knew the first four derivatives
of the utility function. For now, consider an illustration for the case of
u(z) = z+1In 2, with § = (=1, 2;1/2,1/2). After some tedious computations.
we get T,(5) = 30.0, whereas T,,(5) = 64.1: the young investor is more than
twice as risk-tolerant than the old investor. This implies that if the expected
excess return of the risky asset is small, the young will invest twice as much
in it as willthe old!

4 Convex risk tolerance

Most of the utility functions used in economics, as already noted. belong to
the HARA class, i.e., they have linear absolute risk tolerance. Such func-
tions, including exponentials (constant T,), power and logarithmic functions
(Tu(z) = kz), and quadratics (T,(z) = ¢ — z). Given such linearity, the

10



length of the investment horizon does not affect the riskiness of the optimal
portfolio.

The popularity of HARA functions, we believe, relates to their tractabil-
ity, not their realism. If we think that longer horizons could lead to greater
risk taking. then we must consider utility functions that exhibits convex ab-
solute risk tolerance. The following functions do so:

(i) u(z) =az—be ® witha >0, b >0, ¢> 0. It yields T, (z) = %e* +

c

o -

(i) uw(z) = az+b4= with @ > 0, b > 0, ¥ > 0. It yields T,(z) =
e

(iii) u(z) = az +b In(2) witha >0, b > 0. It yields Tu(z) = = [1 + -“f-]

In short, if a function exhibits linear increasing absolute risk tolerance,
then combining it with a linear function of z makes absolute risk tolerance
convex. Finding a simple utility functions with concave risk tolerance is
more difficult. An example of such a function is u(z) = f5 e ?*duw, for
which T, (z) = .

Is convex absolute risk tolerance a reasonable assumption? To address
this question, we consider two other economic problems in which convex risk
tolerance plays a role: the static portfolio problem (7}, and the group risk-
sharing problem. In the portfolio problem, one can easily verify that the
optimal demand for the risky asset is convex in initial wealth iff absolute
risk aversion is convex, at least for small risks. This corresponds to the
observation that the share of wealth invested in risky assets should increase
with wealth, which seems reasonable.

Consider now the risk-sharing problem.” A group of n identical indi-
viduals with utility u have to share aggregate wealth 7 which is risky. A
sharing rule is a vector of payoff functions (wy(z), ..., wn(2)) that for every
value of z expresses the share that goes to each member of the pool. If we
assume that the risk-sharing rule that is adopted by the group is Pareto-
efficient, it maximizes Eh(Z) = ¥; A Eu(w;(2)) for some vector of positive
scalars (Aq,...An), under the feasibility constraint ; wy(Z) = z. If the Ais
are not identical, the efficient rule will not be fair. In order to determine

"See Gollier [1993] for a survey.
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the attitude towards risk of the group. we need to know the degree of risk
tolerance of the group’s value function h. From the theory of efficient risk-
sharing, we know that the absolute risk tolerance Ty(z) for the group equals
5 Tu(wi(2)) = n[Y; 1Tu(wi(2))]. By Jensen’s inequality. observe that Tj(z)
is larger than nT, (3 ; wi(z)/n) = nT,(z/n) if and only if T, is convex. In
short, adopting a Pareto-efficient risk-sharing rule that is not fair increases
the risk tolerance of the group if and only if the individual’s absolute risk
tolerance is convex. The intuition is that by adopting an unfair sharing rule.
more risk can be allocated to those whose allucated wealth positions make
them less risk-averse.®

If A,(z) = T, '(z) denotes absolute risk aversion. convex risk tolerance is

equivalent to

(AL (=)
Au(")

If absolute risk aversion is concave, absolute risk tolerance is aitomatically
convex. But under the familiar condition of decreasing A,, the concavity
of A, is not plausible, since a function cannot be positive, decreasing and
concave everywhere. Condition (13) means in fact that absolute risk aversion
may not be too convex. There is no obvious relationship between the nec-
essary and sufficient condition (13) and the properness necessary condition
Al > A' A,.? In order to relate our condition to standardness, one can easily
verify that convex risk tolerance is equivalent to the condition that function

A'(z) < 2wl (13)

Pu(z)
P(2) = 14)
(2) = () (
be decreasing in z, where P,(z) = —u"(2)/u"(z) denotes absolute prudence.

This condition should be related to standardness which is characterized by
the condition that both A, and P, be decreasing.

We conclude that none of the recent concepts mentioned above is suffi-
cient to sign the effect of investment horizon on risk-taking. To simplify the
analysis thus far, we assumed that the risk-free rate was zero, that terminal

8With an unfair allocation, those with a large A will be wealthier on average. If absolute
risk aversion is not constant, this generates a wealth effect on the members' attitude
towards risk.

®The same remark can be done for the risk vulnerability necessary condition A} >

24’ A,.
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wealth was the only concern, that there were but two periods, and that the
utility function was twice differentiable. The next section examines whether
our results can withstand relaxing those assumptions.

5 Extensions

To extend our analysis, we consider in turn a positive risk-free rate, inter-
mediate consumption and production, multiple periods and nondifferentiable
marginal utility.

5.1 Positive risk-free rate

A zero risk-free rate was invoked in sections 2 and 3 to eliminate a wealth
effect that introduces a noise with respect to our main message. Over pe-
riod 1926-1987, the arithmetic mean annual return of inflation-adjusted U.S.
Treasury Bills is 0.5% (geometric mean is 0.4%), whereas it is 1.9% (geomet-
ric mean is 1.7%) for inflation-adjusted intermediate-term U.S. Government
Bonds.!® This suggests that a positive risk-free rate should be considered.
Let R > 1 denote one plus the risk-free rate. In the standard portfolio
problem discussed in section 3, the problem is rewritten as

vr(z) = max Eu((z —a)R+ a(l+7)) = max Eu(zR + ad), (15)

where 7 is the return of the risky asset and § = 1 + 7 — R is its excess
return over the risk-free asset. Function vg is the value function of the
young investor under a positive risk-free rate R. It is thus seen that

vr(z) = v(Rz), (16)

where v is the value function under R = 1 that has been examined in section
3. The reader can easily verify that the same equivalence (16) holds for the
complete markets model analyzed in section 2, with Ew(5) = R > 1. From
condition (16), one can state that a positive interest rate introduces two

18See Ibbotsen and Sinquefield {1989], page 74.
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changes in the attitude towards current risks (that makes z risky). First. as
mentioned above, there is a wealth effect expressed by the fact that ERZ >
E:. Second, there is a magnification eflect. The risk borne today will be
magnified by investing the part of the payoff from the current risk in the
risk-free asset during the next period.

Differentiating twice condition (16) yields

Toa(s) = £T(R:), (17)

where T,, is the absolute risk tolerance of the young investor. The two
effects of a positive risk-free rate are apparent in equation (17). The wealth
effect takes the form of absolute risk tolerance measured at Rz > z. The
magnification effect is equivalent to absolute risk tolerance divided by factor

k.

Proposition 3 [n the complete markels model and in the standard portfolio
model, if the risk-free rate can take any nonnegative value, the young tnvestor
is always less risk-averse than the old investor if and only if the absolute risk
tolerance of the utility function u is conver and superhomogeneous.'!

Proof: The proof of sufficiency proceeds as follows: Propositions 1, 2 and the
convexity of T, yields

T,.(2) = —léT.,(Rz) > —léTu(Rz).

Using the superhomogeneity of T, yields in turn

Toa(2) 2 Tu(2).

For the necessity of convex absolute tolerance, take R = 1 and apply Proposi-
tions 1 and 2. For an outline of the proof of the necessity of superhomogene-
ity, suppose by contradiction that T, is not superhomogeneous. Then, there
exists z and R > 1 such that T,(z) > %lTu(Rz). Consider a distribution of
§ with an arbitrary small expectation. Then, a(Rz) = 0 and o'(Rz) = 0, so

"A function g is superhomogeneous (resp. subhomogeneous) if and only if g{Rz) >
(resp <} Rg(z) for all z and all R > 1.
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that T,(Rz) = T,(Rz). Thus, Ty(z) > ,—IIT.,(R.:) = T.x(z). a contradiction.
(|

Superhomogeneity of T, guarantees that a young investor will put his
end-of-period-1 wealth in the risk-free asset is less risk-averse in period 1
than the old investor who simply consumes his end-of-period-1 wealth. If the
young investor does not invest all his wealth in the risk-free asset in period 2,
the convexity of T, reinforces the magnification effect. If only negative risk-
free rates are considered, then the condition of superhomogeneity must be
replaced by subhomogeneity, with current risks being reduced through time.
Examples of a concave utility function with convex and superhomogeneous
risk tolerance are provided by cases (ii) and (iii) in the previous section, i.e.
a sum of a linear function and a CRRA function. Samuelson [1989b] showed
that the same age-phased property holds in the case u{z) = (z—=9)'""7/(1—7%),
1 # v >0, oru(z) = In(z-5), for any (minimum-consumption) constant S >
0. Since absolute risk tolerance is linear and superhomogenous in these cases,
age-phasing occurs only due to the risk-free rate effect. A counterexample is
obtained with the exponential utility function which yields T, (2) = £7Tu(2).
In that case, only the magnification effect is at work, with young investors
reducing their risky investments by factor R in relation to the strategy of old
investors.

Notice that a positive function which is superhomogenous must be in-
creasing. Therefore, contrary to the results presented in sections 2 and 3 in
which the convexity of T, alone was relevant, we need here the absolute risk
tolerance to be convex and increasing. If we limit the analysis to utility func-
tions that are defined over R* (Remark: this excludes the cited Samuelson
example), then the superhomogeneity condition can be simplified. Indeed, if
a function 7T, defined over R* is positive and convex, superhomogeneity is
equivalent to the condition that this function evaluated at 0 is zero.'? We
can thus rewrite the above result as follows.

Corollary 1 Consider the complete markets model or the standard portfolio
problem with a utility function defined over R*. In the absence of intermedt-

12A formal proof of this result is available upon request.
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ate consumption and with a nonnegative risk-free rate, the young mvestor ts
always less risk-averse than the old invesior tf and only if T, is conver and

T,(0) = 0.

Mossin {1968 showed that introducing a positive risk-free rate in the standard
portfoliv problem reduces the set of ntility function yielding rational myopia.
Namely, with R > 1, myopia is rational if T,,(z} is not only linear in z. but
also proportional in z, i.e., T,,{(0) = 0. The same restriction applies here.

A side result of this analysis is obtained by examining the problem of
access to markets. Consider two young investors who live for two periods.
In the second period there are two markets, one for a risk-free asset. and
one for a risky asset. The two investors have access to the risk-free asset
market, but only one of the two has access to the risky asset market. Should
he be more or less risk-averse than the other in period 17 It depends upon
whether vg(z) = v(Rz) is more or less cuncave than ug(z} = u(Rz). or,
in other words, whether -éT.,(Rz) is larger or smaller than T,(Rz). From
Proposition 2, we directly get the result that the investor who will have access
to the risky asset market in the future lakes more risk today if and only if T,
is conver.

5.2 Intermediate consumption

Thus far we have assumed that the investor's utility function applies solely to
terminal wealth; he has a pure investment problem. In a real world contexts,
investors consume a portion of their lifetime wealth each period. Introducing
intermediate consumption raises several interesting questions. For example,
Kimball [1990] and others addressed the problem of optimal saving given
exogenous future uncertainty. In this paper, we extend this approach by
considering future risks that are endogenous. Another important point is that
allowing for intermediate consumption makes young people potentially more
willing to take risks than in the pure investment problem because current
risks can be attenuated by spreading consumption over time. For example,
in the case of the absence of future risk opportunity, if complete consumption-
smoothing is optimal, a $1 loss on current investment will be split into a fifty
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cent reduction in current consumption and a fifty cent reduction in future
consumption. Under a concave utility on consumption, that has a smaller
effect on total utility than a straight 31 reduction in final consumption in the
investment problem. ,

We consider a model in which consumption is chosen at the end of each
period, after having observed the realization of the random variable charac-
terizing that period’s risk.'® For tractability and to allow for time-consistency
of decision, we consider an expected utility model with a time-separable util-
ity function « on consumption. If parameter B is the discount factor, the
dynamic structure of the problem is described by the value function vg that
is defined as follows:

vg(z) = max u(c) + BEw(R(z — ¢) + ¢(5,8)). (18)

c,0¢€

Using the definition of function v as in (3), this can be rewritten as:

ve(z) = max. u(c) + 0 maxgee Eu(R(z —c) + ¢(5,9)) (19)
= max, u(c) + fv(R(z —c)).
The first-order condition on ¢ obtains:
u'(c) = SRV (R(z — c}). | (20)

It yields ¢(z) = BR*"(R(z — ¢))/[v"(c) + BR*"(R(z — c))]. The envelope
theorem gives vz(z) = BRV'(R(z — ¢)) = /(c). Differentiating this equality
and rearranging terms yields

Toe{z) = Tule(z)) + %T.,(R(z - c(z))). (21)

If T, is convex, one can apply Propositions 1 and 2 to write:

Ton(2) 2 Tule(2)) + FTulR(z = (2)))

Using again the convexity of T, together with Jensen’s inequality yields

13See Bodie, Merton and Samuelson [1992] where labor supply. not consumption, adjusts
to counterbalance poor investment outcomes.
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i Tul(cl2)) + 7 Tu(R(z - ¢(2)))]
AT 7hH2)-
If we assume that the return on the risk-free asset is larger than —1 ie.
R > 0, the left-hand side of the last inequality is larger than T, (8L R R+1 -) =
T.(z) if and only if T, is subhomogeneous. This proves the sufficiency of the
following Proposition. The proof of its necessity follows the same line as the
one for Proposition 3 and is left to the reader.

|’° £
D+ D

Proposition 4 In the complete markets model and in the standard portfolio
model, if intermediate consumption is allowed, the young investor is always
less risk-averse than the old investor if and only if the absolute risk tolerance
of the uttlity function u is conver and subhomogencous.

When intermediate consumption is introduced, the subhomogeneity of T,
must be added to its convexity in order to get an unambiguous comparative
static property. This reverses the superhomogeneity condition that proves
necessary in the investment problem with a positive risk-free rate. There is
a simple intuition for this reversal. As an illustration, consider the above
model with 8 = R = 1 and § = 0 with probability 1. Then vg(z) = 2u(z/2):
consumption is perfectly smoothed in the two periods, with no precautionary
saving in the absence of any future risk. Value function vg(z) thus has the
same degree of concavity than u(z/2). There is a 50% reduction effect on
the risk borne in period 1. Namely, by splitting the current risk makes the
young investor more willing to accept risk than the old investor. This is a
correct interpretation of the well-known concept of “time-diversification”. As
superhomogeneity was necessary to take care of the magnification effect of a
positive risk-free rate in the investment problem, the condition of subhomo-
geneity is necessary to take care of the reduction effect of time-diversification
with intermediate consumption. Convexity of T, assures that the existence
of the future risk does not reverse this effect. This reversal has already been
observed by Samuelson [1989b] in the case of u(z) = (z = S)!""/(1 - 7),
S >0, ¥ > 0, in which only the magnification/reduction effect exists.

18



Of course, one can easily verify that T, concave and superhomogeneous
is necessary and sufficient for young people to be more risk-averse than old
people, in a model with intermediate consumption. The limit case is obtained
with T, being linear and homogeneous, i.e. the CRRA case. Not suprisingly,
this is the standard assumption in dynamic risk-taking models.

5.3 Multiperiod models

In this section, we would like to know under which conditions there will be
a monotone effect of age on risk aversion. In our basic models of sections 2
and 3, it would require T, to be also convex. If the convexity of T, implies
‘the convexity of T,, then it would be clear that an investor who still has
three periods to live is less averse to current risks than an investor with
only two periods left. In the Appendix, we prove that such a property holds
when there is a complete set of contingent markets at every period. This is
not a surprise. One can consider the two last periods to be a single “mega-
period”. As is well-known, because there are complete markets in both of
these periods, there are implicitly complete markets contingent to the history
realized over the mega-period. One can then apply Proposition 1 over the
mega-period to get the result.

Unfortunately, this is not true in the case of the standard portfolio prob-
lem with more than two states in every period. In its simplest form, the
problem can be written as:

v(z) = max Eve(Rz + ad), (22)

with vr(z) = u(z) for some horizon T > 2.1* However, T,, may not be convex,
even if T, is convex. This implies that under a convex T, & younger investor
may not be less risk-averse.’® With three age groups — young, middle-aged.
and old — the convexity of absolute risk tolerance only guarantees that the

14 As noticed elsewhere, the only fixed points for this problem are functions with constant
relative risk aversion. Among others, Huberman and Ross [1983] show that under some
conditions investors behave as if v, has constant relative risk aversion when T — ¢ tends
to infinity. What these authors basically show is that if the risk-free rate is positive, the
optimal portfolio of a “very” young investor is the optimal portfolio of a myopic agent
with an infinite wealth; i.e. the magnification effect predominates.

15A counterexample developed with Mathematica is available upon request.

19



middle-aged is less risk-averse than the old. In short, the convexity of T,
is necessary but not sufficient for risk-taking to increase with age. In order
to get sufficiency, we must find a condition for T,, to be convex. Ve have
little hope that any tractable and interpretable condition will be found in
the near future. To get it, the inverse of the left-hand side of (12) must be
differentiated twice and the result must be signed.

5.4 Non-differentiable v’

Throughout this analysis we have assume that utility was twice differentiable.
If the utility function does not have this property, absolute risk tolerance may
not be defined correctly and our theory is no longer relevant.'® We now show
an example of a utility function that is not twice differentiable and that yields
the property that young people are less risk-averse than older ones. Take

u(z) = min(z,(1 - t)(z — D) + D), (23)

with ¢ € [0,1] and any scalar D. This function is continuous, piecewise
linear and concave. It is drawn in Figure 1. Consider the standard portfalio
problem (7) with no intermediate consumption, R = 1 together with § =
(£-,74;1/2,1/2), z_ <0 < x4 and 0.5(x_ +z;) > 0. It can be shown that
a bounded solution exists for this problem with utility function {23) if and
only if

. + be o5
Iy )

t >

Under this condition, the optimal demand for the risky asset equals

D-z

- ifz< D,
alz) =4 ,p

if 2> D.
| z- |

The value function is then written as

8 Notice that we do not need any restriction on the differentiability of T, itself to get
our result, because the Jensen's inequality does not require such a condition. However, if
T, is convex, it must be continuous.
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. . Ty X Ly + 2o
v(z) = min [+—-——2+D-+—-——-

(1-8Z—"=(z~ D)+ D|,

T e T
whose graph is depicted in Figure 1.

The value function is obviously less concave than the utility function in
the ustual sense: v is a convex transformation of u. Young investors purchase
more of the risky asset than old investors. However, the absolute risk toler-
ance is not convex in the proper sense. Notice also that v is piecewise linear
as is u. Applying the same technique as above yields that investors who have
three periods to live are less risk-averse than those who have only two periods
to live and similarly for three and four periods, etc. Piecewise linear utility
functions are examples in which there is a monotone relationship between
age and risk aversion.

6 Conclusion

Time and uncertainty are inextricably entwined in investment decisions.
Economists have.developed useful instruments to treat either uncertainty or
time in decision processes. When models entail both time and uncertainty,
policy recommendations have been provided only under very specific condi-
tions on preferences. Namely, analytical results are available only when abso-
lute risk tolerance is linear in wealth. In such models, no relationship emerges
between age and the attitude towards risk. In this paper, we have extended
these analyses to a range of other cases. In particular, we have determined
the qualitative effect of age on risk-taking in relation to the properties of the
utility function for consumption or wealth.

The findings presented here illuminate the essential link between time
horizon length and risk aversion. Some of their most important applications,
however, may lie somewhat afield. For example, they may help us to revisit
the role of liquidity constraints in dynamic models in finance, to consider
how the frequency of market openings affects optimal risk-taking, or to better
understand the advantages for accurate description of adding a second period,
with rebalancing, to otherwise static investment models.
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Appendix

Proof of Lemma 1

As is well-known, we have that

V(z) = A
Fully differentiating the above equality, inverting and multiplying by —v'(z)
yields
T.(z) = _v'(z) = —i\-. 24
@) =~py == (21)
The value of the right-hand side of (24) is obtained by fully differentiating
condition (6). It yields u"(c(s))d“;z = 7(s)%. Replacing m(s) by u'(c(s))/A
yields in turn

8C) - el I (25)

Now, by the budget constraint (5), we obtain

1= (%L = 22 ErE)T(e(9).

Combining the above condition with condition (24) concludes the proof. ®

- Proof of Proposition 2

Consider any specific 2. Without loss of generality, we assume a(z} = 1.
i.e. E5u/(z + &) = 0. We have to determine under which condition we have

u"(2) > _ Eu"(z + 3) (E5u"(z + 3))°
w(2) = FEu(z+3) Esw(z+3)Eu(z+3)
for all z and § satisfying E3u/(z + §) = 0. Let F denote the cumulative

distribution function of 5. Let also define £ as the random variable with
cumulative distribution function G, with

(26)
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_ vz 4+ z)dF(x)
T fu'(z 4+ s)dF(s)

We verify that d(7 is positive under risk aversion, ad that [ dG(x) = 1. Using
this change of variable, the problem is rewritten as

dG(x)

1 (Ei)?

ErT(z+2)=0 > -
T+ =0 = 55 2 BTz 75  EPET(:+3)’

or, equivalently,

(EZ)?
EZ?

EiT(:+z)=0 = T(2) [1 - ] < ET(: + ). (27)

Lemma 2 Condition (27) holds for any & if i holds for any z with a three-
point support.

Proof: We look for the characteristics of the £ which is the most likely to
violate condition (27). To do so, we solve the following problem for any scalar
Al

maxggyo 1(z)(1 = A[JzdG(z)) - [ T(z + x)dG(z)
subject to [ xT(z + z)dG(z) = 0;
[z(1 - Az)dG(x) = 0;
JdG(z) = 1.

If the solution of this problem for any A is negative, condition (27) would be
proven. Observe that the above problem is a standard linear programming
problem. Therefore the solution contains no more than three z such that
dG{x) > 0, since they are three equality constraints in the program. Thus,
condition (27) would hold for any Z if it holds for any Z with three atoms.
This concludes the proof of Lemma 2. Notice that Pratt and Zeckhauser
(1987) and Kimball (1993) use the same kind of technique. .

(28)

Lemma 3 Condition (27) holds for any & with a two-point support if and
only if T is convez.

25



Proof: This is a direct consequence of Proposition 1. Indeed, if Z (thus $)
has only two points in its support, we have as many possible states of the
world as the number of assets. Thus, markets are complete in each period.
Notice that this Lemma implies that the convexity of T is necessary for our
result. ]

Lemma 4 If condilion (27) holds for any & with a two-point support, then
condition (27) holds for any T with a three-point support.

Proof: Take I that is distributed as (L), m); T2, Mo; L3, M3). Let g; denote
£, T(z + x;). Suppose that 3, m,g; = 0. It implies that the g; must alternate
in sign. Without loss of generality, suppose that g; >0, g, <0 and g; > 0.

We first show that there exist a #; distributed as (z;,p;£,1 — p) and a
7, distributed as (2,1 — ¢; x3,9) such that EFT(z +4) =0,1= 1,2, and
such that Z is distributed as (§i, X; 52,1 = A). To check this, we must solve
the following system: '

Ap =T (29)

M =-p)+(Q=-N(1-g)=m (30)
(1~ A)g =3 (31)

o +(1-p)g2 =0 (32)
(1-q)g2+4993 =0 (33)

with p,q and A in [0,1]. This system is solved with

=% (34)
P a1 — 92

g= —22 ~ (35)
g3 — g2

)\ = mgl — 92 : (36)
=gz
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One can easily check that this solution is in [0, 1.
Suppose now that. condition {27) holds for §; and 1, that have a two-point
support. Thus, we knwo that

~ 12
7(2) [1 - %i] < ET(: +3), (37)

for i = 1,2. It implies that

T(2) [1-{ AERY |y E) ’}] < AET(z +§1) + (1= NT(= + ).

ER
(38)
Observe that
AET(z+ )+ (1 = NT(z+ i) = ET(z + %) (39)

since I is distributed as (§j;, A;§2,1 — A). Notice also that (EZ)?/Ez?
convex in the distribution of Z, i.e. 17

(Eyl)
Eyl

(ER)® _ (EQd + (1= Ni)? _ (E)

ER - Bo@i(-N@) ~ Bz 10

+(1=A)

Combining conditions (38), (39) and (40) yields condition (27). This con-
struction can be done for any random variable  with three atoms. [ |

Proposition 2 is a direct consequence of the three above Lemma.

""The proof of this claim is obtained by easy manipulations of (40). Denoting a; = Eg;
and b = Ey? > 0, condition {40) is equivalent to

b2 by
20102 < a®= + a2+,
: s, 252

2
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which is always true.



Proof that 7, is convex with complete markets

Proposition 5 Consider the comnplete markets mode! introduced in seclion
2 The absolule risk tolerance of v is conver (resp. concave) if the absolute
risk tolerance of u is convez (resp. concave).

Proof: Without loss of generality, let us rank the states of the world in
order to have 7 increasing with s. As we know from Lemma 1, T,(z} =
En{3)T.(c(3)). Using (24) and (25), it implies

. En(s)Tu(clE)Tye(3)
LG = —EGTel)

Define function 7 as

o _(s)Tule(s))
108) = Er(@Tulc(d)’
This allows us to rewrite the above expression as T,(z) = En(8)T,(c(3)).
Notice that this directly implies that the sign of the derivative of T, is passed
on to the derivative of T,, i.e. DARA is preserved. Differentiating again and
using (24) and (25) yields

En(3)T.(c(3))T,((3)) dn(3) (s
ErTucd) T dz T(e(3))-

The first term of the RHS above is positive if T, is convex. Under the same
condition, the second term is also positive for the following reason. We have

Ti(z) =

dn(s) _ _n(s)Tule(s)
dz (En(3)Tu(c(s

L T BT — ExTGNT )

From this equation, the convexity of T, and the fact that ¢ is decreasing in
s, there exists a scalar s* such that (s — s*)$2(s) < O for all s. Using again
the convexity of T, and ¢/(s) < 0 yields

BTy o(a)) > Tofels) B =0,

This concludes the proof. : u
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Figure 1: The case of a non-differentiable u'.
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