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1. Introduction

Firms are born and die, plants open and close, individuals move from labor market
to labor market. When economists and statisticians sample fragments of the lives
of these entities, the impact of these movements, often manifested as unexplained
attrition from the sample, on model estimation and inference can be devastating:
most estimated coefficients are biased and inconsistent even under rather strong
ancillary assumptions. The classical solution to this dilemma is to estimate the
process of interest jointly with a model of the entry and exit process. We are
going to focus primarily on attrition in this paper; hence, we can represent the
process more specifically by letting s, denote the survival process (s = 1 if entity
i survives at date £), and s}, denote a latent (unobserved) variable governing the
survival of the entity of interest. Then, exit or attrition is often represented as

L !
Sy = 0 Zig + Eit

where z;, is a vector of time varying observables, €; is an error term with zero
mean, given 2;, and other properties that depend upon the model of interest, and
« is a vector of unknown parameters, so that

sq¢ = 0 otherwise.

If the economic or social process of interest is governed by the following equation
Yie = 7 Tie + Uie

where y;; and T are observable, u;, is an error term with properties that also
depend upon the specific model, and v is a vector of coefficients of interest, then
consistent estimation of the system is theoretically straightforward.

There are many reasons, however, that estimation of even simple models might
be difficult. First, even when the simple model above is a reasonable description
of the death or attrition process, the structure of the error processes, for example
through person or firm-specific effects, can induce complicated correlation between
the errors in the two equations that makes estimation cumbersome. Estimation
using a maximum likelihood approach may require the computation of a T-fold
integral (where T denotes the maximum number of periods for which an entity is



observed.! Second, one generally does not know why a firm or an individual dis-
appears from a sample. For instance, suppose that firms die either because they
are not profitable enough or because they are very profitable and are, therefore,
subject to a takeover. Then, the simple exit model above is inadequate. A model
with both a ceiling and a floor would be a better description of the death process.
John Sutton (1996) gives different examples of this possibility: “In looking at the
U.K. steel casings industry, Charles Baden-Fuller (1989) found that many of the
closing plants were not the least profitable ones. ... A similar theme emerges
in the work of Martha Schary (1991) who appealed to a richer discussion of the
determinants of exit, distinguishing between three routes by which firms ‘disap-
peared’ (bankruptcy. voluntary liquidation, or merger). Schary’s paper examines
the process of exit in the U.S. cotton textile industry, using a model in which firms
make a series of decisions. considering each exit route in turn, in a pre-determined
order.” (pages 67 and 63). More generally, it seems difficult to summarize the
attrition process without reference to a more structural and sector-specific model
(see also Olley and Pakes (1996)).

We try to avoid these difficulties by taking a completely different route. In-
spired by the statistical missing data literature (Rubin (1976), Robins, Rotnitzky,
and Zhao (1994 and 1995), Imbens and Hellerstein (1996), and Hirano, Imbens,
Ridder, and Rubin (1996)), we formulate simple assumptions on the stochastic
process by which firms or individuals exit from samples. Then, based on these
hypotheses, we show that a simple adaptation of the GMM framework allows
consistent estimation of any equation using moment conditions. In particular,
we propose a class of estimators based on a Weighted Generalized Method of
Moments, in which weights are computed using the exit process, that leads to
consistent estimators of the parameters of interest, v, and shares the asymptotic
properties of the Generalized Method of Moments.

After defining notation in Section 2, we analyze the implications of different
assumptions for the attrition rule in Section 3. We provide the specific implemen-
tation details in Section 4. In Section 5, we apply our framework to the study of
a labor demand equation using an unbalanced panel data set of firms. Finally, we
conclude in section 6.

1See, among others. Meghir and Saunders (1988), Ridder (1990), Baltagi and Chang (1994),
Dionne, Gagné. and Vanasse (1994), see also Heckman (1979} and Hausman and Wise (1979)).



2. Notation

Consider a population of N individuals. We focus on the following process y, =
(vi1, iz, - - -, ¥ir), with ;e a K x 1 vector (the y and z’s of the introduction), where
i = 1 to N, denotes firms or individuals, ¢ denotes time, and t = 1 is the date
of birth, common to all individuals. This common date of birth is assumed to
be known. Here, v, is a vector which includes both dependent and explanatory
variables of the process. Denote the conditions that relate these variables as
follows:

Eg(y,60) =0 (2.1)
or, denoting ¥, = (i1, - - -, i),
Eg(y, 6)=0fort=1,...,T (2.2)

where 8 € © denotes the parameters to be estimated and g,() denotes the appro-
priate subvector of g(). We assume that the set of parameters can be split into
parameters of interest (a € A) and nuisance parameters (8 € B) with© = Ax B.
The nuisance parameters will only be mentioned when working with the moment
conditions. Furthermore, we assume that there exists an additional L x 1 vector z;
of time-varying covariates. These covariates do not enter the moment conditions
2.1.

Individuals are observed from date t = 1 until date d;. Hence, y a = (%1, vizs - - -

is observed but ¥y, = (¥idi+1,Yidi+2,---,¥ir) is not. The date d; is the last
date at which the variables are observed. Let s; € {0,1} be an indicator func-
tion equal to 1 whenever y; is observed. Therefore, s;; = 1,...54, = 1 and
Sigi+1 = 0,..., 8 = 0. Finally, denote

gu = P(sa=1ly,_,,8e1=1)
Ty = P8 = 1 | y‘.t_l)
Git = P(si = 1| (y,_;Zit—1) Sit-1 = 1)

T.ric‘. = P(s‘it =1 | (y_u_l,-‘-z-it-l))

’ y‘du)



Notice that the above conditions in conjunction with equations (2.1) or (2.2) may
have no empirical counterpart since data are observed at date ¢ if and only if
entity i survived until that date. Hence, estimation based on observed data may
lead to biased estimates due to the attrition.

3. Attrition Rules

3.1. Data Missing at Random

The Rubin “data missing at random” assumption can be expressed as follows. We
say that data are missing at random if the date ¢ observation indicator function,
sit, and the vector y, are independent conditional on the history of the vector
y, 1.e., conditional on y,, | = (%1, %2, - - -»Yi—1)- Then, if i(a | b) denotes the
distribution of a conditional on b (recall that for notational simplicity we do not
write the parameters except in our moment conditions) missing at random means:

l(y_,'! Sit | Hit—l) = I(E, | _y_,'g_.l)l(sit l E;‘g_]) (31)
The Rubin missing at random rule can be equivalently reformulated as:

P(sqy=1] 2,-) = P(si =1 13“,_1) (3.2)

which implies that

Wyie |y, ppsa=1) = Wwie | y,,_,)
Therefore, given the chain rule for conditional probabilities, we have
Wy,) = Uyer | Yo JHwir—1 | Yp_g) - - - Uyin),
and
Wy,) = Uyr | gp_ o 8im = DGV Yp_gp Sir—1 = 1) - Uy, 80 = 1),

Now, each conditional density is expressed in terms of observables so that the
density is identified. However, its estimation requires a lot of computation and
many observations. Hence, we apply this idea directly to our moment conditions
rather than to the densities themselves.



Proposition 3.1. Under Rubin’s attrition rule (3.1), the following two

equations hold
gt(yﬂ, G)Sit)

Tt

E (g‘_(&t’g)) =E ( (3.3)

Tit = QitTit—1 (3.4)

Proof: Given the independence assumption of equation (3.1}, we have

£ (9‘(211’9)5“ | y,it—l) =B (gt(yit’e) | .y.it—l) E (s"‘ I y_it—l)

Notice that E(g:(y,,,0)si | yi—1) has a sample analog, since when s;; = 0 the func-
tion g:(y,,: 8)s,; is identically equal to zero, and whenever s; = 1, y,, is observed
(by definition of sy). Let 7y = E(sit | y,,_,) = P(sa =11 y,_,)- Furthermore,
g = E(si | y,_;rSu-1 = 1) is directly identified. On the other hand, =, is not
directly identified. It is not possible to estimate a model, say a probit or a logit,
directly on s; because some of the y,.; are not observed. But, this becomes
possible if done conditional on s;_; = 1. This gives ¢;. More precisely, we have
the relation:

E (s"t lﬂit—l) = b (‘Si‘ | Yoy Sit-1 = 1) i ('5“’1 =1| 21':-1) +
E (Su I Y Sit-1 = 0) P (sit*l =0 | yu_,)

Given that
E (Su | Yoy Sit-1 = 0) =0

P (Su-l =1 3_/,,_1) =P (Sit—-l =1] Q,-t_2) =M1,
and equation (3.1), we have:
it = QitTit—1
Thus, given 7y = ¢y
Ty = Qit g
and it follows that m; is identifiable. Q.ED.
Equations (3.3) and (3.4) have several implications. Consider the case of

GMM estimation. There is a set of orthogonality conditions which is satisfied
on the whole population given by equation (2.1). Decompose the function g into



9 = (g1,82,---,9r) with g; a function of (y:1,...,%). Then, the equation (3.3)
can be applied to each y,. This provides the following orthogonality conditions:

E (M) —0 (3.5)

which have an empirical counterpart.

Consider next the Chamberlain method (see Chamberlain (1984)). To apply
this methodology, it is necessary to compute the moment matrix L, , = F (y../,)-
Once more, use the previous result to g, = y;;3, with s < ¢. This yields:

itYis Si
E (M - yﬂyis y_,'g_]) =0

i
E (M) _ 5., (3.6)

it

and, in particular,

Hence, it becomes possible to compute the moment matrix of the variables, and
to make inferences using Chamberlain’s framework.

In our first version of Rubin’s data missing at random assumption, the condi-
tioning vanable was y. . the same variables that enter the moment conditions.
We could slightly alter this rule by including the z variables as follows

l((y 7—-1) Sit | ( n 11—1-‘. l)) = I((E, ) I( ﬂ 1)—1! 1))1(31'5 | ( at 11511—1)) (3‘7)

The statistical assumption is formally identical, data are missing at random, but
the conditioning set of variables is larger. This situation and the previous one
intersect but none is included in the other. From this variant of the missing at
random assumption, we derive the following result.

Proposition 3.2. Under Rubin’s attrition rule (3.7), the following two equations

hold
B (aty,0) = B (2122 (38)
Tie = QuTie—1 (3.9)
Proof: As for proposition 3.1. QE.D.

One may wonder whether a weakening of the previous assumptions leads to
an equivalent result. More specifically, let us assume that
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Wy, si ] (g, 2a-)) = Wy, | (l,’_u_l’éitq)) (su  (y Yo 2 Zit—1)) (3.10)

Hence Y, is orthogonal to s; given (ﬂu— ¥ Zit—1)- We call this rule “conditional”
Rubin. Then, we can state the following result.

Proposition 3.3. Under Rubin’s attrition rule (3.10), the following two equa-

tions hold (4..6)
g y,‘ 1 V)84
E (ga(yit,a)) =FE (—‘—=1é“—‘) (3.11)
Tt # QutTit—1 (3.12)

Proof: For the first equation, the demonstration is identical to the proof of
proposition 3.1. However,

it P(Sgt 1 I (y_ﬂ ll—lt-* ))

7Tt!. - P(stt =1 I ( Y, ]1_1t 1) Sit-1 = I)P(slt 1=1 | ( “ 11é1t 1))
Ti = GuP(8i2-1 = 1| (Q,-t_l,éuq))
but, we do not have
P(si—1 = 1] (_y_it_lnéit—l)) = P(sqg_1=1] (E“_epéa—z))

and, therefore, we do not have #;; = §;7;_;. Indeed to have the equality above,
condition (3.7) is sufficient but not necessary. Q.E.D.

Suppose now that there is a set of variables, w, which are always observed (or
do not time-vary) even after firm's i death. Then,

Wy s | (g ow) = Ky, | (g mad)sa | (g, wi)) (3-13)

Then, denoting
(Iu - P Stt 1 | (y“ 1? a) Sijt—-1 = 1)

t-P(stt—ll( “ lth))

we have



Proposition 3.4. Under Rubin’s attrition rule (3.13), the following two equa-

tions hold
gt(ﬂ,—,, B)Sit)

Mt

E (Qr(l_’ipf))) = E(
it = Gy Tig-1
Proof: Contrary to the result in propostion 3.3, we have

Plsi—1 =1 (y,,_pw)) = P(si—1=1] (y,_,w))

Q.E.D.

The case of missing at random given w. also mentioned in Robins et al. (1995),

is encountered when some variables do not time-vary or when there are multiple

data sources. For exarmnple, variables known at the start of the sample like industry

and location are potential w variables. A second example occurs when one has two

different datasets, the first giving information on balance-sheets, which is always

present for all firms in all years, and the second giving information on research

and development expenditures, the variables of interest for the model, for which

some firms have missing data. In this example, the balance sheet variables are
candidate w variables.

3.2. Robins, Rotniztky, and Zhao’ Attrition Rule

Robins, Rotnitzky. and Zhao (1994) and (1995) propose the following attrition
rule:

Plsi=1}su1=1y)=Plsa=1]si1= 1,_&“_1) (3.14)

with P{syy = 1| y) = P(siy = 1) = 1 (date 1 is the first date of the sample
period).

Lemma 3.5. Under Robins et al.’s attrition rule (3.14), one has for any k, 1 <
k<t

P(’Sn =1 ] Sik = 1:_3_’.') = P(sit =1 [ Sik = I*Qn—l)

Proof: The proof is by induction. Consider any k, 1 < k < t. And consider
the following cquality (for a given k),

Plo, = 1] su=1,y) = P(siy =1 su =13, _,)



This equality is obviously true for 7 = k. Suppose now that this equality is true
for 7 = t — 1. We show now that it is also true for 7 = t. For any conditioning
vector z, we have

P(S,t = 1 | Sk = 1,2) = P(Su =1 I Sik = I,St'g_[ = I,Z) x .P(S,‘L_I =1 | Sik = 1,2)
+P(sie = 1|su=184-1=0,2) % P(su1 =0 s =1,2)

But P(sy = 1| six = 1,841 = 0,z) = 0, since there is no reentry (a dead firm
never reappears). Hence,

P(S“ =1 |3ik = 1,2) =P(S,'g= 1 | Sik = 1,3,’4_1 =1,Z)XP(S“__1 =1 | Sik = 1,2)

Furthermore, notice that P(s; = 1| six = 1,541 = 1,2) = P(55 = 1| 851 =
1, z) for the same reason as above. Now, apply these facts to z = y and z = Yy
This yields

P(sy=1]|su= l,y‘.) = P(sy =1{s41=1y,) x P(sy_y =1|si = 1,3‘.)
and
P(sy =1|sa =1y, )=Plsa=1]|su-1=1Ly, )xP(siwr =1]sa=1y, )
Now, using Robins et al. attrition rule, we derive that

P(Sit=1|3ik=1izi) _ P(Sit-1=1|3ik=1’gi)
P(sq=1]su = I'Ea-l) P(sg=1]sa = 1’.311':-1)

Use the induction hypothesis (7 =t ~ 1) i.e.
P(si-1=1] s = I:Qi)' = P(sy-1=1] sic = 1’2{:-2)
But, we know that
P(si-1 = l]lsu=Lly, ,)=
/P(Sit—-l = 1su=1y)f (W Yer-1,-- Y | S = Ly, )tz . dyac

where f(.} denotes the distribution function of our variables. Apply the previous
equality to get:

P(si1 = llsa=1Lly, )=

/P(Sa_l = 1|su =Ly, )f(yr yir-1,--- . Yir | s = Ly, )dyir. . dya

9



The first part under the integral is a constant and therefore can be taken out of
the integral to give

P(siy1 = 1] s =1, Y- ,) =
P(si—r = l)sa= 1,’14“_2)[.1' T UiT—1, - Yie | Sk = Ly, )dyir - .. dya

Hence,
P(sio1=1]sw =Ly, )=Plsa-1=1]sx =1y, ,)
by definition of a distribution function. Apply this last equality to yield
Pisu=1lsu=1,y)  Plaa=1|sau=Ly) Plsis1=1]s&=1ly)
P(S,g =1 | Sik = 1 yt 1) P(S,t 1= 1 I S,k 1 gzt 1) P(s:t 1= 1 I Sik = 1,3“_2)

But, by the induction hypothesis the right-handside is equal to 1. So, we have
shown that the equality is also true for 7 = t. QE.D.
Remark: Applying our lemma to k = 1 shows that Robins et al. attrition
rule is a special case of data missing at random (as noted in Robins et al. (1994)).
Robins et al.’s attrition rule is helpful when the date of birth is unobserved.
Indeed, denoting 75*! = qi1qie—1 - - - Gix+1, We have the following result.

Proposition 3.6. Under Robins et al.’s attrition rule (3.14), one has for any k,
9:(y,,)su

E B e aly)lsa=1) =0 (3.15)
‘it
Proof: First we show that

Plsi=1]su=1y)=Plse=1]sa =1y, )= Gti-1- - Gik+1-
Indeed, we have
H = P(si=1|su=1y, )
= Plsi=1|su=1y, |81 X XSaun = 1)
P(S,,_l X o= X Sikp1 = 1 l Sipg = 1’£it~l)

P(sy = 1] s =1y, ;8i-1 X - X Siky1 = 0)

X P81 X - X Sigp1 = 0| 85 = I'Eu—l)

10



P(sw = 1| s = Ly, _:Si-1 X -+- X Siky1 = 0) = 0 because entities never
reappear. Thus,
H = Plsa=1]su=1Ly, )
= P(si=1]sx= 1.}[”_1,51':—1 X -+ X Sigg1 = 1)
X Psiy X - X s =1 sa =1y, )
= P(sy=1]si-1=1y, IP(sir X Xsap=1]sa =1y, )
= P(si=1]5su-1= l?y_ﬂ_l)P(sitwl =1]sy-0=1, Eu_l)
- P(sigr = 1] sa = Ly, )

Lemma 3.5 implies that:
P(Sit—j =1] Sit—j-1 = 1,3,-1_1) = P(Sit—j =1] Sit—j—1 = 1,_3;[,-‘_1-_1)

which implies that H = gugit~1 - - - gic+1. Note also that nothing is changed in Y,
since H = P{sy = 1| sax = 1,3,). Our lemma 3.5 has shown that under Robins
et al.’s attrition rule:

P(sqy=1|su=1y)=Plsa=1 | su = l’ﬂuﬁl)
Hence,

E(suge(y,) |y, s =1) = Elsie |y, 5% = DE(ge(y,) | y,,_,» 5 = 1)
= QitQie—1 " 'Qik+lE(gt(_y_“) | Y125k = 1)

which yields the desired result. Q.ED.
Remark: Under the stronger assumptions that (i} a finite number of lags of
Yy, say m. has to be introduced in ¢ t.e.

P(su=1]su1 =1y, ) =Plsi=1]8u1=L%1,- - Yit-m)

then 77*! is identified; (ii) the g, are restricted to those in which only the observed
ysie. (%i....,y:) enter so that the expectation E{g:(y,) | 8;m = 1) be identified;
and that (iii) E{(g(y,) | sim = 1) = E(g:(y,)) = 0; we can use Robin’s et al’s
attrition rule for moment estimation.

Notice that all our other propositions can be extended in this setting. This
discussion also demonstrates that the two attrition rules, Rubin’s missing at ran-
dom, on the one hand, and Robins, Rotnitzky and Zhao's rule on the other, differ

in their premises, consequences, and applicability.

11



4. Implementation of the Method

Consider now Rubin’s data missing at random attrition rule. Assume for sim-
plicity that the nuisance parameters, ¢, have a logit form (for the case of first-
stage non parametric estimates, see Newey (1994)). Hence, we can estimate a
set of parameters (8,):=1..r defined by the following orthogonality conditions on
(¥,)1=1,.. T , the derivatives of the logit functions with respect to 3,,

E('/)l(ﬂl?yl't)) = 0
Thus, the complete set of conditions for the GMM is

91(y,, B)sie -
{ E 03y, ) #2082y} 0 t=1,---,T (4.1)
E(‘p:(gnﬂ,,_l) | sii1=1)=0

The standard errors can be computed using the corresponding formulas for
the GMM estimation of the equations (4.1). However, for the computation of the
parameters themselves, it is simpler to solve first for the equations that define the
3 parameters and to replace them by their value in the estimating equations for
the estimation of the parameter of interest 8 (see Crépon, Kramarz and Trognon
forthcoming). There will be no efficiency loss as long as there are as many in-
dependent orthogonality conditions, 1, as there are parameters 3 as is the case
if the f’s are defined by maximization of the logit likelihood, for example (see,
again, Crépon, Kramarz and Trognon forthcoming).

4.1. Computation of the Standard Errors

To show how to compute the standard errors of our parameters, consider first the
restatement of the preceding GMM program (4.1} as

{ E(f(y,,9,8)) =0

t=1,.---,T
E(wg(ﬁ’nyﬂ*l) | -1 =1)=0

where

9e(y,,, 0)sa
v 0) = it .
f(i' h) qit( By, Eu—l) gl Ba, Eﬂ)

The estimated parameter 8 is defined by

Fo(y,,8,8) Sf(y,8,8) =0

12



where
1

1 X 0/(y,8.8)
N :

o'

It

uMz

Fo(y,,8,5)

f(4,0.5) = ﬁ,-zf(g,.,@,ﬁ)
=1

and S is the optimal weighting matrix, derived below. Expanding around the true
value 8y, we get

Foly,0.5) S Ta + Fo(y,, 0,5)0 ~ 00) + Faly, 8, B)(B - )] = 0
where the obvious definitions apply. Using the following approximation of B

:6 ﬁﬂ ¢|0
one gets that 8 is given by:

8 — 0o = ~(E(Fu) SE(Fu)) ™ E(Fu)' S [Fo + E(Fp) o]

where E{Fg;) and E(F3) stand for the expectation of the corresponding deriva-
tives of f evaluated at the true value of the parameters and ¢ is the first order
term of the expansion of Ev¢, around 6y. In this framework, all the usual results
from the GMM apply for 6. However, the variance matrix of the estimated pa-
rameters and the optimal weight matrix have to be modified because we must
account for the estimated 5, hence we use fig + E(Fps)o,, instead of fio. Hence,
the optimal weighting matrix is

S = Vélrlf,'g + E(Fg,-)qﬁ,-o]".
Given the optimal weighting matrix S, evaluated at the second-stage estimates of
6 and ﬁ we have ~
Var (6] = (E(Fu) SE(F))™
4.1.1. Computation of E(Fj3,) and E(Fy;)
The vector f is defined by f = (f,,..., fr) with

_ gt(gu’ 0)sie
qlt(ﬁf.l Eit—l) T qi2(62’ Q:'l)

13



Thus, we have

of, _[0ifs>t __ olog()
ag, | ~fTel T 6,
It turns out that F(Fj) is a block inferior triangular matrix with block (¢, s) equal
to
af. Alog(gis)
E(F3)hs = E(=) = -E(fi— 7
(Fsies = B(537) = =Bl )
Denote Vlogg; = [Q‘T’%"‘—’l, 2'%5(,"—"1] then we have
2 T

E(Fy) = —E(fVlog q)

4.1.2. Computation of B
Let 8 denote the vector of §,, t = 1 to T. Each g, is defined by

E(wt(ﬁt:yﬂ_l) | Sip1 = l) =0

Assume for simplicity that the dimension of 1, is equal to that of 8, and that 3,
is defined by a maximum likelihood estimate. An estimate 3, of 3, is defined by

Z '/’t(Bn Y,_,)8i-1=0

Expanding around the true value, the estimated parameter can be obtained using

P,
Z%&w}wr+zwﬁMHuﬂm B) =0
Thus, we have
A, !
(ﬂ - 3 ( Z w (ﬁpyd 1 Sit— l) _I_V_z_:wt(ﬁhzit_l)sit—]
Defining ¢, = (¢y,,-- -, ¢p,) with ¢,, defined by

; o
Yy = — (./\' Zaz: (Bery,,_)Sit- 1) 1/’;(/-'3“3“_1)5-1—1

one gets

B—-B=~¢,.

14



5. Labor Demand

In this section, we use our methodology to estimate the parameters of interest in
a system of dynamic labor demand equations. First, we describe the data. Then,
we present the estimation results. In particular, we compare the estimates for the
speed of adjustment with those obtained in the usual framework that does not
take attrition into account.

5.1. The Data

We start with a representative unbalanced longitudinal sample of French firms
from the INSEE Echantillon d’entreprises 1978-1988. As constructed by the di-
vision of economic studies, the 1988 version of this sample includes 21,642 firms.
The sample is cross-sectionally representative in each of the eleven years; that is,
the age structure of the sampled firms is representative of the age structure in the
population for each year. The enterprise universe consists of every enterprise that
responded to the BIC (Benefices industriels et cormmerciaux) in any year between
1978 and 1988. In the primary sample year, 1986, every entreprise that completed
the BIC in 1986 was at risk to be sampled with probabilities that depended upon
the size of the entreprise in 1986 and the sector of economic activity. Firms with
500 or more employees were sampled with probability one. Firms with less than
20 employees were not sampled.? Firms of intermediate sizes were sampled with
probabilities between 31—0 and 1 according to the size and sector. Every firm that
existed in 1986 was then removed from the universe. Complementary samples
were then constructed for each of the other years using the same sampling proba-
bilities as in 1986. After a complementary sample was drawn for a particular year
all firms at risk to be sampled that year were eliminated from the universe.

In principle, the BIC is exhaustive, however many enterprises have at least
one year of missing data between the first and last years they appear in the
BIC. From the initial sample of 21,642 firms, 8.2% were discarded for having
two missing years between the first and last year they appear. An additional
14.9% of the firms, having one year of missing data in the BIC, were used in the
dynamic sample with the missing year imputed (using the procedure described
below). Finally, 16,645 enterprises had complete data and were used without any
imputations. The enterprises that appear in the dynamic sample represent 91.8%

?Firms with less than 20 employees (full- or part-time} were not required to complete the
BIC until 1984.
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(unweighted) of the firs in the universe and 90.4% (weighted®). The number
of observations (firm-years} is 129,447 of which 2.5% contain some imputed data.
We eliminated all data from large governmental entreprises (the SNCF, RATP,
la Poste, Air France, Electricité de France, Gaz de France, governmental savings
banks, etc.) and all data from a group of extremely anomalous entreprises.* All
told we eliminated data for 53 entreprises, including the governmental firms.

To apply our method. as we need to know the complete history of the firms, we
focus on all firms that were born in 1982 (i.e. within our sample period). These
667 firms are followed at most until 1988. Of these 667 firms, 292 survived to this
last date. Furthermore, 139 lived only one year, 76 lived exactly two years, 54
lived exactly three years. 28 lived exactly four years, 28 lived exactly five years,
50 lived exactly six years. and finally, 292 lived at least seven years, i.e. they were
still alive in 1988, the end of the sample period.

5.2. Construction of Variables

From the BIC, we used total employment at december 31%, real value-added, real
total employer labor cost per employee (frais de personnel y.c. charges patronales
divided by total employment), gross operating sales, real total assets, and financial
ratios. The financial ratios are defined as follows. Investment ratio (investment
divided by value-added), margin ratio (operating profit divided by value-added),
return on assets (operating profit divided by total assets), return on fixed assets
(operating profit divided by fixed assets), financial return on assets (operating
profit plus earnings on financial assets minus interest charges, i.e. profit brut
courant avant impdts, divided by total assets), average interest rate (interest
charges divided by total long-term plus mid-term debt), debt ratio (total long-
term plus mid-term debt divided by total assets), ratio of long-term assets (equity
plus total long-term and mid-term debt divided by total assets), and solvency
ratio (interest charges divided by operating profit). All such ratios are used either
by banks or financial analysts to evaluate the future of firms. To compute the
variables defined in real terms, we used the value-added price index at the industry
level with no change in definition from the BIC. Summary statistics of the variables
are presented in Table A.1.

3The weights come from the sampling plan of the echantillon d’entreprises, described above.
4These firms had negative assets or some other gross accounting anomaly.
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5.3. Estimation results

The estimated equation is a classical dynamic labor demand relation. For com-
parison purposes, we used the same equation as the one estimated in Arellano
and Bond (1991):

1 1 1 1988
Lii = 1Ly +aoLiy_a+) ﬁijit—j'l'z ﬁkjkil—j+2ﬂqjqit—j+ Z It = k)+ey
j=0 =0 =0 k=1085
(5.1)
for t = 1985 to t = 1988. This equation is estimated in first differences. In-
strumental variables are the lags of our exogenous variables (t — 2,...,¢ ~ 5) and

endogenous variables (¢ — 4 and t - 5).

Table 1 contains all of our estimation results. Column (1) reports the esti-
mates when we use all of the y variables-employment, wage, sales, and capital,
which enter the moment equations g-~as well as all eight financial ratios, which
do not enter these moment equations, to model death.® Column (2) contains
the estimates when we model death using all of the y variables and value-added,
operating profit, and total debts, which do not enter the moment equations g.
Column (3) relies on a model of death restricted to the y variables and excluding
both the financial ratios and the other economic variables used in columns (1) and
(2). Column (4) reports unweighted estimates which result from the estimation
of equation (5.1) without any correction for the missing data caused by firms that
exit before 1988. Finally, column (5) presents estimates for the balanced panel
ie. firms that are born in 1982 and survive at least until the end of the period,
1988.

Columns (1) to (3) show that our weighting framework has in important effect
upon the estimation of the key parameters of the labor demand equation. In
these columns, all coefficients have the correct sign and reasonable magnitude.
According to the results presented in column (1), the cofficient on the lag of order
2 for employment is not significantly different from zero and of trivial magnitude.
Hence, one would conclude that it is not necessary to disaggregate employment
in multiple skill categories (see Nickell 1984). However, columns (2) and (3)
show that both coefficients on lagged employment are significantly different from
zero and of nontrivial magnitude; therefore, some disaggregation by skill level
may be appropriate for equation (5.1). Notice here that the coefficients imply

3The logit results are not reported for the ¥ moment conditions. Each logit equation and,
therefore, its associated y,s contain the past (until 1982, the first year for all our firms) of all
the variables used to predict death.
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that the two AR(1) processes for the different skill levels have coefficients of
about 0.84 and 0.08, respectively, on lagged employment. Hence, the employment
skill level with the first coefficient-the slower to adjust-summarizes most of the
dynamics (again, see Nickell 1984). The estimated logit coefficients of the death
models tend to support the results presented in columns (2) and (3); because
the financial variables do not predict well the death of the firm. The x? statistic
(test of overidentifying restrictions related to the instruments) is lower in column
(3). While this test is informative for the choice of instruments, 1t is not a test
of the quality of the death model. As shown in Hirano et al. (1996), Rubin’s
missing at random assumption exactly identifies the density {{y ). Hence, unless
some additional information is introduced, there exists no test of overidentifying
restrictions associated with the attrition rule.

Inspection of the last two columns, in which estimates are not corrected for
attrition, demonstrates the size of the biases especially since in the absence of
missing data effects, these columns estimated the same model as columns (1)-
(3). The biases are large for all coefficients. The uncorrect estimates imply
that employment adjustments are quick, because the autoregressive coefficients
on employment are relatively small, and that the wage elasticity of employment
is determined primarily by the first lag whereas in the corrected results both lags
of the wage rate are important. With respect to the speed of adjustment the
unadjusted results are close to those obtained on the balanced sample, which sug-
gest that Nijman and Verbeek’s (1996 and forthcoming) suggestion to compare
balanced versus unbalanced estimates is not necessarily a good way to assess the
importance of attrition in the estimates. For the speed of adjustment coefficients,
our column (4) and (5) estimates are close but both are far from our corrected
ones in columns (1)-(3). It is quite clear from our estimates that attrition matters
and correction is crucial.

6. Conclusion

In this article, we propose a simple way to take attrition into account within
a GMM framework. Qur approach relies on Rubin’s data missing at random
assumption adapted to a panel data framework. We show how to implement this
method and demonstrate empirically that attrition matters in simple economic
problems such as labor demand equations. Our application was performed on
firm data but our methodology could have been applied to attrition within a
panel of individuals (the PSID, NLSY, German SOEP, French Enquéte Emploi)
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to estimate, for instance, wage equations or to attrition that occcurs in dynamic
samples of other entities.
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Table 1
Labor Demand Model (GMM estimation)

Dependent Variable: (1) (2) 3) (4) (5)
Employment at ¢ (StE) (StE) (StE) (StE) (StE)
Employment at t — 1 0.6329 | 0.9124 | 09174 0.3455 | 0.3300
(0.1022) | (0.1513) | (0.1575) | (0.0620) | (0.1055)
Employment at ¢t — 2 -0.0202 | -0.0736 | -0.0667 | -0.0237 | -0.0205
(0.0241) | (0.0251) | (0.0185) | (0.0220) | (0.0148)
Wage at t -0.7326 | -1.0666 | -1.0270 { -1.3856 | -0.5402
(0.2896) | (0.2772) | (0.2761) | (0.1648) | (0.3102)
Wage at t — 1 -0.4003 | -0.7265 | -0.7013 | 0.1602 | -0.1283
(0.2597) | (0.1800) | (0.1834) | (0.1281) | (0.1052)
Capital at ¢ 0.0012 | -0.0239 | -0.0215 | -0.0152 | -0.0013
(x 100) (0.0091) | (0.0041) | (0.0029) | (0.0052) | {0.0033)
Capital at t — 1 0.0183 0.0402 | 0.0395 0.0570 | -0.0024
(x 100) (0.0112) | (0.0056) | (0.0053) | (0.0048) { (0.0082)
Output at ¢ 0.0006 | 0.0008 | 0.0008 0.0012 | 0.0001
(0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
Output at t — 1 0.0001 | -0.0004 | -0.0004 | -0.0003 | 0.0001
{0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
x° 24.62 2359 | 15.99 36.07 | 21.76
Degrees of Freedom 22 22 22 22 22
p-value 0.317 0.369 0.816 0.030 0.484
Number of Observations 667 667 667 667 292

Sources: BIC.

Notes: All regressions include time dummies. Al regressions use lagged exogenous and
endogenous variables as instruments. In column (1), the first-stage logit regressions
use employment, wage, output, capital, and 8 financial ratios. In column (2), the logit
regression uses employment, wage, output, capital, value-added, total debts, operating
profit. In column (3}, the logit regression uses employment, wage, output, capital. The
regression of column (4) is not corrected for attrition. In column (5), we use a balanced
sample
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Table A.1
Summary Statistics

(firms born in 1982, sample period 1982-1988)

Variable: Mean | Standard
Deviation
Employment (Full-Time Equivalent) 184.5 843.6
Total Labor Cost (per employee, log, FF 1980) { 4.340 0.419
Sales (Millions FF 1980) 88.44 329.14
Value-Added (Millions FF 1980) 18.63 90.29
Operating Profit / Total Assets 1.755 53.65
Operating Profit / Fixed Assets -0.836 39.70
Financial Charges/ Long and Mid-Term Debt | 0.502 8848
Investment/ Value-Added 0.137 3.040
Operating Profit/ Value-Added 0.126 3.944
(Operating Profit + Financial Products -0.464 21.67
-Financial Charges) / Total Assets
Long and Mid-Term Debt / Total Assets 2.939 50.61
Long-Term Assets [/ Total Assets 2.224 17.43
Financial Charges/ Total Assets 0.030 10.19
Number of Observations 3,049 3,049

Source: BIC.
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Appendix: Practical Implementation Issues

In this appendix, we list the different steps that have been followed in the
empirical section when estimating a labor demand relationship based on firm
data. At each date t, one must:

e Compute (logit) estimates of the attrition process for that date. This pro-
vides the probability of dying at each date given survival at the preceding
date: Qiz.

e Stack one above the other these probabilities. This gives a N x 1 matrix g;;

o Compute -——(r—)l‘;g i — Q)Y
A, Lit—1
e Compute

Z alpt ﬁugﬂ_l)siz—l R Sit-1 [sa(l — g} — (1 — Sit) i) Y
B, _

e For each of the two last steps, stack one above the other the transposed
vectors. This gives two N x dim(y, ) matrix é, and V]og(qt)

¢ Compute the N x T weight matrix 7 and stack one next to the other the ¢,
matrices and Vlog(qt) matrices. This gives two matrices of the same size
NV x dim(8): ¢ and Vlog(q)

e Perform a first estimate using any weight matrix S;
e Denoting f be the matrix of orthogonality conditions N xdim f, compute an

estimate E(Fy) of B(Fy) as —%f’VT&g,q

e Compute the residual of estimated orthogonality conditions € = f +E(I?b.-)ab

Lt~

e Compute an estimate of its variance matrix V= NE€

e Compute an estimate of the variance of the first estimate using W or perform
the best estimate using W~! as weight matrix.
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