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The study of macroeconomic dynamics has become substantially more sophis-
ticated over the past twenty years. The first models were simple models with one
cornmodity, serving as both the consumption and investment good, and with one type
of agent as in the “representative agent” models, or very similar agents, as in two-
period overlapping generations models where agents differed only as to age. While
these simple models provided insights on many issues, their limitations are becoming
more apparent and we now want to move beyond them. In particular, it is desir-
able to add multiple goods, multiple capital stocks, heterogeneous agents, muitiple
assets, heterogeneous taxation, externalities, imperfect competition, and asymmetric
information to the conventional models. Outside of a few special analyses, there are
no examples of general dynamic, multi-agent, multi-good, stochastic, rational expec-
tations models which handle high- and low-frequency economic movements, both of
which are critical for understanding data and analyzing policies. We need to turn to
numerical methods to solve these models. The methods discussed in this paper move
us a step in that direction.

In this paper we address the problem of computing equilibria of large rational
expectations models. We show how extensions of methods used in the simple models
can be used to solve more complex models. The fact that the general models consid-
ered below can be solved numerically is obvious since one can take any of the many
methods which have been developed and apply them to these models. That is not
an interesting observation since most of these methods’ time and space requirements,
such as discrete state space dynamic programming, would make them impractical to
solve on any computer. The problem is to develop methods which can solve larger
models in reasonable time using accessible resources.

This paper focusses on the application of both perturbation and projection meth-
ods to multidimensional dynamic models. In previous papers, Judd and Guu(1993,
forthcoming) examined perturbation methods which go beyond the standard lin-
earization method, and Judd(1992) examined projection methods for solving rational
expectations models. Both papers focussed on applications to a representative agent,
single good model. The reader is referred to these papers and their mathematical
sources for key definitions and introductions to these methods. In this paper, we will
outline how these methods can be adapted to handle multi-agent generalizations; in
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the case of projection methods we stay with the single-good, single-asset assumptions
of the representative agent model, but the perturbation analysis includes multiple
goods and multiple capital stocks. A theme of Judd(1992) is that there are many
ways to solve rational expectations models, the best way depending on a variety of
considerations. In this paper we continue that theme attempting to determine the
relationship between the most efficient method and the characteristics of the problem.
We give examples of various methods, their time and space needs, and the accuracy
of the results.

Our results point to a “production possibilities frontier” of methods for solving
rational expectations models. If the model is stable with an ergodic distribution con-
centrated in the neighborhood of some deterministic steady state, then the Taylor
series expansion produced by perturbation methods will likely produce a good ap-
proximation and, according to several existing examples, produce solutions which are
reliable for a nontrivial region. If the nonlinearities are substantial and/or we need a
more global approximation, we will likely use some kind of projection method!.

The results below give some guidance as to which methods are most efficient
in terms of the trade-off between accuracy and running time. They indicate that
perturbation methods are the most efficient methods when they work, and the only
feasible method for the largest problems. Among the projection methods, the best
choice for moderate-size models appears to use complete polynomial approximations
of the unknown functions, and a version of successive approximation introduced by
Miranda and Helmberger(1988) to solve for the unknown coefficients. The dominance
of complete polynomial representation is not surprising, but the success of successive
approximation is a bit surprising since it is not even locally convergent in general.
However, its considerable computational advantages over Newton methods for solv-
ing nonlinear equations combined with our favorable experience (below and in earlier
papers) indicates that it should generally be considered. One should keep in mind,
however, that all the models we examine below have strong mean reversion properties
in equilibrium, a property which may help explain the success of successive approx-
imation. Because these experiments indicate that successive approaximation is often
valuable, future work should focus on exactly when it is stable.

While these conclusions are based on the analysis of simple examples, we feel that



SOLVING LARGE SCALE RATIONAL EXPECTATIONS MODELS* 5

this experience is likely to be robust to other models and that its conclusions can
serve as a reasonable guide to choosing methods for solving large modeis. Hopefully
the message here is encouraging enough that analysts will feel free to analyze large
models of their choosing.

1. NUMERICAL RATIONAL EXPECTATIONS PROBLEMS
Before we discuss various specific rational expectations models, we should point out
the features which are inherent in numerical rational expectations modelling. Aware-
ness of these features will help us form reasonable modelling goals and point in the
direction of appropriate numerical methods.

In theory, rational expectations models resemble dynamic interpretations of Arrow-
Debreu general equilibrium analysis. The central focus of Arrow-Debreu models are
the time- and state-contingent equilibrium prices and consumption patterns. The
determination of equilibrium prices is the focus of standard CGE methods. However,
this is an unreasonable numerical approach in the case of rational expectations mod-
els. In the Arrow-Debreu approach to infinite-horizon dynamic stochastic models, the
price of each good is contingent on the date at which it appears and the entire history
of the exogenous shocks up to that date. In the case of discrete-time and infinite-
horizon, if there are exogenous shocks in each period and the support of these shocks
contains at least two points, the number of distinct histories in an infinite-horizon
model has the cardinality of the continuum, implying that the number of distinct
prices is also the size of the continuum and that the conventional CGE approach is
infeasible.

These problems can be avoided if the structural features of the economic model
are stationary, that is, do not depend on calendar time, and if we focus on station-
ary rational expectations equilibria of those stationary infinite horizon models. Such
equilibria can be expressed in terms of decision rules for the agents (see Stokey and
Lucas(1989) for a formal discussion of recursive modelling), and the numerical ap-
proach is to compute approximations of these unknown functions. For example, a

simple discrete-time problem explored in the computational literature is
max, E{Z2, 5 u(c)}

kivr = F(ke,0e) — ¢ (1)
Inuy = plnbe + €
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where k; is the beginning-of-period capital stock, 8; is a stationary AR(1) multiplica-
tive productivity parameter (the productivity shocks €, ~ N(0, #?) are independent),
and F(k,8) is the gross (that is, net production plus initial capital stock) production
function. In this problem, both k& and & are needed for a sufficient description of
the state. Hence, consumption is a function of both k and 8, C(k,8), and the Euler

equation is
o' (C(k,6)) = BE {u/(C(F(k,8) — C(k,0),8)) Fx(F(k,0) — C(k,6),8) |8} (2)

This is the problem investigated in the Taylor~Uhlig symposium (1990) and in Judd(1992).
While we will focus on generalizations of (2), our results apply also to the com-
modity problems studied in earlier computational rational expectations analyses by
Gustafson(1958), Wright and Williams(1984, 1991}, and Miranda and Helmberger(1988).

At first, focussing on the functional equation in (2) appears to be no better since
we move from the infinite-dimensional space of contingent prices to the infinite-
dimensional space of decision rules. There is improvement, however, since there are
good finite-dimensional approximations of the equilibrium policy functions such as
C(k,0) when they are “reasonable” functions, whereas we know of no such way to ap-
proximate the continuum of contingent prices. Numerical rational expectations meth-
ods, beginning with Gustafson(1958), therefore focus on finite-dimensional approxi-
mations of policy functions and other important functions. The finite-dimensional
appraximations typically parameterize the unknown policy function? and restrict it
to lie in some finite-dimensional space, as in

E(k,0) =3 asbilk, 0)

=0
where the ¢; comprise a basis for all candidate functions. We must first make a choice
of basis, and then solve for the unknown coefficients, a. There are several ways to fix
these unknown coefficients. Projection methods fix a by solving a set of projection
equations which try to identify a which will nearly solve (2). Perturbation methods

construct a Taylor series expansion around a point (kg,8p), such as

C(k,6) = Xﬂ:iaij (k — ko)’ (6 — 6o)’

=0 i=0
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and use implicit function theorems to identify the undertermined a;; coefficients.

The various approaches to solving rational expectations models differ in three basic
ways; first, in the choice of finite-dimensional approximations to functions, second,
in the way the expectation in (2) is computed, and, third, in the method used to
find an approximate solution. The work discussed below touches on two of the three
critical elements — the method used to approximate C and the method for solving
the identifying conditions. In this paper we will focus on various combinations of
appraximation and solution methods which appear to be promising in the context of
large rational expectations models.

We will discuss both perturbation and projection methods. They share much in
common; see Judd(1996) for an extended discussion of this observation. We will focus
on applications of perturbation methods to continuous-time models and applications
of projection methods to discrete-time models. The dynamic economics literature
bounces between continuous- and discrete-time applications depending on whether
one builds on the Brock and Turnovsky(1981) analysis of dynamic macroeconomic
equilibrium, or the Brock and Mirman(1972) stochastic growth model. There is no
substantive economic difference since the discrete time unit can be made arbitrarily
small. We make our choices to focus on the simple cases; both methods are applicable
to both types of models, but perturbation analysis of discrete-time models is much
more complex notationally, and projection analysis of continuous-time models would
require us to introduce functiona! analytic material of little interest to the intended

reader. We leave these developments to future work.

2. PERTURBATION METHODS

We will first explore an example of perturbation methods applied to the canonical
continuous-time, stable optimal control problem. We will not define perturbation in
general here, nor will we present the mathematical foundations which justify the for-
mal, algebraic manipulations presented below; see Judd(forthcoming, 1996) and Ben-
soussan(1988) for general discussions and for citations of the formal development of
perturbation methods for control problems. Here we will take a “linearize around the
steady-state” approach to large rational expectations models and extend it, via per-
turbation methods, to include nonlinear terms of the Taylor series expansion. While

the linearization approach is common, general perturbation methods have been used
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only to a limited extent in economics. There are several reasons for this. First, there is
little agreement in the literature® as to what constitutes “linearization.” Second, even
those who “linearize” deterministic models correctly* generally fail to compute the
true first-order Taylor series approximation when they approximate stochastic mod-
els; we make this precise below. Third, there is very limited mention in the economics
literature of the higher-order terms in the expansion implicitly being constructed. In
fact, Marcet{1995) states that “perturbation methods of order higher than one are
considerably more complicated® than the traditional linear-quadratic case ...” Below
we show that while computing the traditional linear-quadratic approxirnation involves
solving a Riccati-like equation, computing those dreaded higher-order terms involves
solving only linear equations, and, therefore, that computing some higher-order terms
is in fact less demanding computationally than computing the initial linear term.

High-order expansions are useful for two reasons. First, higher-order terms are
necessary for analyzing the first-order properties of many aspects of the model; an
example of this would be the cyclical properties of risk premia which clearly involves
how the risk aversion coefficient moves over time, a third-order property of utility.
The second reason, and the focus of this section, is that Taylor series expansions
which include nonlinear terms may provide good approximations over a larger region
than the linear approximation would. The fact that much effort has been extended
to compute nonlinear solutions to dynamic growth models, such as in Taylor and
Uhlig(1990), indicates that we do not believe that linear appraximations are always
adequate.

In this section, we present the standard mathematical procedure for linearizing
a model around a stable steady state®, for computing higher-order terms in the ex-
pansion, and for computing the extra terms necessary for an asymptotically valid
expansion in stochastic models. We will break down the method into the relevant
computational steps, and evaluate the computational cost of large models. In this pa-
per we focus on the mechanics of computing Taylor series expansions for large, general
dynamic programming problems and the associated computational demands. Future
work will examine the quality of the appraximation in various specific contexts, and
on generalizing the analysis to the case of competitive equilibrium.

Before continuing, we should warn the reader of the nontrivial notational chal-
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lenge which awaits him in the sections below. After being introduced to tensor no-
tation and its application to multivariate stochastic control, the reader may decide
that this approach is far too burdensome to be of value. If one had to go through
these manipulations for each and every application, we might agree. Fortunately,
all of the algebra discussed below can be automated. Furthermore, the authors are
writing user-friendly programs which will take specifications of tastes and technol-
ogy (represented by some user-written subroutines) and will automatically perform
all the necessary computations, including derivatives, and produce the Taylor series
approximation discussed below. This will relieve the user of executing all the alge-
bra we discuss below. This software will be available at the anonymous ftp site at
bucky.stanford.edu. The presentation below is meant to familiarize the reader with
the mathematical structure of the problem. To help interested readers better under-
stand the algebraic details, we have also worked out a two-dimensional example in
complete detail. It would consume about twenty pages in this paper, so we also will
put that at bucky.stanford.edu.

2.1. Uses of Taylor Series Approximations. To motivate the following com-
putations, we next indicate what we can do with these Taylor series approximations.
First, the focus of this paper, we can use them to serve as global (or, more precisely,
nonlocal) appraximations. This may seem inappropriate since the Taylor series con-
struction is only local’. However, the global accuracy experiments conducted so far
(for example, see Judd and Guu (1993, forthcoming) indicate that these local methods
do well in nontrivial neighborhoods of the steady state in dynamic economic problems
as long as the utility and production functions are analytic in a neighborhood of the
deterministic steady state. Second, we can produce linear theories of any interesting
economic phenomenon®. Linear approximations of policy functions will produce lin-
ear theories about equilibrium choices, such as consumption, investment, and output.
However, if we want to produce a linear theory for other aspects of equilibrium we
will often need higher order terms. A linear theory for the movement of the equity
risk premium over the business cycle, or a similar linear theory of the term structure
of interest rates, requires higher-order Taylor expansions of the equilibrium decision

rules.
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Third, these approximations are the first step in potential empirical procedures
since a linear theory of an economic quantity can be used to compare theory and data.
For example, Magill(1977) showed how to use linear approximations of a stochastic
growth model to compute the implied spectrum for consumption, and suggested that
comparing such theoretical spectra with empirical spectra can be a useful empirical
approach to business cycle investigations. Later work by Kydland and Prescott(1982)
used Magill's approach to compare data and a particular stochastic growth model.
The Taylor series we compute below can be similarly used to compare theory and
data since these expansions can also be used to compute locally valid appraximations
of likelihood functions and their derivatives. Fourth, these perturbation methods
have been used in policy evaluation exercises. See Judd(1996) for a more extensive

discussion of these topics.

2.2. The General Dynamic Optimization Problem. For the purposes of this
discussion, it is advantageous to discuss the continuous-time dynamic programming
case’. We could use the equivalence between competitive equilibrium and Pareto
efficiency to derive appraximations to competitive equilibrium decision rules. These
methods can handle distortions, but with some added complexity which the authors
leave for future work. In general, if we have many agents, many goods, and many
capital stocks, including “stocks” in the utility functions, the dynamic optimization
problem is
V(zo) = maxyy [g° e #n(z,u)dt
&= f(z,u) 3)
z(0) = zo

where £ € R” is the state vector, u € R™ is the vector of controls, f(z,u) is the
law of motion, and 7(z,u) is a concave social welfare function. This problem has
the Hamiltonian H(z,\,u) = n(z,u) + Af(z,u), implying the differential-algebraic
system.

z = f(z,u) = H,
A= pA-(Mz,u)+m) = pA-—H, 4
0 = w(z,u)+ Au(z,u) = H,



SOLVING LARGE SCALE RATIONAL EXPECTATIONS MODELS* 11

When we substitute the control law U(z, A), implicitly defined by 0 = = (z,U(z, A)) +
Afu(z,U(z, X)), into (4) we arrive at the dynamic system

&= flz,U(z,N) (5)
A = pA— (Afo(z,U(z,N) + Tz, Uz, X))

Furthermore, we are only interested in asymptotically bounded solutions to this equa-
tion with the initial condition x(0) = zp. This is the typical kind of deterministic
dynamical system we begin with in our linearization exercises.

2.3. Local Dynamics. To linearize systems such as (5), one invokes basic or-
dinary differential equation theory. Let Z =
system

,\ . Suppose we have a dynamic

Z=9(2) (6)
with a stationary point at Z*; that is, g(Z*) = 0. Then the local behavior of (6) for
Z near Z* is linearly approximated by the linear system

3=Az (7)

where A = gz(2*) and z = Z — Z*. The solution to (7) is z(t) = e4* z.
In the terminology of linear rational expectations models, as in Blanchard and
Kahn[3], the vector = contains the predetermined variables and A contains the vari-

ables with free values at ¢ = 0. Suppose that there is a stationary point at Z* =
( z ) Then the local behavior of the system is linearly approximated by (7) and

A‘
the solution to the linear approximation is z(t) = e igg; : i_ ), where z(0) = zo

is a given initial condition and A(0) is chosen to keep z(t) bounded asymptotically.
Let A(zg) be the set of all possible values for the free variables in A which together
with the predetermined variables being equal to zo will imply a bounded path for z(t).
A(zo) may be a single value or a set of values. We will assume that it is single-valued,
the case of determinacy. We will see where that is necessary in our calculations.

To compute A(xp), we just apply standard linear algebra. We form the Jordan

decomposition of A = N"!DN where D = l;))l ]_()] with D; having all the stable
2

eigenvalues of A (that is, the eigenvalues with negative real parts) and D, having the
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Nu M2\ e Ninto equal size blocks. If the
Nyy Nap

number of stable eigenvalues equals the length of zg, stability of the solution to (7)

implies

unstable eigenvalues, and N =

A(.’Eo) - A= -—N.-:QINQI (J:O - I‘) (8)

We can apply this same approach to discrete-time systems. Suppose that we
have a system, Z,,; = g(Z,;), with a steady state defined by Z* = g(Z*). Define
A = gz(Z*) and z = Z — Z*. Then the equation for z becomes 2,1 = Az, the
solution of which is 2, = Az, which in turn can be analyzed in the same Jordan
decomposition fashion with the distinction that now the stable eigenvalues are those
with modulus less than one. Unfortunately, the general discrete-time case is more
complex than Z,,; = ¢(Z,); see Judd and Gaspar{1997) for a complete treatment of

the discrete-time case.

2.4. Higher—Order Approximations. We will next discuss the computational
demands of computing higher-order terms to the multivariate Taylor series approxi-
mation based at the deterministic steady state. This may seem formidable. To solve
the first-order terms we had to solve an eigenvalue-eigenvector problem. In fact, if one
were to look at the details, one would find that the problem is very similar to a Riccati
equation, that is, a quadratic matrix equation. When discussing this problem with
macroeconomists, we have often heard the conjecture that computing higher-order
terms would require solving higher order matrix polynomial problems. The basic fact
shown below is that all the higher-order terms of the Taylor series expansion, even
in the stochastic multidimensional case, are solutions to linear problems once one
computes the first—order terms. This implies that the higher-order terms are easy to
compute. Initial experiments indicate that they are also good approximations well
beyond the steady state values. These procedures have not been exploited, but can
be obviously applied to problems in the real business cycle, finance, public finance,

and dynamic general equilibrium literatures.

Tensor Notation. To deal with the notational problems which arise with mul-
tidimensional expressions, we extend the Einstein tensor notation, adapting it for our
control theoretic problems. In general, a tensor is any indexed collection of numbers.
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The second property is that we use the position and repetition of indices to indicate
summation. Suppose that a; is a collection of numbers indexed by i = 1,...,n, and
that z* is also a singly indexed collection of real numbers. Then

=Y a7

In this way we eliminate the £ symbol in expressing vector products. Similarly,
suppose that a;; is a collection of numbers indexed by i,j = 1,n, and that z* and ¢
are singly indexed collections of real numbers. Then

a5 :I:iy"' = E‘EJ a;,-:z:"y"

In this way we again eliminate the & symbols. The general rule shall be that we
eliminate ¥ symbols by understanding that, in a product, if an index appears as both
a subscript and a superscript, then we sum over it. If we think of a.j- as a matrix,
z; as a row vector, and 3’ as a column vector, then the product z,y* represents the
inner product of the vectors z and ¥, and a%z:y’ is the quadratic form of the matrix
a with the vectors z and y. We can also form new indexed collections of numbers
from products. For example, the product a_‘;:r,- can be thought of as a singly indexed
collection of numbers, z;. Using our vector analogy above, 2; can also be thought of
as a row vector. While the analogies with matrices and vectors are useful, one should
not focus on them because we will be constructing more complex collections of real
numbers which are neither vectors nor matrices.

As long as indices are not the same, arbitrary products are allowed. For example,
;y; is the doubly indexed set of numbers, b;;, where the {t,) term equals the product
of z; and y;; b;; is the outer product of z; and y;. Also, the “sum over repeated indices”
rule even applies within a single term. For example, a! = %;al; if we think of a as a
matrix, then af is the trace of a. Similarly, ay is also the trace of the tensor a;;.

We will also vary the notation in order to distinguish between an argument of &
vector and a derivative, and between states and controls in an efficient fashion. In
the notation below, superscripts will refer to different components of a vector-valued
function, whereas subécripts will refer to derivatives of those component functions.
Furthermore, in order to distinguish between states and controls, we shall let Roman
letters, i, j, k, £..., index states, and Greek letters, o, 8,7, ..., index controls. There-
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fore, if f(z,u) is a vector-valued function of the state variables x and the controls u,

then f is the column vector

fiz,u)
f(z,u)
(@)

whose i'th component function is denoted f*. Its derivatives with respect to the state
variables are represented by the tensor

a0 = 2 @)

and its derivatives with respect to the control variables are represented by the tensor

fi(zu) = %(u)

We will frequently drop the argument (z,u) as long as it can be understood from
context.

So far, all of this looks familiar since it is just a way of rewriting standard matrix
and vector operations. However, triply indexed collections of numbers, such as a;;,,
are also tensors, and arise naturally in multivariate calculus. For example, Taylor’s

theorem for g : R* — R at z = 0 is normally written as

f(z) ~ f +Z (0) i+ = Zza 321(0)2,'21'

:—l i=1

n n

1 n
+§ Z z Bz,Bz,B ¢ (0)zz;2 + -

i=1 j=1¢=1

whereas by using tensor notation it can be written as
| c o1 -
f(2) ~ F(O) + fi(0)2* + S1u(0)2'2 + gf.-jt(O)z*sz' 4.

If we drop the arguments of f, and understand that f and its derivatives are evaluated

at z = 0, the Taylor expansion can be written as

.1 .1 .
f(2) ~ [+ fiz' + Efijz'z" + é-f.-,'gz'z’z‘ o+
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This more compact expression is a considerable improvement over the conventional
notation with the extraneous summation symbols and the clumsy partial derivative
notation. With this notation, we will be able to more clearly see the structure of our

problem.

Computing Taylor Series Expansions for Optimal Control Problems.
The general deterministic problem (3) includes an arbitrary complete market dy-
namic equilibrium with multiple consumption goods (represented by components of
), multiple capital stocks (represented by components of z) and multiple agents
whose aggregate utility function is represented by 7(z,u). We will now proceed with
a dynamic programming approach to this analysis. The Bellman equation for the
value function, V{(z), is

0 = max 7(z, ) + (o) (2, ) ~ pV(2) ©
where, recall, 7 is the payoff flow and f is the law of motion for the state . The
first-order condition with respect to u®, a=1,..., m,is

0 = 7o(z, u) + Vi(2) f;(z,u) (10)

Equations (10) implicitly define the optimal control, u = U{z), and imply the system
0 = 7a(z, U(z)) + Vi(2) fo(=, Ulz)) (11)

In combination, we have the system
0 = n(z, U(x)) + V@) [(z,U(2)) - oV (3) (12)

0 = mo(z, U(2)) + Vi(z) falz, U(=)) (13)

which defines the value function, V(z), and the policy function, U(z).
Our objective here is to solve for both the value function and the policy function.

In fact, we are going to compute Taylor series expansions

V(@) = V)4 U 2+ Jila - 2 -2

+&Vije(z - 2%z - 2% (z - %) 4 - ‘ (14)
Us(e) = U1 Up(e ~ 2 + Mo - 2%z — =)
ULz~ ) — ) a4
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These polynomials are asymptotically valid appraximations if the error converges to
zero at a higher degree than the order of the polynomial. For example, the linear
approximation V(z%) + V;(z — £%)° has an error which is quadratic in the components
of (z—x%), which means that as z converges to z° the error goes to zero quadratically.

To compute these UP, UZ, Ug,, Vi, Vi;, and Vj;e coefficients we just differentiate
the underlying system, (12,13), with respect to the z;, and solve for the undetermined
coefficients. If we differentiate (12) with respect to z; and use the envelope theorem
we find

pV;=mi+ Vyft + Vif; (15)
In order to keep down the clutter, we often drop the arguments of 7, V, and U, and
their derivatives when they are the same as in the basic system, (12,13) and are clear
from context.

The steady state values for z, u, and V; are determined by the conditions

0 = fi(u,z)

0 = walu,z) + Vi(z) fi(u,z) (16)

pVia) = mi(u,z) + Vii(2)f (6, 3) + Vilz) f(u, )
which yield the steady-state quantities u**, *, V;(z**). Note that the V;(z*’) values
are the linear coefficients in the expansion of V in (14), and knowing the steady state
will also yield V(z**) and U(z**), two more terms in {14).

We next compute the V;; and UJ'? terms, and then compute many high-order
derivatives. We assume that these derivatives exist, which leads us to assume that
all production and utility functions are C°. We assume the differentiability of the
value and policy functions in the neighborhood of the deterministic steady state. For
deterministic problems, this is usually proven by applying theorems about the smooth
dependence of differential equation solutions on parameters, and Fleming(1971) deals
with the stochastic problem. We will proceed under the assumption that the indicated
derivatives exist.

If we differentiate (13) with respect to the z; we find
0 = Taj + Tay U] + Vij fo + Vilfa; + f2,U7 (17)

Note that (17) is a system of conditions, one for each j pair. In this case, we can
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express U] in terms of the derivatives of V
U} = ~ (Mo + Vi) (o + Vis fo + Vilo5) (18)

where (may + Vif,)! denotes the inverse tensor (matrix). Differentiating (15) with
respect to z, implies

PV}t = Tt + 71';'7 IJ-tf‘ + KJ(f‘ + f:fU'r) (19
+V.¢f,+V(f‘¢+f}7 ) )

Substituting (18) into (19) yields

PVie =T+ VigeS* + Vi fi + Vi + Vi,
_(7r17+v:_,f + V.f ,r)(‘iTa.,-i-me) (7rcl+Vuf‘ +Vfa£)

The system of equations in (20) hold at each state z. If we evaluate (20) at the steady
state, then f* = 0 and (20) becomes the Riccati-like equation

(20)

pVie =mi+ Viifi+Vafj+ Vifie
-”(W:!’Y"}-Vufl +V ‘7) (W“T+Vf‘a7) (wd+Vdfa+Vf;l)

Solving the Riccati equation at the steady state yields the steady state values of Vj,
and, through (18), the steady-state values of U;. But we already have the solutions for
the steady-state values of U] because the U] tensor can be derived from the definition
of U(z,A) and the linear approximation computed in (8). This approximation was

(21)

computed directly from eigenvalue decomposition methods. Therefore, we use the
earlier approach to compute the elements of the tensor (matrix) U;. While we have
not accomplished anything new at this point, this lays the foundation for the higher-
order terms.

We now find out how easy it is to compute the higher-order terms. Differentiating
(19) with respect to z,, and imposing the steady state condition f* = 0 implies the

following equation for the steady state values of Vism and Ufm
PVitm Tjtm + Wity Up, + TjmUp + 7":76 UnU{ + 755 Usn
ul(fy‘n+f'UT)+‘,um(fl+f‘ )
‘/‘J (flm + th" + f. m + f;&UvU f‘U?m) (22)
thmf‘ + th(f"yU', + m) + Hm(ﬁl + J‘TU;Y)
Vil iam + [V + FimU7 + FiasU7US + £5,UZ)

++++ 0
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When we rewrite (17) as
0 = (mag + Vifip) UP + (Rar + ViefL + VifSy)

and differentiate this expression with respect to z,,, and impose the steady state
condition we find

0 = (Tap+Vifin)Uim
+(TapUpy + Tapm + K‘mf:,p + v:f.aﬂm + Kfapqvga)Uf (23)
Fatm + TatUg + Viem Sl + Vie( o + irU2)
+Vimfor + Vilfatm + fary U

We have now reached an important point in the analysis. At this point, we know
the steady state values of the U? and Vi tensors as well as the steady state values
of the derivatives of 7 and f which appear. We see that the steady state values of
Viem and U2 appear linearly in (23,22) and that they are the only unknowns. The
system is not cubic nor quadratic, but linear in these unknowns.

The second important point is that solving this linear system is easier than it
initially appears. An efficient way to compute the steady state values of Vi, and
U2 in (23,22) is immediately apparent. The key observation is that we can solve
the system for each fixed #m pair, allowing us to break down the large system into
a collection of smaller ones. Consider (23) for a fixed ¢m pair. The 7o + Vifis
tensor appears repeatedly for each fm pair. Hence, we can use the (71‘03 + Vi f:;p)_l
tensor {an inversion which is done just once and used for each #m pair) to express U2,
linearly in terms of the known steady state values of various steady state derivatives
and Vjym. After we gather terms, it takes just two matrix multiplications for each fm
pair to determine the coefficients of the affine representation

Ufm = _(Wmﬁ + ‘/‘f;ﬁ)_l X [(Wa@-yUJ-. + Tapm + ‘/imf;ﬂ + ‘/ifc‘;ﬁm + Kfc'xﬁ—yU;rY;)Uf
+Tatm .+ ﬂat‘yUg; + th(f;m + f;‘yU‘gl)
FVim i + Vil g + F2aU)]
—(7ap + Vifig) ' foViem
(24)
For a fixed #ém pair, these representations of the Ugn can then be substituted into the
steady state value of (22) to produce a system of equations linear in the Vjem. Hence,

we see that the second-order terms can be computed in a sequentially linear fashion



SOLVING LARGE SCALE RATIONAL EXPECTATIONS MODELS* 19

once the first-order terms have been computed. If there are n states and m controls,
the total computational burden is the 2n x 2n eigenvalue—eigenvector decomposition,
one m X m inversion, m(m — 1)/2 evaluations of the expression in (24), and solving
a linear system of size n(n — 1)(n — 2)/6.

The final important fact is that we can repeat this to compute the third- and
higher-order terms of U in a similar sequentially linear fashion. We suspect that the
reader will believe us on this point without seeing the algebraic details. We may
ask how big can we go in this fashion. Clearly, the greater the dimension, the fewer
higher—order terms we can add to the expansion. We will investigate feasibility issues
below.

This may appear confusing and surprising since standard intuition says that
higher-order terms are more difficult to compute. The basic explanation is that the
initial linearization step must deal with the multiplicity which arises due to the steady
state lying on both the stable and unstable manifolds, a multiplicity manifested by the
multiple solutions to the Ricatti-like equation which arises. This multiplicity arises
since our methods uses only the first-order conditions, conditions which describe the
unstable as well as the stable manifold as well as many other manifolds. Once the lin-
ear expansion term makes a choice of which manifold to follow, a task accomplished
in {8), we have fixed our attention on the stable manifold and higher-order terms

involve only easy linear problems.

Multisector, Stochastic Growth. We next examine the stochastic general-
ization of (3), which is

max E{f5° e P n(z, u)dt}

dr* = fi(z,u)dt + V% I dz (25)

where dz is a vector of i.i.d. white noises of unit variance, I is the variance-covariance
matrix, assumed here to be a constant to reduce the notational burden, and ¢ is a
parameter expressing the absolute magnitude of the variances. Again, any dynamic,
complete market general equilibrium can be represented by the solution to such a
problem. The solutions to this problem can be used to represent consumption alloca-

tion processes, investment and consumption processes, as well as asset price processes.



SoLVING LARGE SCALE RATIONAL EXPECTATIONS MODELS"® 20

The Bellman equation to (25) is
0= max n(z, u) + Vi f* + Vi — pV (26)
and the first-order condition is again
0=ma+Vifs (27)

Again, we are trying to compute Taylor series approximations to V and U, but
here we take into account not only deviations of x from the deterministic steady state,
z% — z, but also deviations from the deterministic case, as measured by €. Here the

expansions are

Viz,e) = V{z*,0)+ Vi(z*,0){z' — z%°) + V.(z*,0)e (28)
+V,-€(:z:"’,0)(:z:‘ _ :rio)e + %V.-j(a:"",O)(m" _ :1:‘0)(:::" _ :L'jo)

1
+5Vee(z*,0)€" - (29)
Uz, = U%(z*,0)+ (e, 0)(z' ~ ) + U2(z*,0)e
. 1 . :
+UZ(z*,0)(z* — z%)e + §U,-‘}(:c”,0)(z' - 0)( - 2%
1
+5U§(a:”, 0)e? 4 --- (30)
where all of the functions on the RHS are evaluated at (z*%,0). The analysis of
the deterministic problem produced all of the UF, U3, U5, Vi, Vij, and Vj; ete.
Uggv v;e, Wjﬂ U::u Useey
Note additional terms due to the stochastic parameter €. The usual approaches
(such as in Kydland and Prescott, 1982, and Christiano, 1990) take a linear approx-
imation to the deterministic, ¢ = 0, model, which here is U%*(z,¢) = U*(z*,0) +
Ug(z**,0)(z* — =), and then use that linear rule as an appraximate solution to a
stochastic version of the model. This ignores the additional UZ(z**,0)€ term which
1s suggested by this Taylor series approach. Since the objective of all these meth-
ods is to approximate the value of u at state z # z* in a model where ¢ # 0 and
base it on the x = z**and ¢ = 0 situation, that is, the steady state, the true lin-
ear approximation of this value includes the U2(z**,0)¢ term. If the model has the

coefficients. We now want to derive the U2 etc. coefficients.

1€
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certainty-equivalence property then this term is zero; otherwise, this term is part of
the linear approximation of U%(z,€) based at z = z* and € = 0.
Differentiating (26) with respect to € yields

0 =Vift+ Vi + eV — pVs (31)

At the steady state of the deterministic case studied in the previous section, (31)
reduces to
0=Vi—pV | (32)
which gives us our first correction, V., term for variance.
We now move on to the other certainty nonequivalence correction terms. Differ-

entiation of (31) with respect to z; implies

0=Wjef+Wef;+Vief;Uf+Viij+EWije _VPVje (33)
which at the steady state becomes
0= Vie fi + Vie fa U5 + Va5 — Vi (34)

which is & n X n linear system in the V;. unknowns. Differentiating (27) with respect
to € implies

0 = magUP + Vie i + Vi f3,5U° (35)
which, at the deterministic steady state, reduces to another linear system. Contin-
ued differentiation shows that computing higher-order terms also reduces to linear
systems. Again, it is easy to compute the higher-order expansion terms of the Taylor
series.

We have left out several details; in particular, we need to verify that these linear
systems are nonsingular. Also, one needs proofs that the value functions are locally
differentiable to the extent used in these formulas. These questions must be addressed
on a problem-specific basis. If this approach leads to a singular system, then it breaks
down, but that breakdown is checkable. Application of implicit function theorems
should be able to prove if the value function is locally differentiable. What we have
shown is that the standard linearization method frequently used in rational expecta-
tions analysis can be extended to include higher order terms and can be extended to
model deviations from certainty equivalents, and that doing so will often be simple
numerically.
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2.5. Computational Costs of Linearization and Higher-Order Terms. The
computations above have succeeded in showing us the qualitative nature of the prob-
lems which need to be solved. We next ask how large can we go with this approach.
To see how large we can go, we need to know the timing demands of the basic op-
erations in the procedure. These exercises were conducted using Matlab on a 90
Mz Pentium. The analysis of an n-state, m-control optimal control problem can be
broken down into the following steps:

1. Compute steady state: time ~ O{(2n + m)?).
2. Compute Jacobian, A, of dynamic system at steady state: time ~ O((2n)?).
3. Compute Jordan canonical form of A = NDN~1: time ~ O{(2r)?).

4. Construct and solve the linear systems for higher-order and stochastic terms.

We now examine the computational cost of these steps. The computation of the
steady state of an n-state, m-control problem is a nonlinear equation in 2n +m
variables, which is not bad even for n = m = 100, and feasible for much larger
problems. In fact, the steady state problem is often similar to CGE problems, hence
we can use the special methods available for CGE models. Presumably this is not a
difficult problem,; if computing the steady state of the deterministic version is difficult,
then it is unlikely that any method can produce a global solution to the stochastic
version. Similarly, computing the Jacobian of the dynamic system is also presumably
feasible. In general, the time demands of these steps varies greatly across problems,
making it difficult for us to say anything generally. Hence, we will not consider these
steps further, and instead focus on the generic features of this approach.

The critical limitations begin with the the eigenvalue-eigenvector extraction prob-
lem. This is a necessary step for any asymptotically valid linearization method. The
limiting factor in computing the higher-order and stochastic terms is the cost of con-
structing and solving the linear systems which arise. The cost of constructing the
linear systems depends on the specific problem and depends on the number of nonzero
derivatives which arise in the systems (22), (23), and other equations, and the manner

in which one computes those derivatives. We make no attempt to estimate the cost of
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constructing these systems. We can give a reliable estimate of the cost of solving the
resulting linear algebra problems. Table 1 contains the results of some experiments we
ran to determine the cost of these steps. We took several random n X n matrices and
computed eigenvalues and eigenvectors, for n = 100, 200, 300, 400. We next explored
the timing for solving large linear systems of equations, the second operation. Table
1 also indicates the results for n X n matrices, n = 100, 200, 500, 1000. The third pair
of columns in Table 1 display the mean time for several random matrix inversions; we
do not report the variation in any column since there was little variation. The entries
roughly reflect the order n* operation count associated with solving linear systems

and inverting matrices.

To determine the cost of computing various order terms in the Taylor series ex-
pansion, we need to know the number of unknown coefficients of various orders. Table
2 indicates the size of the problem associated with various orders of the Taylor ex-
pansion for various dimensions; more precisely, it indicates the number of coefficients
in the n’th order terms of the Taylor expansion of a dimension d function. Note that
the bottom right entry gives the general formula for the n’th order coefficients in a d

dimensicnal function.

These results give us good indications as to what is generally feasible. Since the
linearization step involves computing a steady state, & Jacobian, and an eigenvalue-
eigenvector decomposition, we see that moderately large systems can be linearized.
The eigenvalue problem would generally be the most diﬂ'icult, and we see here that a
10 state model would lead to a 20-dimensional eigenvector problem, one which takes
under a second on a Pentium!®. The computation of the quadratic terms is also
possible. First we compute the V;; terms using (19), a linear problem with, according
to Table 2, 55 variables, and which can be solved using under .1 second'’. We then
construct a linear problem involving the V;jm, a problem with 220 variables, which
takes roughly a second to solve. These values give us the information necessary to
compute the U, requiring 55 multiplications of 10 x 10 matrices. The third-order
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terms of U need the 715 fourth—order terms of V from its defining linear system,
a problem using about forty seconds, and then do 715 matrix multiplications, a
problem taking less than three seconds according to Table 1. These results also
show that quadratic approximations of control laws of 100-dimensional models is
also feasible. Even cubic approximations could be had with patience and encugh
space. Furthermore, it is clear that the certainty nonequivalence terms we derived
above could also be computed in the same time. Supercomputers could handle higher
orders and/or larger models.

2.8. Global Accuracy. Perturbation methods produce the best possible asymp-
totically valid local approximations to a problem. However, we often want to use
them for nonlocal approximations. We will not go into an extensive exploration of
the global quality of the resulting approximations, a topic which must be investi-
gated for specific problems and specific choices of tastes and technology. However,
we should note that the existing literature is quite positive on the global quality of
the resulting approximations. The Judd and Guu papers have investigated this is-
sue in simple growth models. Typically, that is, for empirically reasonable choices
of tastes and technology, they find that the linear approximations do well for small
but nontrivial neighborhoods of the deterministic steady state and that the quality
of the approximations improve substantially as the higher—order terms are added.
They also find that the certainty nonequivalence terms are important to achieve high
quality approximations for stochastic approximations. More precisely, they substi-
tute the computed Taylor series into the defining equations and evaluate the resulting
error. The resulting error for capital stocks near the steady state is often the order
of machine zero, an accomplishment which few other methods can claim. While their
investigations have been limited to relatively small models, there is no reason to
suspect that the performance of this approach will decay drastically as we move to
larger models. In any case, any user of these methods should use some diagnostics to

estimate the region where the constructed series is a good approximation.

2.7. Summary of Perturbation Methods. The exercises above show that com-
puting Taylor series expansions of dynamic optimization problems is feasible even for
large problems, that is, problems with several states and controls. This includes
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problems with several agents, several sectors, several goods, and several factors. Mi-
nor modifications allow these methods to be applied to models with distortions; see
Judd(forthcoming) for discussions of how to do this. The method described above is a
substantial improvement and generalization of the conventional linearization method
used commonly in public finance and macroeconomics, allowing for certainty non-
equivalence. In general, it can be used to create a linear theory for any observable
quantity including those, such as risk premia, which depends on nonquadratic prop-
erties of tastes and technology.

The main disadvantage of this method is its local nature. We will next examine
methods which are more global in their approach.

3. PROJECTION METHODS
Projection methods take a global approach to problems, making them applicable for
a broader range of problems. However, they are much slower. Before discussing the
large models we solve below, we shall review the basics of projection methods as
applied to (1). That problem reduces to solving the functional equation
0 = o (C(k,0)) - BE {«(C(F(k,0) - C(k,8),8))
xFy(F(k,0) — C(k,8), 8) | 6} (36)
= R(k,6;C)
where R(k,8; C) is the Euler residual of the policy function C(k, §).

The projection approach to solving (36) can be broken down into four components.
First, as noted above, we parameterize the unknown policy function and restrict it
to lie in some finite-dimensional space, as in

C(k,8;a) = ia@,.(k,o)
i=0
where the ¢, comprise a basis for all candidate functions. Second, we define a nu-
merical appraximation of the residual function applied to C, R(k,0; C); we let R
denote the numerical approximation of R. This primarily involves choosing a scheme
for approximating the integral implicit in the conditional expectations. Third, we
construct a collection of projection conditions; each is defined by some test function
¥,(k, 0) relative to a weighting function w(k,#), and ideally equals

/ R(k,8;C(-a)) v,(k,8) w(k,6) dk do
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but is implemented by choosing a finite sample (k;,6;), 5 =1,...,m, and defining
Pia) = 3 R(k;,05 C(0)) ejibe(ks, 05), £=1,...m (37)
=1

Fourth, we choose some method to compute the coefficient vector a which solves the
system FPy(a) = 0.

The various approaches to solving rational expectations models differ in their
choices over these components. Table 3 displays the various choices. The critical fact
is that this menu is “a la carte”: you make one choice from column A, then a choice
from column B, etc., and almost any combination is possible. Table 3 outlines the
basic components of projection methods, and points out the specific choices which
have been and could be used.

The existing literature on computational rational expectations methods have pur-
sued a small fraction of the possible combinations. Table 4 displays the various
combinations which have been used. We left out the projection condition column
since almost all essentially use collocation and Galerkin-style methods.

We will not consider the integration problem here, using product Gaussian quadra-
ture in our examples; substantial improvement is possible by developing truly mul-
tidimensional quadrature and appraximation methods, but we leave that for future
research. In our examples we focus on some of the approximation choices and so-
lution method choices. Judd(1992) contains the results for various methods for the

representative agent model. We will now look at extensions of this model.

4. HETEROGENEOUS TASTES
We next examine how to introduce several agents into the analysis. We examine the
same model as in (1) except we assume that there are n different types of agents, type
i having utility function, w(c), i = 1,2, ..., », but a common discount factor B. In this
case, the equilibrium decisions will depend on the distribution of wealth. Let Ci(k) be
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the consumption of type ¢ agents when the wealth distribution is k = (k;, kg, ..., k,)).
We assume that equity is the only asset which can be held. We do this to focus
on the issues of size of models, whereas introducing an incomplete set of securities
introduces other difficulties. The equilibrium of the resulting model is defined by the
collection of Euler equations

Ri(ksor C) = y (C'(kxa)) -BE {"'(Q‘(Y(kxe) - C(kra):é))
xF(Y (k,0) - C(k,0),8) | 8}, i=1,2,..n

where Y(k,8) € R" is the distribution of income in a period with initial capital
stock distribution k and productivity 8, that is, Y'(k,8) = k:Fi(k.,8) + w(k,8) and
w(k,0) = F(k,0)—k Fi(k ,0), where we use the tensor notation k, = ¥, k;. We focus
on the residual functions
Ri(k,0,C(50) = Ci(k.8;0) = (w) (BE {s(C'(Y (k,6) ~ C(k,6;0),8;a)
xFy ((Y(k,8) - C(k,6;0)).,8) | 6}), i=1,2,..n

where we approximate each consumption function in terms of some unknown coeffi-
cients a, as in é‘(k,ﬂ; a). Due to the presence of the expectation operator, we need
to form the approximate residual function for agent i,

Ri(k,6,C(5a)) = O'(k,6;0) — (w)(BE{w(C(Y(k,0;a) — C(k,0;0),8;0))
xF((Y(k,0) - C(k,0;,0)),6)16}), i=12,.,n

where E represents some numerical appraximation of the enclosed integral. In this
paper we will use only product Gaussian quadrature formulas for integration. The
identifying projections are

Pota) = [ [ [ R 8,0,00;0)) (K, 0) wik, 8) dky - ks

where 1 = 1,...,n, and j = 1, ..., . The computation of P(a) also involves numerical
integration; we will let P(a) denote a numerical integration appraximation of P(a);
we will use product Gaussian quadrature here also; we will leave the integration issues
for future research. The solution chooses a so that P(a) = 0. We next discuss the

leading possibilities for the approximation scheme and the solution method.
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4.1. Representation: Tensor vs. Complete Polynomials. The tensor method
approximates each consumption function as

k 0;a) = Z Z Eah gnt (Pn(kl) ‘Pin(kn) Y(9), i=1,....,n

=0  ja=02=0
where @,(k;) (,(9)) is a degree i—1 (£—1)polynomial in k; () from some orthogonal
family. We then solve for the unknown coefficients aj, _ ;.. This is a method which can
quickly get infeasible since the number of unknown coefficients equals (ne+1){(nx+1)"
for each of the n policy functions. The complete polynomial method uses the form
Ci(k,g; a) = Z a;‘;...j..t @i, (K1) -- -‘Pj,.(kn) ¥, (6)
OSJ'S(;E'J;“?EIIS‘

In this case, the total number of unknown coefficients is a far smaller number; in
fact, the number of unknown coefficients here is the same as in the Taylor series
expansion method, those numbers displayed in Table 3. In Table 3, we displayed the
general formula for the number of coefficients. Note that it grows polynomially, not
exponentially. '

These general methods are two which are likely to be of general value. Other
methods are not likely to be competitive for smooth models. For example, one would

need far more unknown coefficients to use splines'?.

4.2. Solution: Successive Approximation vs. Newton’s Method vs. Time
Iteration. The next critical choice is the method we use to solve the projection
equations for the coefficients a. Newton’s method!® treats the conditions P(a) = 0
as a system of nonlinear equations and solves for a by repeated quadratic approx-
imations. Newton’s method is locally quadratically convergent, but each step uses
O(n®) time because it computes a Jacobian. Some refinements economize on this by
approximating the Jacobian, but the computational cost per step is still a problem.
Successive approximation proceeds more directly, uses less computation per step,
but has only linear convergence if it converges at all. Specifically, successive ap-
proximation takes the policy functions computed in iteration j, I, and applies the
computation
Giati(k,6) = (u)'(BE (w(C(Y(k,0) — Ci(k,6),8))

x Fy(Y (k,8) — C*#(k,8),8) | 6}) (38)
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at a finite number of points (k,8) to produce C"*1(k,6) data sufficient to fix the
unknown coefficients of C*+1, Since C%/*1(k, ) is expressed directly in terms of the
right hand side of (38}, the computation cost is small. Successive approximation can
be motivated by learning arguments in Marcet and Sargent(1989), but was actually
used in the rational expectations literature earlier by Miranda and Helmburger(1988)
who observed that it was an efficient method for computation.

Time iteration also uses the Euler equation to compute a new value for C+1(k, §)
but instead uses the equation

C9(k,0) = () B (w(C(Y (k,0) - B¥3+1(k,8),)

x Fy(Y (k,0) — C¥(k,0),8) | 6}) (39)

is used to generate the necessary data. This is a much more complex way to fix
C**1(k,8) values since, for & fixed (k,8) vector, (39) is a nonlinear equation in
C%it1(k,0), hence involving more effort. Both successive approximation and time
iteration are only linearly convergent. However, the computational demands of each
iteration are only O(n?). Time iteration is more reliable but generally slower than
successive approximation when the latter converges. Time iteration was used by
Gustafson, and in the Wright and Williams work. In this paper, we will not discuss
time iteration since experience!* and theory indicate that it will be much slower than
Newton’s method for small problems and slower than the successive approximation
results below,

4.3. Accuracy. We need ways to ascertain if our solutions are “good.” To mea-
sure the “accuracy” of our approximations we evaluate

E(a) = I

R(.,.,C(;;a)}/C(k,0;0)|

at the solution for a for various norms, and use F as a unit-free measure of the “irra-
tionality” in the approximate solution. For example, if the Lo, norm is 10~2 then the
Euler equation is accurate to within a penny per dollar of expenditure. Another way
of expressing this is to say that the appraximate policy functions C“(k, 8; a) comprise
an e-equilibrium for € = E. This criterion is a strong one, much stronger than the one
used in the Taylor-Uhlig symposium which essentially examined E {R‘(., .- C‘)} where
the expectation is taken over simulated paths for k and @ generated by C. The norm
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we compute is nonzero as long as the Euler equation is nonzero anywhere, and the
Lo, norm is essentially the maximum Euler equation error over the region explored.
We parameterize the production function so that the symmetric deterministic steady
state capital stock is 1 for each agent, and then let k, = .5 and kpy = 1.5, a large
range.

4.4. Results. We now give results for these alternative approaches. In Table
5 we examine 2, 3, 4, and 5 agent models using both tensor product and complete
polynomial bases, and using both Newton’s method and successive approximation.
In all cases we use product Gaussian quadrature to compute all integrals and we use
a simple linear initial guess which goes through the deterministic steady state and
zero. The column under « lists the different values of relative risk aversion for the
different agents; these values cover the range generally considered reasonable. We
converged when coefficients were deemed within 1075 of the solution. The accuracy
is the base 10 logarithm of the Ly definition of E above applied to the worst agents
Euler equation; in fact, the Euler equation errors were all very close for all agents.
The magnitude of the accuracy measure is therefore (roughly speaking) the decimal
digit accuracy. These examples were computed on a 50MHz 486 machine.

The results are along expected lines. First, the total amount of time for Newton’s
method is roughly cubic in the number of unknown coefficients. Newton’s method is
generally more accurate than successive approximation, but for large problems takes
much more time. The other problem is that storing the Jacobian can demand more
space than available in RAM; this happens for the larger models. Note that the
complete polynomial method is generally efficient but not tensor product methods.

The successive approximation method turns out to dominate Newton’s method
for large models. In fact, for the higher-order approximations of the five-agent model,
only successive approximation with complete polynomials is feasible given space re-
quirements. The successive approximation method turns out to be stable (given the
initial condition), a fortunate property of these models. Judd (forthcoming) shows
that successive appraximation applied to the single-agent, deterministic model can be
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unstable when the elasticity of substitution is large, but is stable near the determin-
istic steady state for most reasonable choices of y. This stability property apparently
is robust to multiple agent models.

5. HETEROGENEOUS WEALTH, COMMON TASTES

A simpler case is where all agents have the same intertemporal tastes, but may have
different wealth. Here we can exploit obvious symmetry properties to drastically
reduce the computational burden. We now assume that the n different agents have
the same utility function, 4(c), and a common discount factor 8. Outside of some
special cases, we cannot aggregate preferences to reduce the model to a representative
agent. Let C*(k) be the consumption of type ¢ agents when the wealth distribution is
k = (k1, k2, ..., kn), where k; is the capital owned by a type i agent. The equilibrium
is again defined by the collection of Euler equations

' (C'(k,0)) = BE {uj(C(Y (k,6) — C(k,9),0)) Fy(Y (k,0) — C'(k,6),8) | 6} (40)

fori=1,2,...,n, where Y(k,8) € R" is the distribution of income in a period with
initial capital stock k and productivity 8, that is, Y*(k,8) = k;Fi(k , 8) +w(k,8). The
tensor method approximates each consumption function as

iy ng TNy

C'(k,@; a) = Z e Z Zaf,...i.,jﬂail(kl) gy (ka)i;(6)

11=0 in=07=0

where (k) (¥;(0)) is a degree i—1 (£~1)polynomial in k, () from some orthogonal

L
$1...8n3"

certain symmetry conditions. First, an agent’s behavior depends only on his wealth

family. We then solve for the unknown coefficients a However, we can impose
and the distribution of wealth, and all agents have the same consumption function.
= af . for all £ and £.

Therefore, if i, = %, then the coefficients af i ind

l]...l‘t,..iﬁj
Furthermore, aj, ;, ;i = @} 162)x(ig)-(in); fOF 8ll permutations 7 on {i2,43,...,4n}.

Together, these conditions imply that the policy functions are of the form
C(k, 6; a) = Z aij(lai(kl)‘pi(k% k3.'"t kn)
W
where Uj(ky, k3,..., ks) is a symmetric polynomial in the n — 1 variables ks, k3, -.., kn.
The degree 1, 2, and 3 symmetric polynomials are listed below in Table 6:
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The complete polynomial method uses, for a type 1 agent, the form

C'(k,0;a) = 3 aije pi(k1) Wi(ka, k..., kn) ¥,(0)
0L deg(h;)-+Hdeg(Wy)-+deg()<n
where the consumption functions of the other types are constructed by symmetry
considerations. To identify the unknown coefficients, we use the identifying projec-
tions
0 = f---fu(C'(k,0) - BE {w(C'(Y(k,6) - C(K,6),0))
X F(Y (k,6) — C(k,0),8) | 0} y{ka) s(ka, ks, kn) ,(0) dk dB

for 1, j, and £ such that 0 < deg(g;) + deg(¥;) + deg(i¥,) < n. In this case, the total
number of unknown coefficients is a far smaller number than the unrestricted case, and
there is only one Euler equation which needs to be fitted. The result is'a far smaller
system than we would have if we had followed the general multi-agent approach of
the previous section. To save on space, we do not discuss computational results since
they are exactly what one would expect: imposing the symmetry conditions results

in far faster computations without any loss of accuracy.

6. CONCLUSION

This paper has shown that it is feasible to compute rational expectations models
substantially more complex than the usual representative agent, single good model.
Using only 486- and Pentium-class personal computers, we have shown how to use
perturbation methods to solve dynamic models with up to 50 state variables (that is,
50 agents or 50 capital stocks, or some combination) in only minutes. We have also
demonstrated that more globally oriented methods can produce accurate approxima-
tions of multiple-agent models.

We also have seen that the methods of choice depend on the size of the prob-
lem. Table 7 summarizes our findings. Our experiments indicate that the dominant
approach to large models with Euler equation formulations will be successive approx-
imation solution methods combined with complete polynomial bases, ourtperforming
Newton-based methods and monotone- and contraction-operator methods. The ap-
parent dominance of successive approximation indicates that we need to better un-
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derstand the stability problems of successive approximation and develop approaches
to detect and deal with them.

This work clearly indicates that rational expectations models of moderate size can
be reliably and quickly solved numerically. This paper focussed on the approximation
and solution methods which have been used, and used only the simplest integration
methods. Exploitation of more advanced approximation, solution, and integration
techniques will surely lead to drastic improvements. We also suspect that these
methods are capable of making efficient use of supercomputing environments, making
even larger models feasible. Overall, given the limited use of available hardware and
software in this paper, we believe that numerical solution of large stochastic, dynamic
models is an attainable goal.
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1The term “projection method” is a catchall term in the mathematical literature
which includes “method of weighted residuals,” “finite element,” “boundary element,”
“Galerkin,” “least squares,” “Rayleigh-Ritz,” and other similar methods.

TWright and Williams(1984) and some later writers parameterize a conditional ex-
pectation function, such as the one on the right hand side of (2), which characterizes
the solution. If one is to use polynomial approximation methods, then one should
approximate some continuous function which characterizes equilibrium. Wright and
Williams show that when price and policy functions have kinks, it is better to ap-
proximate the conditional expectations function. Our comments apply equally to
this case since, as is clear from Judd(1992), the key fact is that one is solving for an
unknown smooth function.

3For example, the procedure we outline below is not the procedure discussed by
McGrattan; in general, our Taylor series expansion method will produce different
results.

By “correct,” I refer to the concepts, definitions, methods, and solutions derived
in the mathematical literature on the stable manifold theorem and asymptotics. The
interested reader should consult Bensoussan, Fleming, Fleming and Souganides, and
Coddington and Levinson. Judd(forthcoming) gives an example of where one pro-
posed method goes wrong, and a more extensive discussion of these points.

SMarcet did not indicate what he meant by “perturbation” methods. It is true
that some of the “linear approximation” methods discussed in the macroeconomic
literature are not easily extended to compute higher-order terms. However, it has
always been known in the mathematical literature that higher-order terms can easily
be computed if one used what the mathematical literature calls perturbation methods;
see Bensoussan and the extensive citations there, for example.

%This is also the method used in dynamic analyses of the 1970’s and early 1980’s,
such as Hall(1971), Fischer(1979), Judd(1982), Laitner(1984), and many others. Many
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later writers reject the standard approach in favor of ad hoc procedures, but never
explain why. For example, Cooley and Hansen’s(1989) analysis of monetary equilibria
near the deterministic steady state ignores the simpler procedure outlined in Fischer.

"Taylor series expansions are valid over nontrivial intervals for analytic functions,
but we make no claim that our problems have analytic solutions.

8By a “linear theory of u” we mean an approximation of ¥ which is linear in the
state variables z, and which is asymptotically valid as x converges to the steady state
value of z.

*The discrete-time approach can be similarly analyzed, but at a greater notational
cost,.,
10This estimate is based on log interpolation of the n = 10 and n = 100 cases in
the “Eigenvector” results in Table 1.

1! Again, this is based on log interpolating in the “Linear System” column in Table
1 between the n = 10 and n = 100 cases.

120One possible alternative is to create a problem specific basis, an approach defined
and discussed in Judd(1996) and papers cited there.

13 We actually use an implementation of Powell’s hybrid method. Our experience
is that Powell's method is far faster than the pure Newton method. We have tried
a few other methods on various projection problems but only with disappointing
results.

1 For example, compare the execution times in Coleman’s implementation of time
iteration and the Newton method results reported in Judd(1992). The experience
with time iteration in Bizer and Judd(1989) also was disappointing.
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TABLES
Table 1: Linear Algebra Times

Matrix Inversion:

Eigenvectors: Linear Systems:

n seconds: n  seconds:

10 1 10 0025

100 2.6 100 A7

200 25.5 200 a7

300 104 500 183

400 230 1000 150

Table 2: Taylor Series
dimension 5 10
order 1 2 3 4 5 1
# coeflicients 5 15 35 70 126 10
dimension 20 50
order 1 2 3 4 1
# coefficients 20 210 1540 8855 50
dimension 100 d
order 1 2 3 n
# coefficients 100 5050 171700

n seconds:
10 .05
100 27
200 24
300 9.0
400 244
2 3 4
55 220 715
2
1275
{(n+d)}! (n+d—1))

nid!

=1t



SOLVING LARGE SCALE RATIONAL EXPECTATIONS MODELS®

Table 3: Projection Method Components

Approximation
Piecewise Linear
Crdinary Poly.
Orthogonal Poly.
Splines

Neural Networks
Finite Element

Customized Bases

Authors
Gustafson(1959)
Wright-W.(1982,4)
Miranda-H.(1986)
Bizer-Judd{1989)
Coleman(1990)

den Haan-M.(1990)
Judd(1992)

Projection
Integration Conditions
Newton-Cotes Galerkin
Gaussian Quad. Collocation
Monte Carlo Sum of Squares
quasi-Monte Carlo Subdomain
R" Rules Method of Moments
Derivative Rules
Asymptotics

Table 4: Choices Made in Literature
Integration Sol'n Method

Approximation
piecewise linear
polynomial (of cond. exp.)
polynomials

piecewise linear

finite element

polynomial (of cond. exp.}
orthogonal polynomial

Newt.-Cotes
Newt.-Cotes
Newt.-Cotes
Newt.-Cotes
Gaussian
Sim. M.C.
Gaussian

Solution

Method
Newton
S.A.-time iteration
S.A.-learning
Least. Squares
Global Minimum
Homotopy

S.A.-time it.
S.A.-time it.
S.A.-learning
S.A . -time it.
S.A.-time it.
S.A.-learning
Newton

41
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Table 5: Time and Accuracy Comparisons
number tastes number Newton's Method: Successive Approx:
agents (y) degree basis coef’s time accuracy time accuracy
1 -2 1 t 4 0.05 2.7 :0.22 2.7
c 3 :0.06 -2.6 :0.39 -2.6
2 t 9 :0.22 -3.4 :0.55 3.4
c 6 :0.17 -33 :0.93 -3.3
3 t 16 :0.71 -4.1 :1.15 -4.1
c 10 :0.49 -4.0 :1.92 -4.0
4 t 25 1.7 -4.8 :2.15 -4.9
c 30 :0.99 4.7 :13.29 -4.6
2 -1.1 1 t 16 :0.66 -3.1 :1.49 -3.1
-2 c 6 :0.38 2.7 :1.42 2.7
2 t 54 :7.3 -4.1 :8.02 4.1
c 20 2.5 -34 :6.43 -34
3 t 128 1:22 -5.0 :32.9 -4.5
c 40 11.4 -4.1 :20.8 4.1
4 t 250 12:34 -5.9 1:48 -4.5
c 70 :45.2 -4.8 :55.5 -4.7
Table 5: Time and Accuracy Comparisons (Continued)
number tastes number Newton’s Method: Successive Approx.:
agents (v) degree basis coef’s time accuracy time accuracy
3 -1.1 1 t 48 :6.93 3.4 7.5 -34
-2 c 15 1.48 2.8 4.6 -2.8
-3 2 t 243 707 -4.6 2:11 4.5
c 63 :20.8 -3.6 :364 -3.6
3 t 768 inf inf 19:57 -4.6
c 105 4:05 4.3 3:09 -4.3
4 t 1875 inf inf 1 hr 56 -4.6
c 210 46:58 4.9 12:45 -4.8
4 -3 1 t 128 1:09 -3.5 :33.1 -3.5
-1.1 c 24 :5.10 2.9 :13.3 -29
-2 2 t 972 inf inf 24:57 -4.6
-3 ¢ 84 2:47 -3.7 3:04 -3.7
3 t 4096 inf inf 7 hr 13 -4.6
c 224 52:11 4.4 26:01 -44
5 -5 1 t 320 8:52 -3.6 2:48 -3.6
-1.1 c 35 :17.90 -3.0 :38 -3.0
-2 2 t 3645 inf inf 5 hr 16 -4.6
-3 c 140 12:18 -3.8 10:18 -3.8
-4 3 t 20480 inf inf inf inf
¢ 420 12he 50 4.5 3hr27 -4.5

Note: “inf” means infeasible. “h hrs n : m.I” means “h hours n minutes, m.I seconds”.
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Table 6: Symmetric Polynomials
Degree: Polynomials:

1 T+y+ .. +2z
2 2+ +..+22 (z+y+..+2)
3 P+ 4.+ Dy+z+ o +yz .. (THy+.a+2)°

Table 7: Final Comparisons

Method: Basis: Solution Method: Advantages: Disadvantages:
Taylor Series Complete Eigenvalues, Very fast Local validity
linear equations
Projection Tensor or Newton Quadratic Infeasible for
methods -  complete oconvergence large problems
Tensor or  Successive Easy Iterations possible

complete  approximation nonconvergence



