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1. Introduction

This paper is designed to provide a unified discussion of the use of
statistical mechanics methods! in the study of socioeconomic behavior. The
use of these methods in the social sciences is still in its infancy.
Nevertheless, a growing body of work has shown how statistical mechanics
and related probability techniques may be used to study the evolution and
steady state behavior of heterogeneous populations. Examples of the range
of applications of statistical mechanics methods include social pathologies
such as out of wedlock births and crime {Brock and Durlauf (1996), Glaeser,
Sacerdote, Scheinkman (1996)), asset price behavior (Brock (1993,1995)),
expectation formation (Brock and Hommes (1995)), business cycles (Bak et
al (1993) and Durlauf (1991,1994)), and endogenous preferences (Bell
(1995)). In addition, work such as Blume (1993,1996) has shown how these
methods can provide insight into the structure of abstract game-theoretic
environments.?

These disparate phenomena are linked by the possibility that each is
determined at least partially by direct interactions between economic actors.
Put differently, each of these phenomena is a case where the decisions of
each individual are influenced by the choices of others with whom he
interacts. This interdependence leads to the possibility that polarized
behavior can occur at an aggregate level solely due to the collective
interdependence in decisionmaking. This explanation of polarized group
behavior may be contrasted with explanations which rely on the presence of
highly correlated characteristics among members of a group.

1The statistical mechanics models I employ are also referred to as
interacting particle system or random fields models.

2Alternative approaches to the modelling of complex interaction
environments include Arthur (1987,1989), Ioannides (1990), Kirman (1983),
and Krugman (1996).



Interactions between economic actors are commonplace in economic
models. ~ However, these interactions are typically mediated through
markets. What distinguishes the bulk of the interactions in the recent
inequality literature is the focus on interdependencies which are direct.?
Examples of such direct interactions are role model, social norm and peer
group effects.

At first glance, statistical mechanics methods, which underlie the
theory of condensed matter, would appear to have little to do with
socloeconomic phenomena related to inequality. However, strong
metaphorical similarities exist between the two fields of research. The
canonical question in statistical mechanics concerns the determinants of
magnetization in matter. As a magnetized piece of matter is one in which a
substantial majority of the atoms share a common spin (which can either be
up or down), magnetization would appear to be an extremely unlikely
phenomenon, as it would require the coincidence of many atoms sharing a
common property. However, if the probability that one atom has a
particular spin is a function of the spins of surrounding atoms, the
possibility of collective interdependence renders magnetism understandable.
As techniques for the study of economic phenomena, statistical mechanics
approaches have proven valuable for studying the aggregate behavior of
populations facing interdependent binary choices. In particular, statistical
mechanics methods hold the promise of providing a general framework for
understanding how collective interdependence can lead to the emergence of

interesting and rich aggregate behavior.4

3While markets may not exist to directly mediate these interactions,
this does not imply that economic actors do not alter their behavior in order
to account for them. For example, as discussed in Bénabou (1993,1996a)
and Durlauf (1995,1996a), the presence of within-neighborhood interactions
can play a primary role in determining the composition of neighborhoods.

*See Crutchfield (1993) for a discussion of the meaning of emergent
phenomena.



Of course, any metaphorical similarity between physical and social
models of interdependent behavior is of little interest unless the specific
substantive models underlying each can be shown to have similar structures.
An important goal of this paper is to show how statistical mechanics
structures naturally arise in a number of socioeconomic environments. Also,
it is important to recognize that the potential for interesting aggregate
behavior to emerge from individual decisions has been explored in previous
economic contexts. Two prominent examples include Becker's (1962) work
on aggregate demand with zero-intelligence agents and Schelling’s (1971)
analysis of racial segregation.’ Statistical mechanics approaches should thus
be regarded as complementary to disparate strands of previous work.

The rest of this paper is organized as follows. Section 2 outlines some
general issues in modelling binary choices with interactions. Section 3
analyzes binary choice models with global interaction structures. Section 4
analyzes binary choice models with local interactions. Section 5 provides a
discussion of limitations and outstanding questions which arise in statistical
mechanics models of social behavior. Section 6 contains summary and

conclusions.

2. General considerations

The statistical mechanics-inspired models of socioeconomic
phenomena which have typically been studied focus on environments where
a group of individuals each faces a binary choice. Many individual decisions
which are relevant to understanding inequality are binary in nature.
Standard examples include decisions to have a child out of wedlock, drop

out of school, commit a crime. Not only are these decisions of interest in

5Schelling’s model possesses a structure which is quite similar to
some of the statistical mechanics models which are discussed below.



their own right. but they are well known to affect a broad range of
individual socioeconomic outcomes over large time horizons. While the
importance of these binary decisions in cross-section and intertemporal
inequality is beyond dispute, there is considerable controversy over the role
of interactions and so one purpose of the particular formulation I choose is
to develop interactions based models in a way which makes contact with the
econometric literature on discrete choice. In addition, this approach
provides a method for exploring the interconnections between different
approaches to modelling interactions. Brock (1993) and Blume (1993)
originally recognized the connection between discrete choice and statistical
mechanics models. The current development follows Brock and Durlauf
(1995).

Binary decisions of this type may be formalized as follows. Consider
a population of [ individuals. Individual ¢ chooses w;, whose support is
{ —1,1}. The vector consisting of the choices of all agents in the population
is w and the vector of all decisions other than that of agent i is w _ ;.

Individuals are heterogeneous in three different respects. First,
agents differ with respect to personal attributes which are characterized by
the vector X;. This vector can include elements ranging from family
background to community environment to past behavior.  Second,
individuals possess distinct expectations concerning the behavior of the
population as a whole. Specifically, each agent is associated with a
conditional probability measure uf(w _,). Third, each agent experiences a
pair of unobservable random shocks, €(w;), which influence the payoff of
each of the possible choices. The shock ¢(1) is distinguished from e( — 1), as
certain types of random shocks are only relevant for one of the choices. For
example, €(1) might refer to a shock which reflects mathematical talent and
s0 is only relevant if the person stays in school. Similarly, if e(—1) is an
innovation to the sensitivity of one’s fingertips, a virtue in safecracking,

then the shock only affects the payoff to dropping out and becoming a



criminal.

Taken together, an individual’s choice problem may be specified as

mamwi €{-1, 1}V(w5,2§51#f(,‘3_ i):f(wi)) (1)

At this level of generality, of course, virtually nothing can be said about the
properties either of the individual decisions or about the behavior of the
population as a whole. Two standard restrictions have been made on the
general decision problem (1) to permit explicit analysis.

First, the decision problem is assumed to be additive in three

components,
Viwp, X pui(w _ )e(w)) = wlw, X)) + Slwy Xppilw — ) +elwy)  (2)

In this specification, u(w;X;) represents deterministic private utility,
S(w;, X ;m5(w _ ;) represents deterministic social utility, and €(w;) represents
random private utility. The two private utility components are standard in
the economics of discrete choice. Recent work is distinguished by the
introduction of social utility considerations.

Second, the form of the social utility and the form of the probability
density characterizing random private utility are generally given particular
functional forms. (It will become clear that restricting the form of the
private utility term has no qualitative effect on the properties of the
aggregate population.) The social utility component is formalized by
exploiting the intuition that individuals seek to conform in some way to the
behavior of others in the population. Formally, a specification which

subsumes many specific models may be written as

J;(X5)
—g (wi-

1

Swp Xppilw )= —E; Y w;)? (3)
r:



E;(-) represents the condj i)onal expectation operator associated with agent
i’s beliefs. The term — 2~1 represents the interaction weight which relates

t’s choice to j’s choice and is typically assumed to be nonnegative. Note
that this specification can accommodate any assumptions concerning who
interacts with whom.®

The random wutility terms are assumed to be extreme-value
distributed, so that

Probe( - 1)~ ¢(1) < 2) =1 +exp(1_ X A(X;) > 0. (4)
Anderson, Thisse and dePalma (1992) provide a nice survey of the logistic
density and its relationship to interpretations of the random payoff terms.
The random terms are assumed to be independent across agents.

These assumptions permit the model to be manipulated into a more
transparent form. Observe first that since the support of w is {—1,1}, the

first term in the expression can be replaced with A(X,)w; + k(X;) so long as
the functions A(X;) and k(X;) obey

h(X;) +k(X;) = u(1,X;) (5)
and
— h(X;) +k(X;) = u( - 1,X) (6)

since the linear function coincides with the original function on the support
of the individual choices.

Second, since w? = 1, social utility can be rewritten as

‘ ®0f course, J J(Qg ;) could be further generalized. For example,
bilateral interactions mig&lt depend on the characteristics of both agents,

producing interaction weights of the form J (X X )-
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S(wy Xopmily = > J4 Eyw;)-1). (7)
i#i
which means that social utility is linear in the expected values of the choices
in one’s reference group.
Now, since the probability of an individual’s choice conditional on his

characteristics and expectations is

Prob (w;| X; pi(w _ ) =
Prob(V(w;, X jui(w _ ;) 6(w))) > V(—wpXipi(w _ e(-wy))),  (8)

substituting (5), (6), and (7) into (8) implies

Prob( w; | X #f( ))~
exp(B(Xh(XJw; + Zﬂ( (X3 wiBw;))- (9)

The k(X;) terms do not appear in this expression as they are irrelevant to
the comparison of utilities which drive individual choices.

Finally, observe that each of the individual choices is independent
once one has conditioned on the set of individual-specific expectations.

Hence
PTOb(% I El:--w%[v“i(%— 1)7"'?#6.[(%—.[)) = I;-IPTOb(wi | 2“:1” #:(%—1)) ~

Hezp(B(X)h(X)w; + D BXDT (X)) wiBwy)) (10)

J#d
Equation (10) provides a general form for the joint probability
measure of individual choices. It has the general form of a Gibbs measure,
which is not coincidental. A deep theorem in the statistical mechanics
literature, due to Averintsev (1970) and Spitzer (1971a) is that models of



stochastic interactions of the type which have been outlined will generically
possess probability measures with Gibbs representations.

Different specializations of the functional forms in these expressions
will yield many of the particular statistical mechanics models which have
been studied in the literature. These different functional forms differ
substantively with respect to the nature of the interaction structure which

connects individual decisions.

3. Global interactions

A first class of models has focused on environments in which each
individual interacts symmetrically with all other members of the population.
I focus on the model studied by Brock and Durlauf (1995); a related
example is Aoki (1995).

In this model, each individual is assumed to derive utility from
conforming with the average behavior of his reference group. Operationally,
this occurs for the special case (relative to the general specification of

bilateral interactions)

J(X);)
JAX) =—F+ (11)
so that
S(wip Xpmi(w_ ;) = J(X;) - (wymf—1) (12)

where m{ is individual #’s expectation of the average population choice level.
Under these assumptions, the joint probability measure
characterizing all agents choices obeys



Prob(w | XX ppi(w — )seopi{@w ) ~
I;.Iexp(ﬁ(?g X Jw; + B(X)I(X;) - wmi) (13)

The large sample behavior of the average choice level in this economy
may be analyzed as follows. First, assume that all agents share a common

expectation of the average choice level, 1.e.
mi=mtVi (14)

Second, let dFy denote the limit of the sequence of empirical
probability density functions associated with individual characteristics X
where the limit is taken with respect to the population size I. (I assume
that such a limit exists.) The strong law of large numbers implies, for any
common expected mean, that the sample mean 7 of population choices

converges with a limit equal to
limy oo My = [ tanh(BEXR(X) + BX)T(X)m)dF x (15)

The model is closed by imposing self-consistency in the large
economy limit, so that limit of the sample mean corresponds to the common
expected average choice level. A self-consistent equilibrium mean, m¥, is

any root of

m* = [ tanh(BX)A(X) +B(X)I(X)m*)dF x (16)
When all agents are identical in that they are associated with the

same X, the mean choice level in the economy will correspond to the roots
of

m* = tanh(Bh + fJm*). (17)



In this special case, the model corresponds to the mean field approximation
of the Curie-Weiss model. Brock (1993) is the first instance in which the
Curie-Weiss model was given an economic interpretation; the current
formulation differs in emphasizing the equivalence between the mean field
approximation of the model and the assumption of a noncooperative
interaction environment. The following theorem, taken from Brock and

Durlauf (1995), characterizes the number of self-consistent steady states.
Theorem 1. Existence of multiple average choice levels in equilibrium

t. If BJ>1 and h=0, there exist three roots to eq. (17). One of these

roots 1s positive, one root is zero, and one root is negative.

w. If fJ>1 and h#0, there exists a threshold H, (which depends on 8
and J) such that

a. for | Bh| < H, there exist three roots to eq. (17), one of which has

the same sign as h, and the others possessing the opposite sign.

b. for | Bh| > H, there exists a unique root to eq. (17) with the same

sign as h.

Notice that the model exhibits nonlinear behavior with respect to
both the parameters S and BJ. This makes sense intuitively. Conditional
on a given private utility difference between the choices 1 and — 1, which
equals 2h, there is a level which the conformity effect 8J must reach in
order to produce multiple self-consistent mean choice behavior. Recall that
the random utility shocks are 7id, so that in absence of the conformity

effects, there would be a unique mean whose sign is the same as A.
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Conditional on a conformity effect 8J > 1, as Bh increases in magnitude,
any multiplicity will eventually be eliminated. This occurs because
eventually the private utility differential between the choices will overcome
any tendency for the conformity effect to produce a self-consistent mean
with the opposite sign.

This type of model illustrates the complementary nature of the roles
of economic fundamentals and social norms in explaining the degree of social
pathologies in different neighborhoods. For example, Theorem 1 states that
high degrees of conformity can lead to mean choice levels opposite to that
dictated by private utility. To be concrete, even if economic fundamentals
as embodied in k imply that the average teenager should stay in school,
conformity effects can produce an equilibrium in which most teenagers drop
out.

It is straightforward to show (Brock and Durlauf (1995)) that the
equilibrium in which the sign of k is the same as the sign of the mean choice
level produces higher average utility than the equilibrium in which the signs
are opposite. Hence this model illustrates the potential for collectively
undesirable behavior, such as high out-of-wedlock birth rates, which 1s
individually optimal.  This ranking of average utility provides the
appropriate stochastic generalization to the Pareto rankings of equilibria
studied in Cooper and John (1988).

4. Local Interactions

An alternative approach in the study of interactions has focused on
the aggregate implications of local interactions. Such models assume that
each individual interacts with a strict subset of others in the population.
For individual ¢, this subset is n; and is referred to as the individual’s

neighborhood. Hence, for agent ¢,

11



J{X)=0ifign; (18)
Typically, the index ¢ has been interpreted so that |i— j| measures
distance between individuals. This allows one to construct a neighborhood
for agent ¢ by taking all agents within some fixed distance from :. (The
distance can vary with direction.) This latter assumption is what renders

the interactions local.
t. endogenous preferences

Follmer (1974) introduced statistical mechanics methods to
economics by considering an economy with locally interdependent
preferences. Specifically, he wished to understand under what circumstances
randomness in individual preferences will fail to disappear in the aggregate.
Agents in the model are arrayed on the two-dimensional integer lattice Z2
and possess one of two possible utility functions denoted as U 1 and U _,
respectively; agent 1’s preferences are coded by w; so that the first preference
type corresponds to w;=1 and the second type to w;= —1. The
probability that an agent has one utility function is an increasing function of
the number of neighbors with the same preferences. In particular, Féllmer
assumes that the probability density characterizing the preferences of agents
is of the form of the Ising model of statistical mechanics (see Liggett (1985)
or Spitzer (1971b)), which means that

Prob(w;jw; ¥V j#1i) =
Prob(w;|w; V j such that |i—j| =1} ~exp(J ) wiw ;) (19)
1271 =1

so that the joint probability measure over agent preferences is

12



Prob(w ) ~ exp(J ZI _ z:l 1wiwj) (20)
T li-jl =

As is well known, there exists a critical value J, such that if J < J,,
then the sample mean produced by a realization of this system will converge
to zero (almost surely) when [ is infinite, whereas if J > J,, then the sample
mean from a realization of this economy will converge (when averaged over
larger and larger finite squares each of whose centers is a particular agent on
the lattice) to one of two possible nonzero values. Hence, Féllmer concluded
that for his preference structure, idiosyncratic shocks may have aggregate
consequences.

Féllmer’s model of endogenous preferences does not directly translate
into the discrete choice problem formulated in Section 2. The reason for
this i1s that he places a conditional probability structure on agent
characteristics in order to study interdependence; in fact there is no choice
component to his model.” However, there exist two ways in which one can
modify Féllmer’s model so as both to render its probability structure
interpretable within a discrete choice formulation. In each case, one
reinterprets the w.’s as individual choices (of some commodity, for example)
in which the utility of a particular choice depends on whether one’s
neighbors have made the same choice. Further, the model must be made
explicitly intertemporal. This intertemporal interpretation of preference
interdependence has the feature that it closely preserves the structure of
neoclassical utility theory without losing any of Follmer’s qualitative
insights; see Becker and Stigler (1977) for a defense of this approach to
generalizing neoclassical preferences. For clarity of exposition, I reindex
relevant variables by time where appropriate.

In one possible modification of Fdllmer’s model, one moves to a

"In fact, I am unaware of any way to explicitly formulate a set of
individual decision problems in a noncooperative environment such that
Féllmer’s conditional probability structure emerges as an equilibrium.

13



discrete time setting and assumes that the utility of a particular choice is a
function of whether others in an agent’s neighborhood have made the same
choice the previous period.® To reformulate Féllmer’s model as a discrete

choice problem in this fashion, this means that

J{X; ) =0 (21)
which eliminates any contemporaneous interactions. Second, by assuming
that private utility depends on the past behavior of one’s nearest neighbors
in a way such that the total number of neighbors making a particular choice
at t—1 is all that matters with respect to utility at ¢, the deterministic

private utility weight can be expressed as
h(Xi 1) :hl. Z' Wj ¢ 1- (22)
i-3) =1

This embeds all local interactions in the private utility component. Third,
set ﬁ(-?gi,t) = 3, which may be done without loss of generality. Together,
this implies that

Prob(w; ¢|w; , 1V jsuch that |i—j| =1)~

exp(ﬂ'hZI W Wiy 1) (23)
i—3| =1
and
Prob(wy) ~exp(Bh)y 3, w; w;q_1) (24)
i Ji-j] =1

The role of idiosyncratic preference shocks in aggregate outcomes,

8This way of formulating interdependent preferences is strongly
defended by Becker (1996).
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can be reformulated for this model as follows. Do all initial configurations of
choices wy produce the same limiting behavior for the average choice level
Meo? The answer parallels Follmer’s original case. There exists an h, such
that if A < h., then the mean choice is zero, whereas if h > h., the mean
choice will converge to one of two nonzero values. The probability of
converging to any one of these values will depend on wj,.

While providing qualitatively similar features to the original Féllmer
formulation, the absence of any contemporaneous interactions does create
some differences. In particular, the h, in the dynamic model does not equal
the J, in the static model. This occurs because of the absence of any
contemporaneous interactions. An exact equivalence between the static and
dynamic models (with respect to parameter values and invariant measures)
can be achieved through the following continuous time formulation.
Suppose that agents adjust asynchronously in time. In particular, each
agent is associated with a separate Poisson process such that at each arrival
time for his process, the agent’s choice is such that he takes the choices of
the nearest neighbors as given. As the probability that any two agents
choose at the same time is zero even in the infinite population limit. This
model will generate multiple regimes, with J. = h..°

Féllmer’s model illustrates that it is difficult to provide a
straightforward interpretation of contemporaneous local interactions in
which the interdependence occurs with respect to choices. Alternatively,
once can interpret this discussion as demonstrating the sensitivity of local
interactions models to the assumptions placed on expectations. To see this,
consider a local interaction formulation of social utility which preserves the

Ising interaction structure,

Stop Xitilw_ ) =T, Eifw)). (25)

li-3] =1
9See Liggett (1985) for a formal discussion.
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Unlike the global interactions model, it is not clear how to formulate
individual expectations. At first glance, it might appear that since the
analysis is dealing with nearest neighbors, expectations should exhibit

perfect foresight with probability 1, z.e.
EBiw;) =w;. (26)

However, this assumption will not lead to the conditional probability
structure (10) for individual choices. The reason is simple. Under perfect
foresight, the choice of individual’s z and ;7 will be interdependent whenever
|i— 7| =1, and so each choice will be a function of both ¢;(w;} and ej(wj).
Therefore, the equilibrium probability will not be the product of a set of
densities of 1.i.d. extreme-value innovations. The Gibbs representation of
the equilibrium probability measure will no longer be valid; no
characterization of the equilibrium in this case is known.
An alternative assumption on expectations is that all agents assign
the same expectations to each other
Ei(wj) = E (w;) ¥ 2,5,k (27)
In this case, the model can easily be seen to be observationally equivalent to

the global interactions model that has already been examined, as (25) and
(27) combine to yield

S(wy Xppilw ;) = 4JE(w) (28)

implying that

Prob(w ) ~ exp(4J Zw,—E(w)) (29)

16



which is the same form as (13). This might appear odd, given the explicit
local interaction structure of preferences. In fact, the equivalence is not
surprising. When all expectations are identical, and the sample mean is
required to equal the population mean, then agents globally interact through
the expectations formation process.?

While much remains to be understood about these models, the
import of this discussion is that intertemporal interactions are at the present
time far more tractable than contemporaneous ones in general local

interaction environments.
t1. growth and economic development

A second area where statistical mechanics approaches have been
applied is that of cross-country inequality. Durlauf (1993) constructs a
model based on local technological interactions. A set of infinitely-lived
industries is analyzed, each of which maximizes the discounted value of
profits. Industries are assumed to be the aggregation of a large number of
firms who act identically but noncooperatively. Letting Yi,t denote
industry i’s output at ¢, K it denote industry i’s capital investment at £, and

%, denote information available at ¢, discounted expected profits will equal

[o.0] .
ni,t = E(Z /BHJ( Y.',t+j - Ki,t+j) Iqt)- (30)

J=0

Each industry can produce output using one of two production
techniques. Technique choices are coded so that w; ;=1 if technique 1 is
chosen, —1 if technique 2 is chosen. Capital fully depreciates after one
period of use. Qutput is produced with a one-period lag, so that investment

10Notice that this version of the Ising model is equivalent to the
mean field version of the Curie-Weiss model, indicating how, in

noncooperative environments with common expectation assumptions, very
different interaction structures may be observationally equivalent.
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at t produces output available at ¢+ 1. The production functions at t
depend on the technique choices at t —1. Together, these assumptions may

be represented by a pair of production functions of the form

Yiigr =filK —Fo( pwi  VIEAL)) (31)

if technique 1 is chosen, or

Yive1=F G pmpw; i1 VIEAL ) (32)

if technique 2 is chosen. F is a fixed capital cost which must be paid to
employ technique 1 at t. (i,t and M; ¢ are industry-specific productivity
shocks, and are assumed to be 12.i.d. across industries and time. The term
A, ; refers to the interaction range of an industry. For each industry ¢,
Ak:I = {i — j,...,i + k} so that the spillovers are all taken to be local: past
technique choices influence the relative productivity of current techniques.
The relative positions of industries with respect to the z index is interpreted
as measuring technological similarity.

Finally, the relative productivity of technique 1 at £ is enhanced by
choices of technique 1 at t — 1. If w’ and w" denote two realizations of w, _,
such that w’j > w}-’ Ve Ak,l' then

S G pwi 1= oV TED )~
Fo(Eompw; =WV GED ) 2

fl(K’Ci,pwj,t -1 w'f VjE Ak,l) -
f__ 1(1{,77,1-,:,Wj,t___ 1 = UJSI V ] € Ak,l) (33)

The long run output dynamics of the model will thus depend on the

evolution of technique choices.
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The assumptions outlined are sufficient to show that the technique

choices in the economy will obey the structure
Prob(w; 1 F,_1) = Prob{w; w1V jEA)) (34)
which is similar to the dynamic variant of the Ising mode! discussed above.
Durlauf (1993) examines the stability of the choice of technique 1 by
assuming that
Prob(wi,t=lle,t_1=1 Vied =1 (35)
and studying the conditions under which wo, =1 is the unique invariant
measure of the system. Using the following bounds on the system of
conditional probabilities (34),
Of}}n < Prob(w; y=1]w;,_; = —1for some j € Ak,l) < @?}Iax (36)

the following result is proven.

Theorem 2. Uniqueness versus multiplicity of long run equilibrium as a

function of strength of complementarities

For each index set Ak, » with at least one of k or I nonzero, there exist
numbers ék,l and Qk,l' 0< @k,l < (:)k,l < 1 such that

B. If @gl‘,axs(jk’l, then
i Prob(w; o =1lw_;=-1)<L
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1. Problweo=1|w_;=—-1)=0.

The main result of the model is that when production decisions are
interdependent, then a low level production trap is produced. In terms of
the underlying probability structure, the model (and its associated
properties) is a generalization of the Stavskaya-Shapiro model, described in
Shnirman (1968) and Stavskaya and Pyatetskii-Shapiro (1968).

This model can be rewritten in the canonical discrete choice form as
follows. For each industry i at t, reinterpret u(w;,,-,-) as the expected
discounted profits, which depends on current technique choice.!' Following
eqs. (5) and (6), h(X; ;) measures the relevant individual- and time-specific
deterministic private payoff parameter associated with a technique choice.
Further, assume that the only relevant characteristics is determining the
relative profitability of the two techniques for a given industry are the past

technique choices of technologically similar industries,

h(‘,\X,z, t) = h(wi—k,t-—*l""’wi-f'l,t— 1). (37)

Restrict this function so that it is increasing in all arguments and positive

when all previous technique choices were equal to 1,
h(1,...,1) > 0. (38)
Finally, assume that G(X i ;) has the property that

BXjg)=o0if wi 1= =Wigp1=1 (39)

MRecall that the structure of industries is such that technique choices
do not reflect any consequences for future spillover effects, so that an
industry always chooses a technique to maximize one-period ahead profits.

20



Subject to these restrictions, there will exist a discrete choice specification
which replicates the probabilities in the interacting industries model. This
specification reveals an important feature of the particular specification
studied in Durlauf (1993): a strong nonlinearity in the case where all
influences are positive at t — 1 versus all other cases. This is not surprising
given the unbounded support of the logistic density for finite 8 combined
with the probability 1 assumption on technique choice under the
conditioning in eq. (35). This suggests that the particular case studied in
Durlauf (1993) is knife-edge in terms of parameter values under the general
discrete choice framework. While this does not affect the theoretical
interest of the model, it does suggest that it should be reparameterized if
one is to use 1t in empirical work.

Finally, it is worth noting that when interactions between decisions
are all intertemporal, then the assumption of extreme-valued random utility
increments can be dropped. The equilibrium properties of the dynamic
models in this section can be recomputed under alternative probability
densities such as probit which are popular in the discrete choice work. In
fact, under the mean field analysis of global interactions, alternative
specifications incorporate probit or other densities as well. In both cases,
the large scale properties of models under alternative error distributions are

largely unknown.

5. Stochastic interaction structures

A third area of work has focused on cases where the interaction
environments are themselves stochastic. Three approaches to this have been
taken. The first is to allow for heterogeneity within a group. The second

allows for random group formation. The third treats group membership a
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choice variable.
i. multiple agent types

Glaeser, Sacerdote, and Scheinkman (1996) provide a model of local
interactions and crime which fits cleanly into the general discrete choice
framework. They consider a model in which individuals are arrayed on a
one-dimensional lattice.  Each individual has one of three kinds of
preferences with reference to the decision to commit a crime. The decision
to commit is coded as w;=1. Preference type 1 is such that the agent
always decides to commit a crime. Preference type 2 is such that an agent
will choose to commit a crime only if the agent to his left does as well.
Preference type 3 is such that the agent never commits a crime.
Representing the preferences of agents as U j(""iv""z'- 1) where j denotes the

preference type,

U, (1,1) > Uy (-1,1); U)(1,-1) > Uy (- 1,-1) (40)
Us(1,1) > Ug(~1L,1); Ug(—1,-1) > Uy(1,-1) (41)
Us( ~1,1) > Ug(1,1); Ug( =1, -1) > Us(1,~1) (42)

The distribution of preference types is i.i.d. across agents. The interaction
structure described here is a variant of the so-called voting model in
statistical mechanics; see Liggett (1985) for a detailed description.

From the discrete choice perspective, these preference assumptions
can be thought of as doing the following. Each agent possesses a
neighborhood consisting of the agent to his left, so that

JJ-(X-) =J(X;) if j=1i—1, 0 otherwise (43)

~1
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Further, each agent is associated with a latent variable ¢;, with support
{¢1,¢m,¢h}. The latent variable is the only personal characteristic which
influences individual utility, so that the different preference types can be
thought of as induced by ¢;  These influences work through the

deterministic private and social utility functions according to

h(¢) <0, J(¢H) =0 (44)
($™) =0, J(¢™) >0 (45)
h(¢") >0, J(M) =0. (46)

The joint probability measure for choices in this model is

Prob(w | ¢y,....¢7) ~ I;chp(ﬁh(qé,-)w,- + BJ(¢;) - ww; _ 1) (47)

The unconditional probability measure can be computed once an assumption
is made on the form of dF b When = o0, the model reduces to the
deterministic choice structure of Glaeser, Sacerdote, and Scheinkman.

A nice feature of this model is that by preserving nonoverlapping
neighborhoods, the problems created by the contemporaneous determination
of choices are avoided in the perfect foresight case. Further, notice that if
the interactions are intertemporal and past behavior influences current
behavior (as clearly seems natural in this context), then joint behavior will

follow

Prob(w;) ~ ezp( Z hi, i, ¢ (48)
1
where
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hi g =hwi_ 1 1pwi - 1950 (49)

In this case, the interaction structure is special case of that studied in
Durlauf (1993).

1. Random communication structures

Kirman (1983), Ioannides, (1990) and Durlauf (1996b), have studied
economic environments in which the structure of bilateral interactions has
important aggregate consequences. In their models, random communication
links exist between any pair of agents z and j. Coalitions emerge across any
grouping of agents such that a path of direct bilateral communication links
can be formed between any pair of members in a coalition. As all agents
within a coalition communicate whereas members of different coalitions do
not, this structure can illustrate the role of group membership in phenomena
ranging from fluctuations in the prices of a particular good across trading
regions to the role of the degree of specialization of labor in explaining
business cycles. A rich set of results from random graph theory illustrate
how the distribution of coalition sizes will depend sensitively on the
probability of the bilateral links. In particular, when the bilateral links are
conditionally :.2.d. (in the sense that the probability that any pair of agents
is directly linked is independent of whether any other pair is linked), then as
I=00 (1) if the probability of any link is less than 1/I, then the largest
coalition will be of order logl, (2) if the probability equals ¢/I for ¢> 1,
then the largest coalition will be of order I, (3) if the probability is greater
than clogl/I for ¢>1, then all agents will be members of a common

coalition.

Previous papers employing random graph formulations have been
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interested in the size distribution of coalitions. However, for socioeconomic
environments involving networks of contacts or friends, the approach can
enrich the exogenous interaction structures which are typically assumed.
The discrete choice structure can accommodate random interactions by

assigning a probability measure to J i j's such that

Ji ;€{0,1} (50)
Ji5 =75, (51)
IfJ‘l.,IlJl]lz. - .Jlm,j=l’ then J"le (52)

Any assumptions about the distribution of the bilateral interactions can be
mapped in a straightforward fashion to the J; ; weights subject to these
restrictions.

This particular structure is related to the Mattis model in statistical
mechanics, which is described in Fischer and Hertz (1991). In the Mattis
model, the individual weights are defined by

Ji,j=‘]€i€j (53)

where §; has support {1, —1} and is distributed i.i.d. across i. Using the

transformation

£i€;+1
(i j=—%5 (54)

then the Mattis model will produce a random graph structure and associated

interactions weights with the formula

J. . =J¢

i =I5 (55)
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Notice that in this formulation, the bilateral links between any two agents
will no longer be conditionally independent, as they are for the random
graph structures which have been studied in the economics lterature.
Dependence is a natural assumption if agents if common attributes

communicate with each other.
ist. Self-organizing neighborhood composition

Bénabou (1993,1996a) and Durlauf (1995,1996a) have emphasized the
importance of endogeneity in neighborhood structure. This class of models
embodies interactions of the type which have already been surveyed, with
an essential difference. While agents interact noncooperatively within a
neighborhood, they choose mneighborhoods in recognition of these
interactions.

Evolving neighborhood composition can be accommodated in the
statistical mechanics approach through the J J(Z{ i t)' This can be seen in
two steps. First, suppose that at time t, each agent is assigned to a
neighborhood n, n =1...N. By allowing the interaction weights to depend
on whether one is in a common or different neighborhood as other agents,
one can replicate the interactive structure of the endogenous neighborhoods
models. The endogenous neighborhood model will be complete once a
neighborhood assignment rule is specified. Since such a rule will presumably

depend upon the attributes of all agents in the economy, this implies that
n ¢ = My 00X 1,0 (56)

Now, the specification of this function is far from trivial, as it must embody
factors such as house price or rental differences which endogenously

determine the assignment of individuals. What is relevant to the current
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discussion is that there is no reason in principle that the statistical
mechanics approach cannot accommodate a rich neighborhood structure.

Different specifications of the neighborhood determination will
correspond to different models in the literature. For example, if

J;( X t) =1if n g =1 0 otherwise (57)

5t
then general form (10) will produce a Brock-Durlauf (1995) model
specification for each of the neighborhoods.

While Bénabou and Durlauf have emphasized the role of economic
segregation in neighborhood formation, observe that neighborhoods can be
given alternative definitions. For example, by treating neighborhood
membership as determined by ethnicity, one can use the model to study
differences in ethnic group behavior; more generally, individual interaction
weights can depend on a multiplicity of factors which reflect the different
communities or reference groups which characterize individuals.
Alternatively, one can allow for random interactions in the way discussed
above, where the individual probabilities are determined by individual
attributes. This can capture some of the ideas on social connections
analyzed in Montgomery (1991) and Chwe (1996).

The introduction of heterogeneous and time dependent social utility
weights J ](Qg i ;) in the random interaction and endogenous neighborhood
models links the analysis of socioeconomic interactions with the frontier of
research in statistical mechanics. Specifically, statistical mechanics has in
the last two decades focused on the behavior of systems in which the

configuration of elements obeys the canonical probability structure

Prob(w ) ~ ezxp Z Z.L jiw (58)

when the J,-,]- terms are a function of something other than |:— j|, this
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structure is known as an anisotropic ferromagnet. When J; ;<0 for some ¢
and j, the system is known as a spin glass. See Fischer and Hertz (1991)
and Mézard, Parisi, and Virasoro (1987) for introductions to these models.
Anisotropic ferromagnets and spin glasses can exhibit phase
transitions and complex pattern formation. Unlike the models which have
been used in economics thus far, these phase transitions can apply to
moments of the equilibrium probability measure other than the population
mean. Spin glass formulations can (in particular formulations) exhibit phase
transitions with respect to the variance of individual choices as well as
spatial and intertemporal correlations. These models thus hold the promise
of allowing the study of multiple equilibria and multiple steady states in the
distribution of social and economic activity. In addition, the spin glass
formulation will permit the modelling of interactions within and across
neighborhoods. Suppose that each member of a neighborhood assigns a
weight to conforming with others in the economy which depends upon the
neighborhood in which the individual lives. In this case, there will exist
interdependence across the neighborhood mean choices so that the

equilibrium mean choice level of neighborhood n is
m}, = ] tanh(BR(X )+ B Jn,m*)dF, y n=1.N (59)
= 2

where the weights J,, , have been reindexed to reflect interaction weights
between and within neighborhoods and dF, y refers to the distribution of
individual characteristics within neighborhooc? n. These equations may be
used to analyze the consequences of different neighborhood formation rules
on the population-wide mean choice level, thus providing a way to study the
aggregate effects of integration and segregation, whose importance in
different context has been studied by Bénabou (1996b).

Finally, it is important to recognize that endogenous neighborhood

formation represents a class of statistical mechanics models whose properties
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have yet to be directly explored in the physics or complex systems
literatures. Economic models usually will impose J i j weights which are at
least partially determined by individual choices. In fact, it is clear that new
forms of phase transition are likely to occur in these systems. The reason is
the following. Endogenous neighborhood models typically result in the
stratification of neighborhoods by some observable attribute such as income;
recent examples include Benabou (1993,1996), Durlauf (1996a,1996b) and
Fernandez and Rogerson (1996). These attributes will correlate with the h;
and J j j terms which distinguish individuals. What this means is that when
one considers cross-group inequality, differences can be explained by the
presence of multiple equilibrium invariant measures as well as by different
characteristics of the populations. One example where this endogeneity
matters is the Brock-Durlauf model, where an integrated community mixing
agents with high and low |k;| values can exhibit a unique equilibrium
whereas segregated communities can exhibit multiple equilibria for those

communities in which members are characterized by low |A;| values.

6. Limitations

While the statistical mechanics approach have yielded numerous
insights into phenomena ranging from out of wedlock births to crime, the
literature suffers from a number of limitations at this time.

First, the use of statistical mechanics methods in social science has
exclusively focused on binary choices, which omits an important range of
interaction environments. Bénabou (1993,1996b) and Durlauf (1996a,1996b)
for example, explicitly focus on the level of education investment, which is
naturally thought of as continuous. While there is a small literature on n-
state spin systems for n > 2 (see Yeomans (1992) for examples), it not clear

that the systems which have been studied are rich enough for social science
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applications.

Second, there has been relatively little success at this stage in
developing rational expectations variants of these meodels. Dynamic
approaches such as Durlauf (1991,1993,1994) have imposed linear
technologies precisely in order to avoid the need for firms to forecast future
prices. The difficulty with developing rational expectations versions of these
models is that the interaction structures embody sufficiently complicated
nonconvexities to render the standard fixed point arguments invalid.
Important recent work by Blume (1995) makes progress on this issue.

Third, there has been little formal econometric work on statistical
mechanics models.’> Manski (1993a,b) provides a general framework which
suggests that even the little empirical work which attempted to uncover
interaction effects is flawed by identification problems. Hence, the
interaction effects which underlie the theoretical literature, while plausible,
are unproven. Brock and Durlauf (1996) attempt to address this limitation
by providing a general estimation theory for their global interactions

framework.

7. Conclusion

The goal of this paper has been to provide a unified perspective on
the ways in which economists have employed statistical mechanics to model
socioeconomic interactions. My main claim is that the statistical mechanics
approach is compatible with good microeconomic reasoning, and thus

represents a valuable additional tool for a range of research questions. This

1A recent exception is Topa (1996). This is not to say that
statistical mechanics models have not been used to interpret empirical
findings. For example, Glaeser, Sacerdote, and Scheinkman (1996) show
how their local interactions model can explain wide discrepancies between
crime rates in cities.
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claim has been made on the basis of unifying a number of applications in a
discrete choice framework. This framework encompasses a range of
approaches in the literature, and shares a common form with the logistic
likelihood function. This common form holds the promise that the
theoretical insights which have been generated by the statistical mechanics

approach can be matched by empirical evidence.

31



Bibliography

Anderson, S., A. de Palma, and J.-F. Thisse, (1992), Discrete Choice
Theory of Product Differentiation, Cambridge: MIT Press.

Aoki, M., (1995), “Economic Fluctuations with Interactive Agents:
Dynamic and Stochastic Externalities,” Japanese Economic Review, 46, 148-
165.

Arthur, W. B., (1987), “Urban Systems and Historical Path Dependence,”
in Urban Systems and Infrastructure, R. Herman and J. Ausubel, eds.,
Washington D.C.: National Academy of Sciences/National Academy of
Engineering.

Arthur, W. B., (1989), “Increasing Returns, Competing Technologies and
Lock-In by Historical Small Events: The Dynamics of Allocation Under
Increasing Returns to Scale,” Economic Journal, 99, 116-131.

Averintsev, M., (1970), “On a Method of Describing Discrete Parameter
Fields,” Problemy Peredachi Informatsii, 6, 100-109.

Bak, P., K. Chen, J. Scheinkman, and M. Woodford, (1993), “Aggregate
Fluctuations from Independent Sectoral Shocks: Self-Organized Criticality
in a Model of Production and Inventory Dynamics,” Ricerche Economiche,

47, 3-30.

Becker, G., (1962}, “Irrational Behavior and Economic Theory,” Journal of
Political Economy, 70, 1-13.

Becker, G., (1996), Accounting for Tastes, Cambridge: Harvard University
Press.

Becker, G., and G. Stigler, (1977) “De Gustibus Non Est Disputandum,”

American Economic Review, 67, 76-90.

Bellz A., (1995), “Dynamically Interdependent Preferences in a General
Equilibrium Environment,” mimeo, Department of Economics, Vanderbilt
University.

Bénabou, R., (1993), “Workings of a City: Location, Education, and
Production,” Quarterly Journal of Economics, CVIIIL, 619-652, 1993.

Bénabou, R., (1996a), “Equity and Efficiency in Human Capital

;xévestment: The Local Connection,” Review of Economic Studies, 62, 237-
4.

32



Bénabou, R., (1996b), “Heterogeneity, Stratification, and Growth:
Macroeconomic Implications of Community Structure and School Finance,”
American Economic Review, 86, 584-609.

Blume, L., (1993), “The Statistical Mechanics of Strategic Interaction,”
Games and Economic Behavior, 5, 387-424.

Blume, L., “Population Games,” (1996), mimeo, Department of Economics,
Cornell University.

Brock, W., (1993), “Pathways to Randomness in the Economy: Emergent
Nonlinearity and Chaos in Economics and Finance,” Estudios Economicos,
8, 1, 3-55 and Social Systems Research Institute Reprint #410, Department
of Economics, University of Wisconsin at Madison.

Brock, W., (1995), “Asset Price Behavior in Complex Environments,”
mimeo, University of Wisconsin.

Brock, W. and S. Durlauf, (1995), “Discrete Choice with Social Interactions
I: Theory,” mimeo, University of Wisconsin at Madison.

Brock, W. and S. Durlauf, (1996), “Discrete Choice with Social Interactions
I1: Econometrics,” mimeo in progress, University of Wisconsin at Madison.

Brock, W., and C. Hommes, (1995), “Rational Routes to Randomness,”
mimeo, Department of Economics, University of Wisconsin at Madison.

Chwe, M., (1996), “Structure and Strategy in Collective Action:
Communication and Coordination in Social Networks,” mimeo, Department
of Economics, University of Chicago.

Cooper, R. and A. John, (1988), “Coordinating Coordination Failures in
Keynesian Models,” Quarterly Journal of Economics, 103, 441-463.

Crutchfield, J., (1994), “Is Anything Ever New? Considering Emergence,”
in Cowan, G., D. Pines, and D. Meltzer, eds., (1994), Complexity:
Metaphors, Models, and Reality, Menlo Park: Addison Wesley.

Durlauf, S., (1991), “Multiple Equilibria and Persistence in Aggregate
Fluctuations,” American Economic Review, 81, 70-74.

Durlauf, S., (1993), “Nonergodic Economic Growth,” Review of Economic
Studies, 60, 349-366.

33



Durlauf, S., (1994}, “Path Dependence in Aggregate Output,” Industrial and
Corporate Change, 1, 149-172.

Durlauf, S., (1996a), “A Theory of Persistent Income Inequality,” Journal
of Economic Growth, 1, 75-93.

Durlauf, S., (1996b), “Neighborhood Feedbacks, Endogenous Stratification,
and Income Inequality,” in Dynamic Disequilibrium Modelling: Proceedings
of the Ninth International Symposium on Economic Theory and
Econometrics, W. Barnett, G. Gandolfo, and C. Hillinger, eds., Cambridge
University Press.

Durlauf, S., (1996c), “An Incomplete Markets Model of Business Cycles,”
Computational and Mathematical Organization Theory, forthcoming.

Fernandez, R. and R. Rogerson, (1996), “Income Distribution, Communities
and the Quality of Public Education,” Quarterly Journal of Economics, 111,
135-164.

Fischer, K. and J. Hertz, (1991), Spin Glasses, Cambridge: Cambridge

University Press.

Follmer, H., (1974), “Random Economies with Many Interacting Agents,”
Journal of Mathematical Economics, 1, 51-62.

Glaeser, E., B. Sacerdote and J. Scheinkman, (1996), “Crime and Social
Interactions,” Quarterly Journal of Economics, CXI, 507-548.

Ioannides, Y., (1990), “Trading Uncertainty and Market Structure,”
International Economic Review, 31, 619-638.

Kindermann, R. and J. L. Snell, (1980), Markov Random Fields and their
Applications, Providence: American Mathematical Society.

Kirman, A., (1983), “Communication in Markets: A Suggested Approach,”
Economic Letters, 12, 1-5.

Kollman, K., J. Miller, and S. Page, (1992), “Adaptive Parties in Spatial
Elections,” American Political Science Review, 86, 929-937.

Krugman, P., (1996), The Self-Organizing Economy, Oxford: Basil
Blackwell.

Liggett, T., (1985), Interacting Particle Systems, New York: Springer-
Verlag.

34



Manski, C., (1993), “Identification of Endogenous Social Effects: The
Reflection Problem,” Review of Economic Studies, 60, 531-542.

Manski, C., (1995), “Identification of Anonymous Endogenous Social
Interactions,” mimeo, University of Wisconsin.

Mézard, M., G. Parisi, and M. Virasoro (1987), Spin Glass Theory and
Beyond, Singapore: World Scientific.

Montgomery, J., (1991), “Social Networks and Labor Market Qutcomes:
Towards a Dynamic Analysis,” American Economic Review, 81, 1408-1418.

Schelling, T., (1971), “Dynamic Models of Segregation,” Journal of
Mathematical Sociology, 1, 143-186.

Shnirman, N. G., (1968) “On the Ergodicity of a Markov Chain,” Problems
in Information Theory, 20, 115-124.

Stavskaya, O. N. and 1. 1. Pyatetskii-Shapiro, (1968), “Homogeneous
Networks of Spontaneous Active Elements,” Problems in Information

Theory, 20, 91-106.

Spitzer, F., (1971a), “Markov Random Fields and Gibbs Ensembles,”
American Mathematical Monthly, 78, 142-154,

Spitzer, F., (1971b), Random Fields and Interacting Particle Systems,
Providence: American Mathematical Society (reprinted lecture notes).

Topa, G., (1996), “Social Interactions, Local Spillovers, and
Unemployment,” mimeo, University of Chicago.s

Yeomans, J., (1992), Statistical Mechanics of Phase Transitions, Oxford:
Oxford University Press.

35



