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1. Introduction

Since its introduction in the early 1970's by Cooley and Prescott (1973a, 1973b, 1976),
Rosenberg (1972, 1973), and Sarris (1973), the time-varying parameter (TVP), or "stochastic
coefficients” regression model has been used extensively in empirical work, especially in
forecasting applications; Chow (1984}, Pagan (1980), Nichols and Pagan (1985), Engle and
Watson (1987), Harvey (1989), and Stock and Watson (1996) provide references and discussion of
the model. The appeal of the TVP model is that, by -permitting the coefficients to evolve
stochastically over time, it can be applied to models with parameter instability.

The TVP model considered in this paper is,

(1) ¥, = B/X, +u,

@) L Bi=8ty

3) a(L)u[ =&

o v, = 72, where » =B(L)»,

where (¥, X,) are observed, X[ is an exogenous k-dimensional regressor, B, 1s a kX1 vector of
unobserved time-varying coefficients, 7 is a scalar, a(L) is a scalar lag polynorial, B(L) is a kxk
matrix lag polynomial, and €, and n, are serially and mutually uncorrelated random

disturbances. (Additional technical conditions used for the asymptotic results are given in
section 2.} In empirical work it is common to use a(L)=1 and B(L)=1, (the k Xk identity
matrix). Although our results are developed for more general a(L) and B(L), this leading

special case will be discussed separately below. Define 11 to be 2 times the spectrai density

matrix of v, at frequency zero, that is, Q=B(1)En[niB(l)’. We treat Q as fixed and chosen by



the researcher, although as will be discussed the analysis carries through for cases in which Q is
consistently estimable as long as 7 is identified. An important special case of this model is
when X, =1 and B(L)=1; following Harvey (1985), we refer to this case as the "local level”
unobserved components model.

We consider the problem of estimation of the scale parameter 7. If (as is common) €, and
7, are assumed to be jointly normal and independent of {Xl}, then the parameters of (1)-(4) can
be estimated by maximum likelihood implemented by the Kalman filter. However, the
maxirmum likelihood estimator (MLE) has the undesirable property that if 7 is small, it has point
mass at zero. In the case X, =1, this is related to the so-called pile-up problem that is known to
occur in the first order moving average (MA(1)) model with a unit root, cf. Sargan and
Bhargava (1983) and Shephard and Harvey (1990). In the general TVP model (1)-(4), the pile-
up probability depends on the properties of X, and can be large. The pile-up probability is a
particular problem when 7 is small and thus is readily mistaken for zero. Arguably, small
values of 7 are appropriate for many empirical applications; indeed, if r is large, then the
distribution of the MLE can be approximated by conventional T]/Z -asymptotic normality, but
Monte Carlo evidence suggests that often this approximation is poor in cases of empirical
interest (see Shephard (1993) and Davis and Dunsmuir [1996] for discussions in the case Xt=l.)‘

We therefore focus on the estimation of 7 when it is small. In particular, we consider the

nesting,
%) 7= MNT.
Order of magnitude calculations suggest that this might be an appropriate nesting for certain

empirical problems of interest, such as estimating stochastic variation in the trend component in

the logarithm of U.S. real gross domestic product {(GDP), as is discussed in the context of the



empirical application in section 4. This is also the nesting used to obtain local asymptotic
power functions of tests of 7=0; this suggests that if the researcher is in a region in which tests
might yield ambiguous conclusions about the null hypothesis 7=0, the nesting (5) is appropriate.

The main contribution of this paper is to develop a family of asymptotically median
unbiased estimators of A in the model (1)-(5). These estimators are obtained by inverting the
asymptotic median function of statistics that test the hypothesis A=0. The test statistics are
based on generalized least squares (GLS) residuals which are readily computed under the null.
These median-unbiased estimators, and the supporting asymptotic theory, are presented in
section 2. As part of these calculations, we obtain asymptotic representations for a family of
tests under the local alternative (5); these can be used to compute their local asymptotic power
functions. Construction of asymptotically valid confidence intervals for A is also discussed in
section 2.

In section 3, numerical results are provided for the special case of the univariate local level
model. Properties of the median unbiased estimators are compared to two maximum likelihood
estimators, which alternatively maximize the marginal and the profile (or concentrated)
likelihoods; these MLE's differ in their treatment of the initial value for B, Both MLE's are
biased and have large pile-ups at A=0. When X is small, the median unbiased estimators are
more tightly concentrated around the true value of A than either MLE.

Section 4 presents an application to the estimation of a long-run stochastic trend for U.S.
postwar real per capita GDP. Point estimates from the median unbiased estimators suggest
slowdown in the average trend rate of growth; the largest point estimate suggests a slowdown of
-75% per annum over the postwar period. The MLE's suggest a much smaller decline, with

point estimates ranging from 0 to .17%. Section 5 concludes.



2. Theoretical Results

We assume that a(L) has known finite order p and therefore consider statistics based on
feasible GLS. Specifically, (i) Yt 1s regressed on Xt by OLS, producing residuals Gl; (ii) a
univariate AR(p) is estimated by OLS regression of ﬁt on (1, ﬁt-l"“'ﬁt-p)’ yielding a(L);
and (iii) 9[ ES(L))!t is regressed on XtEE(L)Xt' yielding the GLS estimator § =
(1t T F{= 1)_(9-(:')'1 T r '£= Ixt).’t' residuals e, and covariance matrix V:

O] e, = yrBX,
¢ v=rly

where a2 = (T-k) ' £ T_ & 1fa(L)=1, steps (i) and i) are omitted and the OLS and
GLS regressions of y, on X, are equivalent.

Two test statistics are considered; Nyblom’'s (1989} L statistic (modified to use GLS
residuals) and the sequential GLS Chow F-statistics, FT(s) (0 <s=<1) which test for a break at date
[Ts], where [] denotes the greatest lesser inleger. Let SSRH't2 denote the sum of squared
residuals from the GLS regression of §t onto Xt over observations t; St<t,, and let £(s)=

"% ) [’tri]lxtét' The L and F statistics are,
8 = -1«T -1
8 Lp =T L [ o E7WTYV E4(UT)
9 FpWT) = (SSRy 1 -SSRy 1q) - SSRppg) 4| pV/IKSSR; /(T-K)).

For other tests in versions of this model, see Franzini and Harvey (1983), King and Hillier

(1985), Nabeya and Tanaka (1988), Nyblom (1989), Reinsel and Tam (1996), and Shively (1988).



The Fp statistic is an empirical process and inference is performed using one-dimensional
functionals of Fp. We consider three such functionals: the maximum F statistic (the Quandt
{1960) likelihood ratio statistic), QLR = SUPs € (50,5 1)FT(s); the mean Wald statistic of Hansen
{1992) and Andrews and Ploberger (1994), MWy = { :éFT(r)dr; and the Andrews-Ploberger
(1994) exponential Wald statistic, EW-p = In{ | géexp(‘/zFT(r))dr}, where 0<sj<s; <.

Three assumptions are used to obtain the asymptotic results.
Assumption A. X, is second order stationary, m-dependent, and sup[EX?[< o, i=1,... k.
Assumption B. {X,} is independent of {u,, »}.

Assumption C. (et', qt')’ is a (k+1)x1 vector of i.i.d. errors with three moments; €, and x;

are independent; a(L) has finite order p; and B(L) is one-summable with B(1)#0.

Assumption A requires that X, have bounded moments or, if nonstochastic, that it not
exhibit a trend. The assumptions of m-dependence, second order stationarity and eight
moments are made for convenience in the proofs, énd presumably could be relaxed. However,
the requirement that Xt not be integrated of order 1 (I(1)) or higher is essential for these
results.

Assumption B requires that X, is strictly exogenous. This assumption permits estimation of
(1), under the null 3t=‘30' by GLS.

The assumption that a(L) has finite order p in assumption C is made to simplify estimation
by feasible GLS. The assumption that ¢, and 7, are independent ensures that u, and v, have a
zero cross spectral density matrix. This is a basic identifying assumption of the TVP model, cf.
Harvey (1989). To construct the MLE, it is further assumed that €, and 7, are independent

i.i.d. normal random variables.



The assumption that X, is independent of the errors can be unappealing in a time series
context; in particular, if the error u, is serially uncorrelated, under constant coefficients then
the regression of y, on X, would be valid with regressors that are predetermined but not strictly
exogenous. This would allow feedback from u, to future Xt. As an alternative to assumptions

B and C, we therefore provide an assumption which permits predetermined regressors:

Assumption D. (Et" nt’)' 15 a (k+1) X1 vector of 1.i.d. errors with three moments; € and M
are independent; a(L)=1; B(L) is one-summable with B(1)+#0; i is independent of {Xt’ Xt +1

Xti2"“}‘ and u, is independent of {X,, X, |, X, 2.-.-}-

This permits feedback from u, to X, but not from V¢ to X, and thus rules out X, containing
lagged y, when A#0.

Our main theoretical results are given in the following theorem. Let "= > " denote weak
convergence on D[0,1], let W1 and W2 be independent standard Brownian motions on {0, l]k, and

define I'=E{ faL)X L)X’ |3

Theorem 1. Let'y, obey (1)-(5), and suppose either that assumptions A, B and C hold or
that assumptions A and D hold. Then:

(@ V72 => n), where h(s) = hy(s)-shy (1), where hy(s) = W1(s)+AD § SW,(s)ds,
where D=T""0"%/q_.

® Lp=> | bondeas.

() Fp => F*, where F*(s) = hi(s)'hQ(s)(ks(1-s)).

The proof is given in the appendix.



Limiting representations of the QLR, mean Wald, and exponential Wald statistics are
obtained from part (¢) of theorem | and the continuous mapping theorem. Specifically, QLR
=> SupSQSSSﬂF*(S)' MW => § S(S)IF"'(L')dr, and EWp => In{ § ;l)exp(‘/&F*(r))dr}. Note also
that the limiting representation for LT can be written, 1’1‘ => k| é(r(l-r))F*(r)dr.

When A =0, the process hg is a k-dimensional Brownian bridge and the representations for
the statistics L and Fp reduce to their well known null representations as functionals of a
Brownian bridge (cf. Nabeya and Tanaka {1988], Nyblom [1989], Andrews and Ploberger [1994],
Stock [1994]).

The limiting distribution of Lt and F evidendy depend on A and D. As mentioned in the
introduction, {I is a modeling parameter that is typically chosen by the researcher and thus is
known, or is a consistently estimable function of other parameters. Although I’ and a% are
unknown, they are consistently estimable. Thus D typically can be estimated consistently.
Although it enters the representations in theorem 1 as a nuisance parameter, because it is
consistently estimable, D can be treated as known for purposes of the asymptotic theory. In
this sense, the only parameter which is not known asymptotically in these limiting
representations is .

We will use these limiting representations for three related purposes: computation of local
asympiotic power functions; construction of median unbiased estimators of A; -and construction

of asymptotically valid confidence intervals for A.

Local Asymptotic Power. The representations can be used to compute the distribution of the
tests under the local alternative (5) and thus to compute the local asymptotic power of tests of
the null 7=0. The various test statistics have limiting representations under the local alternative
that are qualitatively similar. This is interesting because the FT-based statistics are typically
motivated by considering the single break model, whife the Nyblom (1989) derived the Ly
statistic as the LMPI test statistic for the seemingly rather different Gaussian TVP model.
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Median Unbiased Estimation of N. Median unbiased estimators of A can be computed from
Ly or from a scalar functional of Fr. Consider for example the scalar functional g(Fp), which
is assumed 1o be continuous. By the continuous mapping theorem, g(FT)= >g(F"), the
distribution of which depends on A and D. Let mD()\) denote the median of g(F*) as a function
of A for a given matrix of nuisance parameters D. Suppose that myy(®) is monotone increasing

1

and continuous in A. Then the inverse function ml‘) exists, and for D known, A can be

estimated by,
©) Rg = mp' @(F ).

Asymptotically, i _ => mf)l(g(F*)). By construction, Pr[Xg <N - Pr[m,')l(g(F*)) <A] =

B
Prig(F*) < mD()\)]=O.5, 50 Xg is asymptotically median unbiased.

In practice D is not known, so the estimator (9) is infeasible. However, as discussed above,
in general D can be consistently estimated for a given choice of 2. If in addition ml')l(O) is
continuous in D (which it is for the functionals discussed in this paper), then (9) can be
computed with D replaced by a consistent estimator D and the same asymptotic distribution
obtains. Note however that this is computationally cumbersome for it requires computing the
inverse median function mf)l(O) for every estimate D under consideration.

The conventional approach to this nuisance paraineter problem is simpler, and entails
choosing Q so that D=Ik, that is, choosing D=o§l’"1 {cf. Nyblom [1989]). In this case, the
limiting distributions of Lt and Fp depend only on A and k under the local alternative. When
X;=1, setting ﬂ=a§1“1 amounts to a normalizing assumption that is made without loss of
generality. For general X, this assumption has a certain appeal, for it insures that the scale of

the innovations to 8 maiches the scale of the GLS transformed regressors X, Whether this



assumption is desirable for general X, is a matter of modeling strategy in a particular empirical
application.

It would be of interest to obtain theoretical results comparing the efficiency of median-
unbiased estimators based on the various functionals of Fy. However, the limiting distributions
are nonstandard and do not appear to have any simple relation to each other. The efficiency

comparisons are therefore undertaken numerically and are reported in the next section.

Confidence Intervals for X. Suppose that D=Ik, in which case the local asymptotic
representations in theorem 1 depend only on X and k. For a given scalar test statistic, its
representation can then be used to compute a family of asymptotic 5% critical values of tests of
)\=)\0 against a two-sided alternative, and these critical values can in turn be used to construct
the set of )\0 which are not rejected. This set constitutes a 95% confidence set for Ag- This
process of inverting the test statistic can be done graphically by the method of confidence belts
or by interpolation of a lookup table. The details parallel those for construction of confidence

intervals for autoregressive roots local to unity, cf. Stock (1991), and are omitied.

3. Numerical Results for the Univariate Local Level Model

In the univariate local level model, Xt=1 and B(L)=1, so thaty, is the sum of an (0}
component and an independent random walk, which under the parameterization (5) has a small
disturbance variance. In this model, Ay, follows a MA process, with largest moving average
root -(I-MT) !+ ofT™!). In this section, we first compare numerically the power of the tests
of section 2, plus some other tests previously proposed in the literature, against the local

alternative. We then turn to an analysis of the properties of median unbiased estimators. All



computations of asymptotic distributions are based on simulation of the limiting representations,

with T=500 and 5,000 Monte Carlo replications.

3.1. Asympiotic Power of Tests

There has been a great deal of work on tests for A=0 in the local levels model and of a unit
moving average root in the related MA(1) model; references include Nybiom and Mikeldinen
(1983), Shively (1988), Tanaka (1990), Saikkonen and Luukonen (1993} (also see the review
article by Stock (1994)). In addition to asymptotic powers based on theorem 1, as a basis for
comparison we report the asymptotic power envelope and the asymptotic power of two point
optimal invariant (POI) tests, the test which is POI against A=7 (denoted POI(7)} and the POI(17)
test (Shively (1988), Saikkonen and Luukkonen (1993)).

Asymptotic powers of various 5% tests are summarized in figure 1. Evidently, for small
values of A all tests effectively lie on the asymptotic power envelope. For more distant
alternatives, the MW and L tests lose power and, to a lesser degree, so do the EW and QLR.
The asymptotic power functions of the EW and QLR tests are essentially indistinguishable,
consistent with findings elsewhere (Andrews, Lee and Ploberger [1996], Stock and Watson

[1996]) that these tests perform similarly.

3.2. Estimators of N

Each of the tests examined in figure | has a power function that depends only on A and has
a median function which is monotone and continuous in . Asymptotically median unbiased
estimators of A\ based on each of these tests can therefore be constructed as described in section
2. In addition, results are reported for two versions of the Gaussian maximum likelihood
estimator that differ in their assumptions concerning the initial value of Bp- The first

estimator, the maximum profile (or concentrated) likelihood estimator (MPLE), treats BO as an
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unknown nuisance parameter which is concentrated out of the likelihood. The second

estimator, the maximum marginal likelihood estimator (MMLE), wreats 8, as a N(8,x) random
variable that is independent of {u[,vt}-{= 1» so that B is integrated out of the likelihood.

When x—+oe, this produces the "diffuse prior” likelihood function (see Shephard and Harvey (1990)
and Shephard (1993)). The MMLE is equivalent, after reparameterization on a restricted
parameter space, to the MA(1) MLE analyzed by Davis and Dunsmuir (1996), and their local-
to-unity asymptotic results apply here.

Pile-up probabilities that A is estimated to be exactly zero are reported in table 1. The mass
of the median unbiased estimators at zero is similar for all estimators. The pile-up probability
for the MPLE remains large as A increases, both in absolute terms (it is above 50% for A <6) and
relative to the median unbiased estimators. As pointed out in Shephard and Harvey (1990), the
pile-up probability for the MMLE is smaller than for MPLE.

Cumuliative distribution functions of the various estimators are plotied in figure 2 for A=5.
As expected, both MLE's are biased and median biased. 77% of the mass of the distribution of
the MPLE is below the true value A=35, and the median of MPLE is 0. MMLE performs better,
with 64 % of its mass below the A=35 and a median bias of approximately -1. The cdf’s of the
median unbiased estimators are fairly similar to each other, but markedly different than the
MLE. One evident cost of unbiasness is their longer right tail relative to the MLEs.

We compare the estimators by computing their asymptotic relative efficiencies (ARE's).
Because the distributions are nonnormal and not proportional, conventional methods of
computing ARE's do not apply. Instead, we measure the ARE (AREi,MMLE) of the ith
estimator ;i relative to the MMLE, ;MMLE‘ as the limit of the ratio of observations
TMMLE/Ti needed for Pr[?—ie )T, = Pr[;MMLEE T(r);TMMLE], where Ti and TygsMLE
denote the number of observations used to compute $‘i and ;MMLE' The ARE's reported

here were for the sets T(r})={x: 0.5r<x< .57}, so Pr[?iET(r);Ti}=Pr[iTi;i'TiT| <0.5T;r]=py(T;7),
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say, and sumilarly for ;MMLE‘ Using (5), set A=Ty g g7: then
AREi,MMLE=mnTMMLE/Ti can be computed by solving, pi()\/AREi,MMLE)szMLEO\)' In
general the ARE depends on A.

Table 2 reports these ARE's for the MPLE and six median unbiased estimators for various
values of \; ali ARE’s are relative to the MMLE. For example, when A=4, the ARE of the
QLR-based median unbiased estimator, relative to the MMLE, is 1.02, which indicates that, in
large samples, the MMLE requires 1.02 times as many observations as the QLR-based estimator
to achieve the same probability of falling in the set 7(r). Evidently, MMLE dominates MPLE
for all values of A shown, and is considerably more efficient for small to moderate values of A.

In contrast, the median unbiased estimators perform slightly better than MMLE for small values
of A (A <4) and comparably for moderate values of A (5<X<8). Their performance deteriorates
however for large values of A (A> 10).

One way to calibrate the magnitude of X is to compare it to the asymptotic powers given in
figure 1. When A=4, the tests have rejection probabilities of approximately 25%; when A=7,
the rejection probabilities are approximately 50%. For A= 14, the power exceeds 80%. Asan
empirical guideline, this suggests that the median unbiased estimators will be roughly as
efficient as the MMLE when the results of stability tests are ambiguous; when there is
substantial instability, the MMLE will be more efficient than the median unbiased estimators.

Table 3 is a lookup table that permits computing median unbiased estimates, given a value
of the test statistic. The normalization used in table 3 is that D=1, and users of this lookup

table must be sure to impose this normalization when using the resulting estimator of \.

-12-



4. Application to Trend Growth of U.S. GDP

The question of whether there has been a decline in the long run U.S. GDP growth rate and
whether there has been a recent increase in this trend growth rate is of considerable practical
and policy interest. In this section we follow Harvey (1985) and use the local levels model to
estimate trend GDP growth in the postwar United States.

The data used are real quarterly values of per capita GDP from 1947:11-1995:1V. The data
from 1959:1-1995:1V are the GDP chain-weighted quantity index, guarterly, seasonally adjusted
(Citibase Series GDPFC). The data from 1947:1-1958:1V are real GDP in 1987 dollars,
seasonally adjusted (Citibase Series GDPQ, in releases prior to 1996) proportionally splicea to
the GDP chain-weighted quantity index in 1959:1. These series were deflated by the civilian
population (Citibase series P16). This GDP series was transformed to (approximate) percentage
growth at an annual rate, GYt, by setting GY,=400Aln(real per capita GDP).

Following Harvey (1985), we consider a model in which the growth rate of real GDP is
allowed to have a small random walk component; this admits the possibility of a persistent
decline in mean GDP growth, consistent with the productivity slowdown. The specific model

considered is,

(10) GY, = 8, + y,
(11 AB, = (MT)r,
(12) a(L)u =€,

where the order p=4 is used for a(L). (The results are insensitive to choice of the AR order or
to substitnting an ARMA(2,3) parameterization for a(L), the latter being consistent with

Harvey's (1985) original unobserved components formulation.)
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It is worth digressing to discuss the implications of this model for orders of integration and
unit roots. If there 1s a random walk component in GYt, (10}-(12) imply that the logarithm of
real per capita GDP is 1(2). This hypothesis is rejected by unit root tests in our data and in the
literature more generally. However, for 7 small, the model implies that AGY[ has a nearly unit
MA root. Because it is well known that unit root tests have high rejection rates in the presence
of large MA roots (Schwert [1989], Pantula [1991]), these rejections are consistent with the
postulated model.

Test statistics, median unbiased estimates, and equal-tailed confidence intervals for A and
the standard deviation of A@ are presented in table 4. None of the tests reject at the 10% level.
Of course this could mean that the tests have insufficient power to detect a small but nonzero
value of A, and indeed the median-unbiased estimates are, with only one exception, nonzero.
The median unbiased estimates of A are all small, ranging from 0 (PCI(17)) to 4.1 (L.). These
correspond to point estimates of 7, the standard deviation of Apy, ranging from 0.0 and 0.13%.
This range of estimates is consistent with intuition. For example, a value of o AB= 1
corresponds 0 a standard deviation of 3 1995:1v-B1947.17 ©f 1.4 percentage points.

Estimates of the model parameters are presented in table 5, panel a, for various values of A:
(1) MPLE and MMLE; (ii) the median-unbiased estimate based on the L (which is the upper
range of the point estimates); (iv) the upper end of the 90% confidence interval for A based on
L (the upper range of 90% confidence intervals). xMPLE=O’ consistent with the large pile-up
probability discussed in section 3. MMLE produces a small but non-zero estimate of r equal to
-04%, which corresponds to a point estimate of X of 1.4. Estimates of parameters of the u;
process change little for this range of value of 7, however estimates of the initial value of the
trend growth rate increase (as do their standard eIrrors) as 7 increases.

Estimates of the trend growth rates Bt|T based on these models over various time spans

(computed using the Kalman smoother) are given in the second panel of table 5, and these
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cumulated trend growth rates, which are estimates of the stochastic trend component of the
logarithm of real per capita GDP, are plotted in figure 3. The estimate of trend GDP based on
MPLE is, of course, a straight line that essentially connects the endpoints of the sample values
of the data. In contrast, the other estimates reflect, to a varying degree, a slowdown in mean
GDP growth over this period. The point estimate based on L implies a slowdown in the annual
trend growth rate of approximately .7% from the first half to the second half of the postwar
period. Finally, none of the methods detect any substantial increase in trend GDP growtﬁ over
the 1990's so far, relative to the 1980’s; indeed all of the point estimates suggest a modest

decrease.

5. Discussion and Conclusions

The median unbiased estimators developed here provide empirical researchers with a device
to circumvent the undesirable pile-up problem and bias of the MLE when coefficient variation
is small. The L and Fp-based test statistics are easily computed using statistics from the GLS
regression of y, on Xt. Given these statistics, the median unbiased estimates can be obtained
by interpolating the entries in a lookup table. Such a lookup table is provided here for the
unuvariate local levels model (table 3), and lookup tables in higher dimensions for the
normalization Dzlk are available from the authors upon request.

In the special case of the univariate local levels model, we examined six asymptotically
median unbiased estimators and two MLEs, and found considerable differences among them.
The MLEs were badly biased, particularly MPLE. When the variance of the coefficients is
small, the median unbiased estimators based on the QLR and POI(17) test statistics had good

ARE’s. Because no asymptotic theory for the POI tests in the TVP model appears to be
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available outside the case X, =1, and because even in the local level model the POl tests are
somewhat cumbersome to compute, these results provide support for using the QLR-based
median unbiased estimators in the general TVP model, at least when the coefficient variance is

small.
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Appendix

Before proving theorem 1, we state and prove two prelimipary lemmas. Let 0[_1 = (Gt-l""'

ﬁthp)', A=(-ay, -ay,..., ~ap)’, and A=(0_1 '0_1)'1(0_] 1) using the usual matrix notation.
Lemma Al. Under assumptions A-C, T 2(A-A) = 0,1,

Proof

The result follows by showing T%(R-R}p-(), where K=(U_1’U_l)'1(U_l'u), where U, | =(@_j.--s
"t—p)" After straightforward algebra, it is seen that this follows if x lT‘P'O and uzTP-O, where p 1 and
HoT are matrices with (i,j) elements, Pleij =T ) ’{= lut-jxi-i(ﬁt—i'a) and Mg =

T ) ,‘r= 1(Bt—i'B)'xt-ix{—j(ﬁt-j‘B)' These limits follow using the Markov and Chebyschev
inequalities and applying assumptions A-C, assuming T%(B-,Bo)= > Op( I). An Op(l) limiting
representation for T%(E-BO) can be obtained using the methods in the proof of theorem 1, but showing

the T rate (which is all that is required here) can be verified directly using Chebyschevs’ inequality.

Lemma A2. Let z, be a scalar random variable with E(Zt|zt—m-l’zt-m-2"")=0 for some m< oo, and let
W be either a scalar nonrandom sequence or a random variable which is independent of z,. Further
suppose that lim_, ., max; stsTElzt|45° and lim-_, , max, <t£-I-E|w[|'4£r. for some c< . Then

T!}§ tgf}ztwt R 0 uniformly in s.

Proof

For >0,

: . 4
Prisupg | T £ Tz | > 6] < 6™Emax) _ (T £ 0_ 2w

- 17 -



LD HE ) HIRTEAY
-4-3 4

< TV max) o cpB(E {12

< 5'4T'3max1 erTz{1=1".211.4‘—“15(211."7"-4)5(%1.“%4)

< 8 max E|z,| ‘max B{w | T 26m+ 13 +31 1 2m+1)7),

where the final inequality follows from noting that E(Zt;°°°zt4) SmaxtEiztl“{i(ltl-tz} <3m)
l(lll-l3} 53m)1(|t1-t4| <3m)+31(| II-I2| sm)1(|t3-t4| < m) because of the m-dependence of the conditional
mean of z;. Because the fourth moments are bounded by assumption, the finai term in the expression

-+{), proving uniform consistency.

Proof of Theorem 1.

Leta(L)= )_‘,[::OaiLi with ag=1, and let X];=a(L)Xt. An implication of assumptions A, B and C, or
alternatively of assumptions A and D, is that
t=1

Aan @t Ml o1y [T =5 oWy, wy,

where W, and W, are independent k-dimensional standard Brownian motions.

We first prove the theorem under assumptions A, B and C.

(2) Letu,=a(L)u, and w, = -z§’= ,ajx;_j gIJ':‘OVt_i, so that y, = BgX, + (L;_1v)'%,

+ w + . Accordingly,
(A2)  Epls) = Epp(s) + MEp(8) +E4p(s) - xp(){E | T (1) + M (1 +E57(D)}
where

- 18 -



frpo=1"%g [T 5
b7 T3’22JTS’XA Li-%
f3T(5) =T Zt[TS]X

=T g EPRE T e T k& r
Limits are obtained for these terms in turn. All iimits are uniform in the index s.

() Write fl-r(s)zAl—r(s)+A2T(s)+£];T(s), where &)=L P _ 03‘ zl;_ 1T""(E.-ai)

@z O . ayp=T EJT“(X XDep and ¢p =1 g TeIxTe

Assumptions A, B and C imply that T 2 t[Ts] X, Ui satisfies the conditions of lemma 2 with

z,=X, 0t and w,=1 so, because p is fixed, AITP*O By an analogous argument, A2TRO Using the
limit in (A1), we have EIT(S) => aeF Wl(s).

(ii) Write £5p(s)= A3T(s)+A4T(s)+£2T(s) where Aqp(s) =T 2 g T Ixtmyp ! 0

41 =1"2¢ Ik % xIxTysi_ v, and re=rr32g Myt 1o

r=1"r
show A3TP—O and A4TRO, consider for notational simplicity the case k=1 (the argument for k> 1 is
L -3/2 t
similar). Note that T™'“max; 4q(,E| Zri=l"r2"°£§3=l"r4l -
SUP5100-34E|W2(51)°"W2(54)’mz < oo, Because X[ has eight moments and is m-dependent, XIZJ" has
four moments, has mean zero, and is m-dependent. Thus A3T satisfies the conditions of lernma 2 with
2 -4 . .
zt=X:r -T'and w, =T ):lt,___ 1Y 5O .331-20. Turning to A4T' AgT = ZP OEEl’vO(a»+ar)
T%(E--a-)A (s}, where A (s)—[T'yz): [Ts] T E v_]. An argument analogous
B 8 AR 4T, 'S = t=1 %t r="r g g
to that used for Ayr sho‘ws that A4T,ijp'0 and, because p is finite, A4TP—0. The limit of 'EET follows

from (A1). Thus £,7(s) = > 0" | SW,(r)dr.

-19 -



a2y [Tslx[ X ) As before, consider the case k=1. Now, T' EBT igj(s) satisfies

t-jVt-i
lemma I with ;=X thjnandw—l mus£3TRO

(iv) Let Agp(s)=T 'L [[Tsl(xtxt X1x1" and agp(9)=T"' T [THxIx1 1), and
let A?T“AST"'AGT:T 2[ Ts](Xt)( -I'). The argument that ASTRO follows the argument that

A3TP-0 with T™" )_", replaced by 1, and the argument that AGTRO follows the argument that A4TP-0

r—l"r

with the same replacement. Thus A7TRO, S0 xT(s) B sIk.

Similar calculations imply that frzpmz 50 \_/RI"laz. By collecting terms and using (A2), it
follows that ¥~ 2£.1(s) = >y (s)-shy (1), where hy(s) = W () +MI™%0%/a ) | SW,(0)dr.

{b) This follows from the continucus mapping theorem.
{c) This follows by straightforward but tedious manipulations using the previous limiting results.

Next turn to the proof under assumptions A and D. Under assumption D, a(L)=§(L)=1 SO
)-(t=X1t'=Xt and E[=yt—B'Xt (where 3 remains the OLS estimator). The proof under these

conditions follows the proof above but is simpler. In particular, (A2) now holds with EIT(s)=T'
"Ly er= T'mz[ XX L7 £376)=0, and ape)=

{T'l ) [TS]XtXt’}[T'] ¥ t_lxrxt '1 . The limit of {1 follows from (Al). Write £5(s) as,
tpo=T" g loxxemr gl o) + 1325 IBIE!_ 0. The first term in this
expression B0 as a consequence of Lemma A2 and the independence of {»;} and {X}, as discussed
above for the term AgT. The limit of the second term follows from (A1) and the continuous mapping
theorem. The argument given above for xT(s)p-sIk applies under these assumptions, and VRU%I‘.
This proves part (a) under assumptions A and D; parts (b) and (c) follow accordingly.

-20-
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Table 1 .
Pile-up probability that A=0 for MLE's
and various median-unbiased estimators

A MPLE MMLE L MW EW QLR POI(7) POX{17)
] 0.96 0.66 0.50 0.50 0.50 0.50 0.50 0.50
1 0.91 0.60 0.47 0.47 0.47 0.46 0.47 0.47
2 0.88 0.57 0.42 0.42 0.42 0.43 0.44 0.43
3 0.81 0.47 0.34 0.34 0.34 0.35 0.35 0.37
4 0.72 0.40 0.28 0.28 0.29 0.29 0.29 0.30
5 0.65 0.35 0.24 0.24 0.24 0.24 0.24 0.26
6 0.56 0.28 0.19 0.15 0.19 0.19 0.18 0.20
? 0.48 0.24 0.15 0.16 0.16 0.16 0.14 0.15
8 0.42 0.1% 0.13 0.13 0.13 0.13 0.12 0.13
9 0.37 0.17 0.11 0.12 0.12 0.12 0.09 0.10
10 Q.30 0.13 0.09 0.0% 0.08 0.09 0.07 0.07
12 0.24 0.09 0.06 ¢.07 0.07 0.06 0.05 0.05
14 0.15 0.06 3.03 0.04 D.04 0.04 0.03 0.02
16 0.13 0.04 0.03 ¢.03 0.03 0.03 0.01 0.02
18 0.09 0.03 Q.02 0.03 0.02 0.02 0.01 0.01
20 0.07 0.02 .01 Q.01 0.01 0.01 0.01 0.01
25 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01
30 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Notes: Enties for MPLE and MMLE for A=0 are from Shepard and Harvey (1390).
Entries for other values of )\ are estimated using 5000 replications with
T=500. To facilitate the computations, the likelihoods were computed on a
discrete grid of 240 equally spaced values of 0sis60 and the MLE's were
computed by a search over this grid.



Table 2
Asymptotic relative efficiencies of median-unbiased estimators
relative to the WMLE

A MPLE L MW EW QLR POI(7) POI(17)
1 0.13 1.00 1.00 1.00 1.00 1.07 1.07
2 0.19 1.09 1.07 1.07 0.96 1.07 1.02
3 0.52 1.08 1.10 1.08 1.04 1.02 0.94
4 0.62 1.08 1.06 1.06 1.02 1.06 1.00
5 Q.65 0.53 0.93 0.398 0.97 1.11 1.14
6 0.71 0.54 0.92 0.99 1.00 1.03 1.08
7 0.76 0.7% 0.79 0.85 0.88 0.96 1.04
8 0.77 0.77 0.77 0.85 0.85 ¢.91 0.98
9 c.75 0.68 0.639 0.75 0.77 Q.86 0.89
10 c.80 0.65 0.65 0.71 0.74 0.80 0.80
12 0.67 0.56 0.56 0.65 0.67 0.67 0.67
14 0.57 0.50 0.49 0.57 0.57 0.57 0.57
16 0.50 0.42 0.42 0.49 0.50 0.50 0.50
1s 0.44 0.38 0.38 0.44 0.44 0.44 0.44
20 C.40 0.33 0.33 0.40 0.40 0.40 0.40
25 0.32 0.28 0.28 0.32 0.32 0.32 0.32
30 0.27 0.22 0.23 0.27 0.27 0.27 0.27

Notes: The reported ARE's are the limiting ratio of the number of
observations necessary for the MLE to achieve the same probability of being in
the region 7+0.57v as the candidate estimator, as a function of A=7/T, as
described in the text. ARE's exceeding 1 indicate greater efficiency than the
MLE. Entries are estimates based on interpolating probabilities from the
values of A shown in column 1. These probabilities were estimated using 5000
replications and T=500 for each value of X.



Table 3
Lookup table for constructing median-unbiased estimator of XA
for various test statistics when xt-l and D=1l

A L MW EW QLR POI7 POI17
0 0.118 0.689 0.426 3.198 2.693 7.757
1 0.127 0.757 0.476 3.416 2.740 7.825
2 0.137 0.806 0.516 3.594 2.957 B.218
3 0.169 1.015 0.661 4.106 3.301 B.713
4 0.205 1.234 0.826 4.848 3.7886 9.473
5 0.266 1.632 1.111 5.689 4.426 10.354
6 0.327 2.018 1.419 6.682 4.961 11.196
7 0.387 2.390 1.762 7.626 5.951 12.650
8 0.4%0 3.081 2.355 9.160 6.682 13.839
9 0.593 3.899 2.510 10.660 7.68% 15.335
10 0.670 4.222 3.413 11.841 8.849 16.920
11 0.768 4.776 3.868 13.098 10.487 19.201
12 0.908 5.767 4.925 15.451 11.598 20.57¢
13 1.036 6.5B6 5.684 17.054 13.007 22.944
14 1.214 7.703 6.670 19,423 14.554 24.962
15 1.360 8.683 7.690 21.682 16.153 27.135%
16 1.471 2.467 8.477 23.342 18.072 30.030
17 1.576 10.101 9.151 24.520 1%.563 32.209
18 1.798 11.639 10.693 28.174 21.662 35.426
19 2.016 13.039 12.024 30.736 24.160 38.465
20 2.127 13.900 13.089 33.312 25.473 40.583
21 2,327 15.214 14.440 316.109 27.687 44.104
22 2.569 16.806 16.191 319.673 30.260 47.239
23 2.785 18.330 17.332 41.955 32.645 50.881
24 2.899 19.020 18.69% 45.056 35.011 54.426
25 3.108 20.562 20.464 48.647 37.481 58.172
26 3.278 21.837 21.667 50.983 392.907 60.842
27 3.652 24.350 23.851 55.514 41.146 §1.561
28 3.91¢ 26.248 25.538 59.278 43.212 66.782
2% 4.015 27.089 26.762 61.311 47.135 71.577

30 4.120 27.758 27.874 §4.016 50.134 76.343

Notes: Entries are the value of the test statistic, for which the value of )
given in the first columm is the median-unbiased eatimator. Care must be
taken to impose the normalization D=1 when using these estimates of X\.
Estimates of 7 are computed as A/T. If the test statistic takes on a value
smaller than that in the first row, the median-unbiased estimate is zero.
Estimates for other values of the test statistics can be obtained by
interpolation. For example, suppose QLR=5.0 is obtained empirically; using
linear interpolation, the median unbiased estimator of A is 4+4(5.0-
4.848)/(5.689-4.848). A more accurate computer-based version of this (which
handles general X_ for the case D=I,) is available from the authors by
request. All entries in the table were estimated using 5000 replications and
T=500.



Postwar U.S. GDP Growth,

Table 4

1947:XII-1995;:1IV:

Tests of 7=0, median-unbiased estimates,

and 90% confidence intervals

Test Statistic (p-value) by {90% CI) 7 {90t c1)

L 0.21 (0.25) 4. (0.00,19.4) 0.13 (0.00,0,62)
MW 1.16 (0.29) 3. (0.00,18.8) 0.11 {0.00,0.60)
EW 0.68 (0.32) 3. {0.00,17.0) 0.10 (0.00,0.5%)
QLR 3.31 (0.48) 0. (0.00,13.3) 0.03 (0.00,0.41)
POI(7) 2.90 {0.45) 1. (0.00,12.9) 0.05 (0.00,0.37)
POI(17) 7.52 {(0.54) 0. (0.00,11.3) 0.00 (0.00,0.36)
Notes: 7 is the estimate of the standard deviation of Aﬁt in {11), that is,

;=T'1iae/a<1;.



Table 5
Estimates of parameters in (10)-({12) for various values of X
and implied subsample trend growth rataes

A. Parameter Estimates

MPLE MMLE -- Egtimates with fixed A --
Payameter
T 0.00 -- 0.04 -- 0.13 -- 0.62 --
7, 3.85 {0.20) 3.86 (0.20) 3.85 (0.20) 3.78 (0.20)
Py 0.33 (0.24) 0.34 (0.07) 0.34 (0.07) 0.32 (0.08)
Py ¢.13 {0.19) 0.13 (0.08) 0.13 (0.08) 0.12 {(0.08)
Py -0.01 (0.10) -0.01 (0.02) -0.01 (0.11) -0.01 (0.08)
Py -0.09 {0.07) -0.08 (0.07) -0.09 (0.08) -0.09 (0,07
B, 1.80 (0.44) - 2.44 (0.90) 2.67 (1.89)
B. Estimated average trend growths

Date GY MPLE MMLE r=.13 T=.62

1947-95 1.80 1.80 1.80 1.80 1.80

1947-70 2.46 1.80 1.89 2.16 2.43

1970-95 1.22 1.80 1.71 1.47 1.23

1950-60 2.75 1.80 1.91 2.25 2.27

1960-70 2.39 1.80 1.84 1.98 2.39

1970-80 1.20 1.80 1.75 1.56 1.07

1980-9%0 1.58 1.80 1.70 1.45 1.50

1990-95 0.62 1.80 1.68 1.36 1.04

Notes: Estimates were computed by maximum likelihood, with numerical standard
errors computed from the inverse of the Hessian. Unrestricted MLE's (standard
errors in parentheses) are reported in the first two columns. (Because of the
nonnormal distribution of the MLE of A, the standard error for 7 is not
reported.) The final two sets of columns report estimates by restricted MLE,
with A fixed to the indicated values. The column labeled GY in panel B is

the sample mean of GY; the other entries are average values of Bt o over the
indicated subsample for the indicated model, where Bt|T are the estimates of
B, obtained from the Kalman smoother.



Power

0.6 07 0.8

Q.5

0.9

0.2 0.3 0.4

0.0 01

Envelope
L

Cm— MW
............. EW

— — QLR
------- POI(7}
- - = POI(17)

Figure 1.
Asymptotic power functions of 5% tests of r=0 against alternatives r=N/T

30



Probability

0.1

0.0

Cumulative asymptotic distributions of the Gaussian MLEs
and six median-unbiased estimators of A when A=3

20

— — QLR
------- PON7) | -
——= POIN7) | |
1 ! L 1 I 1 L L L L L 1 1 | L 1 1
4 6 8 10 12 14 16 18
b
Figure 2.



Logarithm (Relative to Yqg47.)

02 03 0.4 05 086 07 08 089

0.1

0.0

T T T T T T il T T
/; 7
e |
. .
A _
// - h
s Ve ]
7 ) -
J/
/
y ]
X[ 1
rd -
, s
__._...Y -
L7 g ——— MPLE | |
Ve ———— MMLE
— — A=13] A
/ - - — k=62
1 1 L 1 1 1 1 L 1
1950 1955 1960 1965 1970 1975 1980 1985 1990 1985
Date
Figure 3.

U.S. real per capita GDP and estimated trends based on
the four models in table 5.



