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1. INTRODUCTION.

"The end of the story of the search for the perfect spectral estimator seems attainable if one does not
think of spectral estimation as a non-parametric procedure which can be conducted independently of
model identification.”

Enmynanuel Parzen (1983)

Over the past decade. the use of heteroskedasticity and autocorrelation consistent (HAC)
covariance matrices has become relatively common in drawing inferences from parameter estimates,
since in many structural economic or time-series models, the errors may have heteroskedasticity and
temporal dependence of unknown form. The key step in constructing a HAC covariance matrix is to
estimate the spectral density matrix at frequency zero of a vector of residual terms. Thus, analytical
results in the spectral density estimation literature (e.g. Parzen 1957, Priestley 1982) have contributed to
the rapid development of new HAC covariance matrix estimation procedures (c.g., White 1984;

Gallant 1987; Newey and West 1987, 1994; Gallant and White 1988; Andrews 1991; Robinson 1991; and
Andrews and Monahan 1992), but with an almost exclusive focus on non-parametric kernel-based
spectral methods.! However, autorcgressive spectral estimation has been utilized in formulating unit root
test statistics (Fuller 1976). and simulation evidence suggests that this approach vields superior sive
properties compared with unit rool test statistics based on non-parametric spectral estimators (cf.

Schwert 1987). Furthermore, the AR(1) prewhitening technique introduced by Andrews and

Monahan (1992) has enhanced the accuracy of kerncl-based procedurces in a varicty of Monte Carlo
experiments, leading Newey and West (1994) to conclude that “...a priority [in econometric research] is
theoretical and empirical investigation of autoregressive or autoregressive-moving average spectral
estimators.’

In this paper, we propose a paramctric spectral estimation procedure for constructing HAC
covariance matrices. This procedure utilizes standard estimation and model selection techniques in the
time domain to construct a time series model for the vector of residual terms. In particular, we focus on
vector autoregressive (VAR) models, and we use Schwarz’ (1978) Bayesian Information Criterion
(BIC) to sclect the appropriate lag structure. Then a simple transformation is used to obtqmin the spectral
density matrix at frequency zero, and the resulting HAC covariance malrix is posilive serhi-definite by
construction. Henceforth, we will refer to this covariance matrix estimator as the VARHAC estimator.

We establish the consistency and asympilotic mean-squared error (MSE) of the VARHAC
estimator under very general conditions of heteroskedasticity and temporal dependence, similar to the

conditions considered in previous research (e.g., Andrews 1991). For example, the stochastic process

' Eichenbaum, Hansen and Singleton {1987) and West (1994) implemented covariance matrix estimators in which the residual ternns
follow a moving-average (MA) process of known finite order. Andrews (1991) and Andrews and Monahan (1992) briefly considered a
first-order autoregressive spectral estinmator, but the estimator did not correct for heteroskedasticity and did not perforn very well m
simulation experiments. Stock and Watson (1993) utilized AR(2) and AR(3) covariance matrix estimators in Monte Carlo experiments
and in an empirical application. A notable exception is the work of Lee and Phillips (1994), which we will discuss in more detail below.
* The comparative advantage of AR spectral methods in the unit root context has been analyzed recently by Perron and Ng (1994).



need not be finite-order ARMA or even covariance stationary. Under these conditions, we demonstrate
that the VARHAC estimator achieves a higher convergence rate than any estimator in the class of positive
semi-definite kernels. As the sample grows large, we show that the VAR spectral estimator is able to
efficiently capture the unconditional second moments of the data, and that BIC provides an effective
method of lag order selection by evaluating the goodness-of-fit relative 1o the degree of parsimony of the
model.

The VARHAC estimator faces a tradeolf in MSE associated with the choice of VAR lag order,
similar to the MSE tradeoff associated with the choice of bandwidth parameter for kernel-based
estimators. In particular, for a given sample length, using a higher VAR lag order reduces the bias from
neglected high-order autocovariances, but raises the estimation variance as a result of the loss in degrees
of freedom. Our analysis demonstrates that the growth rate of the lag order chosen by BIC asymptotically
approaches arbitrarily closely to the geometric rate that minimizes the asymptotic MSE of the VAR
spectral estimator.

In principle, the truncated (unweighted) kernel estimator (¢f. White 1984) could achieve the
same asymptotic MSE as the VARHAC estimator. In practice, however, no method is currently available
for determining the optimal lag truncation point for the truncated kernel. Furthermore, the truncated
kernel does not ensure a positive scmi-definitc covariance matrix.

Other kerncl-based estimators, including those proposcd by Andrews and Monahan (1992) and
Newey and West (1994), impose a substantial bias to ensure a positive scmi-definite covariance matrix.
These kernels assign weights less than unity to the higher-order autocovariances, with a bandwidth
parameter indicating the rate at which the weights decline to zero. Under fairly general conditions, the
resulting bias dominates all other sources of bias (e.g., the contribution of excluded autocovariances to the
spectral density function), so that the optimal growth rate of the bandwidth parameter can be expressed as
a function of the sample length and of the true spectral density function (cf. Andrews 1991).

Nevertheless, a relatively high bandwidth parameter growth rate must be chosen in order to offset the bias
induced by the kernel. Thus, even at the optimal growth rate of the bandwidth parameter, positive definite
kernel-based estimators exhibit higher asymptotic bias and asymptotic variance compared with the
VARHAC estimator.

To augment these asymplotic resuits, we utilize Monte Carlo simulation experiments to evaluate
the finite-sample performance of the VARHAC estimator in generating accurate confidence intervals for
lincar regression cocflicicnts. In replicating the experiments performed by Andrews and
Monahan (1992), we find that the VARHAC estimator generally malches the performance of the
prewhitened quadratic-spectral (QS-PW) estimator proposed by Andrews and Monahan (1992), even for
data generating processcs (dgps) that do not correspond Lo a finite-order autoregression.  In addition, we
report simulation experiments which illustrate three important limitations of non-parametric HAC
covariance estimation procedures and highlight the advantages of explicitly modeling the temporal

propertics of the error terms.



First, to ensurc that the HAC covariance matrix is positive semi-definite, kernel-based estimation
procedures must utilize a single bandwidth parameter in calculating all elements of the spectral density
matrix. If some componenis of the vector of residuals have a relatively high degree of persistence, while
other components have low persistence, then imposing the same bandwidth parameter for both sets of
variables will tend to generate ill-behaved estimates of the spectral density matrix at frequency zero.> In
contrast, the VARHAC estimator can utilize a different lag order for each component of the residual
vector, because the parametric estimator of the spectral density matrix is positive semi-definite by
construction.

Second, the accuracy of kernel-based spectral estimators is sensitive to the procedure used to
determine the bandwidth parameter, especially in small samples. As noted above, the optimal growth rate
of the bandwidth parameter depends on the true spectral density function and its derivatives at frequency
zero. To obtain a feasible “plug-in” bandwidth parameter, Andrews (1991) proposed the use of a low-
order paramectric model to provide an initial spectral density estimate, which is then utilized to sclect the
bandwidth parameter, which in turn determines the final spectral density estimate. However, our Monte
Carlo simulations indicate that if the low-order parametric model is misspecified, the final spectral density
estimate may have relatively poor properties in finite samples. Allernatively, Newey and West (1994)
proposcd the use ol the truncated kernel to provide an initial estimate of the spectral density to plug into
the bandwidth parameter formula, but their simulations indicale that this procedure can be sensitive to the
initial lag truncation point. Finally, one could use a formal model selection procedure to determine the
appropriate paramctric model, and then use the implied spectral density to calculate the optimal
bandwidth parameter. But in this case, one might simply choose 1o utilize the spectral density associated
with the best parametric model, rather than plugging this estimate into the optimal bandwidth formula to
obtain a kernel-based spectral estimate.

Finally, kernel-based procedures are sensitive 1o the prewhitening method. Andrews and
Monahan (1992) proposed that kernel-based methods be augmented by using an autoregressive filter of
arbitrary order to prewhiten the regression residuals, and considered a first-order autoregressive filter in
their Monte Carlo experiments. The AR(1) filter has also yielded improvements in inference properties in
subscquent simulation experiments, some of which have considered dgps resembling actual economic time
scries {cf. Newey and West 1994; Christiano and Den Haan 1994; Burnside and Eichenbaum 1994). Such
first-order prewhitening is a special case of the VARHAC estimator, in which the AR order is chosen by a
data-dependent model selection criterion. Furthermore, as demonstrated by our Monte Carlo simulations,
it is not difficult to find dgps for which first-order prewhilening is insufficient to remove most of the
persistence from the data, so that AR(1) prewhitened kernel estimators perform very poorly in comparison
with the VARHAC estimator.

Lce and Phillips (1994) analyzed the properties of an ARMA-prewhitened HAC cstimator,

* This limitation has also been noted by Robinson (1995).



in which a kernel-based spectral estimator is applied to the prewhitened residuals. In the case where the
true dgp is a finite-order ARMA process with i.i.d. innovations, Lee and Phillips demonstrated that the
ARMA -prewhitened kernel estimator is asymptotically more efficient than any AR(1)-prewhitened
positive semi-definite kernel estimator, and is nearly as efficient as a parametric ARMA spectral
estimator.’ Qur analysis yields similar results for the VARHAC estimator under much more general
conditions of heteroskedasticity and temporal dependence: as the sample length increases, the data
becomes truly prewhitened by the VARHAC proceduire, so that no additional benefits can be derived from
applying a kernel-based procedure to the prewhitened data. In small samples, of course, the VARHAC
procedure does not always prewhiten the data completely, so that applying a kernel estimator to the
VARHAC residuals may provide improved inferences under certain conditions. In future research, this
possibility should be explored using Monte Carlo simulation experiments.

The remainder of this paper is organized as follows: Scction 2 provides a stcp-by-step
description of the VARHAC covariance matrix estimation procedurc. Section 3 establishes the asyniptotic
properties of the VARHAC procedure. Section 4 reports the results of simulation experiments designed to
compare the performance of the VARHAC and prewhitencd kernel-based HAC covariance matrix

estimators.

2. APARAMETRIC COVARIANCE MATRIX ESTIMATOR.

In many estimation problems, a parameter estimate  ; for a px1 parameter vector s

obtained from the sample analog of a set of moment conditions, such as E ¥{yy) = 0, where F{ys) is an
Nx1 vector of residual terms with & = p. This orthogonality condition is ofien used to motivate the

following cstimator of
2.0 wr =argmin, V3Fr 7y,

where V¢ = Zil V(@) /T is the vector of sample moments of V() and Fr is an NxN (possibly random)
symmetric weighting matrix (cf. Hansen 1982). When N = p, the choice of the weighting matrix Fy does
not matter. Under certain regularity conditions, the parameter ¢, has the following limiting distribution

as the sample length 77 grows arbitrarily large:

22) (D7 57 D27 1V (s -we) > N©Iy)
| 1 o1 ,
(2.3) Sy = ;ZMZMEVS(WO)VI(WO),

* BIC asymptotically selects the true ARMA(p,g) model with finite p and g, so that the parametric procedure converges at rate

(LT ). Since the first-order sample autocorrelation of the ARM A-prewhitened residuals converges to zero, Andrews” (1991) plug-in
method yiclds a bandwidth parameter that grows very slowly, at Q[logT]. Thus, applying the kemmel to the prewhitened residuals causes a
slightly higher asymptotic variance, and reduces the convergence rate to Q[ (7/ logT )" |. However, this convergence rate stil} exceeds
the rate of Q{7 ¥ ] attained by the QS kemel wilh fixed prewhitening order 5 < p.
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where Dy is an Nxp matrix, and Iy is the NxN identity matrix.’ Usually, Dy is estimated by its sample
analog Dr{ ¥ ) and D{ ¢ 7 )-Dr — 0 in probability as T—c. If V() is a stationary process, then
limy_,,, S is the spectral density at frequency zero of the process F{ ). In Section 3.2, we show that

Sr also converges to a well-defined limit if I/,(yg) is not weakly stationary but satisfies certain moment

and temporal dependence conditions.
In this paper, we construct the spectral estimator S‘T (¥ 7 ), using a vector autoregressive
representation (VAR) of V(5 ), and cither Akaike’s (1973) information criterion (AIC) or

Schwarz’ (1978) Bayesian information criterion (BIC) to select the lag order for each equation in the
VAR representation. One main advantage of VAR representations is computational speed, which is
important for Monte Carlo studies using vector processes. We will refer to the parametric estimator based

on the VAR representation and the BIC model selection criterion as the VARHAC estimator.

Step 1. Lag order sclection for each VAR equation, For the A element V,, of the vector Fly )
1 nt U4 T

(n=1, --- N)and for cach lag order k=1, --- , K, the following model is estimated by ordinary least

squares;

N K A N =
2.5) V = 2 2 G @ Vi + Eulx)  for 1=K+1--T.

For lag order 0, we set &,,(0) =V, . Bclow we will discuss the maximum lag order, K , that one wants to

consider. Equation (2.6) represents the regression of each component of V,.( !f/ r)on its own lags and the

lags of the other components. Then the value of the BIC or AIC criterion is calculated for each lag order

k=0, K.

o e (K (k) ' r
(2.6) BIC(x:n) = 1og(dct 2ok {(, nT "“g”]_’”\.
\

T
{
T

= An K é\” i ]
Q2.1 AlC(x:n) = log{dcl[zhhlei[(,) !(U] + 2’;V

For cach element of (¢ ) the optimal lag order x, is chosen as the value of x that minimizes BIC(x3n)

{or AIC(x;m)).

* When N > p, the asymptotic covariance matrix can be expressed as the limit of (D 57 D1 D5 FrSpFrDr(D T FrDp ™.



Note that to minimize the computational requirements of the Monte Carlo simulation
experiments, we only consider specifications in which all clements of ¥, ( i ; ) enter with the same
number of lags in the regression equation for I;'", , S0 that the model selection procedure involves
estimating a total of N (K +1) equations. Allowing a different lag order for each variable in each
equation would require a total of N [(N (K + 1))!]equations to be estimated, which is comp;ltationally

feasible if ¥ and K are fairly small. On the other hand, one could further restrict the set of admissible
VAR models by using a system criterion to select the same lag order for all elements of V; . Section 3
demonstrates that the VARHAC estimator achieves a faster convergence rate than kernel-based

estimators, even when a system criterion is used to determine the lag order. However, the simulation
experiments reported in Section 4.3 indicate that allowing the lag order to differ across equations can

yicld substantial benefits in finite samples.

Step 2. Estimation of innovation covariance matrix. Using the results of step 1, the restricted VAR can

be expressed as:

2.8) Vg, = YAV, (i) + &,

where ¢, isan A'x! vector with typical element e, (x,). The (n,) clement of flk is equal to zero if

k> K, and it is cqual to &, (x,) il k < &,. The innovation covariance matrix £, is estimated as follows:
ST 6
& K 14
(2.9) Ly = Skl o
Alternatively, seemingly unrelated regression (SUR) methods could be used to obtain joint estimates of the

restricted VAR parameters and the innovation covariance matrix, which would yicld more efficient

parameter estimates if the innovation covariance matrix contains significant off-diagonal elements.®

Step 3: Estimation of HAC covariance matrix. Using the results of step 1 and 2, the spectral density

matrix at frequency zero is estimated with i

_ -1 — -1
4o £ 5 2 K -,

(2.10) S0 = -2 Al g n-x 4

When N = p , the VARHAC covariance matrix estimator is defined by’

@.11) ) = [Bren] Sien[Bran]

* Efficiency gains can also be achieved in small samples by reestimating the equations using observations before K, whenever possible.
" Using the formula in footnate 6, the estimator can easily be changed for the general case in which N 2 p.



3. ASYMPTOTIC THEORY.

In this section, we establish the consistency and convergence rate of the VAR spectral estimator
under general conditions of heteroskedasticity and temporal dependence. (All proofs are given in the
appendix.) Section 3.1 briefly reviews the existing literature related 10 AR spectral estimation. Section
3.2 establishes the conditions under which the true autocovariance structure of the data can be represented
by an infinite-order VAR. Section 3.3 evaluates the convergence rate of the VAR estimator of the spectral
density of observed data. Finally, Section 3.4 extends these results to the VARHAC procedure, which is

applied to estimated regression residuals,

3.1 Review of Previous Literature,

The existing literature has extensively analyzed the consistency of the autoregressive spectral
estimator for weakly stationary data, but has not considered its properties under more general mixing
conditions or in the case of eslimated residuals. In particular, Akaike (1969) proved the consistency of the
AR spectral estimator when the true dgp is an AR process of known finite order and the innovations are
i.i.d. with finite fourth moments. Berk (1974) extended this consistency result to the case where the data
arc generaied by an autoregressive process of unknown and possibly infinite order, by allowing the lag
order K 10 increase with the sample size at the rate {7}, Berk also showed that the AR spectral
estimator has variance O[K /7] if the lag order grows at a sufficiently rapid rate. Finally, Ahn, Chen. and
Hannan (1982) and Hannan and Kavalicris (1984) demonstrated the strong consistency of the VAR
spectral estimator, allowing for a martingale-difference sequence of innovations with unconditional
homoskedasticity, and permitting the lag order to increasc at nearly o[ 7 '**}. However, since the work of
Berk (1974), no further results have been available on the convergence rate of the VAR spectral estimator
under more general conditions.

Nevertheless, the more general literature on autoregressive models is both vast and invaluable
in analyzing the asymptotic properties of the VAR spectral estimator. For example, Grenander and
Szegt (1958) and Baxter (1962) evaluated the mean-squared prediction error of finite-order AR
approximations to an infinite-order lincar process, extending the seminal work of Wold (1938),

Wiener (1949), and Kolmogorov (1941).  Shibata (1976,1980, 1981) analyzed the asymptolic properties
of alternative modcl sclection criteria in fitting linear processes with i.i.d. innovations, and demonstrated
the asymptotic elliciency of AIC in minimizing the mean-squared error of the integrated spectrum for
infinite-order processes. Lewis and Reinscl (1985) extended several of Berk’s (1974) results to the case of
VARs with i.i.d. innovations. using the same upper and lower bounds on the growth rate of the lag order;
Liitkepohl (1992) provides a uscful overview of these and other refated results. Hannan ct al. (1984, 1986,
1987, 1988) analyzcd the algebraic and topological structure of lincar systems, and developed asymptotic
results for general linear processes with martingale-difference innovations and unconditional
homoskedasticity. Finally. Guo, Huang. and Hannan (1990) extended these results on VAR

approximation to allow for marlingale-difference innovations with unconditional heteroskedasticity.



3.2 VAR(0) Representation of Autocovariance Structure.

Before analyzing the propertics of AR approximation, it is important to establish the conditions
under which the true autocovariance structure of a stochastic process can be represented by an infinite-
order VAR. Thesc condilions are well-understood for weakly stationary processes: if a time scries is
linearly non-deterministic, then the process has an MA(0) representation with white-noise

r oy

(homoscedastic and orthogonal) innovations; if no lincar combination of the process {9} .. has zero

variance, then the process also has an AR(w) representation. In the abscnce of weak stationarity, the
stochastic process itself does not have an MA(sc) or AR(ec) representation with white-noise innovations.
Nevertheless, under the conditions concerning temporal dependence and existence of moments that have
been utilized in previous studies of HAC estimation (e.g., White 1984; Andrcws 1991; Hansen 1992), we

show that the limiting population autocovariances have an MA(e0) representation. If we assume further

that no linear combination of the process §, }2 _., has zero variance (a condition typically used to verify

the presence of strong mixing), then the limiting autocovariances also have an AR(w0) representation.
Condition A indicates the relevant conditions in the weakly slationary case. Condition A*

relaxes these conditions to allow for more gencral heteroskedasticily and temporal dependence:

Condition A: {I7,}°_ is a mean-zero, covariance-stationary, sequence of random N-vectors with

. . o ~frrop-
absolutely summable aulocovariances: 1.c. ZJ_U Iz(l' il ’w)‘ < Ao
- om0

Condition A*: {V,}¥ _. is a mecan-zero sequence of random N-vectors, satisfying the following

conditions:
(@) supiz) E(V, V) < too,
by T =limy_, % ZL E(¥,}",) is positive definite, and

<400,

=il

(© Zi] SUupP;z) E(VtV'Hj)

Henceforth we will refer to Condition A/A* when cither Condition A or Condition A* is
sufMicicnt for the purpase at hand. In these conditions, and throughout the paper. we utilize the notation
| x|, = sup;|x;j]to represent the supremum norm of a vector x. For an LxA{f matrix 4, we utilize the

. M
matrix norm | 4 | = supi-1_ Zj:!

Ayl (cf. Hannan and Deistler 1988, p.266). Condition A* (a)
controls the variance of the observations; Condition A* (b) rules out sequences in which an infinite
number of observations have zcro variance; and Condition A* (c) controls the degree of dependence
across obscrvations. It should be noted that Condition A implies Condition A*.

Condition A* is sufficient to ensure that {¥, } meets Grenander’s (1934) conditions for
asymptotic stationarity (cf. Hannan 1970, p.77). First. Condition A* (b) cnsurcs the “persistcnce of

excitation,” i.e_, the process { V; } has positive variance infinitely often, so that the sum of individual



variances diverges to infinity. Second, Conditions A* (a) and A* {b) cnsure asymplotic negligibility; i.e.,
as the sample length 7 grows arbitrarily large, the variance of each observation makes a negligible
contribution (o the sum of the variances. Third, Conditions A* (a) and A* (c) ensure that the average jth-
order autocovariance converges to a limiting value for each integer j, and Condition A* (b) ensures that
the limiting autocovariances are not affected by the exclusion of a finite number of observations.

In particular, for a given sample of length 7, the average jth-order autocovariance matrix Tz ())

is defined as follows for | f | < T

L
T-j

Iy () t:j E(V,V',ﬂ) for j20, and

G.D

. 1 T i .
r()) T——I;i 1o E(I’tl” Hj) for j <0.

It is also useful 1o define the sequence Gy of Tocplitz matrices, where Lthe average autocovariance matrix
I’z (j —#) comprises the (i j)th NxN block of Gpy , for i, j=1, --- , M. The corresponding AMNxMN
matrices Gy, and the infinite-dimensional Hankel matrix ., are cach composed of the limiting
autocovariance matrices. Thus, I'(j —i) comprises the (7 , j}th block of G, for i, j=1, --- , M; and the
(i,)th block of G, for iyj=1,2, --- . Finally, let —T'(j) comprise the j-th ¥V block of the A/A =N matrix
gy for j=1, .-« M;and the j-th <N block of the matrix g, for /=12,

Now for a given samplc of length 7, and a given lag truncation point /1, we define the truncated

spectral density function, fr, (®), as follows:

1
3.2) frnl@w) = EZL_;,FTU)CXP(‘-WJ') for w €[-z.7].

The limiting spectral density function, f{w), is defined in terms of the limiting aulocovariances:

(3.3) flw) = %Zi—m C(j)explicy) for o e[-=,x].
n

Lemma | indicates that the limiting autocovariances and limiling spectral density function
have all of the propertics associated with a weakly stationary Gaussian process with no purely
deterministic harmonic components. This lemma also indicates the convergence rates of the average
autocovariances and of the truncated spectral density (o the corresponding limiting matrices. We use O(-)

to denote almost sure convergence, and O,(-) to denote convergence in probability.



10

Lemma 1: Under Condition A/A*, the limiting autocovariances and limiting spectral density function
are identical to those of a weakly stationary Gaussian process with no purely deterministic harmonic

components:

(a) The limiting autocovariances satisfy T'(j) ="' (—j) for every integer j; det(Gyy) = 0 for every M > 1
@ N
and Ej:_m LG, < +=.

(b) The limiting spectral density function, f{ew), is a continuous, Hermitian, positive semi-definite
harmonic function of periodicity 27, Aw) € L.[-m7] (i.e., U’(c:))l2 is Lebesgue-integrable over [-7, 7]);
and T(j) = J"’” (@) explia)) do .

(© T3 (j) = T'(j)+0O/T) for each integer /.
@ V@ 1@, = = Yir. + ol
” 27 r

The intuition behind Lemma 1 can be summarized as foliows. Since 'y (/) =T"r (=)
for | j | < T, the limiting autocovariances also satisfy T'(j) =T"'(—;). Since Grenander’s conditions
for asymptotic stationarity are satisficd under Condition A*, the limiting autocovariances 1°(;) form
a positive semi-definite sequence: i.¢., det(Gyy) 2 0 Tor every M 2 1 (cf Hannan 1970, p.78). Thus. the
limiting autocovariances are identical 1o thosc of a weakly stationary Gaussian process, and the integrated
speotrum has the propertics of a weakly stationary Gaussian process, i.¢., is Lebesque-integrable and
monotone non-decreasing (¢f. Theorems X 3.1 and X.3.2 of Doob 1953, p.474-475; Tbragimov and Linnik
1971, p. 311). The absolute summability of the limiting autocovariances ensures that the data contain
no purely deterministic harmonic components, since 'y () would not converge to zero with increasing j
in the presence of such components. Thus, the integrated spectrum is absolutely continuous (i.e., with
no jumps) and differentiable, with continuous spectral density f{e) (cf. Priestley 1982, pp. 226-230).
Finally, Condition A/A* ensures that E(V, V., ) is bounded for all ¢ and /, yielding the convergence rates
given in parts (¢) and (d) of Lemua 1. Thus, if the lag truncation point increases with sample length in
such a way that 2 = o(7), then the truncated spectral densily converges a.s. to the limiting spectral density
(cf. White 1984; Andrcws 1991).

If the limiting spectral density function f{e) is positive definite almost everywhere in [0, 7]
(i.c., flw) is only singular at a countable number of points), then the limiting autocovariances and limiting
spectral density function are identical to those of a vector MA(e0) process with i.4.d. Gaussian innovations,
where the MA coefficients are square-summable (cf. Theorem 1V.6.2 of Doob 1953, p. 160-161;
Hannan 1970, pp.160-163; Pricstley 1982, pp.730-733). In this paper, however, we focus primarily on the

use of autoregressive approximation, in which case a stronger assumption is required:

Condition B: The limiting spectral density function fle) is positive definite over [0, #].
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This assumption ensures that the vector MA(w0) representation can be inverted into a VAR(w0)
representation of the autocovariance structure. Condition B also places an important restriction on the
Toeplitz matrices Gy and G,. For univariate processes, Theorems 9.2(a) and 9.6(a) of Grenander and
Szego (1958, pp. 147-154) demonstraled that the smallest eigenvalue of G, is equal 1o the smallcst value
of flw) for w in [-7 7], and that the smallest eigenvalue of Gy declines monotonically and converges to the
smallest eigenvalue of G, as M -» oo, (Closely related results may also be found in Hannan 1970,
pp. 148-150, and in Theorem 4.2.1 of Fuller 1996, p. 154). Thus, condition B is equivalent to the
restriction that det((Gy) = O for all A7 > 1 and that det(G.,,) # 0, thereby ruling out cases in which some
linear combination of { V, }j‘:w has zero variance.

Condition B also plays an important role in analyzing the convergence properties of kernel-based
spectral estimators, which have mainly been derived under assumptions of strong or uniform mixing
{c.g., White 1984; Newey and West 1987; Hansen 1992). These convergence properties ¢an be derived
using assumptions on fourth-order cumulants, but such assumptions are difficult Lo verify without the use
of mixing conditions (cf. Andrews 1991, pp. 823-824). Strong mixing is directly implied if the data are
g-mixing; ie., E(V Vo) =0forallk>gandallt=1,--- .7 (cf. Davidson 1995, p. 213). For more
general processes, however, all of the available sets of sufficiency conditions for strong mixing require
the spectral densily function to be strictly positive definile {Ibragimov and Linnik 1971, Theorem 17.3.3,
p. 313; Chandha 1974; Gorodetskii 1977; Pham and Tran 1985, Athreva and Pantula 1986; Davidson
1995, Theorem 14.9, pp. 219-225).

Condition B may be expected to hold for csscatially all untransformed data, since measurement
error gencraies a positive definite spectral density at all frequencies (Priestley 1982, pp. 390-391),

The most important exception to Condition B occurs when stationary data is “over-differenced,” thereby
removing all variation at frequency zero. However, the case of over-differencing is rather problematic for
all HAC covariance cstimation, because the parameter estimates generally converge at O,(T ') instcad of
O,,(T'”z), and the true HAC covariance matrix becores singular, thereby generating confidence intervals
of measure zero.

Under Conditions A/A* and B, Theorem lindicates that the limiting autocovariance structure has
a VAR(s0) representation with absolutely summable cocfTicicats, Furthermore, the VAR g&?ﬂ‘lcicms {4}
satisfy the infinitc-order Yule-Walker cquations G, 4. = g, where the transpose of the NxA matrix .1,
forms the j-th block of 4,. Since del(G.,) # 0, its inverse is well-defined, so that 4, = G g.. Finally,
under these assumptions, the VAR coclTicients vanish at the same ratc as the limiting aulocovariances, so
that we can expect the rate of convergence of the VAR spectral estimator to be similar to that of the

truncated kernel estimator.
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Theorem 1: Conditions A/A* and B imply the following:

(a) The limiting autocovariances I'(/) and spectral density f{w) are identical to those of a vector MA(w)
process with i.i.d. Gaussian innovations: f(w) = (1/2z) ®Olexp(iw)] T @*[exp(iw)],
where I is a real symmetric positive-definite matrix; ©(z) = ZTZOZJG ; > ©*(z)is the complex
conjugate of O(z); Oy =1y, Z] 01O ;l, <+o;and del(®(z)) =0 for|z/ < 1.

(b) The limiting autocovariances I'(;) and spectral density f(w) are identical to those of a vector
VAR(w) process with i.i.d. Gaussian innovations: (@) = (1/27) {Ad[explio)]}’ £ {A*[explian)}”,
where T is a real symmetric positive-definite matrix; A(z) = z;":o A,z ; A*(z) is the complex
conjugate of A(z), Ao =1Iv; X4, |, <+oo;and det(d(z)} 20 for |z < 1.

(© Ao = G lg,and T=%,=T(0)-2', 4, .

(d) If Zf:ojl {I'], < +oo for 4 20, then £7, j* 19, <+ and T7, j/1 | ;i < e,

o0

As indicated by Theorem 1(a), Conditions A/A* and B are sufficicnt to ensurc that the limiting
autocovariances have a vector MA(w) representation ©(z) with absolutely summable coefficients,®
and that ©(z) has no roots on or inside the unit circle; i.e., det(®(2)) = 0 for | z| < 1.° Thus, A@)=[O@)}"
is well-dcfined for all | z| < 1, so that the limiting autocovariances also have a VAR(ec) representation, as
indicated in Theorem 1(b). Then Theorem 1{c) (ollows from the orthogonality propertics of the
trigonomctric polynomials exp(ie). Finally, Theorem 1(d) follows dirccily from Theorem 3.8.2 and 3.8.2
of Brillinger (1981, pp. 76-78).

Even in the abscnce of Condition B, VAR approximation yields a consistent estimate of the
spectral density at all frequencies as the lag order Af increases to infinity (¢f. Fuller 1996, Theorem 4.3 4,
p. 165). Nevertheless, the convergence rate will generally be much slower than in cases where Condition
B is satisfied {Grenander and Szegé 1958, p. 190). Violation of Condition B implies that the vector
MA(o0) representation given in Lemma 2 cannot be inverted into a VAR(e0) representation with
absolutely summable cocflicients, duc to the singularity of the Toeplitz matrices Gy, (for sufficiently large
values of Af) and of the infinite-dimensional Hankel matrix G, However, the data can still be regressed

on its own A lagged values using the gencralized inverse of Gy, (cf. Whittle 1983, pp. 43-44).

3.3. Convergence Rate of the VAR Spectral Estimator

Thus far we have been considering the structure of the true (limiting) autocovariances { I'¢ IR
where I'(j} = E(J; V")) for covariance stationary data, and (/) = limy_, .. er]; E (707", ;) for
asymptotically stationary data. The true autocovariances are generally unobserved in practice, but can be

estimated by the sample autocovariances T7 (j) = (1/ ’/')Z{T*lj Vo, 17, forjz0,and (N =I" ()}

# The autocovariance structure is not restricted by the absence of roots of @(z) inside the unil circle, since an MA representation with one
or more roots inside the unit circie and no roots on the unit circle can always be re-normalized as an MA representation with all roots
outside the unit cirele (Flansen and Sargent 1981, p. 102; Hamilton 1993, pp. 63-6%).

* Under Condition A/A*, weaker assumiptions than Condition B can be used Lo ensure that the limiting autocovariances have an MA(w)
representation with square-summable coefficients. This would permit somewhat greater temporal dependence than the absolutely
summable coefficients implied by Conditions A/A* and B (cf. Hamillon 1994, p. 69).
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for j <0. The sample autocovariances are biased by a factor |

/ T relative to the true (limiting)
autocovariances, but this bias is asymptotically ncgligible. A kcrnel-based estimator of the spectral
density at frequency zero can be represented as a weighted sum of the sample autocovariances: i.e.
E;}; = Zj:ll—T x(j 18 T7 (j), where the kernel &(-) is a bounded function of the lag order j and
bandwidth parameter &

>

The VAR spectral estimator can also be expressed in terms of the sample autocovariances. For
the VAR(A) estimator, let [ r{j — 1) comprise the (4, /th NxN block of the #NxAN Tocplitz matrix Gy, ;
let - FT (f) comprise the i-th N x N block of the h”NxN matrix gy, and let the coefficient matrix A "I
comprise the j-th NxN block of the ANxN matrix /?IT,,. Then A, is determined by the sample Yule-
Walker equations as a nor-linear function of the sample autocovariances: ET,, = (Gm )™ &5, . The
estimated innovation covariance matrix can be expressed as Y, = Zf: oE7 () A'pyy , where Apy is the
NxN identity matrix /y. . Finally, the VAR estimator of the spectral densily at frequency zero is given by
Sy = [Zfz o Am) ] 0w [ZTZ o (A )"'] . We can simplify this notation to some extent by defining
the hx1 vector g, with all elements equal to unity, and setting the ANxN matrix Q, = g, ® Iy, where ®
represents the Kronecker product. Then S5 = (7 + 0%, 4,07 T4 Uy + A", 07"

To analyze the asymptotic mean-squared crror of the VAR spectral estimator, it is useful to
construct the VAR(/A) cocfficients and innovation covariance matrix based on the sct of truc (limiting)
autocovariances { I'(f), j = —h,--- h }. As noted above, condition B cnsures that the smallest eigenvalue
of the Toeplitz matrix GG, is bounded away from zcro, so that det((G,) > 0 for all . Thus. we can define
A4, =Gl gy and T, = Zf: oL (J) A"y , where 4 %; comprises the j-th NxN block of 4,. The spectral
density at frequency zero implied by the true VAR(/) approximation is given by
Spr=(Iy +Q'% A,) T, Iy + 4", Ow) . As shown in the previous section, the true (limiting)
spectral density at frequency zero may be expressed as f(0)=(7y + Q' A.) "' S0 Uy + 4,007,
using the VAR(w0) representation of the true (limiting) autocovariance structure of the data.

Now the asymptotic root mean-squared error (RMSE) of 5;‘,,’ can be expressed as
[vec(S?,f = J (0. Given the triangle inequality, the asymptotic RMSE can be expressed in terms of two
components as follows:

G vee(ST - fOL < Ivee(ST - SO, Jvee(S - S,

The first component, henceforth referred to as the asymplotic bias, represents the absolute

difference between the spectral densitics implied by the VAR(h) approximation and by the true (fimiting)

VAR() representation. where both spectral densities are based on the true (limiting) autocovarianccs.

The second component, henceforth referred to as the asymptotic standard deviation., measures the
sampling variation in estimating the VAR(A) model. To avoid further notational complexity, this term
also includes two asympiotically negligible sources of bias rclated to the sample autocovariances: first, the

degrees of freedom correction factor |/ | / 7 mentioned above; and second, in the case of asymptotically
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stationary data, the difference between each average autocovariance 'y (J) = (1/ T)Zf;j EVV ')
and the corresponding limiting autocovariance 1'(j) . Of course, 'y (/) = I'(J) for allj and T for weakly

stationary dala.

3.3.1. Evaluation of Asymptotic Bias.
To analyze the asymptotic bias of the VAR estimator, we use either Condition C or Condition C*
to quantify the rate at which the autocovariances decline to zero. We will refer to Condition C/C* when

either condition is sufficient for the purpose at hand.

Condition C. g = sup; {61 Z‘:.):]j‘7 lvec F(j)lw <oo} = 0.

Condition C*: ¢ = sup, {7: Zjil F9sup, o vcc( E{V, V') }) < w0 > 0.

Condition C/C* indicates that the autocovariances decline toward zero at least geometrically
as a function of the lag order. The condition ¢ > 0 ensures the absolute summability of the
autocovariances, as specificd in Condition A/A*.'®  Thus, the upper tail sum ZT:h|T(j)|m_
converges to zero at the rate O(h™) (cf. Davidson 1994, p. 32). In the special case wherc the
autocovariances correspond 1o those of a finile-order vector ARMA process, the autocovariances decline
at an exponential rate, corresponding to an arbitrarily large value of ¢,

Condition C/C* can also be interpreted as indicating the degree of smoothness of the spectral
density function at frequency zero. For even values of r, the #-th derivative of flew) at e =0 is given by
ZTZ_QO]’F(]) {(Pricsticy 1982, p. 459). Under Condition C/C*, it is clear that the absolute value of the
r~-th derivative is bounded for even valucs of # < ¢. For a finite-order vector ARMA process, the spectral
density is a rational function of exp(i@), and is therefore infinitely differentiable at frequency zero
(Pricstley 1982, pp. 283-284). On the other hand, if ¢ < 1, the spectral density will be continuous but
not differentiable, exhibiting a cusp at frequency zero.

The asymplotic bias of the VAR spectral estimator depends on the rate at which the sum of
VAR(A) coeflicients (05 4,) converges to the sum of VAR(w0) cocflicients (O, A.,), and the rate at which
the VAR(!) innovation covariance matrix X, converges 1o T... To analyze these terms, it is useful 1o
partition 4., into two submatrices: 4., , contains the first /r V<A blocks, and -1, contains the remainder
of 4. Thus, the bias from the sum of VAR coefficients can be represented by two components:
Q% (Ap-A ) and 07, 4, ;.. From Theorem 1(c) and Condition C/C*, we know that | Q% A, pile = OUFY).
Now using an approach similar to that of Baxter (1962) and Theorem 6.6.12 of Hannan and Dcistler

(1986, p. 269-271), we can demonstrate the following lemma:

10

Berk (1973), Lewis and Reinsel (1986} and Hannan and Deistler (1988) all imposed the slightly stronger condition that g > 1/2.
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Lemma 2: Under Conditions A/A*, B, and C/C*, the VAR(}) estimator has the following properties:

@ fvec(Q Ay -Anp), = 00,

o

l

) lvec (zh- E.,,)Lﬂ O(h29),

il

© lvec (55 - f(O))Lc Oh1).

It is useful to compare the order rate for the asymptotic bias of the VAR spectral estimator with
that of the truncated kernel, S,’," = Z?:_ »1'(/). The bias of the truncated kernel is simply the sum of
excluded autocovariances, so that the absolute bias is bounded by Z;s>h ['(jY= O 7). Thus, the
truncated kernel and the VAR spectral estimator have asymptotic biases that vanish at the same rate.
The truncated kernel, however, does not necessarily yield a positive definite spectral density matrix
at frequency zcro, whereas the VAR(A) spectral estimator is ensured to be positive definite.

To understand this result further, it is useful to note that the VAR spectral estimator can be
expressed as S;" = ZTZAQ [ (j), where T, (/) are the autocovariances implied by the VAR(/) model.
Since the VAR(h) cocfficients are determined by the Yule-Walker equations, T, () = [,(/) forlj| <h.
Thus, the difference between the VAR(A} and truncated spectral estimators can be expressed as

D= zm,h T, (/). Furthermore, as with any stationary finite-order VAR process. the implicd higher-
order autocovariances T, () decline exponcntially toward zero as j —» oo (cf. Hannan 1995, p. 236).
This implies that D;” vanishes at the same rate as the leading term I, = O(#"). Thus, by including
these implicd higher-order autocovariances, the VAR(4) estimator ensurcs a positive definite spectral
density matrix with negligible effects on the asymptotic bias relative to the truncated kernel estimator.

It is also useful to compare these results with those of the class of positive definite kernel-based
spectral estimators. Any kernel estimator based on T autocovariances may be represented as
S#-:(T) = ZIT:; x(j1ET))T(j) ., where the kernel &(z) is continuous at 7ero and a.e. for z = 0
k(0) = 1; x(z2) = x(-z2); and .f:, x2(z)dz <. Tocnsure a positive definitc spectral density, the kernel &(z)
must satisfy the restriction that [x(z)| < I for all z # 0; in other words, the autocovariances I'( Afor|j|>0
reccive lower weight compared with the truncated kernel. (The sufficient conditions for a positive definite
kernel may be found in Andrews 1991, p. 822).

The smoothness of the kernel &(z) at z = 0 indicales the extent to which the weights on low-order
autocovariances differ from unity. In fact, it can be shown that no positive definite kernel can be
differentiable of order higher than 2 at z = 0 (Priestley 1982, p. 568}. If the speetral density is sulliciently
smooth such that ¢ > 2 in Condition C/C*, then the bias from assigning weights less thau unity to the
low-order autocovariances (i.¢. the weights on I'(;) for 0 < |/ | < T dominates the bias due to the
neglected autocovariances (1'(5) for {7 | > 7). If the sccond derivative of the kernel is finitc at z =0 {as
with the Q5 and Parzen kernels), the absolute bias is of order O(h™), If only the first derivative of the
kernel is finite at z = 0 {as with the Bartlett kernel), the absolute bias is of order O(h‘]), Thus. the

asymptotic bias of positive definite kerncls shrinks relatively slowly as a function of the bandwidth
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parameter, compared with the rate at which the asymptotic bias of the VAR spectral estimator vanishes as

a function of the lag order.

3.3.2. Evaluation of Asymptotic Variance.
The asymptotic variance of kernel-based and VAR spectral estimators depend on the sccond
moments of the sample autocovariances. For the case of fourth-order stationary univariate data,

Bartlett (1946) demonstrated the following result, which is exact in finite samples:

~ e i .k
(3.5 Cow(T(),T'(j) = %Zzhﬁ_;(l—ﬁ%—l){r(k)r(k +j=D)+ Tk + HT(k —i)+ Ko (0.0, j, K0},

where | 17(i,j,k) | £ 1 (cf. Priestley 1982, pp. 325-326). The fourth-order cumulants K4(0.i,/,. k) measure the
extent to which I} displays excess kurtosis relative to the fourth-order moments implicd by a normally

distributed process, ¥, , with identical autocovariances (¢f. Hannan 1970, p. 23; Priestley 1982, p. 58).

(3.6) Katt+jtbmtsn)y = E(V, -EV) My -EVa) (Viem =EVaw) Vew -EViy)

- E(Ijr 'Efr)(rHj 'EI’T’I'J')(I?Hm - EI}I«-nr)(ﬁlvir _EI?E-N)

The result in equation (3.5) was extended to multivariate fourth-order stationary processes by Hannan
(1970, p. 209), and to morc general mixing conditions processcs by Andrews (1988, 1991).

If I, has absolutely summable autocovariances and absolutely summable fourth-order cumulants,
equation (3.5) indicates that each samiple autocovariance fT (/) converges 1o the truc autocovariance
['(j) atrate QT ") Each sample autocovariance has a bias factor |7 |/ T as indicated at the beginning
of Section 3.3; however, this bias is o(7 ") for | j| < h=o(T"?). Finally, in the case of asymptotically
stationary data, each sample autocovariance Iy ( /) has asymptotically negligible bias of O(T )
corresponding to the difference between the average autocovariance [7(/) and the limiting
autocovariance I'(j) .

Now consider any weighted sum of »(7) sample autocovariances with uniformly bounded
weights, and its deviation from the corresponding weighted sum of true autocovariances: ¢.g..
g
Lrmr = Z,(T-,)’l(T- _,-)(Tt,. (/y=T(n . where |A(T' /)| < Af <+ for all j and T Then we find that:

3.7 E(z;,,m): SH N Acra)AT, ) Cov (Tri). Ty () = OmTirtT)

using equation (3.5) under the conditions of absolutely summable autocovariances and fourth-order
cumulants. Intuitively, the result follows from the asympiotic independence of sample autlocovariances at
different leads and lags (Pricstley 1982, pp. 327 and 425). This implics that Zr 7, converges in mean

squared to zero at the rate O, ((h(T)/ 2 }. Again, this result also holds for asymptotically stationany
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data, where AT, NT'r () = Tr () = O, (KDY T)'2) Jand ¥ V2¢r, )(Tr () - T())
= 0,(h(M)IT) = o, (T TY?) for h(T) = o(T"?).

Since many kernel-based spectral estimaltors (¢.g., those which utilize the truncated, Bartlett, and
Parzen kernels) are a weighted average of the first #(T) sample autocovariances, these results immediately
indicate that such estimators will have asymptotic variance of O,(h(7)/T) if the lag truncation parameter
h(T) = o(T). This order result for the asymptatic variance can also be obtained for spectral estimators
bascd on more general kernels, such as the QS kernel (cf. Pricstlcy 1982,p. 457, Andrews 1988,1991).

To apply these results to the asymptotic variance of the VAR spectral estimator, we follow
Andrews (1991, p. 839) in assuming that the fourth-order cumulants of I, are absolutely summable,
whether the data are weakly stationary (Condition D) or asymptotically stationary (Condition D¥*).

We will refer to Condition D/D* when either condition is sufficient for the purpose at hand.

Condition D; Z i Z-IVCC(K:z(O,faJ',A'))Im < t®

i=—c j=— k=—0

Condition D*: i i i SUpP 5 }vec(K},(t,i,j, ), < +eo
[ By

Lemma 1 of Andrews (1991, p. 824) provides conditions on the degree of strong mixing and
existenee of higher moments which arc sufficient to verify Condition D/D*, Hanscn (1992) utilized
mixingale bounds to demonstrate the consistency of kerncl-based spectral estimators under somewhat
wcaker conditions. It is likely that Hansen’s (1992) condilions are also applicable to the VAR spectral
estimator, however, o avoid additional complexities, we do not pursue this approach herc.

The asymptotic variance of the VAR spectral estimator is determined by the sampling variation

in cstimating the sum of VAR(#) coefficients and of the covariance matrix of the estimated VAR(/)
residuals; i.e. ]vec(§{.},’ = 8,7 )|« is determined by |vec((' (h)(;fTh - 4,1 and ivec(frh - Z ).

Since the lag order / generally will increase as a function of the sample length 7, the convergence rate of
the asymptotic standard deviation must hold uniformly in / up to some maximum lag order /7 that also

increases monotonically with the sample length.

Now it is uscful to define the #AVxN matrix Cyy, as follows:
(3.8) Crw = Gy (Zn - Ah) = (Gh - GTh)Ah + (gTh -gn).
Now we have:
3.9 (‘Z'Th - A'h)Qh = C'p Gf;: Oy = CJ'Th (61_;1 - Gﬂl)Qh + G'Th G,'0,

The k-th block of Cyy, is cqual to Zf:f)(l“(k - -Tpk- j))A',,] . Thus, each of the clements of C'p,

is a weighted swimn of deviatious between 1he saple and true (limiting) autocovariances, so that

-172

{Cylo = O,((W(T)/ T)"?} . 1t can also be shown that each element of (7;; converges at rate {7 ") to the
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corresponding element of G, ', so that |Gy} — G, 'w = O, ((A(T)/T)""*) . Finally, |4 = 1, and
|Gyl = O(1) . Thus, each clement of the first term on the right-hand side of equation (3.10) converges at
rate O, (A(T)¥* /T), and each element of the second term converges at rate O, ((W(T)/T)""?), which

/3

dominates the order of the first term as long as A(7) = O(T '), Similar results can be shown for the

elements of ET,, — Z,. Thus, we have the following lemma:

Lemma 3; Under Conditions A/A*, B, C/C*, and D/D*, the VAR(#) estimator has the following
properties uniformly in A(T) for 0 < h(T) £ H(T) = (T '?):

@) vec(Q,,'(ZTh-A,,))lw = 0,(((M) T,

() vee (E7, ~z,,)|m = O, (max{(T)/T,T 2},

©) vee (Swl’h’ - Sh)l = 0,(T V).

@0

Thus, the ratio of lag order to sample length afTects the asymptotic variance of the VAR spectral
estimator in the same way that the ratio of bandwidth parameter to sample length ratio affects the

asymptotic variance of kernel-based speciral estimators. !

3.3.3 Evaluation of Asymptotic Mean-Squared Error.

As indicated in equation (3.4), the asymptotic RMSE of the VAR spectral estimator can be
decomposed into two terms which represent the asymplotic bias and the asymptotic standard deviation,
Thus, from Lemma 2(¢) and Lemma 3(c), it is ¢lear that the asymptotic RMSE of A:T“,f will be O(r?)

+ O, (h/D'"), uniformly in 4 = A(T) < FH(T) = O(T ). This result reveals a tradeof¥ in the choice of lag
order h; namely, a higher lag order reduces the asymptotic bias and increases the asymptotic variance.
Since the optimal growth rate of the lag order depends on the smoothness of the spectral density at
frequency zero, one might suppose that these convergence rates arc¢ unattainable in practice. In fact,
however, we can approach arbitrarily closely to the optimal geometric growth rate by using Schwarz'
(1978) Bayesian Information Criterion (BIC) to sclect the lag order. In this casce, the lag order is chosen
by minimizing BICs(/#) = log(del{ fn, )+ RN log(T)/ T over h =0, - [I(T), where 2I(1) is specilied as
the highest lag order to be considered for a given sample of length 7. Aliecrnatively, we may consider

using Akaike's (1973} Information Criterion (AIC), where the lag order is chosen by minimizing AIC, (h)

"' Results similar to those of Lemma 4(b) were previously oblained by Shibata (1979) for the univariate case of a general linear process

with i.i.d. Gaussian innovations, with a maximum lag order growing at rate ofT' '), slightty faster than the maximum lag order specified
in Letima 4. Shibata's results were later extended by Hannan and Kavalieris (1986) to the multivariate case with conditionally
homoscedastic martingale difference imovations, and with a maximum Jag order growth rate of of(Tlog(1h""].

Both Shibata (1979) and Hannan and Kavalieris (1986) also demonstrated a slightly faster convergence rate of o, instead of (2,
Unfortunately, 1t remains unclear whether the faster convergence rate and the weaker maximum lag order restriction obtained by Shibata
(1979) and Hannan and Kavalieris (1986) remain valid in the presence of conditional or unconditional heteroskedasticity.
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= log(det( ffh W+2hNYTover h =0, --- H(T). However, Lemma 4 indicates that BIC may be expected

to have better sampling properties than AIC, at least in the presence of heteroskedastic innovations.

Lemma 4: Under Conditions A/A*, B, C/C*, and D/D*, the following properties hold
uniformly in 0 < h < H(T) = (T

(@) AICr(h) = constant + trace(Z;} (T, - Zo) + O, (WD),

(b) BICr(h) = constant + trace(Ty' (Tp -To)) + AN log(D/T + O, (WT).
4

Lemma 4 follows directly from Lemma 2(b), Lemma 3(b), and the propertics that log(det(4)) =
trace(log(4)) for any positive definite matrix 4, and that x - log(1+x) approaches zero as x approaches
zero (cf. Hannan 1970, p.159; Hannan and Kavalieris 1986; Hannan and Deistler 1988, p. 343).

Lemma 4(a) indicates that the penalty terin &7 used in AIC may nol be sufficiently large to
dominate the sampling variation in estimating ¥, . Shibata (1979) and Hannan and Kavalieris (1986)
demonstrated a slightly faster convergence rate of £,y to 5. so that the AIC penalty term was just large

enough to dominate the sampling variation for AR(e0) processes with conditionally homoscedastic
innovations. Ncvertheless. Shibata (1976) showed (hat in the casc of [inite-order AR modcls, the AIC
penalty term is too smatl to dominale the sampling variation, so that the lag order chosen by AIC docs not
converge to the true lag order with probability one. Thus, it is not surprising that sampling variation
appears to causc probicms for AIC in the presence of conditional or uncondiiional heteroskedasticity.

On the other hand, Lemma 4(b) indicates that BIC provides an effective mcthod of lag order
selection under very gencral conditions. The BIC penalty term, b log(T)/7, is sufficiently large to
dominate the sampling variation of the estimated innovation covariance matrix, so thatfn can be used as
a proxy for Z,, the covariance matrix implied by the true AR(/) approximation. Furthermore, Z,
converges at rate O(h‘zq) to Z,,, the innovation covariance matrix implicd by the AR(=0) representation.
Thus, BIC provides a means of evaluating the tradeofl between asymptotic bias (by measuring the extent
to which additional lags improve the goodness-of-fit) and asymplotic variance (by penalizing the use of
additional parameters).

In fact, by diffcrentiating the formula given in Lemma 4(b) with respect to /r and sctling the
result to zero, we can determine the growth rate of the lag order chosen by BIC, and the corresponding
convergence rate of the VAR speetral estimator,  If the spectral density is differentiable at frequency zero
(i.e., ¢ 2 1), the lag order chosen by BIC converges to (7/log(7)) ¥V, so that the VAR spectral estimator
converges in probability at a gecometric rate arbitrarily close to 774" "7 I the truc (limiting)

autocovariances correspond to thosc of a finite-order ARMA process, then the spectral density is infinitcly

™ The results of Berk (1973) and Lewis and Reinsel (1986) were obtained using a lower bound of o7 "2 ) on the lag order growth rate,
which ensures the asvinptotic normality of the AR coeflicients, but excludes the use of model selection criteria which yield a lag order
growth rate approaching the optimal rate 72",
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differentiable at frequency zero (i.e., g —>+o0). In this case, the lag order chosen by BIC grows at a
logarithmic rate, and the VAR spectral estimator converges in probability at a geomelric rate arbitrarily
close to 7', Finally, in the case where the spectral density is not differentiable at frequency zero

(i.e., 0 <q< 1), the lag order chosen by BIC approaches the maximum rate //(7) = T ', and the VAR
spectral estimator converges in probability at the rate 77,

Thus, the main results for VAR spectral estimation can be summarized as follows:

Theorem 2: Assume Conditions A/A*, B, C/C*, and D/ D*. Then the VAR spectral estimator has the
following propertics:

@) |vee( S - f0)) | = max( O, O, [(WD'] ) uniformly in 0 < h < FI(Ty= KT'™),

d

(b) IfA(T) > 0 and H(T) = O(T '), then Sff - A0) —, 0,
(¢) I ATy = argmin(BIC; (h), and the maximum lag order 7{(7) = O(T ", then | vee( St -AM) .=

TV for g > 1, and | vec( S - A0)) Lo = O(T ") for0 < g < 1.

Since it is straightforward to extend Theorem 2 10 incorporate the analysis of cstimated
regression residuals, the implications of Theorcm 2 will be discussed as part of the discussion of Theorem

3 in the next section.

3.4 Convergence Rate of the VARHAC Estimator.

The asymptotic propertics of VAR spectral estimation given in Sections 3.2 and 3.3 can be
readily extended to the case of HAC covariance matrix estimation, which typically involves the analysis of
estimated regression residuals. In this case, V, () is a random N-vector for each px1 vector of
regression paramelers y in the admissible region ¥ < R?. For example, in OLS estimation of a linear
regression model, V,(y) = (Y, = X', w)X,. For pscudo-ML estimation, I () is the score function
for the #-th observation. For IV estimation of a dynamic non-linear simultaneous equation model,
¥, (y) is the Kronccker product of the instrument vector with the vector of model equations evaluated at
w . Inall of these cases, the asymptotic HAC covariance matrix can be expressed as a function of the
NeNmatnix f(0) = Ly 0 Sy (w ). where Sy () = (17 T)Z: i E,T : E{ Folwa ) (wo) } and v,
is the true veetor of regression parameters.

To simplify notation in the following discussion, we will usc ¥, to refer ol (y J, the
regression function evaluated at the true regression parameter vector v , and we will use l% to refer
to V, (lf/ T) , the regression function evaluated at the rcgression parameter estimate . Thus, we
continue to use I'(j) to refer to the true (limiting) j-th order autocovariance evaluated at w; , and 'z (/)
10 refer to the average j-th order autocovariance matrix, as defined in equation (3.1). The matrices Gy ,
Go' 8 s 8o Ay T T, 57 and fle) arc as defined above, bascd on the true (limiting)

autocovariances cvaluated at . Similarly, [ /) refers to the sample j-th order autocovariance based
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on the true series {¥; }, and the matrices G, | gm > Cy, JAg 2‘?“ ,and §7‘?h’ are as previously

defined using the sample autocovariances fT (/). Finally, fT (j) refers to the sample j-th order

autocovariance based on the estimated series { I}, }, and the matrices GT,, , &, C‘Th s ,ZIT,, , and iﬂ,

are constructed using the estimated autocovariances f“T (/). Then the VAR spectral estimator based on

the estimated regression residuals can be expressed as S = [, + @'y Am]™" S i+ A'my Onl7
To analyze the rate at which the VAR spectral estimator .§;,’l converges to Sy (y/D) , we will

utilize the following incquality:

vee( S = Sr(w, W <|vee(Si — S ), +|vee(SE — 577 )L,
+ |vee( S = FO)), + [veel f(0) =Syl o))l

(3.10)

The convergence rates of the second and third terms of equation (3.10) have already been evaluated in
Section 3.3, while the convergence rates of the first and last terms remain to be determined.
To analyze the first tcrm in cquation (3.8), we follow Andrews (1991, pp. 823-826) in making

the following assumptions concerning the regression function ¥, (¢) and the estimated regression

parameter veclor oy ;

Condition E:

(a) sup, < 400,

on

vec(E(V,(y/c,) V,’(‘I/a)))

(b) sup, . < 4o,

vec(Esupw cw {vec(ﬁV,(w)/é’w’) vec'(é‘l/}(w)/é‘w')})

o

) sup; s, <+,

o0

vcc(E sup,, ¢y { é vec((?l»;(y/)/c?w')/ Sy })

(d) Conditions A/A* B, C, and D/D* hold for the following stochastic process:
{V,’(wo), vec(é’V,(y/)lé’w’ - E[é’V,(u/)/c?y/’])} \

@ NT(@r-w,) =0, (T2

Parts (a) and (b) of Condition E arc commonly ulilized 1o demonstrate the asymggptic normality
of the estimated regression parameter vector, w . Parts (b) and (¢) are typically rcquire;‘d to demonstrate
the consistency of Dy (¥ ) (cf. equation (2.4) above). Part (d) can be verified under reasonable
assumptions if I, () has the form I'(.X, ,y) for some measurable function ¥{(-,-) and some random
variable X}, (cf. Andrews 1991, p. 826). Part (c) follows from the asymptotic normality of @ .

Under Conditions A/A*, C/C* D/D*, and E, Andrews (1991, p. 852) has shown that
Ir() =Tr () + O, (T "*). Thus, as in Section 3.3 .2, we find that 1@{,,' - Grplo
o, (((THITy 12 ). Now consider a weighted sum of #(T) sample autocovariances with uniformly
bounded weights, evaluated at w7 . and consider its deviation from the corresponding weighted sum of

samplc autocovariances cvaluated at ,, . Under the same conditions, Andrews (1991, pp. 832-853)
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demonstrated that any such weighted sum of deviations vanishes at rate O, ((#{T)/ T3> ). This result
applies directly to |éTh — Crile » 50 that following the same steps as in Section 3.3.2, we find that
lvee(Se - 82 = 0, ((W(T)/ 7)) for h(T) =O("?). Thus, the first term of equation {3.8) is
asymptotically negligible compared with the second term; i.c., under Condition E, the use of estimated
residuals does not affect the asymptotic variance of the VAR spectral estimator.
Now consider the last term in equation (3.11), namely, the rate at which S, (y/ o) converges (o
0), the true (limiting) spectral density matrix of I, at frequency zero. Using the definition of Sy {w,)

1A )T (7). Thus, the difference

and rearranging terms, it can be seen that Sy (v, ) = 77 (1-=
T

between Sy ¢y, ) and f{0) can be expressed as follows:
G So(p,)-fl@) =Y (r()-TW)+ Y () -T(N)- X % Cr() = > TU)
wier rPepier JleT Tl

where we have sct & = 1/(g+1). The first and second terms in cquation (3.11) are identically cqual 1o zcro
in the weakly stationary case. In the asymptotically stationary case, the first term vanishes at rate O(T by
=077 ¥ *17), since each average aulocovariance converges at rate O(7 ™) to the corresponding
limiting antocovariance. Under Conditions A* and C*, the second term of equation (3.11) vanishes at the
rate
O(T ™) =0O(r* " 1), Under Conditions A/A* and C/C*, the third tcrm vanishcs at rate o™
for g = 1, and at rate (7 ) for g < 1, and the fourth term vanishes at rate O(T# ) = o(T 9 @y

Since the difference between Sy () and f0) is independent of the VAR lag order h(T), the use
of BIC continucs to yicld a VAR lag order growth rate that asymptotically approaches o'y so
that the VAR spectral estimator converges to f£0) at a rate approaching OP(T"’/ 29+ as in Scction

3.3.3. Since the difference between S, ¢y, ) and f{0) vanishes at the [aster rate o7’ % "), this

diffcrence is asvmptotically negligible compared with the sources of bias and variance alrcady analyzed in

Section 3.3. Thus, all the results of Theorem 2 continue to hold for the VARHAC estimator:

Theorem 3: Assume Conditions A/A*, B, C/C*, D/D* and E. Then the VARHAC spectral estimator

has the following propertics:
(a) | veo( <T‘; S )Y = max{( (). 0, [(h-1)"71 Yy uniformly in O < h < JI(TY = O(T "y

(b) If (1) —» o and A(Ty=OT "), then §F - Jr(y,) —=, 0

() IfA(T) = argmin(BIC; (4), and the maximum lag order /(1) = O(F '), then | vee( f{,’, ST ) )

=TV forgz1,and | vee( SZ-Jr (W) ) o= 0T ) for0<g<1.

It is useful to compare the convergence rate given in Theorems 2 and 3 for the VAR spectral
estimator with the convergence rales of keencl-based spectral estimators.  As discussed in Sections 3.3.1

and 3.3.2, the truncated kernel estimator also has asymplotic bias of O(/#) and asymptotic variancc of
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0, (WD)'”. Thus, in principle, the truncated kernel estimator could converge at rate O, (I #24y iF the
truncation parameter #(7) could be chosen to grow at the optimal rate 7 V2D In practice, however, a
data-dependent bandwidth selection procedure has not been developed for the truncated kernel estimator
(cf. Priestley 1982, pp. 460-462; White 1984, p. 159; Andrews 1991, p. 834).

As discussed in Section 3.3.1, positive definite kernel-based spectral estimators have asymptotic
bias of O(max{#?¢, k"), where » measures the smoothness of the kernel &(z) atz=0, and r <2 for all
positive definite kernel-based estimators, Thus, if the true spectral density function is smoother than the
kernel function, then the optimal growth rate of the bandwidth parameter can be determined analytically
as O(T "1 without any knowledge of the specific value of . Under the assumption that g > r,
Andrews (1991) proposed a bandwidth selection procedure in which 4#(7) = O(T **) for the Bartlett
kernel, and
h(T) = O(T ') for the QS and Parzen kernels.

Based on these considerations, it is clear that the VAR spectral cstimator will converge at a
faster rate than any positive definite kernel-based estimator for almost all autocovariance structures. 1f
q > r. the positive definite kernel estimators lose efficiency by placing weight less than unity on the low-
order autocovariances. The extreme casc is one in which the autocovariances have the structure of a
finite-order ARMA process, so that q is arbitrarily large. In this casc, the VAR speciral estimator
converges at a rate approaching O, (T %), whereas spectral estimators based on cither the Parzen or QS
kernel converge at the rate O, (T '2’5), and the spectral estimator based on the Bartlelt kerncl converges at
the rate O, (¥ oy,

For g < r, posilive definite kernel estimators with » = 2 are also less efficient than the VAR
spectral estimator, because the bandwidth parameter specified by Andrews’(1991) formula grows too
slowly. For example, in the case where ¢ = 1/2, BIC will asympiotically select the maximum lag order
O(T ™). In this case, Theorem 2(c) indicates that the VAR estimator converges at rate O, (T™%. In
contrast, the spectral estimators which are based on either the Parzen or QS kernel, and which utilize
Andrews' (1991) bandwidth selection procedure, will converge at rate O, (T 1% Thus, the VAR

estimator converges al a [aster rate than the QS or Parzen kernels except in the special case where g

is exactly equal to 2.
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4. MONTE CARLO EXPERIMENTS.

In this section, we report the results of Monte Carlo experiments to compare the small-sample
properties of two HAC covariance matrix gstimators, and to evaluate the extent to which each estimator
provides accurate inferences in two-tailed tests of the significance of the estimated coeflicients. The first
cstimator is the parametric VARHAC estimator described in Section 2 above, and the second is the non-
parametric QS-PW estimator studied by Andrews and Monahan (1992), which uses the quadratic spectral
kernel, first-order prewhitening, and univariate AR(1) models in the automatic bandwidth selection
procedure, This estimator is briefly reviewed in Section 4.1

In Section 4.2, we consider the data generating processes used in the Monte Carlo experiments of
Andrews and Monahan (1992), and we find that the parametric VARHAC estimator matches the small-
sample performances for the QS-PW estimator quite well. Next, Scction 4.3 documents the advantage of
the VARHAC estimator in allowing different autoregressive orders for different components of the
residual vector. Section 4.4 highlights the pitfalls associated with using an arbitrary parametric model in
automatic bandwidth selection procedures. Finally, Section 4.5 verifies the benefits derived by the
VARHAC estimator in using a mode! selection criterion to determine the autoregressive order. or

equivalently, the degree of prewhitening. All experiments set 7= 128.

4.1 Review of kernel-based HAC estimators.

In this section, we give a short description of the non-parametric (kernel-based) cstimators of the
spectral density at frequency zero used in Andrews (1991) and Andrews and Monahan (1992). A more
general description of kernel-based HAC estimaltors can be found in Christiano and Den Haan (1996),
Den Haan and Levin (1996), and Robinson and Velasco (1995). The non-parametric estimators described

in this section have the following form:

(4.1) Sy = Efimx%) I,
T

where «(:) is a weighting function (kernel) and £ is a bandwidth parameter. Also,

- 1 Tej, . » " - . ;
(4.2) b= = eV ) L T 00 T
and

I, = I[',j=-1,-2,+ T+l

Andrews and Monahan (1992) adjusted this procedure by prewhitening the elements of V(1)
with an AR(1) prewhitcning filter. Let a, be the autoregressive coefficient of the #-th element of
V{wy). Then the n-th prewhitened residual is given by &,, = Vi(¥;) - @, Vii (7). Andrews and

Monahan (1992) included an cigenvalue adjustement for the estimated AR(1) coefficient in the
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prewhitening rcgression. We do not use this adjustment, which appears somewhat arbitrary, and does not
affect the results reported here. Also, let 4 be the NxN diagonal matrix with typical element «,, and

€, be the Mx1 vector with typical clement &, . The QS-PW estimator is given by
~ - - -1 — — -1
(43) STQS P’V(WT) = [IN —A] ET[IN —A'] R

where fT is an estimate of the spectral density at frequency zero of ¢,. To estimate T, the kernel-
based procedure from Andrews (1991) is used. As documented in equation (4.1) this requires a choice of
kernel and a choice of bandwidth parameter. A common conclusion from many Monte Carlo experiments
is that the choice of kerncl in the class of kernels thal guarantee a positive semi-definite covariance matrix
is usually not very important for the small sample results.'® For this reason we follow Andrews and
Monahan (1992) and consider only the QS kernel in this paper.

Unfortunately, there is overwhelming evidence that the choice of the bandwidth parameter is very
important in small samples'' and sometimes even in large samples.'* For a given sample, the mean-
squared error (MSE) of the spectral estimator exhibits an U-shaped dependence on the bandwidth
parameter, with sharp increascs in MSE as the bandwidth parameter is moved away from its optimal value
(cf. Andrews 1991). The fragility of spectral estimation accuracy provided an important motivation for
Andrews’ (1991) derivation of the optimal rate at which to raise the bandwidth parameter as the sample

grows arbitrarily large. This method chooses &7 to minimize the asvmplolic expectation of
(4.4) veo(Sy — 8)' I vee(Sy - 8),

where vec(H) denotes the vectorization operator and ¥ is an N°xN? weighting matrix. Andrews (1991)

shows that the optimal choice of & for the QS kernel is equal to

(+.5) & = 1322(a@)7)"”, with
(23 1 (2)
4.6) a® 2Zvec(SY Y I vec(84¢))
({1 +K)(S® S))
and
*.7) s@ = ¥ LT

Here Fj is the autocovariance of ¢, , tr(-) denotes the trace operator, / is the N« N? identity matrix, and K

is the M*x M commutation matrix defined by the property, vec{4") = K vec(4). To understand the

" See Andrews (1991), Bumnside and Eichenbaum (1994), Chnistiano and Den Haan (1994), and Newey and West (1994).

' This sensitivity was originally identified in simulation experiments which compared the finite-sample properties of AR and kernel-
based spectral density estimation procedures (cff Beamish and Pricstley 1981; Kay and Marple 1981, and Parzen 1983). The sensitivity is
documented for the case of estimated residuals in Andrews (1991), Andrews and Monahan (1992), Christiano and Den Haan (1994), and
Newey and West (1994).

' See, for instance, Christiano and Den Haan (1994).
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automatic bandwidth procedures proposed by Andrews (1991), it is important to realize that the optimal
bandwidth parameter 4"; depends on the truc value of S. Implementation of the automatic bandwidth

selection procedure thus requires an initial estimate of S, as well as an estimate of S, and a choice for .
Andrews and Monahan (1992) followed Andrews (1991) by fitling a parametric model for &, and
then using this model to obtain estimates of S and §@ using equations like (2.10). In pariiéular, an AR(1)

model was fitted to the n™ element of Z,. Moreover, only the elements of I that correspond to the
diagonal elements of ( S’T ~ &) are given a positive weight. In particular, the elements corresponding to

the slope cocfficient are given a weight equal to one and the elements corresponding to the constant are
given a weight equal to zero. Newey and West (1994) proposed the use of the truncated kerncl 1o obtain
initial estimatcs of S and $¢’ in the formula for the optimal bandwidth paramecter. Robinson (1991) also
considered data- dependent bandwidth procedures to determine the bandwidth parameter, and proposed a
form of cross validation to determine the bandwidih parameter used in estimaling the spectral density over

a range of frequencies.

4.2 The Andrews and Monahan (1992) experiments.

Andrews and Monahan (1992) used the following experiments to investigate the small sample
propertics of the covariance matrix estimator. They consider several lincar regression models. each with
an intercept and four regressors, and the least squares (LS) estimator  ; for cach of these models:

~ T -1 T .
(4.8) Y, = Xwy,+u, t=1--,7 and WT:[Z X,X,’} [Z’ZIA,};}.

=1

The estimand of interest is the variance (conditional on X = (Y}, --- X7’} of the LS estimator of the first

nonconstant regressor (i.c., the second diagonal element of Var(T'"? (Wr—w )1 X ). All elements of
are equal to zero.

Andrews and Monahan (1992) considered seven basic regression models: AR(1)-HOMO, in
which the crrors and regressors are homoskedastic AR(1) processes; AR(1)-HET1 and AR(1)-HET?2, in
which the errors and regressors are AR(1) processcs with multiplicative hc[croskcdasticj%ovcrlaid on the
errors; MA(1)-HOMO. in which the errors and regressors are homaskedastic MA(1)Y processes: MA(1)-
HET1 and MA(1)-HET?2, in which the errors and regressors are MA(1) processes with multiplicative
heteroskedasticity overlaid on the errors; and MA(#)-HOMO, in which the errors and regressors are
homoskedastic MA(m) processes with lincarly declining MA paramcters. A range of different parameter
values is considered for each model, with each parameter value corresponding to a different degree of
autocorrelation. For a more detailed description of these experiments, scc Andrews and Monahan (1992).

Figurcs 1 and 2 report the coverage probabilitics of the t-statistic that tests whether the (first)

Icast-squares slope cocfficient is equal to ils true value. In Figure 1 (2), we report the outcomes for the
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experiments in which the errors and regressors are AR(1) (MA) processes. The columns report the
frequency that the f-statistic is higher than the 10% critical value for three different HAC estimators.
The gray column correspond to the results of the QS-PW estimator, the black column correspond to the
results of the VARHAC estimator using BIC, and the white column corresponds to the results of the
VARHAC estimator using AIC.

The important conclusion that arises from the figures is that the inference accuracy of the
VARHAC estimator matches that of the QS-PW cstimator quite well, despite the fact that these dgps
might be expected to favor the QS-PW. In the AR(1) models, for example, QS-PW imposes first-order
prewhitening, while the VARHAC estimators chooses the lag order with a model selection criterion.
We obscrve the biggest difference for the MA(1)-HET1 model, for which the QS-PW outperforms the
VARHAC estimators 1o some extent. For instance, when the MA coefficient is equal te 0.5, the 10%
coverage probability is equal to 12.5% for QS-PW, equal 10 18.4% for VARHAC using BIC and equal to
16.0% for VARHAC using AIC. That the QS-PW has some advantages for this model is no surprise,
since the VARHAC estimator uses AR models to approximate the true MA(1) processes. It should be

noted that neither AIC nor BIC dominates the other in all cascs.

4.3 The limitations of a single bandwidth.
As discussed in the introduction, non-parametric kernel-bascd estimators require the bandwidth

to be the same for all elements of the vector of residuals (J( 7)) to guarantce a positive semi-definite

covariance matrix. Therefore, the optimal bandwidth is a compromise of the values that would be chosen
for an element by clement analysis. In this section, we document the impact of this restriction using the

following Monle Carlo expecriment. Consider the least-squares estimator for the following scalar model:
4.9 Yi=a+pX,*& and (1-pl)g=e,

Here o = =0, X,and e, are i.i.d. normally distributed random variables. The two elements of I, are &
and &X,. Thus, the first element is an AR(1) process, and the second element is serially uncorrelated.
To highlight the fundamental point, we do not use the prewhitening option for the QS-PW estimator,
since first-order prewhitening would make both components close 1o while noisc. For higher-order
Processes

for &, the QS-PW estimator would encounter the same limitations as those discussed here.

The choice of the weighting matrix W is crucial for determining the optimal bandwidth
parameter in cquations (4.3) and (4.6) when V; is a vector. We consider three alternatives. The first
alternative uses the true unconditional covariance matrix of I/, | while the sccond alternative uses the true
spectral density at frequency zero of I . To focus on our main points we use population values; in

practice, these weights would need to be estimated.'® The third alternative uses a dilferent wei ghting

2 Morzover, the automatic bandwidth procedure of Andrews and Monahan (1992) that estimates univariate AR( 1) models for each of the

elements of the residual vector cannot be used when the weighting matrix is not diagenal. In this example, the population values of the
innovation matrix and the spectral density are diagonal.
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matrix, and thus a different bandwidth and spectral density, for the calculation of each standard error. In
particular, to calculate the standard error of the constant term, zero weight is given to the second element
of ¥/, ; and to calculate the standard error of the slope cocfficient, zero weight is given to the first element
of ¥, . This choice is motivated by the fact that for linear regression models, the coefficients and standard
errors have a direct correspondence (o the individual components of ;. For more general applications,
however, this procedure is not possible, even in principle, because no direct correspondence exists between
the regression parameters and error components. This procedure can also not be used to test restrictions
across coefficients of the linear regression model.

The results of the Monte Carlo experiment are presented in Table 1. First, consider the behavior
of the test-statistic for the constant regressor, that corresponds to the persistent element of 1. As
documented in the table, the confidence intervals are very similar for the three choices of the weighting
matrix. For the first two scaling methods, the optimal bandwidth parameter is heavily influenced by the
persistent component of ¥, For example, when p equals 0.9, then the optimal bandwidth parameter
equals 23.24 and 19.48, respectively, for the first two choices of W, The optimal bandwidth parameter is
equal to 23.24 for the third choice of W, which assigns no weight to the second, serially uncorrelaied,
clement.

The counterpart of these results is that the cheice of the weighting matrix is important for the
behavior of the test-statistic of the slope cocfficicnt. The slope cocllicient is directly related to the second

element of ¥, that is serially uncorrelated. Using the first two choices of W, however, large values for the
bandwidth parameters are chosen for both elements of ¥, (4 7). This means that the calculated standard
error depends on a large number of sample autocovariances with a population value equal to zero. The
third choice of # only uses the sample covariance of the sccond element of V4 { t/A/ r ) to determine the

bandwidth parameter and consequently chooses on average small bandwidth paramecters. To see how
important these choices of the bandwidth parameter can be in small samples, consider the accuracy of the
spectral estimate for conducting inference when p=0.9. In this case, the frequency the test-statistic is in
the 90% confidence interval is equal to 77.5, 79.4 and 88.6 for the first, second and third choice of the
weighting matrix, respectively.

1t should be emphasized that the third choice of the weighting matrix is only possible when there
is a dircet relation between the test-statistic and an clement of I, When there is such a relation, then the
results from the Monte Carlo suggest that it is worthwhile to use this procedure. In general applications,
however, the chosen bandwidth parameter will be a compromise of the scrial correlation propertics of the
elements of V.

In contrast, the VARHAC procedure ¢an utilize a different lag order in modelling cach of the
clements of . As indicated in the panel C of Table 1, both AIC and BIC almost never choose a
zcro lag length for the persistent component of ¥, . However, for the component of T that is serially

uncorrelated, BIC (AIC) chooscs a zero lag length 98% (76%), 96% (70%), 93% (61%), and 88% (50%)
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for the four experiments with different values for the autoregressive cocflicicnts. Consequently, the
VARHAC procedure is able to accurately calculate the standard errors for the slope coefficient.
Although AIC and BIC do not always sclect the same lag order, both criteria yield empirical sizes
that are quite close to the nominal 10% size.

It should be emphasized that the weighting matrix should be chosen to ensure that the data-
dependent bandwidth parameter is not sensitive (o a rescaling of the variables. Suppose, for example,
that the explanatory variable .Y, is measured in smaller units. Without an adjustment of the weighting
matrix, this rescaling increases the relative variance of the serially uncorrelated component of ¥, |
and thereby reduces the bandwidth parameter. As a result, inferences concerning more persistent

components of ¥, can become severely distorted in finite samples (¢f. Den Haan and Levin 1996).

4.4 The limitations of arbitrary parameterizations.
As discussed in Section 4.1, the QS-PW procedures require the specification of a lime serics

process for V(¢ ;). Andrews and Monahan (1992) used an AR(1) model for each of the components of
V() inall of their Monle Carlo experiments, and subscquent papers in the literature have generally

followed the same procedure in implementing the QS-PW estimator. This subsection highlights the
conscquences ol adopting this AR(1) assumption, when ¢ follows a different law of motion. We consider

the following scalar process, and estimale the mean.

T
I
(4.10) Yi=g5+veg, + H &g q€{23}, and ':[/T - Zt:l t

where &is an i.i.d. normally distributed random variable with zero mean and unit variance. The
parameters are chosen in such a way that the first-order autocorrelation coefficient of the prewhitencd
senes is equal to zero or small, but higher-order autocorrelation coefficients arc not. In this case, using an
AR(1) specification leads to estimates of the optimal bandwidth parameter that are downward biased.
Several empirical cases suggest that such a time series process for ¥, is not unrealistic. First, Fama and
French (1988) documented that for stock returns, autocorrelations are small for short horizons, but
relatively large for large horizons. For instance, the average first-order autocorrelation across industries is
equal to -0.03 for onc-year returns. but equal 1o -0.34 for four-year returns. Sccoud, Christiano and Den
Haan (1994) used a dgp resembling that of US quarterty GNP, and found that some prewhitened residuals
had a very low first-order MA cocfTicicnt, but substantial higher-order serial correlation.

As shown in Table 2, the VARHAC estimators clearly outperforms the QS-PW estimator in this
experiment. In this example, the VARHAC estimator that uses AIC has better small sample properties
than the VARHAC estimator that uscs BIC. In fact, the small sample behavior of VARHAC using AIC is
excellent even for 128 obscrvations, despite the use of a vector autoregressive process to approximate a

moving average process. In this experiment, the higher-order autoregressive processes choscn by AIC are
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better to capture the MA structure of the data than the lower-order autoregressive processes chosen by
BIC. Furthermore, the sign of the MA coefTicients does not affect the inference accuracy of this estimator.
Note that the sign of the MA coeflicients has a large impact on the inference accuracy of the QS-PW
estimator. If the MA coefficients are positive then the QS-PW estimator underestimates the amount of
volatility, and consequently rejects the null hypothesis too often. In conlrast, for the negative MA
coefficients, the QS-PW rejects the null hypothesis too infrequently. Den Haan and Levin (1996) reported
simulation experiments which indicate that the kernel-based procedure of Newey and West (1994)

performs better than the QS-PW procedure, but does not cutperform the VARHAC estimator.

4.5 The limitations of arbitrary prewhitening order,

An important motivation in developing the VARHAC estimator was the success of the
prewhitening procedure proposed by Andrews and Monahan (1992). However, Andrews and
Manahan (1992) only considered first-order prewhitening, whereas the VARHAC estimator uscs a model
selection criterion to choose the order of prewhitening. The advantages of the flexibility of the VARHAC
estimator in choosing higher-order prewhitening were not apparent in the Monte Carlo experiments
discussed in Section 4.1, since the AR component in the vector of residuals, I/, was at most of order one,
and the QS-PW estimator imposcs [first-order prewhitening. In this section, we consider the following

scalar AR(2) process, and cstimate the mean.

T .
, R DU R DN
#+.4) I= E¢ Yo+ ’2‘¢}t-2+5}” W erl

and & is an i.i.d. N(0,1) process. The estimand of interest is the standard error of the mean. The values
we consider for gare .3, .5, .7, and .9. As scen in Table 3, the VARHAC estimators clearly outperform the
QS-PW estimator, even for values of ¢ as low as .5, Given the suceess of first-order prewhitening,. it is not
surprising that higher-order prewhitening is also advantageous. It is important to note, however, that the
VARHAC estimator does not impose the assumption that the residuals are generated by an AR(2) process.
For this experiment, a lag order of two was chosen by BIC (AIC) in 14.3%(33.8%), 60% (67%), 90%

(77%), and 96% (78%) of all replications for parameter values equal 10 .3, .5, .7, and .9, respectively.
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Figure 1: Andrews and Monahan (1992) experiments.

A AR(1examples.
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Note: This graph reports the coverage probabilitics of the f-statistic that tests whether the (tirst) least-squares slope coctlicient is equal 1o its
true value. The columns report the frequency the t-statistic is higher than the 10% critical value. The gray column correspond to the
results of the QS-PW estimator, the black column correspond to the resuits of the VARHAC estimator using BIC, and the white column
corresponds to the results of the VARHAC using AIC. Pant A reports the results for the experiments in which both the independent
varjables and the error ten are an AR(1) process. Part B reports the results for the experiments in which both the independent variables
and the error term are an MA processes. For the AR(LY (MA(1)) examples the x-axis reports the AR{1) (MA(1)) coeffivient. For the
MA(q) examples, the x-axis reports the order of the MA process. 7 - 128 and the results are based on 10,000 replications.
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Table 1: The limitations of a single bandwidth.

A: 90% confidence intervals for QS and VARHAC.

p QS Q8D QS VARHAC (BIC) VARHAC (AIC)

constant slope constant slope constant slope constant slope  constant slope
03 86.5 88.6 86.4 88.1 86.7 88.7 853 89.0 37.9 88.5
0.5 85.3 87.1 849 873 854 888 88.3 89.0 878 885
0.7 82.7 84.9 823 85.5 82.6 88.8 86.9 89.3 88.6 883
0.9 71.5 77.5 714 793 715 886 80.5  90.1 80.4 89.3

B: Average bandwidth parameters for the QS estimator.

P Q5 QS QS(IIh
constant  slope
03 3.48 3.23 3.64 1.48
0.5 5.71 5.09 5.85 1.54
0.7 977 8.49 9.85 1.62
0.9 23.24 19.48 2326 170

C: Bandwidths chosen by BIC and AIC (frequencies).

VARHAC (BIC) VARHAC (AIC)
) constant slope constant slope
0 1 22 0 1 =22 0 1 2 3 4 o 1 2 3 4
03 39 61 01 98 02 00 07 74 11 05 03 .76 .14 05 03 .02
05 .01 98 00 96 .04 00 00 80 .12 05 03 70 .19 .06 03 .02
0.7 00 99 01 93 .06 .00 .00 80 12 05 03 .61 .23 09 05 .03
09 00 99 02 88 .10 0l 00 78 13 .03 04 50 25 12 .07 .06

Note: Panel A reports the 90% confidence intervals constructed using QS and VARHAC estimators of the f-statistic that tests whether the
estimated least-squares coeflicient is equal to its true value in the regression equation ¥; = a + fX, + . The following dgp is used to
generate the data: Vi = a + SN0 + §, § = p 5. + e, where X, and ¢, are 1.i.d. standard normal random variables. The roman numerals
indicate the weighting matrix used to calculate the optimal bandwidth parameter in the Q8 procedure. The weighting matrix for QS(I) is
the matrix of the (true) unconditional {co)variances. The weighting matrix for Q8(1I) is the (true) spectral density at frequency zero. For
the QS(I11) procedure we use a different weighting matrix to calculate the standard error for the two parameter estimates. In particular,
when the i-th parameter is being estimated a weight of one is given to the j-th error tenn and a weight of zero to the other error term.

7= 128 and the results are based on 10,000 replications. The maximum lag-order considered for VARHAC is equal to 4. Frequencies in
panel C may not add up to 1 due to rounding errors.
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Table 2: The limitations of arbitrary parametrizations.

QS-PW VARHAC VARHAC
(BIC) (AIC)
v oop 99%  95%  90%  99%  95%  90%  99%  95%  90%

q

2 0.0 -03 1000 99.6 98.3 99.4 96.9 93.8 98.7 94.9 90.3
2 0.1-03 1000 998 99.1 99.6 97.7 95.1 99.0 95.7 91.4
200 03 951 87.4 803 97 4 91.9 86.5 979 92.9 87.8
2 01 03 95.9 88.6 81.7 96.9 91.7 86.2 97.7 92.8 87.8
3 00-03 1000 99.3 98.0 99.5 97.9 95.2 99.1 96.0 91.9
3 -0.1-03 10090 99%.6 98.7 99.6 98.4 96.4 99.2 96.7 933
3 00 03 955 87.5 80.9 96.3 90.1 342 97.8 92.8 88.4
3 0.1 03 95.7 88.1 313 96.0 89.0 333 97.8 92.8 88.1

Note: This table reports the 99%, 95%, and 90% confidence intervals constructed using the QS-PW and the VARHAC estimators for the
t-statistic that tests whether sample mean of ¥, is equal to its true value. The following dgp is used to generate the data: ¥, = g+ vg, + u
&G4 q= 2,3, where & is an i.i.d standard normal random variable. 7= 128 and the results are based on 10,000 replications.

Table 3: The limitations of a fixed prewhitening order.

QS-PW VARHAC VARHAC
(BIC) (AIO)
¢ 9994 95% 90% 99% 959, 90% 99%, 95% 90%

0.3 96.2 89.2 82.8 95.4 88.4 81.8 95.8 89.8 83.8
0.5 92.8 84.0 76.3 958 89.8 338 96.8 91.1 85.7
0.7 87.0 75.9 67.8 96.1 898 84.6 96.0 89.9 84.5
0.9 70.0 57.7 50.6 90.7 82.9 76.8 90.4 82.5 76.4

Note: This table reports the 99%, 95%, and 90% confidence intervals constructed using the QS-PW and the VARITAC estimators for
t-statistic that tests whether the sample mean of 1y is equal to its true value, The following dgp is used to gencrate the data: ¥, = 0.54 Vi, 1
0.54Y.: + &, where & is an Lid standard normal random variable. 7= 128 and the results are based on 10,000 replications.



Proof of Lemma 1{a): The first statement follows from the fact that I'y(j) = T''; () forall|j| < T.

Parts (a) and (c) of Condition A* ensure that the process {F; } mects Grenander’s (1954) conditions for
asymptotic stationarity, so that the limiting autocovariances form a positive semi-definite sequence; i.e.,
det(Gys ) = 0 for all M > 1 (¢f. Hannan 1970, p.77). Thus, the limiting autocovariances are identical to
those of a weakly stationary Gaussian process (Doob 1933, Theorem X.3.1, p. 473; Ibragitfiov and

Linnik 1971, p. 311). The absolute summability of the autocovariances follows from parts (a) and (c) of
Condition A*. Furthermore, since the limiting autocovariances are absolutely summable, we find

I'(j) > 0 as j - oo, which ensures the absence of purcly deterministic harmonic components from the

corresponding weakly stationary process (Priestley 1982, p.230).

Proof of Lemma 1(b): Given the absolute summability of the limiting autocovariances I'{/), the Riesz-

Fischer Theorem indicates that (o) € L[ -, 7] and that T(j) = J.:r S{@)exp(iwj)deo (cf. Sargent
1987, p. 249). Since the limiting autocovariances ['(j) form a positive semi-definite sequence, flw)isa
Hermitian positive semi-definite matrix function, by Theorem 11.11 of Hannan (1970, p.78). Furthermore,
there exists a weakly stationary Gaussian process with spectral density f{e) (cf. Tbragimov and Linnik
1971, p. 311). The periodicity of f(e) follows from its definition in cquation (3.3) as a weighted sum of
harmonic functions whose periodicity is some integer multiple of 2r. The continuity of f{ ) follows (rom
the corresponding property of exp(iay) and from the absolute summability of the limiting autocovariances

(Priestley 1982, p. 416).

Proof of Lemma 1{c): Part (a) of Condition A* ¢nsures that U'z(/) = L'(j) + Q7 ), since E(V, Vi)

is uniformly bounded for all t and j.

Proof of Lemma 1(d}: This result follows directly from the definitions in equations (3.2) and (3.3)

and from Lemma 1(c).

Proof of Theorem 1{a); Condition B and the results of Lemuna 1 ensure that [(w) can be factorized into a

vector MA({oc) representation (cf. Wold 1938; Theorem 1V.6.2 of Doob 1953, pp.160-161; Hannan 1970,
pp.157-163). Condition B also ensures that the MA coefficients are absolutely summable (cf. Theorems

3.8.2 and 3.8.3 of Brillinger 1981, pp.76-78), and that all roots of ©(z) are outside the unit circle (cf. Nsiri
s
and Rov 1993). .

Proof of Theorem 1{b): Given Condition B and the results of Theerem 1(a), these results follow directly

from Nsiri and Roy (1993). Similar results may also be found in Fuller (1996, Theorems 2.8.2 and 4.4.1,

pp.78-180), among many other references.

Proof of Theorem 1{c): First, note that % _[e’ e = 1forL=0and 51— _[.ef Lty = 0for L #0.
pd T

Since ©*(z) = |4 %)™, we have A(e’ Y R) =ZO*('"), e,
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AD 3 S AT UH - $3 e, eta

J=0k=—0w L=0
By multiplying both sides of (A1) by e” " for m > 0, and then integrating over @ € [-7, #] we obtain
;0:0 AT(j-m)=0,ie. zj’:lf "(j-m)d'; = =T '(~m) = —T'(m). Collecting these equations
together for all m > 1, we obtain G, 4. = g.. By integrating both sides of (Al) over w € [-7, #] , and

dividing both sides by 27, we obtain Z; o 1{(J) = Z. Since T is symuneltric, transposing both sides

yields £ = 37 T '(j)4; = T(0) - g, 4,

Proof of Thegrem 1{(d}. Under Conditions A/A* and B, this property follows directly from Theorems
3.8.2 and 3.8.3 of Brillinger (1981, pp.76-78).

Proof of Lemma 2(a):

. e Gy Gy, En ] A
We shall define the following partitions: G, =| B = .and A4, = .
G b Gh¢+ Ehn- "‘lrr.rh+

It can be seen that Gy Ay + Gie Ao = g1, sothat A, = Gy gh = Aup + Gy Gut Ao Thus,
) ] - -1
(A2) I(Ah_Aaoh)thw SlAwh+|leh+tw’Gh ’mIQh‘w-

Then Lemma 3(a) follows from evaluating the terms on the right-hand-side of equation (A2). Theorem

>

1{c) and Condition C ensure that | A'ws.| < Y |4l = O(7). Condition A/A* ensures that

J=h+1

Gl < G =27 IT(j)l <+oo forall A>0. From the definition of 0, | 0y | = 1 for all > 0.

j=—w

Now we verify that IG,,'l o £ < +o forall h>0. This result was given in Theorem 6.6.11
of Hannan and Deistler (1988, pp. 267-268) for a weakly stationary, purely non-deterministic process
under the restriction that ¢ > 1/2, but it is straightforward to obtain the result under more general
assumptions, based on the properties of the (limiting) autocovariances and spectral density function. The
symmetry of G, ensures that G, = U, A, U’, where U, is orthonormal and A, is the diagonal matrix
of eigenvalues of (5, . Conditions A/A* and B ensure that the ¢igenvalues of Gy, are uniformly bounded

away from zero and infinity {cf. Theorems 9.2(a) and 9.6(a) of Grenander and Szegé 1958, pp.147-154).

Thus, |G, ' | <|Us |, |A | [U4'],, < + foral fnite 4
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Finally, we verify that G h“l remains bounded in the uniform norm as 4 — <« . Under Condition
A/A*, the Hankel matrixG,, = U, A, U', , where the elements of A, are given by the eigenvalues of
Aw)foro e [0, n]. The cigenvector matrix U, is determined by the values of sin(o) and cos(w) for

w € [0, m], and is identical for all weakly stationary matrices with absolutely summable autocovariances

{cf. Theorem 4.2.1 of Fuller 1996, p. 154). Now Theorem 1{a) indicates that the (limiting) spectral
density flo) can be expressed as f(@) = [A(e'*)] ' Z[A*(e')]", where det{ T) > 0, and the vector
AR(o0) coefficients {4( )} are absolutely summable. Thus, under Conditions A/A* and B, G Vis the
Hankel matrix of a weakly stationary, purely non-deterministic process with autocovariances C( ) and
spectral density function g{w) = f (@) = A (@) O A(e'™) , where Q@ = T7'; in other words,
g(») is the spectral density of a vector MA(s0) process, with MA cocfficicnts B(j) = A'(j). Thus, the

result follows from the absolute summability of the autocovariances C( ), which is implied by the absclute

summability of the MA coefficients:

@y |6t = ¥ |, = iilB(f)LlﬂlmlB'(k)\w <t

-
I
|
8
e
il
=
I
H
=

Proof of Lemma 2(b):

This result was shown in the frequency domain by Hannan and Deistler {1988, p. 271).

However, the proof is more straightforward in the time domain. First, note that
A h . L . .
X'Z, x= x'Z;:oAiv'rf x £ x' ijo Al x forall x € R , since A, minimizes the innovation

h

. h
covariance. Now ijo Aglj =% — Y, bl

ALy - Thus, [Z ~ 2|, <127 Ao )

o

< illglr‘looﬂw ZFM Il = O(h*9) by Theorem 1(a) and Condition C.
>

Proof of Lemma 2(c):

Let M, = [Q% 41" and M, = [Q5A4,]". Then S — f(0) = M, SuA ALY, AL
=S(My - M) Zp My A 2 AL M )+ ;\[,D(Zh - Zw)[\l'm . Since det[() %lo) = 0 by Theorem 1{a),
the inverse function is continous at 0 4,A4,, so that [M,-Af,]| = O(A™) from Lemma 2(a). Furthermore,

[Z4 - Z./= O(™*) by Lemina 2(b). Thus, S&" — £(0) = max(\z\'[h - M| |20 - Z,‘,]w) =0 9y,

Proof of Lemma 3(a):

Using the definition of Cp, given in Equation (3.8), we find that

(A4) Qh'(ﬁ?‘h - f“’zh) ={ [6111 _GJ;.]]ET}: + Gl;lavh-
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Now using standard propertics of the vec operator (Lutkepohl 1992, p. 464), and the property that
|4 & I|,=]|4 |- for any matrix 4, we find that;

|vec(Q,,'(:47T,, - A;,))LU < l[é'm (G';.,;' - G;' )]® Ilw|vec(Qh)|w + lvec(Q',, G;léﬂ, Lo

(AS) - - N
< |C'T,, LIG;}: -G,! ‘m +|vec(Q'h G,'Cy, |w

since [vec(Qs)l» = 1. In Lemma Al, we show that |C'r;, |, = O, (AT ). In Lemma A2, we show that
|G7} =G} o= OphT ™) . Thus, the product of these terms is O, (T ) = o, (/1)) for h = o(T"").

Finally, in Lemma A3, we show that |vee((, G;,'Cpy | is O,((T)""?), which completes the proof.

Lemma Al: l ('f'n, LO =0, (hT~"?) under Conditions A/A*, B, and D/D*.

Proof: Let ¢y, comprise the k-th NN block of Cpy. Thus, Cri =Z?:0(F(j —k)-Ty(j —k)A Yy .
Now |C'p |, = Zﬁ:llém,k e < hmEXIETh,k o <h ;2{13;;‘5,1|FT(L)‘F(L)'W ZjiolA'h] lo, . Then the
conclusion of the lemma follows from |fT(L) -I (L)lm =0T "2y under Conditions A/A* and D/D*

{cf Andrews 1991), and because Z'; ol A’y 1o 13 uniformly bounded in has indicated by Lemma 2(a).

Lemma A2: ’ Gr -G, l = 0,(hT ") under Conditions A/A*, B, and D/D¥,

o

Proof: Condition A/A* ensures that |G, |, = maij';]\F(j—k)Ln < 3 AT, <o,
i -

j: -0

Lemma 2(a) indicates that IG,;"I |» < +oo. Conditions A/A* and D/D* ensure that

lvec(Tr () =T (Mo = 0,(T"?) forj <h = o(7) (cf. Andrews 1991). Thus, |G, =G, |,
=m3x2’;:]|fr(j—k)—l“(j—k)Lo = 0,(hT ). Now we find that |Gz} ko < |Gp'be + 67t = Gl

- =~ 1 A - > G, : .
<G o G |G =Gyl |G e s0 that |Gl sl % (’; I“’ o < e . Finally, since
1O~ Op ko 16y e
Gyl -G, = -G (G, -GG, we find that |G} — Gl e =163 w0 (G, — Gl 1G4 e =

172

Q0T )

Lemma A3:

vec( 0,G,' Cp ) 'm = 0,[ (W'D"] under Conditions A/A*, B, and D/D*.

Proof: We begin with a detailed proof for the scalar case, in which the intuition is not obscurcd by the
additional notation required in the multivariate case. In the scalar case, O, = ¢4 . the Ax1 vector with
all elements equal to unity. Let Fj, (/) denote the (7,)th clement of G,', and let z', = ¢', G, . so that
Zp = ZL F,(j.k) . Then |z,,k ! < 4w for ali k=1, --- , h. because |G;;l lw <+00 (i.e., the rows and

columns of G,.,','l are absolutely summable, as indicated in Lemma 2(a) above).
Now we have;
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h h h
(A6)  Z'4Tpy = 2 ZyCry = 2. 2.7k (?T,kq‘ _7k—}')ahk

i=1 J=lk=1
min(h, h-L)

= zh: (7T,L _}’L)|: Z zhjah,jJrL}

J=max(0, 1--L)

where | b, | < +oo, since | z,; | < +oo and ZTZU lex ;| <+oo. Using the appropriate extension of Bartlett’s

(1946) result (cf. Priestley 1982, p. 326; Andrews 1991}, we find that:

Ak
A E(Z,&5 ) = Y b b COV(?T.Ks?T,L )
K=l-h L=1-h

<
K

M=

h @
1
z by by | z (}’m}’ mrL-K TV meL¥ m-x +SUP K4(t, K. L,m)J
I-h L=1-h Tm——oo t ozl

h h
YT T

K -h

o oy

(; Z Z Z supl[\ IAL,MI

=—on L=—wp=—ont 21

where K, is the fourth-order cumulant. Now Condition A/A* ensures that the autocovariances are

absolutely summable, and Condition D/D* ensures that the fourth-order cumulants are absolutely
summable. Thus, we find that £(z', p, )2 = O(W/T), so ‘[hat‘q',‘r G;! Eﬂ,l = O[ (&/D)'"* ] in the scalar

case. In the multivariate case, let the NxhN matrix 25 = Q% G, with the & NxN block denoted by zj.

As above, |z |. < +o, because | G, |, < +oo. Now we have:

. h h -
(A8) 04 G Ty = XY 2 (TU-K) = Tr(-K) )4,

k=1,=0

mun( /i h—1)

= i y zh,“L(F(L)—IN“T(L))A'hj

L=1-h j=max(0,1-L}

By the properties of the vec operator (cf. Liitkepohl 1992, p.464), we find that:

- i min(h, k- L) —
(AD) vec( 0 G, Cpy, ) = Y > A4y ®z . \-'ec(F(L)—FT(L))

L=1-A| j=max{0,1- L)



i h, vec( ( )—fT(L)),

L=1-h
where cach N*x* matrix by satisfies (b, < max|zul 3 ol Ayle < +@. Letwy bethe
J-th element of vec( o, Gy 'En, ) ,and let 5;; denote the j-th row of b, , so that

Wiy = 3oy, bry vee(T(L) =T (L)) . Then we obtain:

(Al0) Ew} = Z Z by Ef vee{T{K)- FT(K))vec(F(L)—fT(L))']bLj,

Now this formula can be expressed in terms of the autocovariances and fourth-order cumulants, using

equation (3.3) of Hannan (1970, p. 209). Then, given the absolute summability of the autocovariances

and fourth-order cumulants, we find that Ew;,j2 = O[(h/D)'"?] for all j=1, - N’ sothat
vec( Q4 Gy'Coy )‘ = O[wT)'").

Proof of Lemma 3(b):

The set of estimated VAR(h) residuals are defined as &, = Z?TO ﬁm j Yo, fore=h+l, .-

These residuals satisfy the standard OLS orthogonality conditions: Zt el

. . . . .= 1 T ~ o~y by =~ .
Thus, the estimated innovation covariance matrix X, = ?Z vy Em E' = Z,zo A, Ur(J)

£ Y, = 0 for/=1, ..

S

As noted in the proof of Lemama 2, the innovalion covariance matrix of the VAR(h) approximation using

N . h )
the true (limiting) autocovariances can be expressed as £, = Z,:o Ay jl"( _j) . Therefore, we have;

h

(AlLL) Em = 2w = X (Amy - )(Tr () - T()) + éfih,,— (Tr (1) - 1(1)

=0
h e~
+ 2 (ATh_j - Ah,j)r(f)
=0
Using the standard properties of the vec operator, we find that:

(A12)  [vee(Ep, - =)

< max |<"1Tj,k ~ Apy
k=t

veel T (J) - 1))

@ i

»

whi

h

+ kgﬁfhlzm'k - Ah,k ‘m Jgo |vec(r(j))|

+ Z’AM‘ kmax!vec(l“r(k) F(k))Ln .

Now we note that kmlaxhﬁﬂ,,k - ‘4"”‘| = jﬂn, - A, { , using the definition of the matrix norm
=k w0 o0

(i.e., the maximum row sum}). Then using the matrix @h defined in equation (3.7), we find that

|ZT,, — Aple < | T |,,0 \C. e . Now |G T [0 = (,(1) from the proof of Lemma A3. Furthermore,

|C"T,,!h = kn}ax} ||, = OJT 2y from the proof of Lemma A2. (It is important to note that
=i.. A

[6 Tl # |5 " o 3 the rows of C 7, are of length &, whercas the rows of C s are of length A(T}N.
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Thus, we find that max |ZT}:_I¢ — Apile = 0,,(1’"'”2 ). Under Conditions A/A* and D/D*, each element
k=1,..h ’

of vec(I'r(j) — [( J)) also converges to zero at rate O,,(T'” Y (¢f. Andrews 1991). Thus, the first tcrm of
equation (A12) converges at rate O,(W/T). Under Conditions A/A* and B, Lemma 2 indicates that the
AR(A) coefficients are absolutely summable for all 4, so that the second term of equation (A12) vanishes
at the rate O,(T"'? ). Finally, Condition A/A* ensures that the autocovariances are absolutely summable,
so that the third term of equation (A12) also vanishes at rate Oi,(T'”2 ). Combining these results yields

the conclusion of Lemma 3(b).

Proof of Lemma 3(c): This follows directly from parts (a) and (b} of Lemma 3, using the same approach

utilized to prove Lemma 2(c).

Proof of L.emma 4: Now following Hannan (1970, p.158), we define the matrix functions exp(?) and

log() as follows: for any Hermitian positive semi-definite matrix A, there is a unique Hermitian matrix B

such that A = exp(B), where exp(B) is defined via the exponential serics ZTZO B/ jl, and B= log(A).

Using these definitions, it can be shown that log(det(4))=trace(log(4)) for any positive semi-definite

matrix 4 (cf. Hannan 1970, p159), and that log(/ + 4) -» A as 4 — 0 (cf. Hannan and Kavalieris 1986).
Now using the results of Lemma 3, we find that Z"i‘.h = 2’1[2,, +Q,(h! T)] :

Thus, we obtain 10g(dct(i,,)) = log(del(E)) + log(dc!(z I{Zh + Op(h/?-)])) = log(det(Z))

+ tmcc[E_l(Zh - Z+0,(h/ T))] = log(dcl(Z)) + trace[E’l(Eh -z )] +0,(h/T)

since Iy approaches £ as h —» o, and I is a positive definite NxV matrix.  Finally, the conclusions of

Lemma 4 follow from the definitions of AIC and BIC.

Proof of Theorem 2: Using equation (3.5), parts (a) and (b) follow directly from Lemma 2{c)

and Lemma 3(c). Part (c) follows immediately from part (a) and Lemma 4(b).

Proof of Theorem 3: The results of Theorem 1 and Lemma 2 remain unchanged. Now let the J-th sample

autocovariance deviation d;(j) = vec(fT () - F( J)), and let the weighted sum of sample
autocovariance dcviations Dy, = fo R0 () dr (7, where the elements of each A*x1 non-random
weighting vector A¢) is uniformly bounded for all j € [-o0, +o0}. Under Conditions A/A*, D/D*, and E,
Andrews (1991) has shown that each clement of dr () converges to zero at rate O,(7"'? ), and that Dy
converges 1o zero at rate o,[(#(7)/T)'*] for h(T) = o(T*). Since the proofs of Lemmas 3 and 4 have heen
expressed in terms of weighted sums of sample autocovariance deviations from the limiting
autocovariances, these proofs can be immediately extended to the case of estimated regression residuals, in

which the extra terms are asymptotically negligible, leading dircctly to the conclusions of Theorem 3.



