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ABSTRACT
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birthdates and histories (which are younger than the censored firms) have autocorrelation
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1 Introduction

A diverse and growing literature on the use of longitudinal statistical meth-
ods to model the decisions of individuals, households, and businesses has
developed within economics. Within this literature there is a tendancy to
apply many of the same techniques to data on individuals and businesses.
Because the statistical tools should reflect the important features of the eco-
nomic decision unit modeled, failure to adapt dynamic statistical techniques
to these units minimizes some important differences between the various
types of economic entities and retards the use of techniques that are more
appropriate for one analysis unit vis-a-vis another. We can identify three im-
portant sources of variation among businesses that appear in a given sample.
First, in the initial year of the sample, firms that are already in business are
the survivors of the economic process under study. Second, firms that die
in the course of the sample are the victims of the same economic process.
Finally, the differences among active firms in a sample may be due to het-
erogeneous initial conditions, survivorship, or heterogeneous histories. These
same sources of variance are important for individuals. Although the age of
the individual is generally known, the date of entry into the labor force or a
spell of unemployment may not be known. Thus the researcher must model
the survival process or the participation decision (in the case of employment
models} and develop techniques that are robust to the economic decisions of
the individuals during the life of the longitudinal sample. With respect to
individual unemployment histories, for example, the literature on duration
modelling does exactly this.

The economic analysis of firm level decisions has not, in general, been
modeled with the same attention to the endogeneity of the survivor process
(but see Meghir and Sanders 1987, Ridder 1990a and 1990b, Theodossiou
1993 and Corres and Ioannides (1994) for other models that do address this
problem). No doubt, one reason for the relative scarcity of business unit mod-
els that address the statistical process underlying dynamic samples of firms is
the fact that such data are relatively scarce. Consequently, researchers have
used the data they have found.! With the emergence of scientific samples

IThis criticism applies, in particular, to samples of firms from private
information services like COMPUSTAT and Dunn and Bradstreet in the
United States and IFS in Great Britain. The researchers have no control



of firms it is now possible to specify statistical models that are appropriate
for a given group of sampled enterprises and to assess the consequences of
various survival processes on the properties of those models.

There is a renewed interest among economists in the micro-economic anal-
ysis of samples of firms or establishments (see Davis and Haltiwanger, 1990,
and Dunne, Roberts and Samuelson, 1989, for examples). Statistical prob-
lems abound in these studies because of the difficulty of modeling samples
with heterogeneous surviving firms (at the initial sample date), entry of new
firms, and exit of existing firms.

The problem is most evident if we consider the evolution of a firm’s em-
ployment or capital stock. These variables represent the accumulated effects
of historical decisions by the firm, the evolution of the economic environ-
ment and the noise associated with the measurement process. At any given
time, the sample of currently active firms includes only those entities that
have survived the economic contingencies for at least one year. The non-
surviving firms have been censored from the analysis. Uncritical application
of balanced panel techniques could produce very misleading statistical infer-
ences if the censored firms were those that most poorly managed the shocks
they suffered. A balanced panel systematically excludes short-lived economic
entities—those for which we expect the effects of shocks to be most evident
and those for which the consequences of public policy interventions are also
potentially very important. A sample based on currently active firms (which
need not be balanced) captures the variations associated with the birth of a
firm but misses the effects of deaths. A sample based on historically active
firms (in a given year) captures the death but not the birth effects. Most of
these problems have been recognized by the statistical agencies that survey
enterprises for the purpose of constructing economic time series like the Na-
tional Income and Product Accounts in the most developed countries. Com-
mercial databases, on the other hand, rarely specify the sampling procedure
for their data. Finally, recent scientific use of both national and commercial
firm-level data has not, in general, discussed the relation between the under-
lying sampling process of the antecedent data and the resulting analysis data
set. In this paper we use data from the French “Echantillon d’entreprises”
(see Corbel 1990), which has a specified scientific sampling structure that

over the sampling structure of the data and do not, in general, model the
SUrvivor process.



permits us to disentangle the effects of firm births and deaths from the sta-
tistical and economic processes governing the evolution of the variables in
the surveys.

In the first section of this paper we describe the methods used for con-
structing a representative dynamic sample of French firms. Next, we describe
a class of variance components models that decompose the evolution of firm.-
level variables into several components. We consider the cases of exogenous
and endogenous death for firms with complete, known histories and for firms
with unknown and potentially heterogeneous histories prior to the start of
the sample. For firms with known histories, our models decompose the mean
and variance of firm-level variables into components due to initial heterogene-
ity, heterogeneous growth rates, macro-economic shocks and micro-economic
shocks. For firms with unknown, heterogeneous histories we add two ad-
ditional components due to: heterogeneous initial conditions and heteroge-
neous evolutions of the micro-economic shocks. We show how to estimate
these components when the birth and death of firms is exogenous. Then, we
show how the endogeneity of firm deaths affects the statistical structure of
these estimates, in particular the crucial identifying role of the known histo-
ries. Finally we implement a model with exogenous births and endogenous
deaths to explain the evolution of employment, wages, profitability, capital,
and other economic outcomes.

2 The Construction of the Data

2.1 A Dynamically Representative Sample

We started with a representative unbalanced longitudinal sample of French
firms from the INSEE échantillon d’entreprises 1978-1988 (Corbel 1990). As
constructed by the division of economic studies, the 1988 version of this sam-
ple includes 21,642 firms. The sample is cross-sectionally representative in
each of the eleven years; that is, the age structure of the sampled firms is
representative of the age structure in the population for each year. Although
a complete description of the sampling plan can be found elsewhere, there
are several aspects of the design which must be understood in order to inter-
pret the statistical models below. The enterprise universe consists of every
enterprise that responded to the BIC (Bénéfices industriels et commerciaux)
in any year between 1978 and 1988. In the primary sample year, 1986, every



entreprise that completed the BIC in 1986 was at risk to be sampled with
probabilities that depended upon the size of the entreprise in 1986 and the
sector of economic activity. Firms with 500 or more employees were sampled
with probability one. Firms with less than 20 employees were not sampled.?
Firms of intermediate sizes were sampled with probabilities between 31—0 and
1 according to the size and sector. Every firm that existed in 1986 was then
removed from the universe. Complementary samples were then constructed
for each of the other years using the same sampling weights as in 1986. After
a complementary sample was drawn for a particular year all firms at risk to
be sampled that year were eliminated from the universe.

In principle, the BIC is exhaustive, however many enterprises have at least
one year of missing data between the first and last years they appear in the
BIC. From the initial sample of 21,642 firms, 8.2% were discarded for having
two missing years between the first and last year they appear. An aditional
14.9% of firms, having one year of missing data in BIC, were used in the dy-
namic sample with the missing year imputed (using the procedure described
in Appendix E). Finally, 16,645 enterprises had complete data and were used
without imputation. The enterprises that appear in the dynamic sample rep-
resent 91.8% (unweighted) of the firms in the échantillon d’entreprises and
90.4% (weighted®). The number of observations (firm-years) is 129,447 of
which 2.5% were imputed. We eliminated all data from large governmental
entreprises (the SNCF, RATP, la Poste, Air France, Electricité de France,
Gaz de France, governmental savings banks, etc.) and all data from a group
of extremely anomalous entreprises.* All told, we eliminated data for 53
entreprises, including the governmental firms.

Table 1 shows the statistical structure of the firms used in our analyses,
overall and by year of entry into the sample. Pairs of rows in the table show,
on the top line, the number of employees represented by the analysis firms (in
thousands) and, on the bottom line, the number of actual firms. There are
a total of 19,520 unique firms. The increase in the number of firms between
1978 and 1979 and the decrease in the number of firms between 1987 and

*Firms with less than 20 employees (full- or part-time) were not required
to complete the BIC until 1984.

*The weights come from the sampling plan of the échantillon d’entreprises,
described above.

4 . -
These firms had negative assets or some other gross accounting anomaly.



1988 are artifacts of the decision not to impute missing data before the first
year in which a sample firm had BIC data or after the last year. Otherwise,
the fluctuation in the number of firms represents observed fluctuation in the
number of firms in the population at risk to be sampled. The much less
important fluctuations in employment between 1978 and 1979 and between
1987 and 1988 show that the firms with missing first and last years of data
are almost exclusively very small entreprises. Firms that enter the sample
in 1978 have a heterogeneous age structure; however, firms that enter from
1979 to 1988 have a known age structure, except for the relatively minor
problem of missing BIC data in the initial year. We use as the estimated
survival rates of firms with a given year of entry into the sample the ratio of
the number firms still present in a given year to the number present in the
birth year.’

2.2 Definition of Variables

Although there are many different financial and operational variables avail-
able in our analysis file, we focus in this paper on total employment, several
compensation measures, capital, profitability and debt. From the BIC, we
used total employment at December 31 (effectif), total employer labor cost
(frais de personnel y.c. charges patronales), total gross payroll (masse salar-
iale), value-added (valeur ajoutée brute des coiits de facteurs), gross operat-
ing profit (excédent brut d’exploitation), total assets (actif) and total debt
(dettes). From the Enquéte annuelle des entreprises (EAE) we used total
compensation costs (remuneration). The variables were taken directly from
the BIC and EAE with no redefinitions and converted to 1980 francs using
the 1980 base consumer price index (for value added, gross operating profit
and all compensation variables) and the industry capital price index for total
assets.S

®For example, for firms born in 1979 the estimated survival rate to 1980

is 83%, which is the ratio of 1,015 to 1,222.
®See Abowd and Kramarz 1993 for additional descriptions of these

variables,



2.3 Summary Statistics

Table 2 presents summary statistics for each of the 8 variables analyzed in
this paper for firms that first appear in the sample in 1978. These firms
have unknown birth dates. Table 3 presents summary statistics for each
variable for firms that enter the sample in 1979.7 In our statistical summaries
and models, total employment, total labor costs, total payroll, and total
capital were analyzed in logarithms while value added, gross operating profits
and debt were analyzed as ratios to total capital. For the sample of firms
first observed in 1978, the autocorrelation structure is shown at the bottom
of Table 4. For the sample of firms entering between 1979 and 1988, the
autocorrelation structure is shown at the bottom of Table 5.

The cohort of firms observed for the first time in 1978 exhibits certain
regularities for each variable. In these surviving firms, there is an upward
trend in employment, labor costs (all measures) and total assets. Profitabil-
ity and indebtedness are constant (or slightly declining). Finally, value added
(as a percent of capital) has a strong negative trend. The variances of the
variables measured in logarithms (employment, compensation, total capital)
increase for the surviving firms whereas the variances of the ratio variables
(profitability and value-added) decline, except for indebtedness. The loga-
rithmic variables also display very strong serial correlation (much stronger
than the autocorrelation that would be due to a simple autoregressive model
with a parameter of 0.95). The ratio variables, however, display much weaker
serial correlation.

For the cohorts of firms whose birthdates are observed (firms entering
the sample in the years 1979-1988), the basic patterns in the means are sim-
tlar. Surviving firms show in upward trend in employment, compensation
costs and total assets, constant profitability and indebtedness, and declining
value-added. Like the sample of survivor firms, the variances of employment
and the compensation cost measures rise over time but the effect is much
stronger for firms observed from birth. The variances of profitability and
value added (both in ratios to capital) decline while the variance of indebt-
edness is constant. Autocorrelation patterns are similar to the firms with
unknown birth dates.

"Sample statistics for firms that enter the sample in the years 1980-1988
are materially similar to those shown in Table 3.



3 A Statistical Model for Unbalanced Panels

We are interested in modeling the evolution of firm-level variables like em-
ployment, labor costs and profitability, which display considerable autocor-
relation when measured in levels, logarithms or ratios. This autocorrelation
could be due to permanent differences in the means of the variables, perma-
nent differences in their growth rates, censoring of dead firms, autocorrelation
of macro-economic shocks and autocorrelation of micro-economic shocks. In
this section we show how to decompose the mean, variance and autocovari-
ances of these firm-level measurements into five components related to level,
growth rate, death censoring, macro-economic shocks and micro-economic
shocks. Our covariance decomposition permits us to partition the observed
autocovariance into parts due to each of these factors. We demonstrate the
identification that arises from knowledge of the age of the firms. We then
show how the birth and death of firms affects estimates of the contributions
of these components to the overall covariance structure and we propose a
general technique for analyzing these covariances that allows for very general
birth and death rates of the firms. Our model shows the importance of being
able to condition on firm age and the effects of a heterogeneous (unknown)
age structure on the resulting estimates.

3.1 The Moments of a Variable When Death is Exogenous

Consider a firm-level random variable y;; for firm j and date ¢ born at b;
(possibly censored by the start of the sample) and dead at d; (possibly cen-
sored by the end of the sample). Time is measured relative to an arbitrary
date t = 1, which corresponds to the first year of a longitudinal sample of the
firms. Firms born on, or before, ¢ = 1 have birth dates b; that are unknown.
The sample runs from ¢ = 1 to T'. Firms that die on or after the end of the
sample ¢ = T have, therefore, death dates that are unknown. We describe
now the stochastic process that governs y;,.
For the first year of a firm’s life let:

Yio; = M5 + Bi+ 6, + €51,

where y; is a random variable with the mean y and variance ¢2; §; is a
random variable with mean §, variance o3 and covariance o,z with yu;; & is



a random variable common to all firms with mean é and variance o5; ® ¢
is a random variable with mean 0 for all j and ¢, variances o2 for all j, and
serial covariances of 0 at all leads and lags for all ; and ¢; and, finally, all
other unspecified covariances among these components of y;, are 0. In the
second year of the firm’s life we have

Yii+1 = Hi + 285 + Ss 0 + €541 + p(Ys; — #5 — B — &)

where the term (yjp, — pj — B; — &) is simply €55, and p is the parameter of
an autoregressive process whose innovations are the ¢;;s.

The date of birth of firm j, b;, is also a random variable. In what follows,
we suppose that b; is independent of the random process y,; and, therefore,
is strictly exogenous with respect to y;;. In this subsection, we also assume
that the date of death, d;, is strictly exogenous with respect to y,;. The next
subsection contains a specification in which the date of death is endogenous.

We now introduce the distinction between firms with known age (§; > 1)
and firms with unknown age. First, note that age is also a random variable.
Computations on firms where age is known, that is with birth years from
1979 to 1988 in our sample, yield:

t
yie =i+ =b+ )8+ 8+ D p e (1a)
k:b,‘

for
t= bj,...,dj bJ‘ > 1

where d; is the date of the firm’s death, possibly censored by the end of the
sample and the age of the firm is ¢ — b; + 1.9 When the age of the firm is
unknown we obtain: .

0 t
Yie=pi+(E—b+ 1B+ 6+ 3 o e+ 0 e
k:bJ k=1

8In all estimation we condition on §,

®The date t = 1 indicates the first period in which firms were sampled. On
this date, our sample includes both firms that were born in year 1 (b; = 1)
and firms born before year 1 (b; < 1) with no indication as to which firms
were actually born before year 1. Thus, only firms with b; > 1 have known
birthdates and we will use b; < 1 to indicate firms with unknown birthdates.

8



or

¢
Yir = po +tBi+ 6+ > p' e (16)
k=1
for
t=1,..,d;
where .
B3 =g+ (=0 + 1B+ 0" Y o7 e = pd + p'o?
k=b,
Ki = i+ (=bi +1)B;
and
0
U? = z p_kfjk
k=b;

In order to compute the theoretical moments of the variable y;,, we must
make some additional assumptions. In particular, because our panel is unbal-
anced and includes no holes (i.e., no missing years once a firm is sampled), we
make explicit the relations among the processes of birth, death and y;,. Since
birth is strictly exogenous with respect to the p;, 8;, 8, and ¢,; processes, the
conditional distribution of these random variables, given b;, does not depend
upon b; and, thus, is identical to the unconditional distribution described
above. Similarly, in this section we treat the date of death as exogenous;
hence, the conditional distribution of these random variables given d; is also
identical to the unconditional distribution described above. We now derive
the first and second moments of y;; for the case of strictly exogenous birth
and death.

Let us consider all firms at date ¢ for which we know the date of birth
and who have one year of age, a;; = 1. Then, we can write:!°

E[yjtlﬂjt=1]=ﬂ+ﬁ+5t5ytl

The hypothesis that the expectation of ¢, is zero conditional on age is always
true for one year old firms because, with exogenous birth, the value of the

10A1l expectations are taken with respect to the distribution of the random
variable over firms. Thus, the j subscript is omitted from the expectation
functional E; in all formulas.



firm-specific error term does not affect the probability that a firm will come
into existence (and therefore be at risk to be sampled). Note that, because
we always observe a firm in its first year of life, there would be no endoge-
nous censoring bias for data on the firm’s initial year of operation even if
death were endogenous. Since in the present subsection, death, like birth,
is exogenous, for all firms with the same known age, a;; = a, at date t the
mean of y; is:
Elyilajp=al=p+af+ b=y

where, again, the expectation is taken with respect to the distribution of firms
j conditional on age. Using these conditional means and maintaining the
assumptions of exogenous birth and death, one can compute the conditional
covariance structure of our process:

El(yje —y8)yss |ajs=a,s < t] =

ol+a(s—t+a)og+(s—t+2a)ous+ Z pH ol
k=t—a+1
These formulas can be extended directly to the case where the date of
birth of the firm is unknown. Recall that when age is not known, the only
changes in the formulas are the term p?, = #3 + p'v?, which replaces y;, and
the substitution of t for a;;. Therefore, the required conditional expectations
for the unknown birth date are:

E[yjtlbjs 1]=p?+tﬁ+5:-3yt
where
=E[pd |6 <1 =pu+(1-E[b| b <1))3

and
E[(yﬂ - yi)yja I b < 1 3 < t] =

"30 (sat) (S + t)O'uoﬁ + tsa'ﬁ + E pi+a-2k 3*
k_.
where o7 (s,1) is the conditional variance of p?, given b; < 1, 0,05 is the
conditional covariance between ,ug-’ and B, given b; < 1, and other terms
retain their original definitions. Finally, we note that the components of
0:°(sit) and o4 are:

aﬁo(s,t) = or;‘: + 26045 + Cgaf, + A*V[Q1 - b;) | b; < 1]

10



0 0

+pUIE[Y 3 o  enen | b5 < 1]
kb I=b;

and
O08 = Claé + oup
where
G =E[(-bj+1) b <1]
and

G = E[(-b;+1) | b; < 1]

We can restate the conditional variance of 4%, given b; < 1, in a more compact
form as:
GZ" (s, t) = Uﬁo + p(a+t)a-30

where
Oh =02+ 200u8+ Gof + BPV[(1 - b)) | b; < 1]
and
0 o
ol = B[ Y p e | b < 1]
k=by I=b,

3.2 The Moments of a Variable When Censored by Death

Let us now consider the case of an arbitrary variable y;; for a firm j born at
b; (possibly censored by the beginning of the survey) and dead at d; (possibly
censored by the last year of the survey) where death is not independent of
Y¥jt. Some of the components of y;; will, therefore, be correlated with the date
of death d;. The formulas for the theoretical moments of y;; will, therefore,
differ from those computed in the previous subsection. Unless the process
governing d; is explicitly related to yj;, the conditional means, variances
and covariances are impossible to model directly. Our strategy is to provide
very general sufficient conditions under which it becomes possible to estimate
the parameters of the above mode! when firms may die from an unspecified
endogenous death process.

Consider first that the sample starts at the same known date, t = b for all
firms j. Although the firms in the sample are observed from ¢ = b, some may
die within the period b, ..., T — 1 while others survive to T and beyond. Let
H; = (Yjb,..-, ¥;T) Tepresent the vector of potential observations. For some

11



firms, only a part of this vector is observed. For instance, if d; = d is the
date of death of firm j, then (yjs,-..,y;4) is observable but the attrition of
this firm is endogenous because d is related to the history yjs, ..., y;a. After
death, we assume that the process continues in a latent form; in other words

that y;d41, ..., y;7 follow equation (1a) but are unobservable.!
Thus, for the vector composed of both observed and latent observations:

y; = et Bia+8+(I—pN) g
Ey. =pe+fatl=m

Vy, = olec’ + ojad’ + ouplea’ +ae’) + [I — pN|™!(Diag)(of)[I - pN'|7 = E
(2)
where
e=(,..,1)d=01,2,...,T - b+ 1),_6_;- = (Ejpy--r E5T)
and
00 ... 00
1 0 0 0
N=]|01 :
: 00
00 ...10

is the “lag” matrix. When the date of birth is unknown (b < 1), equation
(2) must be modified to include the effect due to »7. More importantly, all
the parameters for firms with unknown birth dates differ from those of firms
with known birth dates due to the survival bias: we do not observe firms
that have died before the sample starts.

We now turn our attention to the attrition mechanism. For a cohort of
firms born at date b, possibly before date t = 1, attrition from the sample
is based upon the history of y: y;s,...,¥;4 and a specific random effect ajq.
More precisely we assume that there is a function Hyy, which may have
dimension larger than 1, such that the attrition rule at date d is represented
by Hea(Ysb, .-, ¥jd; @8a) = 0. The set {b,d} of firms born in b and dead in d

To make our dating conventions as clear as possible, the firm is born in
b, and we observe its outcomes for that year. The firm dies in d and, again,
we observe its outcomes in that year. For the years d + 1 and beyond the
process y;; is latent.

12



is defined as:
{b,d} = {7 | Hu(v;o; ajes) < 0 and Hovy1(Ysby ¥ip+1; jopsr) < 0 and

woo and Hyg(Yjby ooy Yi0, Yi1y ooos Yjds jba) = 0}

which can be summarized as Gyy(y;, .-y ¥jd; @5¢) > 0. Our representation
of the attrition mechanism, based on the continuing economic activity of
the firm until the date d and a random individual effect a;sq, is very general.
Notice that even if death is determined only by yq, the function Gy, because
it includes the survival from date b to d — 1, must incorporate the whole
process y;.

In this type of problem, the classical approach, a Tobit perhaps, provides
an explicit specification of the death process. However, there is no obvious
function representing such a process. To see why, note that firms can die for
at least two reasons: they are not profitable enough or they are too profitable.
In the first case, economic activity cannot go on for the obvious reasons. In
the second case, the firm may disappear because of a takeover. This makes
even the two-limit Tobit representation ackward. Furthermore, the estima-
tion procedure for a Tobit is particularly difficult to implement. Correlation
of residuals through time {due to individual random effects and/or autocor-
relation of micro-economic shocks) requires simulation procedures that are
extremely time-consuming given the large size of the sample.

We propose the following alternative to explicit modeling of the death
process. Recall that:

2_ Prob(j € {b,d})Elh(yss, ..., ys7) | § € {b,d}] = E[h(yss, -, ;1) | j € {b)]
d

where the set {b} is the collection of all firms born in year b and h(.) is
any function of the random vector Y, We use this property to model the
first and second order moments of the y, process. Instead of a complete
model for the death date, d;, we must supply a model for the moments of
the unobserved (latent) part of the y;; process i.e. for each date ¢ between
d 4+ 1 and T, conditional on death at date d. Hence, we are “a la recherche
des moments perdus” (looking for the lost moments). As we show below, a
variety of death processes are consistent with our general formulas for the
expectations of functions of the latent part of Y, We treat the lost moments

13



as missing data induced by the death process. We show, that under certain
conditions on the conditional distributions of the observable part of y;;, the
latent part and the variable a;;4, the parameters of the process described by
equation (2) can be recovered.!?

We begin with the following lemma:

Lemma 1 Let three random variables (z,y,z) with p.d.f. f(z,y,z) and with
conditional p.d.f. of z given (z,y), k(z | z,y), equal to the conditional p.d.f.
of z giveny, I(z | y). Then,

E[h(y,z)lg(z,y) = 0] = E[E(h(y, 2}|y)|g9(z,y) = 0]

Proof: see Appendix A.

To see why this lemma is useful, consider the case where the birth date
is known and suppose the death date is death d. Let y and 2 in the lemma
be, respectively, the observed and unobserved (after death) parts of Y, i.e.
Ysby 2 Yjd and Yja41,...y;T, respectively. Furthermore, suppose that z is the
random variable related to the death process, i.e.ajpq. Thus, if

E(Yida1s oo UiT | @jods Yiby -ons Y5a) = HYjagns -oos Y57 | Yiby -1 Yja) (3)

where k and [ are defined as in the above lemma; then, for any measurable
function A,

E[h(yjby - y57) | Goa(Yjbs -0 457 jba) = 0] =
E(E[R(yiss -y uiT) | Wity s 45T)] | Goa(¥iby ooes ids @jsa) 2 0)

Now if we assume that every random variable used in forming the y;; process
is jointly normal, we can recover the lost moments as a function of the ob-
served moments of the censored process y;; and the parameters of the model.

Remark: If our model were Markov, property (3) would automatically
be satisfied. However, in our model an observation at date ¢ depends upon
the observation at date ¢t — 1 but also upon the random effects y; and §; as
well as €;. Because of the structure of equation (2), however, the terms in

2Qur statistical model resembles the idea of “ignorable” missing data
models, as defined by Little and Rubin (1987) and applied to panel data
models in Verbeek and Nijman (1992) but is more general.
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€jt are not problematic, since ¢ is orthogonal to d; for t > d;. To apply the
property (3), we require that:

k(tt5s Bi | jvds Wby ooy ¥5a) = 10115, B5 | Yity oovr Y5a)

which is satisfied, for example, if p1; and B; enter the attrition rule G(..) only
through y;,.7% Two simple examples clarify the role of property (3) in the
identification of our missing moments.
Example 1
Yir = pj+€en
Yj2 = pj + €52 + pesr
i = pi+T;

where 7; is independent of pj,£;; and £;5. Let
Gu(yii ) =y —ajp >0

indicate the survival of firm j to period 2. Property (3) is not satisfied in this
model because

k(y;1, vz | e, yin) # Wyin, viz | vin)-
Example 2
yin = pj +€n
Yiz = H; + €2+ penp
ajn = 7;

where 7; is independent of p;,e;; and €j,. Let
Gu(yji;am) = yjn — ajn 20

indicate the survival of firm j to period 2. Property (3) is satisfied in this
model because

k(g1 ¥i2 | e, yin ) = Wy, viz | yin)-
Example (1) corresponds to the case where private information, say of the
managers, about the firm's u; enters the decision to shutdown or merge.

13See Verbeek and Nijman (1992) and Meghir-Saunders (1987) for a dis-
cussion of closely related issues.
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Example (2) corresponds to the case where only public or uncorrelated infor-
mation about the firm enters the decision to shutdown or merge. Note that
for neither example (1) nor (2) is the death process ignorable in the sense
of Little and Rubin, because f(y;1,¥2) # 9(¥;1,¥52 | Gi1 2> 0), where f(.) is
the joint density of y;1,y;2 and g(.) is the conditional density of y;1, y;2 given
Gn 2 0.

Suppose now that the birth date b is not observed, i.e. the firm appears
in the sample at ¢t = 1, so b < 1. Since the attrition rule Gig > 0 includes the
full history of y;, in particular, the part from the unobserved dates b,...,0,
we require some hypothesis concerning y;s,...,¥j0. To apply the property
(3) in a way that allows us to recover the lost moments of firms with un-
known birthdates, as a function of the observables and of the parameters
from equation (2), we would have to assume that:

E(Y5d41s oy U5T | Qjsdi Yibs ooy Yid) = 1{¥jda 1 s U5 | Uity s ¥5d)

Again, a first order Markov model would satisfy this property. But, due to
the presence of y; and §;, the property does not hold for the process described
by equation (2). Furthermore, even if this property held, the joint normality
assumption that we need below would not be satisfied since b; appears in the
formulas for the p? and »}. Conditional on the birth date, these variables are
normal as soon as all the variables in the y;; process are normal. But, given
the randomness of the birth process, when b; is not observed, these variables
are mixtures of normal and, therefore, not normal. In conclusion, when
the date of birth is not known, there is not a property similar to property
(3) that permits identification of the parameters of the random variables in
equation (2). In all of our subsequent statistical analyses, we consider firms
with unknown birth dates separately from those with known dates of birth.

3.3 Identification of the parameters given the birth date

Assume that (y;s,..., y;7) is 2 multivariate normal vector. Now, equation (2)
allows the computation of conditional moments of each firm j born in year
b > 1 and dead in year d as a function of the moment of the observable
period:

Ely.|lje{bd}]-m= [ zzilzg‘;?)-l ] (Elyt*j € {b,d}) — m¥)
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where bd bd  ybd
m, X1 Ip )
m = and ¥ =
( my? ) ( I =i
and y}? is the observable part of ¥;» y3; is the latent part of ¥, m;? is the

first d — b+ 1 components of m and L4 is the d— b+ 1 x d — b+ 1 northwest
part of ¥. Furthermore :

Vig, |7 € {b,d}] =

!
(0 ) * [ o |vostii e oo it
where
0¥ = ol - (ol sl
The classical properties of the conditional expectation and the conditional
variance lead to:

SPG € (0d)) | puttstth L | (B 1 € (6. - mth =0

and
) Tip41
%:P(J € {b,d}) [ Eg‘{‘(izb%)—l ]
V[t 17 € {0, dN)+ (B[t | 5 € {6, d}] - mb) ([ | 5 € {b,d}] - mi?) - 5t}

Liewr |
= 4

st | =0 “
where P(j € {b,d}) denotes the probability that j € {b,d}. For birth date
b, this relationship may be written as:

My(Ao, do) = ZP(j € {b,d})Fa(Ao, Elyy; | § € {b,d}])

where
— 2 2 2 2
AO: [#aﬁ)éls""6T:apaaﬁsauﬁapaa¢17"-aaeT )

1.e. all the-parameters of interest in the model given by equation (2}, and
do = [P(j € {6,1}),.., P( € {6,T}),Ely¥} | j € {b,1}],.... El¥1 | j € {5,1}]]

17
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i.e. all of the death probabiliies and conditional moments of ¥,

When the birth date b is not known, we write the same type of expression
as in equation (4) and include the variances of u® and @° in the vector A,.
We remind the reader, however, that the parameters in the vector Ay do not
have the same interpretation for firms with known and unknown birth dates
because the distribution of Y, is censored by the unknown birth date.

3.4 Estimation by the method of Asymptotic Least Squares

Since P(j € {b,d}) can be estimated by the proportion m,d of firms that
die at time d, E[y% | j € {b,d}] can be estimated by y”, the average of
the observable elements of y, and Vgt | 5 € {b,d}] by 8%, the empirical
variance of the observable pa.rt of y;, we obtain an a.syrnptot,lc linear model

in the terminology of Gouriéroux, Monfort and Trognon (1985). For a given
birth cohort b, we have:

. Ii_ _
Y 4 Tsd [ Eg{zgﬁl)_l ] (y - mld) w1

/!
R Lt e ] o g [
(5)
where m%¢, L%, and T% are all functions of the parameter of interest Ao
as specified in equation (2) for firms with known birth dates and equivalent
expressions, including the parameters o2 and o} for firms with unknown
birth dates, and the vector [wy;,wss}’ is the error for cohort b measuring
the deviation of equation (5) from its expected value 0. The method of
Asymptotic Least Squares (ALS ) can be performed on model (5), giving
consistent, asymptotically normal (CAN) estimates of the parameters Ao. A
more detailed discussion of the implementation of this estimation method is
presented in appendix B.

3.5 Pooling birth cohorts

We restrict our discussion to firms for which the date of birth is observable.
Let b be the date of birth and assume the birth process is exogenous. In this
case the relation among the parameters of interest is, Ag, and the observable
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probabilites and conditional moments, Ag, is given by:
M (Ao, Ao} = [M2(Ao, do), ..., MT(Ao, Xo)] = 0

Here also, it is possible to obtain CAN estimates using the ALS method.
Details of the computaton method are provided in Appendix D.

It is possible to let parameter A, be specific to one or several cohorts.
The equation (5) is specified so that first-step estimates of probabilities and
conditional variances for a given cohorts b only enter a single cohort’s M.
So, given the independence of first-step estimates between cohorts, the ap-
plication of ALS methods to pooled cohorts with some common and some
specific parameters will lead to the application of ALS separately on the
different subsets of cohorts for which parameters are constrained to be the
same. Moreover, the corresponding estimated parameters will be indepen-
dent of one another. Therefore, it is possible to test the identity of the
different parameters between subsets of cohorts.

4 Estimation Results

Table 4 presents results for all variables for the sample of firms first ob-
served in 1978 (unknown birth dates and pre-sample histories). Although
the goodness-of-fit x? statistics are somewhat large, the models fit the data
reasonably well (except for the profitability variable) considering that 29 pa-
rameters are used for 80 moments. For the payroll, compensation and capital
variables, the autocorrelation structure of the uncensored data (displayed in
the “fitted” column) is generally quite similar to the raw (but censored) au-
tocorrelation structure. For these variables, the serial correlation coefficient
p varies between 0.76 and 0.95, which accounts for only a trivial {fraction
of the structural autocorrelation after the third lag. Persistent autocorre-
lation due the effects of x; and f§; dominate the autocorrelation structure
beyond the third lag. The variability of the trend is a more important source
of autocorrelation for the compensation variables than for employment or
assets., As regards the variables measured in ratios, value added and in-
debtedness display considerable autocorrelation in the structure, with more
of the dampening one would expect from a process in which the serial cor-
relation parameter was important. Profitability, on the other hand, has a
very unusual structural serial correlation pattern, dominated by the nega-
tive correlation between the random initial condition and trend. The reader
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is reminded that the model does not fit the profitability variable well. For
all variables except value added, the variance of the structural shocks (¢} is
roughly constant.

Table 5 presents results for all variables when the birth date is observed
(entering the sample from 1979 to 1988). The model has more trouble fitting
these moments (24 parameters to fit 275 moments). The structural autocor-
relation, however, is similar for all variables (whether measured in logarithms
or as ratios): the autocorrelation is dominated by the part due to the random
initia! conditions and trend after the third lag. Structurally, then, the early
history of firm-level employment, compensation, profitability, production and
capital growth, seems to be dominated by the permanent differences among
the firms and the random trend. There is also more temporal heterogeneity
in the structural shock variances among these younger firms.

5 Conclusions

We have developed a model for decomposing the covariance structure of panel
data on firms into a part due to permanent heterogeneity, a part due to dif-
ferential histories with unknown ages, and a part due to the evolution of
economic shocks to the firm. We have shown how to implement this model
on unbalanced longitudinal data for firms which have known and unknown
ages and histories. Qur model allows the death of firms to be endogenous
and correctly handles the problems arising from the estimation of this death
process. The model is applied to detailed French enterprise data on employ-
ment, payroll, salaries, capital value added, debt and profitability. We find
that the structural autocorrelation in these variables is dominated by the the
part due to initial heterogenieity and random growth rates. Serial correlation
in the periodic shocks is less important.

The results presented here suggest that the technique is feasible and that
different firm level measurements may have very different covariance struc-
tures. Furthermore, the bias associated with unknown age structures and
arbitrarily balanced samples may be important in so far as the models are
able to distinguish between permanent heterogeneity and autocorrelation re-
lated to differential histories.
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APPENDIX A

Lemma 1 Let three random variables (z,y,z) with p.d.f. f(z,y,z) and with
conditional p.d.f. of z given (z,y), k(z | z,y), equal to the conditional p.d.f.
of z given y, l{z | y). Then,

Efh(y,2)lg(z,y) 2 0] = E[E(A(y, 2)ly)lg(z,y) > 0]

Proof:
Elh(y,z) | g(z,y) 2 0]

= P(g(:l,y)go) [ fU[g(z,y) > O0)h(y,2)f(z,y, z)dzdydz
= poease /[ He(z,y) 2 0lk(y, 2)I(z | y) f(=,y)dzdydz
= puese /S Welz,y) 2 01E[A(y, 2) | y)f(z, y)dzdy

= E[E[h(y,2)|y]]9(z,¥) > 0]
Q.ED.
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APPENDIX B

Equation (6) defines a relation between the expectation of the first step
estimates (Ag) and the parameters of interest (Ag) of the form My(Ag, Ao) =
0, which may be rewritten as:

My(Do, P, Eb(y39)) = Y PoaFoa(Do, E[y}; | 5 € {b,d}]) =0
d

where Ao = (P, Ey(y}%)), Py is the T — b+ 1 vector of P4 for d = b,..., T,
P, 4 is the probability of dying at date d given birth at date b and Ey(z) is the
vector of moments of the variable 2 conditional on death at datesd = b,...,T.

Ey(2) = [E(z | b,d)]d=bbt1,..T

Following Gouriéroux, Monfort and Trognon (1985) CAN estimates of A may
be obtained from first-step estimates A,, based on a sample of size n, through
the minimization over A of

&(A,h.) = MI(A,3)SMy(A, 4,).
More precise estimates are obtained with a special choice of S;:

axN

-1

(AO, A0)

Sy = (AO»AO)V()‘O)

where V() is the asymptotic variance-covariance matrix of Ay:
Va(ia = do) = N(0,V (X))

Given the result in Appendix C on the distribution of the estimates of the
first-step parameters, it is straightforward to compute the optimal weight

matrix Sy as:
OFy., OF) -
lz Py ( -b(/ivbd B Zd deF;d)]

where V,q is the variance of the estimation of first and second moments over
the population of firms j € {b,d}. This leads to an asymptotically normal
estimate of A:

VilBa - B0) =+ N (0 [ 0 )55 30 20)| )
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As usual, it is possible to test the compatibility of the different restrictions
imposed by the model on the first-step estimates. Under this assumption,
we have: '

. ,
&(A, ’\ﬂ) - X(dim(M,)—dim(Ao))

with
(T-64+1)(T-0b+2)

T—-b+1
+1+ 5

—2T —b+1)—4

degrees of freedom.
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APPENDIX C

This appendix proves the properties of the estimates of the first-step
parameters. Theses properties are summarized in the following lemma.

Lemma 2 Let z; and z; be two random vectors observed on a sample of N

observations. Let I and J be two subsamples with no common observations.
Let

mir = E(z1| € I),may = E(z3| € J), Py = Prob(€ I) and P; = Prob(€ J)

Then the asymptotic distribution of the estimators:

. 1 . 1 . Npo N;
Mg = 9 21, ey = == 0 225, Pr = =Py = —=
N, JXE; ! N; fe7 I N N
18 )
mir miyyJ
r‘hZJ maJg -
vN Py - Py N> o0
PJ PJ
0 Vi(z1)/ Pr 0 0 0
N 0 0 VJ(Z?)/PJ 0 0
0o {’ 0 0 Pi(1 - Fy) — PPy
0 0 0 — PPy P;(1 — Py)
where

Vi(z) = E[(z - E(z]K))(z — E(z|K))'| € K], K = 1,J

and ,
V()= — S (5= L3 5] {2 - o S 2
" Nk jex ’ Nk jek ’ ! NKjeKJ
Proof:

Let I; and J; be the indicator variables corresponding to subsamples I
and J, respectively:

I; =1ifj € I,I; = 0 otherwise
J;=1if j € J,J; = 0 otherwise
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We have
1

lzZI lE‘Z'J' N a 1
2 N &g #lifj . N £ “23Y5
M= " T Mu="1T=5FPr=53) I;,P==-%"J
957 S vl D i
and so:
( F2 ol e ) AR DT ROV ODRT, )
irz,-’:‘ E() E(”*!z,"i
DI . E(J)-hz’.xzﬂ-_s(.,nhz’.i
I S B e
 OPLALY) L ODEL Y

\ A%, 5o ) \ T, 5-E /
has the same distribution as:

( E(I)]{,—Z'.zl,'l,-—E(ZlI)},-Z:’.I, \
E(1)?

EWNk 3., 20~E(ZNE T

VN EQ) ,
¥ i1 — E(I)

\ N ZiJi — E(J) /
which is normal with variance ¥ = (¢4). Elements are given by:

1

1
=m5

E4(I)

_ Y TEED (E(xD)?] 1
= ED) [ B(I) ~ E() ] = 7 =)

o1 [(B(Daud - E(n 1Y) = E [E*(I)23] ~ E*(ad)]]
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because I? = I and E(J) = P;. Similarly we have:

022 = %VJ(Zz)

o33 = Pi(l1 — Py)

044 = Ps(1 — Py)

34 = —PiPy

012 = g EIEIDaT = E(DI)E(J)22d — E(22J)J)] = 0

o13= E,(I)E (E(I)al — E(z1)NI} = E,(”E [E(I)21] — E(2;1)1] =0
and it is obvious that the other terms are zero.

Q.E.D.

Applying the above lemma to a cohort b, we obtain the following distri-
bution for the first-step estimates:

M) ()] =

JV (0 ( Bloc]d:b,.,.,T(Pb) - PbP; 0 ) ))

0 Blocjg=s,...T (%ﬁj

where Blocjs=, i(ms) denotes the block diagonal matrix with m, as its el-
ements and P, is the T — &+ 1 vector made of Py for d = b,...,T with Py
being the probability of dying at date d given birth at date b.

When we pool the different cohorts together, we assume that the birth
date is exogenous. The limit distributions are shown here:

\/Tv[(ﬁ) () ] —
26/ p=1,..T My =11 N — oo

ksBlociaey,... 7 (Pos) — PL Pk} 0
N _ ld=b...., bR
(0, BlOCIb_l,...T [( 0 Blocld:b',._,T ('P_:,:t)
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where k;, assumed to be exogenous, is the proportion of firms born at date
b. A simple transformation gives:

Al (5). )
%b b=1,..T My jb=1,..T N = oo

N (0, Blocp=1,..1 [l ( Blocims,..1(fua) = BoFks 0 ) )])

ks 0 Blocjs,..r (4
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APPENDIX D

When cohorts are pooled estimates are obtained through the minimiza-
tion over A of:
M'(A%,2)SM(A, 7, 2)

where the optimal weight matrix S is:

oM oM !
S= [37&' (Ao, 71’0,20)1/{1 z) o _(Ao,"'ro,zo)] -
Given the expressions for the variance matrices of the full set of first-step
parameters derived in Appendix C, it is straightforward to compute this
matrix:
oM oM’ 17
S* = ['5;—(130, ﬂoyzo)V(x,z-)'aﬂ—E(Ao,vro,zo)l = Blocp=1,..7[ksS5s)

where

F,., OF -
[E Fya (Q_“évbd 7, 2+ Fy(Ao, ) Fo( Ao, 7) )}

is the same matrix defined in Appendix B.
Parameters are obtained by minimization over A of the following objec-
tive:

£(A,5,) = M(A, 7, 5)S"M(D,7,2) = 3 B My(A, 7, DS My(A, 1,2) = 3 k(A 4,)
b b

which is, therefore, a weighted sum of the objectives corresponding to each
cohort. The corresponding estimates have the following precision:

— oM’ oM™}
/N(A - o) N_.ooN( ['a_A’S'aAf] )

oM, oM, , OM,
[BA S aA'] Zk” ST

The test for the compatibility of the different equations, under the null
hypothesis of equation (2), is:

E(A,An) -

where:

2 .
X(dim(M)-dim(a))’
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APPENDIX E: The Procedure for Imputation of Missing Data

For the 2.5% of firm-year observations that were missing data, we imputed
the missing values as follows. Suppose data for y; is missing. If ¢t + 1 and
t — 1 variables are available, the basic formula is:

1
Vi = VY1 + AYeor + Z BiZis; + vt

j=—1

In the case where the following year values, t + 1, were also missing, the
formula becomes: .
ve= Ay + Eﬁ;-‘ﬂtﬂ‘ + vy
=0

If previous year values, t — 1, were also missing, the formula is:

0
Ye=7 Y41+ Z By Teq; + 07"

j=—1

The unknown coefficients in these missing data formulas (s, A’s, and 8’s)
were estimated by least squares with firm specific intercepts using all firms
in the basic DS with nonmissing data for each of the imputed (y) and condi-
tioning (z) variables. The conditioning variables in all regressions were real
value-added and total employment in year . Missing values of variables were
imputed as the conditional expectation of y; given the firm’s mean value of
y, the values of z, and the estimated coefficients. This procedure was applied
for missing values of all variables.!

Missing values of the two conditioning variables, value-added and total
employment, were imputed using versions of the above equations that ex-
cluded z, from the model. For these variables, the data from the first and
last year a firm is sampled are never missing.
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Table }

Structure of the Sample of Firma
Total Employment and Number of Firms by Date of Entry Into Sample

(1978-1988, ALl firms)
First Total Employment in Sample Firms (in thousands, 1op line)
Year in Number of Firmas (middie line) Weighted Number of Firms (bottom line)
Sample 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
All 7,998 8,134 2171 8,030 7999 7.794 7,599 7470 1373 317 7,153

11,200 11,758 11,863 11,926 11,881 11,699 11,452 11,429 11,490 11,489 10,907
62,923 66,295 67,047 67,283 66,799 65273 63377 62,836 63528 64,219 61,235

1978 71998 7,622 7384 6,949 6,707 6350 6,032 5,685 3,365 3,116 4,817
11200 10,536 10,040 9,499 9.044 8,578 8,073 7,658 7295 6,885 6,226
62,923 57,431 53,739 49951 46,716 43,336 39991 37,156 34,206 31328 28,596

1979 311 457 433 407 380 3353 331 320 39 285
1,222 1,013 932 848 k)| 701 653 613 372 503

8,353 6,803 6,076 5,232 4,599 3,992 3,550 3,208 2,856 2,392

1980 330 181 267 260 239 m 216 215 211
803 639 576 519 438 435 398 372 337

6,505 4,778 4,166 3,651 3,153 2,973 2,703 2,518 1,252

1981 367 Eral 300 273 52 218 209 193
B56 682 615 343 306 459 430 367

6,448 4,326 4,210 3,552 3,237 3,000 2,674 2,285

1982 96 33 230 209 193 172 136
731 392 510 452 420 389 333

5,859 4,381 3,758 3.199 2,914 2,669 1273

1983 51 215 203 188 178 167
624 483 443 396 362 299

5,096 3,713 3,359 2,969 2,622 2,082

1984 257 213 208 184 161
682 525 486 423 354

5.216 3,754 3,406 2,390 2334

1985 343 300 257 123
757 600 539 435

5,608 4,206 3,714 2533

1986 365 329 290
813 638 514

6314 4,869 3893

1987 349 287
879 589

7.069 4,497

1988 362
948

2,658

Sources: INSEE: Echantiton d'entreprises, BIC, EAE.

Notes: 1. Total employment is the weighted sum of employment in the sample firms where the weight is the inverse probability of selection into the
échantilion d'entreprises (Corbel 1989).

2. Number of firms is the unweighted oount of firms in the sample with the indicated characteristics.

3. Weighted number of firms is the sum of the firm weights in the sample with the indicated characieristics.



Table 2

Summary Statistics for all YVariables Used in the Covariance Models
Mcan, (Standard Deviation), Sample Size for Firms Entering the Sample in 1978

1978 1979 1930 1981 1982 1983 1984 1985 1986 1987 1988
Logarithm of Employment as of 12/31 (BIC, thousands)
-2.94 -2.90 -2.87 -2.86 -2.83 -2.82 -2.80 -2.79 -2.78 -2.76 272
0.93) (093) (094 (0.95) (D95 (0.95) (0.96) (0.96) (0.96) (0.97)  (0.98)
11,200 10,536 10,040 9,499 9,044 8,578 8,075 7,658 7,295 6,885 6,226
Logarithm of Real Total Labor Cost (BIC, millions F80)

1.34 1.44 1.48 1.50 1.54 1.58 1.60 1.63 1.68 1.73 1.78

(1.04) (102) (1.02) (103) (1.03y (1.03) (LO6) (1.04) (1.06) (1.04) (1.06)
11,200 10,536 10,040 9,499 9,044 8,578 8,075 7,658 7,295 6,885 6,226
Logarithm of Real Total Payrol! (BIC, millions F80)

1.00 1.09 1.13 1.16 1.19 1.22 1.24 1.27 1.32 1.37 1.41

(1.05) {1.03) {1.03} (1.03) (1.04) (1.04}) {1.07) (1.06) {1.06) (1.05) (1.09)
11,200 10,536 10,040 9,499 9,044 8,578 8,075 7,658 7,295 6,885 6,226
Logarithm of Real Total Payroll (EAE, millions F80)

1.19 1.19 1.20 1.18 1.20 121 1.21 1.24 1.28 1.32 1.37
(Lo1) dob (@gon (o (@101} (1.02) (1.03) (1.04) (1L.o4) (104 (1.0%)
9,841 9,542 9,188 8,778 8,414 8,007 1,577 7,188 6,849 6,471 5,853

Value Added Gross of Factor Costs/Total Assets (BIC, FS0/F80)

1.06 1.04 1.06 1.01 1.00 0.95 0.87 0.83 0.84 0.79 0.76

(0.95) (0.89) (0.88) (082) (0.8l) (0.73) (0.68) (0.65) (0.68) (0.57) (0.58)
11,200 10,536 10,040 9,499 9,044 8,578 8,075 7,658 7,295 6,885 6,226
Gross Operating Profit/Total Assets (BIC F80/F80)

0.14 0.14 0.15 0.14 0.14 0.13 0.11 0.11 0.12 0.12 0.12

039 (0.26) (0.28) (0.25) (0.30) (0.22) (0.17) (0.16) (0.16) (0.14) (0.18)
11,200 10,536 10,040 9,499 9,044 8,578 8,075 7,658 7,295 6,885 6,226
Logarithm of Real Total Assets (BIC, millions F80)

1.76 187 1.89 195 1.99 2.07 .1 225 231 2.42 2.52

(1.43)  (142) (142) (1.43) (1.44) (145 (146) (147) (149 (148) (1.50)
11,200 10,536 10,040 9,499 9,044 8,578 8,075 7,658 7,295 6,885 6,226
Total Debt/Total Assets (BIC FBO/F80)

0.79 0.78 0.78 0.77 0.78 0.77 0.77 0.78 0.78 0.76 076

(0.25) (0.22) (035) (0.22) (0.25) (0.23) (0.23) (0.45) (0.26) (0.25) (0.24)
11,200 10,536 10,040 9,499 9,044 8,578 8,075 7,658 7,295 6,885 6,226

Sources: INSEE, Echantillon d'entreprises, BIC



Table 3

Summary Statistics for all Variables Used in the Covariance Models

Mean, (Standard Deviation), Sample Size for Firms Entering the Sample in 1979

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
Logarithm of Employment as of 12/31 (BIC, thousands)

-3.40 -3.28 -3.24 -3.17 -313 -3.09 -3.05 -3.00 -2.94 -2.85

(0.74) ©.77 (0.79) (0.81) (0.83) (0.86) (0.88) (0.90) {0.93) {0.96)

1,222 1,015 932 848 771 701 653 613 5N 503
Logarithm of Real Total Labor Cost (BIC, millions F80)

0.77 1.00 1.05 1.14 1.19 123 1.32 1.42 1.49 1.59
(0.92) (0.88) 0.51) (0.93) (0.93) (1.05) (0.98) (1.00) (1.02) (1.06)
1,222 1,015 932 848 771 701 653 613 572 503

Logarithm of Real Total Payroll (BIC, millions F80)

042 0.65 0.70 0.79 0.83 0.88 0.96 1.06 1.13 1.23
(0.96) (0.89) (0.92) 0.94) (0.94) (1.05) (0.98) (1.00) (1.02) {1.05)
1,222 1,015 9312 848 771 701 653 613 572 503

Logarithm of Real Total Payroll (EAE, millions F80)

0.84 0.81 0.79 0.80 0.82 0.85 0.89 0.98 1.05 1.16

(0.86) ©.85)  (0.83) (0.84) (0.84) (0.85) (0.88) 0.89) 0.91) {0.95)
855 795 755 702 642 585 539 504 467 410
Value Added Gross of Factor Costs/Total Assets (BIC, F80/F80)

1.23 124 1.16 1.16 1.05 0.97 0.91 0.89 0.87 0.84
(1.24) (1.05) (1.07) (1.08) (0.80) (0.87) (0.74) (0.72) (0.73) (0.68)
1,222 1,015 932 848 771 701 653 613 572 503

Gross Operating Profiv'Total Assets (BIC F80/F80)

0.13 0.13 0.13 015 0.14 0.1 0.12 0.13 0.13 011
(0.41) (0.24) (0.30) {0.52) (0.21) (0.18) (0.14) 0.14) 0.16) (0.15)
1,222 1,015 932 848 771 701 653 613 572 503

Logarithm of Real Total Assets (BIC, millions F80)

1.08 1.29 1.39 1.50 1.63 1.78 1.92 2,06 217 2.30
(1.40) (1.43) (1.45) (1.50) (1.52) {1.58) (1.58) (1.59) (1.66) (1.74)
1,222 1,015 932 848 771 701 653 613 572 503

Total Debt/Total Assets (BIC F80/F80)

0.87 0.85 0.85 0.84 0.82 0.82 0.82 0.82 0.80 0.79
(0.25) 0.21) {0.22) (0.35) (0.22) 0.21) ©.21) (0.25) 0.22) {0.20)
1222 1,015 932 848 771 701 653 613 572 503

Sources: INSEE, Echantllon d'entreprises, BIC.



Table 4

Results of Covariance Model Estimation for Firms Entering the Sample in 1978

Log(Employment)  Log(Total Labor Cost)  Log(Total Payroll)*  Log(Toltal Payroll)®
Parameter Estimate Std. Error Estimate Std. Error _Estimate  Std. Emor  Estimate  Std. Error
Initial mean (p°) -2.9728 (0.0749) 15.5759 (20.4343) . 10.3946 (8.9879) 1.3476 (0.0654)
Trend (B) 0.0038 (0.0127) -0.6293 (0.5088) 0.4356 (0.2348) -0.0453 (0.0108)
Initial condition (v°) 0.0318 (0.0806) -14.3144 (204331) -9.4515 (8.9874) -0.1564 (0.0697)
Serial correlation (p) 0.8005 (0.0190) 0.9508 (0.0391) 0.9477 (0.0257) 0.7607 (0.0192)
Variance of ; (02“') 0.8042 (0.0280) 0.2704 (1.4714) 0.0267 (0.8221) 0.8736 (0.0289)
Variance of B, (%) 0.0035  (0.0001) 00013  (0.0010) 0.0011  (0.0008) 0.0007  (0.0002)
Covariance of p;, B; 0.0131 (0.0022) 00116 {0.0302) 0.0199 (0.0244) 0.0005 (0.0016)
Variance of v; 0.0946 (0.0294) 0.8491 (1.2325) 1.1263 (0.9613) 0.2463 {0.0195)
Variance of shocks
-E79 0.0407 (0.0032) 0.0322 (0.0052) 0.0391 (0.0055) 0.0400 {0.0021)
Eg0 0.0398 {0.0031) 0.0467 (0.0090) 0.0561 (0.0085) 0.0354 {0.0020)
[ 0.0354 {0.0021) 0.0447 (0.0069) 0.0472 {0.0056) 0.0314 0.0019)
€82 0.0325 (0.0028) 0.0364 (0.0058) 0.0427 (0.0057) 0.0282 (0.0016)
€63 0.0321 (0.0024) 0.0295 (0.0040) 0.0376 (0.0040) 0.0242 (0.0019)
£g4 0.0308 (0.0019) 0.0550 (0.0116) 0.0700 (0.0138) 0.0356 (0.0020)
Egs 0.0312 {0.0020) 0.0336 (0.0028) 0.0437 (0.0065) 0.0397 (0.0027)
Egs 0.0221 (0.0016) 0.031¢ (0.0045) 0.0361 (0.0048) 0.0271 (0.0028)
Eg7 0.0300 (0.0631) 0.0347 (0.0044) 0.0350 (0.0048) 0.0313 (0.0037)
[ 0.0292 (0.0025) 0.0480 (0.0135) 0.0584 (0.0300) 0.0320 (0.0035)
x? 191.72 103.35 100.87 123.16
Degrees of freedom 51 51 51 51
P-value 1.0000 1.0000 1.0000 1.0000
Senal correlations Actual Fitted® Actual Fitted® Actual Fitted® Actual Fitted®
lag 1 0.9625 09772 0.9606 0.9807 0.9603 09774 0.9746 0.9792
lag 2 0.9411 0.9541 0.9354 0.9602 0.9352 09533 0.9570 0.9587
lag3 0.9276 0.9303 0.9209 0.9388 0.9208 0.9283 09416 0.9400
lag 4 0.9108 0.9054 0.8567 0.9167 0.8977 0.9025 0.9283 0.9235
lag § 0.9053 0.8791 0.8965 0.8942 0.8974 0.8764 0.9203 0.9091
lag 6 0.8934 0.8516 0.8547 0.8714 0.8568 0.8503 09117 0.8965
lag 7 0.8816 0.8229 0.8628 0.8486 0.8540 0.8245 0.9022 03855
lag & 08742 0.7934 0.8474 0.8259 0.8465 0.7993 0.8942 0.8756
lag9 - 0.8614 0.7632 0.8483 0.8036 0.8453 0.7749 0.8885 0.8666
lag 10 0.8499 0.7327 0.8390 0.7817 0.8177 0.7515 0.8790 0.8581

(continued)



Table 4 (continued)

Results of Covariance Model Estimation for Firms Entering the Sample in 1978

VA/Assets Operating Inc/Assets  Log(Total Assets) Debt/Assets
Parameter Estimate Std. Error Estimate Std. Error  Estimate Std. Error  Estimate  Std. Efror
Initial mean (%) 0.9771 (0.0174) 0.1265 (0.0089) 3.1976 (0.2174) 09114  (0.0440)
Trend (B) 0.0254 (0.0057)  0.0053 (0.0033) -0.2338 (0.0243) -0.0190  (0.0064)
Initial condition (+*) 0.2944 (0.0661) 00353 (0.0559) -1.5538 (©.2170) 0.1354  (0.0462)
Serial correlation (p) 0.1684 (0.0153) 01069 (0.0133) 0.7742 (¢.0173)  0.7738  (0.0248)
Variance of (o’,’) 0.7498 (0.0288) 0.1128  (0.0068) 1.9033 (G.0462)  0.0357  (0.0045)
Variance of f; (crz,) 0.0027 (0.0004) 0.0058 (0.0005) 0.0027 (0.0002)  0.0011 (0.0001)
Covariance of ;. §; -0.0291 (0.0029) -0.0257 (0.0018) -0.0052 (0.0021) -0.0014  (0.0002)
Variance of v; 7.1906  (1.3266) 2.1693 (0.5703) 0.2273 (0.0233) 0.0288  (0.0041)
Variance of shocks
[ 0.1237 (0.0079) 0.0217 (0.0011) 0.0485 (0.0018) 0.0110  (0.0006)
£g0 0.1282 (0.0119) 00549  (0.0036) 0.0472 (0.0024)  0.0026  (0.0002)
[ 0.1144 (0.0078) 00418 (0.0030) 0.0458 (0.0021)  0.0061 (0.9010)
Eg2 0.1303 (0.0109) 00445 (0.0041) 0.0446 (0.0027y  0.0029  (0.0002)
€43 0.1003 (0.0113) 0.0295 (0.0016) 0.0453 (0.0023) 0.0015  (0.0002)
£g4 0.0619 (0.0072) 0.0052 (0.0007) 0.0446 (0.0028) 00076  (0.0009)
Egs 0.0459 (0.0060) 0.0082 (0.0008) 0.0414 0.0027) 00109  (0.0018)
[59Y 0.0641 (0.0099) 0.0052 {0.0005)  0.048] (0.0031) 00123 (0.0016)
€87 0.0394 (0.0054) 0.0064 (0.0009) 0.0509 (0.0038) 00207  (0.0033)
[ 0.0439  (0.0071) 00128 (0.0038) 0.0551 (0.0045) 00126  (0.0020)
x? 194.56 455.23 219.74 167.77
Degrees of freedom 51 51 51 51
P-value 1.0000 1.0000 1.0000 1.0000
Serial correlations Actual Fitted® Actual Fitted® Actual Fitted* Actual Fitted®
lag 1 0.8206 0.8414 0.2202 0.6491 0.9837 0.9857 0.8478 0.9057
lag 2 0.7842 0.7903 0.25%4 0.4477 0.9721 0.9719 04751 0.8124
lag3 0.7747 0.7724 0.2371 0.1488 0.9609 0.9588 0.6825 0.7239
lag 4 0.7118 0.7580 01757 -0.2333 0.9510 0.9463 0.5765 0.6431
lag 5 0.7122 0.7412 02318 -0.4984 0.9454 0.9342 0.5676 0.5715
lag 6 0.7015 0.7207 02764  -0.6266 0.9353 0.9223 0.5079 0.5093
lag 7 0.6938 0.6963 0.2879  0.6870 0.9263 0.9104 0.2479 0.4560
lag8 0.6348 0.6678 0.2911 0.7179 0.9177 0.8985 04108 0.4105
lag9 0.6704 0.6355 0.1960  0.7352 0.9130 0.8863 0.3852 0.3717
lag 10 0.6062 0.5996 0.1204 0.7457 0.9046 0.8740 0.4405 0.3385

Sources: INSEE, Echantillon d'entreprises, BIC, EAE.
Notes: a. from BIC. b. from EAE. ¢. accounting for endogenous death. All models include 10 time effects.



Table §

Results of Covariance Model Estimation for Firms Entering the Sample in 1979-88

Log(Employment)  Log(Total Labor Cost)  Log(Total Payroll)*  Log(Total Payroli)®
Parameter Estimate Sid. Error Estimate Sid. Error  Estimate Std. Error  Estimate  Std. Error
Initial mean () -3.5014  (0.0107) 06318 (0.0147) 02706 (0.0153) 07391 (0.0150)
Trend (B) 0.0279 (0.0018) 00312 (0.0027) 00318 (0.0028) 0.0037  (0.0023)
Serial correlation (p) 0.6581 (0.0313) 0.6762 (0.0263) 0.3506 (0.0100) 0.8543 (0.0244)
Variance of (GJP) 04194 0.0164) 0.6600 (0.0217) 0.6465 (0.0226) 0.6177 (0.0196)
Variance of B, (c%) 00026  (0.0002) 00077  (0.0005) 00005 (0.0000) 0.0077  (0.0006)
Covariance of p, ﬂ) 0.0105 (0.0011) -0.0198 (0.0017) -0.0066 (0.0013) -0.0224 (0.0014)
Variance of shocks
€g0 0.0265 (0.0057) 0.0218 {0.0038) 0.0233 {0.0034) 0.0485 (0.0053)
[ 0.0317 {0.0032) 0.0269 {0.0024) 0.0104 (0.0011) 0.0430 (0.0041)
€42 0.0278 {0.0024) 0.0247 {0.0021]) 0.0130 (0.0019) 0.0384 (0.0026)
€n 0.0220 (0.0022) 0.0229 (0.0020) 0.0121 {0.0013) 0.0336 (0.0025)
€44 0.0240 (0.0019) 0.0235 (0.0015) 0.0129 {0.0011) 0.0336 (0.0023)
Eas 0.0212 (0.0014) 0.0227 (0.0016) 0.0163 {0.0015) 0.0319 (0.0020)
€86 0.0176 (0.0013) 0.0193 (0.0013) 0.0185 (0.0015) 0.0341 (0.0021)
€q7 0.0190 (0.0016) 0.0273 (0.0020) 0.0134 0.0017) 0.0335 (0.0023)
Egz 0.0179 (0.0017) 0.0289 (0.0025) 0.0000 (0.0000) 0.0358 (0.0025)
x? 606.95 982 57 1042.84 532.03
Degrees of freedom 251 251 251 251
P-value 1.0000 1.0000 1.0000 1.0000
Serial correlations Actual Fitted® Actual Fitted® Actual Fitted® Actual Fitted®
lag ! 0.9151 0.9693 0.8792 0.9735 0.8831 0.9849 0.9472 0.9634
lag 2 0.8856 0.9439 0.8535 0.9439 0.85% 0.9788 09071 09225
lag 3 0.8399 0.9189 0.8231 0.9084 0.8291 0.9751 0.8895 0.8768
lag 4 0.8263 0.8916 0.7761 0.8667 0.7832 0.9717 0.8655 0.8270
lag 5 0.8251 0.8613 0.7001 0.8201 0.7125 0.9679 0.8586 0.7742
lag 6 0.8156 0.827¢% 0.7483 0.7704 0.7545 0.9634 0.8526 0.7200
lag 7 0.8226 0.7919 0.7542 0.7194 0.7595 0,958} 0.8417 0.6659
lag 8 0.8042 0.7538 0.7412 0.66%0 0.7490 0.9520 0.8335 0.6132
lag 9 0.7954 0.7147 0.7108 0.6202 0.7181 0.945] 0.8306 0.5628

(continued)



Table § (continued)

Results of Covariance Model Estimation for Firms Eotering the Sample in 1979-88

VA/Assets Operating Inc/Assets Log(Total Assets) Debt/Assets
Parameter Estimate Std. Error Estimate Std. Error  Estimate  Std. Error  Estimate  Std. Error
Initial mean (u) 0.9983 {0.0171) 0.1265 (0.0090) 0.9685 (0.0220) ¢.83810 (0.0043)
Trend (B) 0.0032 {0.0021) -0.0158 (0.0015) 0.0198 (0.0043) -0.0002 (0.0609)
Serial correlation (p) 0.2207 {0.0226) 0.7071 (0.0067) 1.0131 (0.0053) 0.6421 (0.0148)
Variance of (cz,.) 0.6238 (0.0259) 0.0081 (0.0005) 1.5944 (0.0453) 0.0341 (0.0620)
Variance of B; (c%) 0.0027  (0.0002) 0.0069 (0.0004) 0.0000 (G.0000) ©G.0012  (0.0001)
Covariance of w;, p; -0.0231 (0.0015) -0.0001 (0.0002) -0.0261 (0.0027) -0.0011 (0.0002)
Variance of shocks
Ea0 0.1581 (0.0234) 0.0062 {0.0004} 0.0982 (0.0184) 0.0027 (0.0602)
£ 0.0858  (0.0098) 0.0026  (0.0001} 0.0927  (0.005%) 0.0084  (0.0010)
€52 0.1618 (0.0107) 0.0050 (0.0003) 0.0843 (0.0065) 0.0028 (0.0002)
€43 0.0873 (0.0092) 0.0039 {0.0002) 0.0732 (0.0041) 0.0031 (0.0002)
€ga 0.0404 (0.0027) 0.0039 (0.0003) 0.0669 (0.0046) 0.0078 (0.0006)
[ 19 0.0305 (0.0028) 0.0038 (0.0002) 0.0483 (0.0033) 0.0058 (0.0004)
Eg6 0.0424 (0.0041) 0.0036 {0.0002) 0.0564 (0.0031) 0.0051 (0.0004)
Eg7 0.0309 (0.0031) 0.0033 {0.0004) 0.0456 (0.0027) 0.0025 (0.0001)
€42 0.0221 (0.0030) 0.0064 {0.0006) 0.0538 (0.0027) 0.0020 (¢.0004)
x? 618,94 1088.26 695.74 562.96
Degrees of freedom 251 250 250 250
P-value 1.0000 1.0000 1.000¢ 1.0000
Serial correlations Actual Fitted® Actual Fitted® Actual Fitted® Actual Fitted*
lag 1 0.8188 0.9132 0.3717 0.7713 0.9698 0.9765 0.6458 0.9118
lag 2 0.7233 0.8864 0.3037 0.6653 0.9499 0.9528 0.5383 0.8377
lag 3 0.6320 0.8695 0.0270 0.6073 0.9276 0.9290 0.3637 0.7683
lag 4 0.6969 0.8513 0.2985 0.5726 0.9213 0.9051 0.5090 0.7027
lag 5 0.5949 0.8290 0.0936 0.5508 0.9038 0.8813 0.5075 0.6421
lag 6 06989  0.8019  0.2507 05362 09002  0.8574  0.5601  0.5874
lag 7 0.6921 0.7702 0.3159 0.5262 0.8918 0.8336 0.4602 0.5387
lag 8 0.6622 0.7341 0.2331 0.5189 0.8880 0.8099 0.468]1 0.4958
La_g 9 0.6561 0.6943 0.0627 0.5135 0.8867 0.7864 0.4707 0.4581

Sources: INSEE, Echantillon d'entreprises, BIC, EAE.
Notes: a. from BIC. b. from EAE. ¢. accounting for endogenous death. All models include 9 time effects.



