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1. Introduction

Simultaneous Equatibns Models (SEM) are often used to characterize causal relationships
in econometrics. In spite of the central role that the SEM plays in theoretical discussions of
econometric modelling, as an empirical tool the model appears to have important limitations.
First and most importantly, one must have valid instruments. Second, identification in the SEM
appears to be tied to linearity of the structural equations and to the assumption of constant
coefficients. For example, the textbook rank and order conditions are defined for linear models
with constant coefficients.

Linearity of all relationships in the SEM is clearly not essential for identification.
Kelejian (1971) pointed out that linearity of reduced-form conditional expectations is not required
for identification of structural equations, nor does it render conventional two-stage least squares
(2SLS) estimates inconsistent. But the analysis of non-linear structural equations is more
complicated and the non-linear SEM is almost always presented with fixed coefficients and
additive error terms in the structural equation. For example, Amemiya's non-linear 25LS
estimator (Amemiya 1974) is designed for a model of this type and most of ‘the recent work on
non-parametric simultaneous equations models imposes an additive error structure.'

Linear models with constant coefficients are more convenient to estimate than non-linear
models, and non-linear models with additive errors are more tractable than a general non-linear -
model. Applied researchers often view these restricted models as approximations to richer
models allowing for non-linear and heterogeneous response functions. We show that in principle

this interpretation is correct, with the caveat that for a given set of behavioral relationships, the

'Examples include Hausman and Newey, 1995; Newey, Powell, and Vella, 1994; Newey
and Powell, 1989; and Roehrig, 1988.
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nature of the approximation varies with the choice of instrument. In particular, we show that
additive errors and a parametric functional form are not necessary for conventional IV or 25LS
estimators to identify interesting aspects of the structural relationships of interest in a general
non-linear SEM. For example, given a supply shift that is excluded from the demand equation,
conventional instrumental variables techniques identify a weighted average of the derivative of
a time-varying heterogeneous demand function. This generalizes recent results on average
derivative estimation (Stoker 1986; Powell, Stock, and Stoker 1989) to models with endogenous
regressors,

There are two components to the average derivatives discussed here. First, there is
averaging along the length of a nonlinear response function. Second, there is averaging of the
function derivative as the function shifts from period to period (or market to market). An
important feature of our approach is the weighting function underlying IV estimates can be
computed and used to describe which part of a heterogeneous and time-varying demand function
is being captured by the estimates.

The ideas in the paper are illustrated using data from the Fulton Fish market in New
York City to estimate the average elasticity of demand for fresh fish sold in this wholesale
market. These data were first analyzed by Graddy (1995). This example is useful for our
purposes for two reasons. First, weather conditions at sea appear to provide valid and powerful
instrumental variables that shift the supply curve for fresh fish. Second, Graddy’s analysis
suggests that white and Asian buyers at the Fulton market have different demand functions and
enter the market in different proportions from day to day. The market demand function is

therefore likely to exhibit time-varying heterogeneity generated from a changing customer mix.



2. Demand and Supply Functions

We begin by summarizing a framework for nonparametric demand analysis. The particular
relationship of interest is the aggregate demand for fish at the Fulton fish market. The
theoretical demand and supply relationships consist of functions showing what the quantity
supplied or the quantity demanded would be for any price, including (but not only) the observed
price. These relationships are denoted by

¢, z, ) )

q{p, z,x); fort=1,...T.

The subscript t can be thought of as indexing distinct markets in a cross-section or indexing
days, as in our time series application. The scalar covariates z and x are candidate instruments
because they shift the supply and demand curves.

System (1) describes what quanti.ty demanded and quantity supplied would have been in
period t if consumers and producers had been confronted with prices p, and shift variables z and
x. Since only ¢¥(p,, z, X)) is actually observed and it is not possible to change history, we say
that q%(p, z, X,) is potential quantity demanded at p#p, This representation of the demand and
supply functions generalizes the usual linear SEM, in which potential quantities are linear and
parallel functions of price. A typical linear system is

Pz, X)) =g+ op + 0z + X + ¢

qi(p, z, X) = By + Bip + Bz + Bx + 1,
where ¢, and 1, are scalar error terms assumed to be independent of z, and x,. Here shifts in the
demand and supply curves are solely attributable to the additive error terms, as illustrated in

Figure (1a) for a demand curve without exogenous covariates.
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A more general version of the SEM allows for non-parallel shifts in demand and supply,
while maintaining linearity for changes in quantity demanded and quantity supplied:

Q(p, 2, X) = o + onp + auZ + ayx +

QUp, z, X) = Bo + Bup + Baz + Bax + n
Two demand curves corresponding to this case are illustrated in Figure (1b). Such non-parallel
shifts could be a consequence of aggregation if, for example, the market demand elasticity
depends on the ethnic mix of buyers each day (see, e.g., Stoker 1993).

The nonlinear generalization of the linear SEM, as analyzed by Amemiya (1974) and
Newey and Powell (1989), is

4.z, 0 =4P: %0+«

Q@ z.x) =94 % x) + 0
As in the linear SEM, in this case shifts in demand and supply are parallel, as illustrated in
Figure (ic). Roehrig (1988) discu.sses sufficient conditions for this model to be
nonparametrically identified. Note that additivity of the error terms means that the average (over
periods) demand function is non-stochastic and equal to q'(p, z, 0.

Finally, allowing for non-additive error terms gives:

qi®@, z, X) = 9P, 2, X, &), (22)

qi@®, z, ) = 9@, Z, X, N- (29
System (2) allows for both non-linear changes in quantity demanded and non-parallel shifts in

demand, as illustrated in Figure (1d). This error-term formulation can approximate system (1)

se of additive errors in an otherwise non-linear model is a not an innocuous restriction
because the functions q*(p, z, ) and g*(p, z, x) are not conditional expectations.
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arbitrarily well because the error terms can be thought of as containing information about
changing function shapes as well as random shifts in position.

Note that the concept of an average slope has two components in system (1) or (2).
First, there is the average slope along the length of a non-linear demand curve within periods.

Second, there is the average slope across demand curves at a given- price.

2.1 The interpretation of potential demand

Rubin (1990) traces the notion of potential outcomes in statistics to Jerzy Neyman's
discussion of “potential yield" in agricultural experiments. Similarly, we view potential
quantities demanded and supplied as quantities that could have been revealed by experimental
manipulation of prices on day t. The interpretation of simultaneous equation models as
describing potential or counterfactual realizations that could be revealed by experimentation
appears to originate with Haavelmo (1944):
"When we set up a system of theoretical relationships and use economic names for the otherwise
purely theoretical variables involved, we have in mind some actual experiment, or some
design of an experiment, which we could at least imagine arranging, in order to measure those
quantities in real economic life that we think might obey the laws imposed on their theoretical
namesakes. (Haavelmo, 1944, page 6; italics in original.)
In economic terms, such an experiment would generate movement along a given demand or
supply curve.’ Note that Haavelmo’s interpretation of simultaneous equations models does not

require the relationships of interest to be either linear or parallel. Even in linear models, time-

varying composition effects could occur as a consequence of aggregation (Stoker 1993.)

For more on this point, see Heckman (1992, p. 879-880), who interprets Haavelmo’s
discussion of demand equations as “defining and determining counterfactual states of the
economy.”
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2.2 Instrumental variables in a non-parametric model
We begin with two preliminary conditions:
Assumption 1. For all (p,z,x),
a {ldp, 2. ) 4@z X P T Xt =10y T} is a stationary ergodic sequem;e
with finite first and second moments.

b. The functions g(p, z, x), Q(p, Z, X) are continuously differentiable in p.

The purpose of Assumption 1a is to facilitate inference and to be precise when using stochastic
concepts to discuss identification and inference. Assumption 1b guarantees that the concept of
an average derivative is well-defined.

Initially, z, is taken to be a binary instrument with positive probability of being either
zero or one. The conditions that makes z, an instrument for the effect of price on quantity
demanded are:

Assumption 2.
a. (independence) For all values in the support of (p, Z, X), 2, is jointly independent of
the pair of functions {q%(, z, X), qi(Ps Z, x)} given x,.
b. (exclusion) For all p,
qp, 1, x) = qi(p, 0, x) = ¢, x)-

¢. For some periods,

@, 1, x) # @, 0, x).

Assumption 2a is equivalent to independence of the instruments and structural errors in the
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standard linear SEM. Casting the independence assumption in terms of potential outcomes in
this manner is a version of the ignorability concept discussed by Rubin (1978). Ignorability of
instrumental variables is discussed in Angrist, Imbens and Rubin (1995).

To estimate the elasticity of demand for fish at the Fulton fish market, we use weather
conditions at sea to construct instruments for prices. The first part of Assumption 2 requires
that these weather conditions be “as good as randomly assigned,” conditional on covariates. In
other words, weather conditions should not be related to the quantity of fish that would be
demanded or supplied at any p,z combination given x,. As a consequence, comparisons of
average prices on stormy and clear days and comparisons of average quantities on stormy and
clear days provide an unbiased estimate of the causal effect of weather conditions on prices and
quantities.

Assumption 2b requires that the instrument be unrelated to quantity demanded through
any mechanism other than prices. In the linear SEM, a similar condition is typically imposed
through zero restrictions on structural coefficients or through the rank and order conditions on
the reduced form. In our application, the exclusion restriction requires weather conditions at
sea to be unrelated to dealers’ willingness to buy fish at a given price, or to the number of
dealers transacting at the Fulton market. This is a strong assumption that could be violated if,
for example, weather conditions at sea are correlated with weather conditions on shore and shore
weather affects market demand. Another problem is that buyers might try to use knowledge of
weather conditions to obtain market power, For example, if buyers know that the weather has
been good for fishing, they could try to collude and obtain a lower price.

Assumption 2¢ requires the instrument to have an effect on quantity supplied, at least
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some of the time. The instrument will then affect prices through the reduced form. Maintaining
the first part of Assumption 2 (independence), it is straightforward to test whether weather

conditions affect prices and quantities.

3. Identification

We focus on the demand equation and begin by considering the identifying power of a
binary instrument. Suppose that z, = 1 to indicate stormy weather conditions at sea and z, =
0 otherwise, and suppose that Assumption 2 holds with x, equal to a constant. Given this
modification and the exclusion restriction, the demand equation can be written qi(p) and the
supply equation can be written qi(p, 2)- The observed price, p,, is assumed to clear the market
so that

qiP) - ailpy 2 = 0.

This equilibrium condition defines the reduced form for a binary instrument as follows:

Assumption R1. For all t, there are unique numbers py and p;. such that:
qi(Po - 9i(Pas O) = 0 &)
9Py - @ 1) = 0.

This implies that it is always possible to find a unique equilibrium price given z, = OQor

z, = 1.4 We can express observed prices in terms of potential prices as follows:

sSufficient conditions for this are: upward sloping supply, downward sloping demand, and
continuous differentiability of demand and supply functions in prices.



P = h(z) = pa + (P - Pz (@)
The potential prices, pn and p,,, play a key role in our interpretation of simple IV estimators.
Note that p,, and p,, are random variables independent of z,, even though the observed price, p,
= pa + (P - Pz is clearly not independent of z,, Also, only one of the potential prices is

actually observed in a given period.

3.1 The Wald Estimator

The IV estimator using z, and a constant as an instrument for a regression of quantities
on prices is the ratio of the covariance of (z,, q,) to the covariance of (z, p). This is the Wald
estimator based on comparisons of observed quantities and prices under different weather

conditions:

[Etzrchf Elzl] - Izt( 1 -Z!)q(/ Et( 1 -zl)]

oo =

[Lzp/La) - {(E(1-2)p/E(1-2)] .
Given Assumption 1, we can apply the ergodic theorem (e.g., White 1984, page 42) to show

that &, o converges (as T -> oo) almost surely to «; o where

Elq| z=1] - Elq,| z=0]
)

M0

Elp| z=1] - Elp| 7z=0] .
Our first identification results concern the nature of o, Provided the instrument
potentially leads either to an increase in prices in all periods or to a decrease in prices in all

periods, a, o can be shown to be a particular weighted average of the derivative of the demand
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function, dqi(p)/dp.® The idea that a binary instrument has a monotone impact on prices is

captured by the following assumption:

Assumption 3 (monotonicity for a binary instrument.)

Either p;, = Po holds for all t or pyy < Pa for all t.

Without loss of generality, we assume here that p;, = Pa. This means that stormy fishing
weather in any period leads to an equilibrium price at least as high as would have been observed
if the weather had been clear in the same period. Although this condition has some testable
implications in combination with Assumption 2, it cannot be checked directly because only one
price is observed each period. On the other hand, we show in the next section that Assumption
3 is plausible and economically meaningful in a market model such as the one analyzed here.®

The following lemma shows that comparisons of expected quantities at different values

of z, are determined solely by the derivative of the demand function over the range (Po, PiJ*

Pu
Lemma 1. Elq] z=1] - Elq} z=0] = E{ § [3qi(s)/as] ds }. ©
Por

Proof. The demand function for period t can be written:

SEven if q'(p) is truly linear, say qi(p) = &, + Bp, the weighting scheme matters because
B, may differ across periods.

SImbens and Angrist (1994), Angrist and Imbens (1995), and Angrist, Imbens and Rubin
(1995) discuss monotonicity in the context of models for program evaluation. Manski (1995)
discusses the use of an ordered-outcomes assumption to bound simultaneous-equations bias in
a general non-linear model.
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P,
qt(p = qi(0) + 05 [9qi(s)/ds])ds
Pu Pa
= qi0) + {OI [8qi(s)/as]ds }z, + {0 § [9qi(s)/as]ds }(i-z)

By virtue of Assumption 2a (independence), the random variables (q%(0), [3q%(s)/35), Pu» Po)

are jointly independent of the realized value of z,. Therefore,

Efq| z=1] - Efq,| z,=0] =

Pu Pa
E{ § [dqi(s)/aslds - | [9qi(s)/as]ds }.
0 0

Using Assumption 3, which requires p,, = py, completes the proof. O

Lemma 1 means that regardless of the marginal distribution of prices, comparisons of
average quantities conditional on z, are informative about the slope of the demand curve only
over the range of price variation induced by the instrument. «,,, normalizes this comparison
by the difference in average prices conditional on the instrument. The following proposition
shows that for periods where prices are affected by the instrument, this normalized comparison

is a conditional weighted average of the demand curve slope over the range [pa, Pu:

Proposition 1. Let F,(p) be the CDF of p,, and let Fy(p) be the CDF of p,. These CDFs are

time-invariant by virtue of Assumption 1 and the definition of p,, and p,. Then,

- -]
o = [ E[3qi(s)/ds] py = 5 > palu(s) ds, M
0

where

w(s) = [Fols) - F(VE@| z=1) - E(p| =01,
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o0
with § w(s)ds = 1 and w(s) 2 0 for all s.
0
Proof. The proposition is established by evaluating the right hand side of (6). Note that

Pa o
E{ I‘ agi(s)fas ds } = E{] [3qiGVas)l(p, = s > pa)) ds },
Pa 0

where 1(p,, = 5 > Po) is an indicator for py less than s and p,, at least s.
"I'akjng expectations of [3q}(s)/ds)(1(p,. = s > pw] inside the integral gives
E[3g%(s)/3s| pu = 8 > PollFo(s) - Fi(s)],

since, under monotonicity, Pr{l(p, = s > po) =1] = Fy(s) - Fy(s). Note also that monotonicity
implies the numerator énd denominator of w(s) are both positive. It remains to show that m(;)
integrates to 1. Note that the denominator is:

Elp.| z=1] - E[p,| z=0] = E[p.] - E[pal.
Using the fact that the mean of a positive random variable is the integral of 1 minus the CDF,
we have oo

E[p\J - Elpa} = Oj [Fo(s) - F,(s)]ds. g

Proposition 1 characterizes the two types of averaging implicit in IV estimation. First,
the IV estimate reflects a conditional average slope at each price, E[3qi(s)/3s| pn = 5 > Pol-
This average is computed for fixed s, using the conditional distribution of dq¥(s)/ds given py, =
$ > pq as the demand curve shifts. The statement p, = S > Po meEans that the instrument

pushes the price from being less than s to being at least s.” Conditional averaging across

Because p,, and p, have continuous support, the statement p,, = s > pq is equivalent to
the statement p,, > s > pa.
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demand curves includes only those periods where this occurs. Second, the IV estimate reflects
weighted averaging along the length of a nonlinear demand curve as price varies. The weights,
w(s), are proportional to how likely each price is to be bracketed by instrument-induced price
.change;. The probability of bracketing is given by Pr(p,, 2 s > po). Points never bracketed
by p, and po are not reflected in IV estimates. Section 3.3 develops this interpretation of
Proposition 1 further using examples.

Given Assumption 1 (stationarity and ergodicity), time series data on prices can be used
to estimate w(p) as a function of p and to test whether the CDF of prices is affected by the
instrument. We also note that the weighting function can be used to provide a partial check on
Assumption 3 (monotonicity.) As noted above, when assumption 3 holds, w(p) must be positiw‘:.

In other words, the CDF of prices must be ordered by values of the instrument.

3.2 Sufficient conditions for monotonicity

The monotonicity condition applies to the reduced form for prices. To illustrate what
this condition means for the structural equations, suppose first that the supply and demand curves
are actually linear with constant coefficients and additive error terms:

Qi) = o + ap + ¢

QP 2) = By + Bip + Bz + n, ®
Provided, a, differs from 8,, the reduced form for prices is:

P = [Borad/ (o8] + [B/(e-8))z + [(need/(cx-B1)],
with

P = {(Borao)/(e-B)] + [(nr-ed/(ar-B1)],
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P = [Bor-ed/ (=B + [Bof(ay-B)) + [(n-edf (B0}
This linear system necessarily satisfies monotonicity because #;, «;, and §, are constant
parameters. Thus, if py > Pa for any t (the price is higher on day t if it has been stormy), then
Pn = Po for all t,; and if pyy < Pa for any t, then p,, < Po for all t. The usual scenario for a
supply and demand system is that demand slopes downwards (o, < 0) and supply slopes
upwards (8, > 0), which guarantees that p,, and p, are unique. In that case, a negative supply
shock (8, < 0) means p,, > po foralit. A positive supply shock means p,, < pq for all t.

The following proposition provides sufficient conditions for a general time-varying,
norlinear system to satisfy monotonicity with py, 2 Po
Proposition 2. p, = Pq if:

a. For all p between py and p,,, 3qi(p)/3p < 0 and dq'(p, 1)/dp > O, that is,

demand is downward-sloping and supply is up_ward-sloping.

b. Q'Po 1) < Q(Pa, 0), that is, z, always indicates a negative supply shock at pa.

Proof. For some numbers py and p,, both between p;, and py, We have:

alpw = P + (39i(Pa)/3P)(P - Po) (9a)

qPw 1 = @i 1) + @qPw 1)/3P)Py - Po)s (9b)
by the mean value theorem. Also p,, and pq are defined so that

Q@Y - P 1) =0 (102)

qi(pod - 1Py ) = 0. (10b)

Therefore, using (9) to substitute for qi(p,) in (10a), using (9b) to substitute for qi(py,, 1) in

(10a), and subtracting (10b) from (10a), we have

(344P)/P) Py - Po) - [41Par 1)-2iPo B - (BGi(Pwr 11/3P)Pu - P = 0,
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or
[(84%(P)/3P) - (3Gi(Pw, 1)/OP)I(P1 - PW) = Qi(Pa» 1)-qi(Por, 0).

This implies p,, = py because [qiPas 1)-qi(Pa, 0)} and [99%(pa)/3p-3qi(p,, 1)/3p are both

negative given the conditions of the proposition. ]

The conditions required for Proposition 2 seem reasonable in the context of a market
model. In particular, a researcher may often be prepared to assume that demand curves slope
downwards and supply curves slope upwards.® The notion of an unambiguous supply shock also
seems uncontroversial, at least in this context where supply shocks are due to bad weather,
Finally, we note that Proposition 2 gives sufficient but not necessary conditions for a4 to be
a meaningful average derivative. Violations of monotonicity need not be disastrous for IV
estimates. (Monotonicity is obviously not required for identification if 3q{(s)/ds is constant for
all s and t.) In general, the bias of IV estimates involves a trade-off between heterogeneity of
the response function and violations of monotonicity in the reduced form. This trade-off is

explored in an evaluation example by Angrist, Imbens, and Rubin (1995.)

3.3 Examples

Two examples are used to illustrate the role played both by nonlinearity and (time-
varying) heterogeneity in determining the nature of «,  under Proposition 1. In particular, we
discuss how a;, is related to the population average demand function, Elq(p)], and its

derivative. First, suppose that potential demand is given by a non-linear but fixed functional

*This point motivates the approach in Manski, 1995.
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relationship with the only source of time-variation coming from an additive error term (as in
Roehrig, 1988, and Figure lc):

Qi@ = ') + « (1
In this case, the average demand function is E{q’(p)] = q’(p). We have:

Qo
Ao = { [9q°(s)/ds]w(s) ds. 12)
0

“Thus, when the demand function can be written as invariant across periods except for an additive
error term, a,o is a weighted average of the slope of the average demand function, aq;’(s)las.
In this case, the demand slope at each price involves no averaging because it is assumed to bg
the same each period. But the weights ranging over s reflect how likely the instruments are to
shift the price from below s to at least s.

Now suppose that potential demand is linear but time-varying:

Qp) = an + o + &
The average demand function for this model is E[q(p)] = Elaa) + ElayJp. As noted by Stoker
(1993), such a model could arise as the consequence of aggregating linear demand functions that
differ across groups in the population (e.g., Asian and white buyers at the Fulton fish market,
who appear to have different demand elasticities; see Graddy 1995.) Changes in the average
demand slope over time would then be attributable to changes in the distribution of the
characteristics of individuals coming to market.

It is easiest to simplify «,, in this case using Lemma 1:

plt
E{q,| z=1] - Elq,| z,=0] = E{ § [0qi(s)/9s] ds } = E[o(py - P]
Pax '
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Therefore,

o = Elay(py - PW)E[Py - Pol-
This is generally not equal to the slope of the average demand curve, E[a;]. Note that in this
case, there is averaging across periods even though the within-period demand slope is assumed
to be constant. |

In ihis example, periods when p,-p is largest are likely to be over-represented in ory .
If such periods are not characteristic of the demand relationship in the future, perhaps because
groups most affected by the instrument are not particularly important in the aggregate demand
relationship, then o, o may be of little value for predicting the impact of exogenous price changeg
in the future. Of course, if a, is independent of (p; - Po)» then oy = Elay]. This i.s
unlikely, however, unless a, is actuaily constant. Note that for any linear demand equation:

a0 = Eloy(Py - POVER: - pud = Elend + Covley, Pu - Pol/E[Py - Pol- (13)
If the supply curve is also linear, as in equation (8), then (py, - Po) = By/(ay - B)) and the
previous equation simplifies to:

oo = Eloy] + B.Covl[ay, (- B)'VED, - Pad > Elor,d-
Note that 8, < 0, Cov[ay, (o - 8)"'] < 0and a, <0. Therefore, a, o is smaller in magnitude
than the average elasticity, E[a,]. The intuition for this is that when | @] is high (demand is
elastic), the price gap p,.-Pa, Which weights each estimate, is small. «, therefore weights high
elasticity periods less than E[aJ.’

The two examples in this subsection illustrate two features which link a, o to the source

A similar link between an underlying behavioral model and the intcrpretatiqn of IV
estimates is made by Card (1994) in a survey of IV estimates of the retumns to schooling.
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of variation captured by the instrument. The first example shows that when the underlying
response function is nonlinear, more weight is given to points on the response function where
Pr{p,. = s > Dol is large. These are points that are most likely to be bracketed by an
instrument-induced shift in prices. The second example shows that even if the underlying
response function is linear, the weight given to the slope coefficient for any period is
proportional to the difference between p,, and py in that period. Thus, o, is not necessarily
useful for characterizing the impact of an exogenous price change that is rarely bracketed by [pa,
p.] or expected to occur in an environment where py-Po is small.

Whether or not the unique features of «,, are restrictive must be considered on a casg
by case basis. For example, if a researcher is prepared to assume that the demand relationship
is nonlinear but unchanging except for additive shocks, then oy, should prove useful for
forecasting the impact of exogenous price changes iq a range that is commonly between p,, and
Po. A useful estimate of this range is likely to be given by {E{pol, Elp,]}. We also note that

the quality of an instrument i.e., the magnitude of the first-stage relationship) affects this range.

4, Continuous instruments and discrete covariates

This section discusses estimates computed using continuous instruments of the following
type:
Assumption R2. z has continuous support on [0, o) and Elp} z] is a continuously

differentiable function of z.

Assuming non-negative z is convenient for some of the derivations that follow and involves no
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loss of generality because we can always work with a transformation that has this property (e.g.,
exp[z].) We continue to assume that the only element of x, is a constant.

The reduced form associated with a continuous instrument is derived from the potential
excess demand function, e(p, z), defined as:

Qi 2) - Qp, 2) = &(p, 2). (13)

We also impose some technical restrictions:
Assumption R3. For all values in the support of (p, z) and for all t:

a. q(p, 2) and qi(p, 2) are continuously differentiable in z.

b. de/op # 0.

Note that continuous differentiability of E[q,| z] is implied by assumption R2 in combination
with R3. Given R3, the potential excess demand function determines an equilibrium price
function in period t, h(z), satisfying:
e[h(z), z] = 0.
The function h(z) is the implicit reduced form. For observed prices and quantities, we have:
P = h(z)
q = qi(h[z]) = g(z)
Therefore,
Elp.| z=2] = E[p| z] = E[h(z)]
Elq| z=2z] = Elq| z] = E[qi(h[z])] (14)
We emphasize that, as with the structural equations, h(z) and g(z) are random variables giving

potential prices and quantities for evefy possible value of z in period t.
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Finally, we define monotonicity of the reduced form for this case:
Assumption 4 (monotonicity for continuous instruments.) At each possible value of the

instrument, z, either h/(z) = O forall tor h/(z) < 0 for all t.

Assumption 4 restricts the sign of the derivative of the reduced form at values of z other than
the observed z,. ‘This extends Assumption 3 to the case of continuous instruments and has the
same testable implications. Like Assumption 3, it cannot be tested directly because h/'(z) is
observed only for z=z,, Note that monotonicity requires only that at each z, either h/(z) = 0
for all t or h/(z) < O for all t. But this implies that the instrument can be re-ordered and
redefined so that h,'(z) = O for all t and z. For the purposes of the next section, we assume this

has been done,

4.1 Use of E[p,| z] as an instrument

This estimator is efficient for a homoscedastic regression model in the sense that it attains
the efficiency bound for conditional moments estimation of the constant-coefficients
homoscedastic model. In practice, E[p,| z] is unknown but can be estimated parametrically or
nonparametrically (see, e.g., Newey 1950). Estimation of the reduced form does have
implications for the calculation of standard errors. Formulas for asymptotic standard errors of
IV estimates under the assumptions in this paper are developed in the appendix.

The estimator of interest in this section is:

ag = E{ qQ[E@.| 2) - p,] }

E{ p[E(| 2) - 1] },
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where p, is the mean of p,. At this point, we define the analog of a Wald-type parameter for

a conlinuous instrument, defined at each value of the instrument:

Elq| z] - Elq] z-v]
a(z) = lim
w0 Elp| z] - Elp| z-v] .
This is the population Wald estimate associated with a small change in z. It is related to the

slopes of the demand curve and reduced form by the following lemma:

Lemma 2. o(z) = (PE{q.| z)/82)/(3E[p,| z)/3z) = E{ [3q¥h[z]))/ap)] - [h/(x)] VEM,'()].

Proof. The first equality is immediate from the definition of a derivative, the second equatity

is a consequence of equation (14). O

Thus, a(z) is a weighted average of the slope of the demand curve at price h(z). The weights
in this case range over the distribution of h(z) for fixed z, and are given by the derivative of the
reduced form relationship (which varies with t). Note that «(z) is not defined for values of z
at which E(h,(2)]=0. Also, periods in which h/(z)=0 do not contribute to alz).
Proposition 3 characterizes op:
®

Proposition 3. ag = | a(s) w(s) ds,
where °

w(s) = Var{E[p| s}}" %

{Elp| % = s - Elp| % < s]) - Prlz = s](1-Prlz = s)) - E(h/O

and where s is an integrating variable for z, with «(s) = (3E[q,] s)/3s)/(FE[p,| s}/9s), as defined
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in Lemma 2. The weight function, «(s), is non-negative and integrates to 1.
zZ,

Proof. E[q,| z] = Elq] z=0] + OS (3E[q,| s)/9s) ds.

Therefore, E{ qE(p.| z) - #,) } = E{ E(q.] DIEQ@} 2) - 1)} =

Z
E{ ((I) dE(q,| s)/3s ds) (Elpi| z] - #p) }
® 1z,
{ (§ 9E[q s}/ds ds) (EIpi| z] - u,) 1(z)dz,
0 0

where 1(z) is the density of z. Changing the order of integration gives

[+ - I <] .
= OI § (Elp| 2] - p,) r(z)dz, (IE[q,| 5)/ds) ds
s
= § (EIp| z = s] - p)Pr(z, = S)IE[q,| s)/ds) ds.
0

Using the fact that p, = E[p,| z, = s]Pr(z, = s) + Elp.| z < s)[1-Pr(z, = s)}, we have
Ep| z = 5] - g)Pr(z, = s) = Elp| z = sl - Elp} z < s)Prlz = s)(I-Pr{z, 2 s)).
Finally, using the previous lemma to substitute for dE([q,| s}/ds completes the derivation of the
numerator of w(s). An argument similar to this can also be used to show that the numerator
integrates to Var{E[p,| z]}, thereby proving that the weighting function integrates to 1. The

numerator is non-negative because Pr(z, = s) > 0 and because monotonicity implies h/(s) =

0 and (Elp,| z = sl - Elp| z < s]) = 0. u

Proposition 3 shows that IV estimation using E[p,| z] as an instrument produces 2

weighted average of average causal derivatives calculated at each value of the instrument.
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Values of the instrument getting more weight are those close to the median (where Pr[z, > s)(1-
Pr(z, 2 s]) is largest) and those where the instrument is most strongly related to the price. In
particular, values of z, where the reduced form has a slope of zero do not get any weight.
Finally, we note that sufficient conditions for monotonicity to hold in the continuous-
instrument case can be obtained directly from the imbliéit function theorem. These conditions
are similar to those in Proposition 2, with the modification that restrictions on the supply shift

are cast in terms of the derivative of the supply curve with respect to z.

4.2 Incorporating covariates

Conditional on discrete covariates, the problem of interpreting IV estimates is as outlined
above, For example, the primary covariate of interest in our application is day of the week.
Although weather conditions do not vary systematically with day of the week, there is substantial
residual variation in quantities and prices, perhaps due to demand fluctuations, that can be
reduced by conditioning on day of the week. Controlling for day to day variability could
therefore lead to more efficient estimates of the parameter of primary interest. Non-parametric
conditioning on discrete covariates is one approach discussed by Stoker (1986, p. 1470) in his
work on average derivative estimation. Examples of IV applications where all covariates are
discrete include Angrist (1990), Angrist and Krueger (1991, 1992), and Imbens and van der
Klaauw (1995).

When covariates take on many values, non-parametric conditioning can lead to many
imprecise estimates. It is therefore of interest to consider the probability limit of the

instrumental variables estimator in models that allow for a changing intercept but fix the price
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coefficient across covariates. The following is adapted from Angrist and Imbens (1995):

Proposition 4. Let D(x] be the {* row from a design matrix constructed from indicator variables
for each value of a discrete covariate, X,. Consider the 2S].S estimate computed using
E[p,| x. 7] as an instrument for p, in a regression of g, on D[x]} and p,. The estimator for the

coefficient on p, is:

Opys = E{q(Elp/| x. 2] - Elp] X.])}_ 5)
E{p(Elp.| x. zl - Elp| xD}
= Efa(x)0(x)]
E[6(x)]
where 8(x) = E{EIp,| x, zJ(Elp:} x, 2] - Elp| x| xJ and
a(x) = E{q(E[p| %, 2] - Elpd xD)| x}

E{p(ElP.| x. ] - Elp.| x| x}-
Proof. Equation (15) is immediate from the definition of 2SLS and the fact that the reduced
form is a saturated model for discrete regressors. The weighting formula can be established by

iterating expectations. ' O

Note that a(x,) is the 2SLS estirﬁatc constructed using E[p,| x,, z] as an instrument ip a
population where x, is fixed. Proposition 4 therefore says that 2SLS estimates of the coefficient
on a single endogenous regressor in a mode! with dummy variable covariates is a weighted
average of the 2SLS estimates conditional on the covariates. The weights consist of the variance

of E[p| X, z] conditional on the covariates. In some cascs, Elp.| x, z] may be well-
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approximated by a linear regression on D{x] and z,. In such cases, the estimator described in

the proposition corresponds to 25LS without interaction terms in the instrument list.

4.3 Relationship t6 average-derivative estimators

Stoker (1986) hand Powell, Stock and Stoker (1989) also explore strategies for the
nonparametric estimation of average derivatives. Stoker (1986) shows that for a conditional
expectation function Ely| x] = g(x), where x has density f(x), using -f'(x)/f(x) as an instrument
generates a consistent estimate of the average derivative of g(x). Similarly, Powell, Stock, and
Stoker (1989) develop estimators based on the fact that,

Cov[f' (x),yl/Cov{f'(x),x] = E[f(x)(dg/dx))/E[f(x)].
In other words, the density-weighted average derivative of an unknown regression function can
be obtained by using the derivative of the density of regressors as an instrument for a regression
of y on x,

Powell, Stock and Stoker (1989) focus on kernel estimation of the unknown density
derivative, f'(x), and on obtaining standard errors for the resulting instrumental variables
estimate. The results in these papers are principally motivated by a desire to estimate index
coefficients since, if g(x) = G(x'x) for some function G(*) and coefficient vector «, any weighted
average derivative is proportional to «. Neither paper is concerned with models involving
endogenous regressors. An implication of our results is that the average-derivative property
underlying the Stoker and Powell, Stock, and Stoker papers is a general feature of IV estimates.
In this case, however, our interest in average derivatives is not tied to an underlying index

model. Rather, average derivatives are viewed here as a causal parameter for an unknown
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heterogeneous response function involving endogenous regressors.

5. Application: The demand for whiting at the Fulton fish market

We illustrate the average-derivative interpretation of IV estimates by estimating the
average elasticity of wholesale demand for fresh whiting at the Fulton fish market in New York
City. This application is useful for our purposes because strong and credible instruments are
available in the form of weather conditions at sea. The quantity of fish brought to market is
determined by many factors, but the weather is a primary force in influencing how much fish
will arrive since wind and waves make it difficult to catch fish.

Fish is .sold by about 35 different dealers at the Fulton market, although only six of the
deaters regularly sell whiting. There are no posted prices, and each dealer is free 1o charge a
different price to each customer. Dealers can leave the Fulton market and new dealers can rent
stalls, although in practice this happens rarely and did not happen over the sample period. The
buyers at the Fulton market generally own retail fish shops or restaurants.

Whiting is a good choice for a study of the wholesale fish market because more
transactions take place in whiting than almost any other fish. Whiting also vary less in size and
quality than other fish. Finally, there is probably very little substitution between whiting and
other fish. Whiting is a very cheap fish in large supply that is oily and distinctive tasting.
Other fish would rarely be sold at a low enough price and in sufficient quantities to be attractive
to retailers or restaurants as a substitute for whiting,

The data used in Graddy (1995) were obtained from a single dealer who supplied his

inventory sheets for the period December 2, 1991 through May 8, 1992, Total price and
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quantity for each transaction are recorded on the inventory sheets. These data are supplemented
by data that were collected by direct observation from the same dealer during the period April
13 through May 8, 1992. For this study, the prices and quantities are aggregated by day, for
the 111 days the. market was open between December 2 and May 8. The price variable used
below is the average daily transaction price for the dealer observed. The quantity variable is

the total quantity sold by this dealer on each day.

5.1 The nature of the wholesale demand for fish

Every day the demand for fish at the Fulton Fish market is determined partly by which
customers have decided to visit the market that day, as well as by how much they buy. A
number of customers visit the market every week on Mondays and Thursdays, and other
customers may visit the market every day of the week. Quantities purchased by individual
wholesale customers with potentially different demand functions are summed up to produce the
daily aggregate demand for fish. Aggregation is therefore one source of time-series shifts in
potential demand. For example, Graddy (1995) presents evidence which suggests that Asian
buyers have a more elastic demand for fish than whites and that the ethnic mix of buyers
changes from day to day.

We begin our analysis with a demand function for the quantity demanded by customer
c on day t:

(i, ).

The subscript ¢ ranges over the list of customers who ever visited the Fulton Fish market during

our sample peried (¢ = L, . . ., ). We define potential demands in terms of /np so that price
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changes are in percentage terms. As before, x, is a vector of covariates shifting demand.

To distinguish between the average daily price and the price paid by a particular customer

at a particular time, we write

Inp, = Inp, + In(p,/p) = Inp, + v,
where p, is the average price on day t. Total quantity demanded is the sum of customer demand
(including zeros for customers who make no purchases on a given day, for whom p,. is the price
that would have been quoted if they had gone to market at the usual time):

QUnpy, »y, - - - nici X) = I, qi(Inpt; x).
The potential demand at average log price Inp is defined as

q(inp, x) = QUnp, wy, . . ., ¥ici X).
Thus, q,(Inp, x) is the sum of customer demands at some hypothetical average log price, given
the same intra-day, intra-customer dispersion in prices.

Assumption 2 requires that q(/np, x) be independent of the instruments. We must
therefore assume that given p,, who comes to market and what time they make their purchase
is independent of weather conditions at sea. To clarify the nature of this assumption, suppose
that on days in which the weather forecast at sea is particularly bad, customers arrive at the
market earlier than usual. Since arrival times are associated with differences in price quotes (see
Graddy, 1995), such behavior could lead to a violation of the assumptions underlying the use
of the average daily price as a "sufficient statistic” for quantity demanded.

The object of estimation (the estimand) is the IV estimate of « in the following

equation:

Ing, = v, + Xy + ainp, + &, (16)
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where g, is the quantity sold on a particular date, v, is a constant, X, is a vector of dummy
variables for different days of the week, v, a vector of coefficients, and p, is the average price
at date t. The interpretation of the estimated « is given by Proposition 1 or Proposition 3.
Thus, £, is defined as '(lnq‘ - 7o - X7 - alnp)), where vy, v, and o are the probability limits of
IV estimates. £, is not a structural error term or the deviation from a hypothetical conditional
expectation. The double-log format is chosen for (16) so that the IV estimates will be
immediately interpretable as an average elasticity. We emphasize that equation (16) is a
computational device, and not an assumption about the shape of demand functions.

Including dummy-variable covariates gives the IV slope estimate the interpretation of §
variance-weighted average over days. In practice, the empirical results show that the estimates
are not affected by inclusion of these dummies, suggesting fairly homogeneous demand from day
to day. A second set of important covariates in demand analysis is the price of substitute
products, in this case, the price of other types of fish. Such prices are not included as covariates
because of the apparent lack of substitution between whiting and other types of fish.

As noted above, equation (16) is the equation we would like to estimate, In practice, we
only have data on prices and quantities for a single dealer, out of the 6 dealers that carried
whiting at the Fulton Fish market at the time Graddy's (1995) study was carried out. Let qq
denote quantity sold by the dealer providing information. By definition,

Inqy = Inq, + Inss 1Y)
where s, is the reporting dealer’s market share. Provided weather-related supply shocks affect
all dealers equally, IV estimates using /nq, as a dependent variable will be the same as those

using Inq, as a dependent variable. Such an assumption seems innocuous but is clearly essential.
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5.2 Reduced form and 1V estimates

Table 1 reports reduced form estimates of the relationship between prices and quantities
and weather conditions. The duymmy instrument, Stormy, indicates wave height greater than 4.5
feet and wind speed greater than 18 knots. A second dummy instrument, Mixed, indicates wave
height greater than 3.8 feet and wind speed greater than 13 knots if Stormy equals zero. Wind
speed and wave height are moving averages of the last three days' wind speed and wave height
before the trading day, as measured off the coast of Long Island and reported in the New York
Times boating forecast.

The reduced form results show that Stormy is a statistically significant determinant o{
both the price and quantity of fish sold at the Fulton market. Stormy weather decreases th-e
quantity and increases the price. The covariates are not significant in the price equation, but
they do show that the quantity purchased on Tuesday and Wednesday is significantly less than
that purchased on other days of the week. The coefficients on Mixed and Stormy are increasing
in absolute value, but the coefficients on Mixed in the quantity equations are not significant.

Columns (4-6) of Table 2 report IV estimates using Stormy as an instrument, and
columns (7-9) report 2SLS estimates using both Stormy and Mixed as instruments. For
comparison, columns (1-3) report the corresponding OLS estimates. IV and 2SLS estimates of
the price coefficient are almost twice as large as the OLS estimates (with much larger standard
errors as well). The price coefficients are all statistically significant, and change very little when
exogenous covariates are included in the regressions. This reflects the fact that the instruments
are essentially orthogonal to the covariates. The estimated standard errors are slightly smaller

when two binary instruments are used instead of just one. The fact that the 2SLS estimales are
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typically a bit larger than one is noteworthy because profit-maximization with an element of
collusive behavior on the part of dealers should generate transactions in a range where demand
is more than unit elastic (see, e.g., Bresnahan, 1989).

Table 2 also reports estimates of equations that include controls for shore weather
conditions in case weather conditions at sea are not a valid instrument by virtue of correlation
with weather conditions on shore. The variables characterizing shore weather are Cold,
indicating temperature less than the median average daily temperature (41.5 degrees) and Rainy,
indicating any precipitation on day t. Including Rainy and Cold in the estimation has remarkably

little effect on the price coefficients. These variables also appear unrelated to market volume,

5.3 The weighting function for a binary instrument

The weighting function for a binary instrument is the difference in the CDF for prices
conditional on values of the instrument. We use the sample distribution function, S;(p). to
estimate the wéighting function. S.(p) is defined as the proportion of observations that are less
than or equal to p. The sample CDFs of price for stormy and clear weather conditions are
plotted in Figure 2. As required by the monotonicity assumption, the CDFs do not cross. The
difference in the two sample CDFs, normalized to sum to one, is plotted in Figure 3. This is
the weighting function underlying IV estimates using Stormy as an instrument. Figure 3 also
shows the histogram of prices. A one-sided Kolmogorov-Smimov test (see, €.g., Gibbons 1985)
rejects equality of the price distributions at the 5% level.

The CDF difference exhibits a sharp peak at the point at which price per pound is about

$1.00. The mean price per pound over all days is $0.88 and the median is $0.81, suggesting
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that days when prices were higher are contributing disproportionately to IV estimates based on
Stormy. Although Stormy provides some information on demand response over prices ranging
from $0.50 to $1.50, Figure 3 shows that the primary effect of Stormy on prices occurs in the
second and third price quartiles. These are days in which prices ranged from $0.62 to $1.19.
If the cutoff point for Stormy were at lower wind speeds and wave heights, days with lower
prices would contribute more to the IV estimates. Finally, note that comparing the IV weighting
function to the price histogram, we get an idea how a density-weighted average of the Powell,
Stock, and Stoker (1989) type would capture different parts of the demand function. Of course,
computation of a density-weighted average requires exogenous prices.

Figure 4 graphs the sampte CDF of prices in stormy, mixed, and fair weather conditions.
The CDFs are clearly ordered by weather severity, suggesting that monotonicity is satisfied for
IV estimates based on any pairwise comparison of prices and quantities in these 3 weather
conditions. 2SLS estimates using both Stormy and Mixed dummies as instruments can be

interpreted as a linear combination of such pairwise Wald estimates (Angrist and Imbens 1995.)

5.4 Instrumental Variables estimates using E[p,| z]

Figure 5 plots log price against the log of a 3-day moving average of wind speed.™ Also
shown are the fitted values from a quadratic regression of log price on log wind speed. The log-
quadratic appears to capture essential features of the relationship between weather severity and

log prices. We therefore take the log-quadratic to be an estimate of E{inp,| Inz], where z, is

"“Wind speed is reported in 5-knot intervals. In the 110-day sample used here, the wind
speed moving average takes on 21 different values.
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wind speed.

Columns (10-12) of Table 2 report 2SLS estimates of the demand equation using linear
and quadratic terms in Inz, as instruments. This is equivalent to using an OLS estimate of
Eflnp,| Inz) as a single instrument. The weighting function underlying the continuous IV
estimates is graphed in Figure 6 as a function of log wind speed. The denominator of the
weighting function is the variance of the fitted values. Components of the numerator are also
computed from the quadratic fit."! Recall that for every value of a continuous instrument, there
is an "instantaneous Wald estimate” giving the average causal response induced by a small
change in the instrument at that point (Lemma 2.) The weighting function in Figure 6 showg
which and how much each of these Wald estimates are contributing to IV estimates based (;n
E[inp,| z). The histogram of log wind speed is also shown for comparison.

Note that the weighting function in Figure 6 is conceptually different from the weighting
function in Figure 3, which refers to a binary comparison. In fact, for each of the pointwise
Wald estimates underlying estimates based on E[Inp,] z], it is theoretically possible to evaluate
a weighting function like that in Figure 3, which shows how a binary comparison traces out part
of the demand function. This weighting function would involve the derivative with respect to
z, of the CDF of prices conditional on z. In contrast, the weighting function in Figure 6
provides information on the relative importance of different values of a continuous instrument.
The fact that TV and 2SLS estimates in Table 2 are similar suggests that the response of quantity

demanded is close to unit elastic for all weather-induced price variation in our sample.

" particular, for each value of the instrument, s, E[p,| z = s} is estimated using predicted
prices from the quadratic reduced form, and E[h/(s)] is the derivative of the quadratic fit
evaluated at s.
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6. Conclusions

The interpretation of the SEM in this paper appears to be at odds with the notion that
structural modelling in economics should be directed towards identifying behavioral parameters
that are invariant across populations. For example, Lucas (1976) defines structural parameters
in econometric models as those that are invariant under hypothetical interventions in the process
generating outcomes. In contrast to this emphasis on invariance, Goldberger (1972) has defined
structural equations models as those "in which each equation represents a causal link, rather than
a mere empirical association” (p. 979).

This paper is motivated by the view that IV estimates of demand equations are interesting
because they tell us something about a causal or behavioral link, and not necessarily bﬁcaus.e
they are invariant. Causal relationships need not be linear, parallel, or invariant across periods
or markets. Moreover, causal estimates, like any statistical estimates, are necessarily tied to the
source of variation generating the estimates. In particular, our discussion of simultaneous
equations models highlights the fact that instrumental variables estimates, while capturing
important aspects of a behavioral relationship, are not necessarily structural in the Lucas sense.
On the other hand, combined with additional evidence that circumstances have not changed in
essential ways, TV estimates may be useful for forecasting the impact of future interventions.
The question of how to use IV estimates most effectively for policy-making is a natural avenue

for future research.
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Appendix

This appendix describes how standard errors for the IV estimates discussed in Section
S were calculated.'”? To simpiify notation, the analysis refers to a model without covariates.
In this case, the estimating equation, (16), simplifies to
(Al) inq, = v, + alnp, + §,
and the first-stage equation is
(A2) Inp,=Z/7 + u,
where x is a kX1 vector of coefficients and Z, is a conformable vector of instruments that
includes a constant. The reduced form error term satisfies E[Zu]=0. .
In the framework of this paper, the moment conditions that identify +, and « are:
(A3) E{§]=0
E[x'Z£]=0.
A key difference between this approach and conventional IV estimation is that we do not assume
E[Z.£,]=0 because the model outlined here does not imply that each instrument leads to the same
structural coefficients in the population. In other words, v, and a are defined as the estimators
that satisfy a just-identified IV problem using the 2SLS instrument, x'Z,. The individual
elements of Z, would not necessarily generate the same coefficient estimates if used separately.
Stacking the moment conditions for the reduced form and structural equation, generates

the following (k+2) X1 vector of sample moments:

Imbens and Rubin (1995) develop a Bayesian approach to IV inference that can lead to
more accurate inference than conventional asymptotic approximations.
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(UDE, W(Z; Yo, @, 7)=0

where
r =
l (I"ql “ Yo - al"pl) ‘
YW(Zy vo @, *) = | ='Z(inq, - y,-alnp) |
|L Z(Inp, - Z/ ) J

There are k+2 parameters to be estimated so that this is a just-identified GMM problem,
regardless of the number of instruments. The fact that the o which satisfies the structural-
equation moment condition changes with the vector of reduced form coefficients, x, means that
estimation of x will generally affect the limiting distribution of a.

Using the heteroskedasticity and autocorrelation consistent covariance matrix estimator
suggested by Newey and West (1987) for GMM problems of this type, we can estimate the
asymptotic covariance matrix of 8= (v, o, 7) as

¥ = (UT)[A'BAY]

where
A = (IIT)E, ay,(6)/30
L
B=Q,+ T (1-/L+D)Q + )
j=1
and
T
ﬂj = (I/T) E ‘I’|(o)¢vj(0)'-
t=j+1

In practice, a lag length of L=5 was used to calculate the reported standard errors. The tables
show conventional OLS and IV standard errors in parentheses and standard errors calculated as
described here in square brackets. Table 2 also shows the conventional chi-square goodness-of-

fit statistics for the IV moment conditions.
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