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1. INTRODUCTION

This paper uses asymptotic theory and simulations to evaluate
{nstrumental variables estimators of a scalar dynamic linear equation that has
a conditionally homoskedastic moving average disturbance. Equations such as
the one we consider arise frequently in empirical work (e.g., the inventorv
papers cited below, Rotemberg 1984, Oliner et al. 1992), as do related
nonlinear equations (e.g., Epstein and Zin 1991).

The conventional approach to estimating such equations is to specify a
priori an instrument vector of fixed and finite length and select the linear
combination of the instruments that is asymptotically efficient in light of
the serial correlation and (when relevant) conditional heteroskedasticity of
the disturbance (Hansen 1982). We examline two versions of this estimator, the
two differing only in the specification of instrument vector. We also
consider a single version of an estimator that begins by defining a wide space
of possible instrument vectors, and uses a data-dependent method to choose the
{nstrument vector that is asymptotically efficient in that space (Hansen
1985). In our application, we define this space in such a fashion that it
includes the first two instrument vectors. So this estimator by definition
must be at least as efficient as the other two, and in our application is
strictly more efficient.

Our aims are threefold. The first is to quantify the asymptotic
efficiency gains from using the optimal estimator, for some plausible data
generating processes. The second is to supply simulation evidence on the
finite-sample behavior of the estimators. with regard to both parameter
aestimates and test statistics. The third is to jllustrate the implementation

of the optimal estimator.
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The initial impetus for this paper came from our own and others’
empirical work with inventory models (indeed, the data generating processes
that we use in this paper are calibrated to estimates from inventory data). A
comparison of several empirical papers indicates that seemingly small changes
in specification or estimation technique result in large changes in estimates
(see Wast 1993). But such problems do not seem to be unique to inventory
applications, as is indicated by the other papers in this symposium. Also, it
is known that test statistics often are poorly sized in time series models
{see the references below, and the other papers in this symposium).

In some applications, it i{s possible to use bootstrapping rather than
conventional asymptotic theory to comstruct test statistics. But in many
applications, nonlinearities or an inability or unwillingness to
simultaneously model all endogenous variables make it difficult or impossible
to solve for decision rules or reduced forms; the absence of a tractable dacta
generating process then makes such bootstrapping problematic. In any case,
the quality of parameter estimates is important even in applications in which
bootstrapping of test statistics is straightforward.

There is therefore a critical need to understand the behavior of the
Hansen (1982) estimator that is used in much work, and to evaluate alternative
instrumental variables estimators whose asymptotic or finite-sample behavior
may be preferable. Work that has considered asymptotic properties includes
Hayashi and Sims (1982), who found that for some stylized data generating
processes, an alternative estimator sometimes yielded dramatic asymptotic
efficiency gains relative to that of Hansen (1982). Hansen and Singleton
(1988) found the same, for the optimal estimator that we, too, consider.

Some earlier work has evaluated the finite-sample performance of the
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Hansen (1982) estimator (as well as that of another estimator that we do not
consider ["iterated GMM"]}, in nonlinear and linear equations with moving
average (Tauchen 1986, Popper 1992, West and Wilcox 1994) or serially
uncorrelated disturbances (Kocherlakota 1990, Ferson and Forster 1991). This
work has found that asymptotic approximations to the finite-sample
distributions of parameter estimates and test statistics often but not always
are reasonably accurate. The nature of such discrepancies as do arise varies
from paper to paper, and seems mnot to be easy to characterize in general
terms. To our knowledge, there is no evidence on the finite-sample behavior
of the other estimator that we consider.

We find that for a sample size of 300, asymptotic theory generally
provides a tolerably good approximation to the finite-sample distribution of
parameter estimates for all three of our estimators. For the most part,
estimates are only slightly more dispersed than asymptotic theory predicts,
and are centered correctly. For a sample size of 100, dispersion ic rather
greater and centering more erratic, but the theory still provides at least a
rough guide.

In particular, then, the parameter estimates of the optimal estimator
tend to be more tightly concentrated around the true parameter values than are
those of the conventional onme. In some but not all data generating processes,
the efficiency gains from the optimal estimator are dramatic, with this
estimator having asymptetic standard errors and finite-sample confidence
intervals that are smaller by a factor of two than those of the conventional
estimator whose instruments are the variables in the reduced form of the
model.

Asymptotic theory is somewhat less successful in approximating the



4

behavior of test statistics. Consistent with the simulations in some recent
work on estimation of covariance matrices in the presence of serially
correlated disturbances (e.g., Andrews 1990, Newey and West 1994, as well as
some of the simulations in Kocherlakota 1990 and Ferson and Forster 1992), we
find that tests sometimes are badly sized. 1In one extreme case, a nominal .05
test for the conventional estimator has an actual size of about .0l even in
samples of size 10,000. Overall, test statistics for the optimal estimator
are sized as well (or poorly) as are those of the conventional estimator.

Three important limitations of our study should be noted. The first is
that our own previous work (West and Wilcox 1994), which used exactly the data
generating processes we use here, generally gave a more pessimistic picture
than do the simulations here on the distribution of the parameter estimates of
one of our two versions of the conventional estimator. We have selected for
further analysis and comparison the best performing of the estimators that we
previously studied. Taken by itself, then, this paper probably gives too
supportive an evaluation of the finite sample behavier of our estimators.
Second, we experiment with only a limited range of data generating processes.
The contrast between the results in Kocherlakota (1990) and Tauchen (1986),
both of which were motivated by the consumption-based CAPM, suggests that
results may be sensitive to changes in the data generating processes.
Finally, apart from a brief mention of asymptotic properties, we do not
consider maximum likelihocod estimation of the decision rule implied by our
model. While such a technique is feasible and perhaps desirable in the
context of our simple linear model, nonlinearities or an inability to model
all endogenous variables makes maximum likelihood infeasible in many

applications; we use our model for simplicity, but would like te develop
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lessons that may be applicable in much broader contexts.

The paper is organized as follows. Section 2 describes the model,
solves for a reduced form that will be used to generate data and describes our
data generating processes, Section 3 describes our three estimators. Section
4 displays simulation results. Section 5 presents an empirical example.
Section 6 concludes. An Appendix contains a brief overview of the economlc
model underlying our econometric work. An additional appendix available on

request contains some material omitted from the published paper to save space.

9. THE MODEL AND DATA GENERATING PROCESSES
2.1 Model

As described in the Appendix, we consider estimation of a first order
condition from an inventory model studied by (among others) West (1986a),
Eichenbaum (1989), Ramey (1991), Krane and Braun {1991) and Kashyap and Wilcox

(1993). This first order condition may be written

E.{H, - Bi¥Xipsz - B2Kaenr - B3Sie1 - Ut = 0, (2.1)
Xypep = -biHep + (2b242b)Heyy + (2b+2)Hey - Hep
- b5y + (b242D)Syyy - (2DHD)S, + Sey,

X2t+1 - bHYA‘l + Ht‘l + bstfﬁ - Sf.'

In (2.1), S, is real sales, H, real end of period inventories, b a discount
factor, O=b<l, E, mathematical expectations conditional on information known
at time t, u, an 1.1.d. normal cost shock that is observable to a
representative firm but unobservable to the econometrician; 8;, f£2 and 8, are

parameters whose estimation is the subject of our study. In line with some of



6
the empirical work just cited, we include deterministic terms in both our data
generating processes and our econometric estimation, but suppress these terms
for the moment for notational economy.
Equation (2.1) is a first order condition for optimality in inventory
behavior. (See the Appendix and West 1993.) To close the model, we must
specify a process for sales. For simplicity, we specify that sales follow an

exogenous AR(2),

Se = $1Su-1 + $35¢.2 + €3, (2.2a)

where ¢, and ¢, are such that S, is I(0) around trend, and ¢g, is the 1.i.d.
normal innovation in the S, process. Application of standard techniques for
solving linear rational expectations models then yields the reduced form

equation for inventories (2.2b):

Hy = (A#A0Hyy - MAHy.p + 73Sy + S, + eqy, (2.2b)

where A, and A, are roots of a certain fourth-order polynomial whose
coefficients are functions of b, 8, B; and B,; =, and m, are certain nonlinear
functions of b, A;, Az, 4; and ¢,. See the Appendix.
2.2 Generating the Synthetilc Data

To generate data, we need to specify (a)the cost parameters, which are
imbedded in the 8’s in (2.1); (b)the parameters of the forcing processes,
i.e., the autoregressive coefficients of the sales process ($, and ¢;) and the
variance-covariance matrix of (u,,es.)’; {c)the coefficients on deterministic

terms.
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In all data generating processes, the discount factor b was set to 0.995
(appropriate if the data are assumed to be monthly). We experiment with four
sets of values of the 8's in (2.1); these are given in Table 1A. All are
based on studies using U.S. data of one sort or another. That the 8's
typically have a number of non-zero digits (rather than just being, say,
integers) should not be construed as indicating that it is a matter of
substance that the A’s be exactly as indicated. Rather, the 8's are nonlinear
functions of some underlying economically interpretable parameters, which we
set to be round numbers. A paragraph in the Appendix, which likely will be of
interest only to someone interested in reproducing the results of ocur study,
gilves these underlying parameters.

In Table 1, parameter set A is roughly censistenc with the estimates for
post-war aggregate data in West (1990) and those for automobile data in
Blanchard and Melino (1985), parameter sets B and C with those for post-war
two-digit manufacturing in Ramey (1991) and West (1986a) respectively,
parameter set D with those for auto data from the 1920s and 1930s in Kashyap
and Wilcox (1993).

Table 1B reports parameters for exogenous processes. The autoregressive
coefficients of 0.7 and 0.2 were chosen to match roughly the estimates of an
AR(2) around trend fit to real sales of nondurable goods manufacturing
industries, menthly, 1967-1990. The sales innovation variance of 0.120833 was
chosen so that the implied unconditional variance of sales is 1 {(a harmless
normalization). The variance of the cost shock u, and its correlation with
the sales shock eg, were chosen so that, in conjunction with the cost
parameters of parameter set A (Table 1A), the implied ratio var(H.}/var(S.)

and the implied correlation of H, and S, approximately matched that of monthly
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nondurables manufacturing industries, 1967-1990, with H, total inventories.
All regressions and instrument lists included a constant and trend.

Thus, the reduced form used to generate the data was not literally (2.2) but

S¢ = $1S;-1 + #25;-2 + constant + trend + €5, (2.3a)
Hy = (Ag#A)Hpoy - AdgHep + #35pq + mpSep + (2.3b}

constant + trend + ¢p,.

Coefficients on trend terms in (2.3a) and (2.3b) were chosen so that the
impllied coefficients of variation of AS, and AH, were each 0.2, a figure that
approximately matches estimates for monthly nondurables, 1967-1990. Because
different choices of cost parameters imply different autoregressive
coefficients in (2.3b), the coefficient on the trend term in (2.3b) varies
from data generating process to data gemerating process. It should be noted
that although the relevant empirical work typically models trends as
deterministic, this decision may not be innocucus. We do not know the extent
to which our results are applicable to systems estimated in error correction
(e.g., Kashyap and Wilcox 1993) or differenced form (e.g., West 1990); either
of these transformations would likely produce regressors distinctly less
autocorrelated than in our simulations, which in turn might have a notable
effect on small sample behavior.

A complete data generating process (DGP) is specified by combining a
glven set of cost parameters (A, B, C or D) with the sales and cost shock
processes. Given one of our four DGPs, we generate data as follows. As noted
above, the vector of shocks (u,,es,) 1s assumed to be i.i.d. normal. This

implies that H, and S, are normally distributed., We begin by drawing a vector
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of initial values from the unconditional distribution of the 4xl vector (Hg,
H.y, Sg, $-1)'. We then use (2.3) to generate 10,004 observations recursively,

Most of our experiments used a sample size of either 100 or 300, in
which case we use observations 1 and 2 fer lags, observations 103/104 or
303/304 for leads, and discard the final 10,000-104 or 10,004-304
observations. These 9700 additional observations were reserved for some
additfonal experiments, 1000 samples were generated for each data generating
process. A sample size of 300 was chosen because there are currently about
100 monthly observations available on manufacturing inventories at the
two-digit level in the U.S.. The sample size of 100 was chosen for
comparison.

Table 1C displays the implied values of the parameters of the inventory
equation (2.2b) for each of our DGPs. The values of A+i; and -X,i;, the
coefficients on inventories lagged once and twice, imply considerable serial
correlation in inventories conditional on sales (i.e., slow adjustment of
inventories to sales shocks) for DGPs A and D, mild serial correlation for DGP

¢, little serial correlation for DGP B.

3. ESTIMATING THE PARAMETERS

For algebraic simplicity, we ignore constant and trend terms throughout
this section. In the simulations, all equations and instrument lists included
a constant and a trend.
1.1 Conventional Instrumental Variables

We make the first order condition (2.1) estimable by replacing expected

with realized values and moving all variables but H. to the right-hand side:
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Hy = B1Xyee2 + BoXaen + BaSenn + Vesz, (3.1)
» X8+ Vess
Vesz ™ Wy - P1(Xyesz-EeXiesn) - B2(Xaes1-EeXorrr) - B3(Seer-EeSean),

X, ® (Xypa2,Xope1,Se01) ' B ™ (B1.82.83)".

As is typical in empirical work, we impose a value of b, which allows us
to construct X,, and X,,; the value chosen is that used in generating the data,
b=0.995. Our conventional Instrumental variables (IV) estimarcor calculates 8
linearly as follows. Let Z, be a gxl vector of instruments. Apart frem
deterministic terms, g=4 or g~12 in the Monte Carlo experiments, and Z,
consists of (q/2) lags of H, and of S,. We let "IVq" denote the estimator

(3.3) defined below, when there are q instruments:

IV4: Z, m (Hy-y,Se-1,He-255e-2) ", (3.2)

IV12: Z, = (Hp-1,Sp-1,He-20Se-2.He-3,Se-3, He-a s Spea s Heosy Sees i Heog o Seesd '

(Note that the presence of the cost shock u, invalidates the use of Hy and S,
as instruments; see (2.2).) See section 3.2 below on the rationale for use of
lags beyond those in the reduced form.

Let T be the sample size (T=100 or T=300 in most of the Monte Carlo
experiments)., Let Z be a Txq matrix whose t’th row is Z.', and, similarly let
X ={X,'] be the Tx3 matrix of right-hand-side variables, Y = [H,] the Tx1
vector of the left-hand-side variable. Given Z,, the instrumental variables
estimator that has the smallest possible asymptotic variance-covariance matrix

is
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g - (x'zﬁz'X)'IX'zﬁZ'Y, (3.3)

where G is a qxq matrix that is an estimate of the lnverse of the spectral
density at frequency zero of the gxl vector Z;Vv., L.e., the inverse of
E;F.Eztzrd'vuavuq_j. Since the cost shock w is iid, Z,v;,; is MA(2} and this

infinite sum collapses to

W o= 23 BZeZ s VesgVeea-s (3.4)

Egn-zEtht-J 4 Evt+zvt‘42_3

Ty + (Dy40y") + (Ca4l3 ')

'YoCo + "1(C1+Cl‘) + 12(Cz+C2')| 1_’ - Ev,_vt_j. Cj = EZ,_Z,,_-J' .

The scalar 7y,’s are the same for any choice of Z,; the matrix Cy's and T;’s

change with different Z.'s. The asymptotic variance-covariance matrix of
A

TH2(B-p) is then

V = (EX,Z,'WEZ.X,')"?, (3.5)

A -
We construct W as follows. Llet v,,, be the two stage least squares

residual, and let

Ty = T8l Ze 2oy’ VerrVesz-s (3.6)

for j=20. Let
m = min (10, [yI¥3])

where
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- A A A -~ A A A A

5 - 1.167(8W /BN S 25,445,, 500 = 0q+201+203,
o' T, w=(1,1,1,1)".

We set
§a (Fo + Ty [1-3/(m D) 1 (FpTyr (3.7

The weights 1-j/(m+l) guarantee that W is positive semidefinite. Newey and
West (1994) provides analytical and simulation evidence on this technique for
estimating W (although that paper did not consider truncating m at 10 or at
any bound less than the sample size; we do that here to speed computation).
3.2 The Optimal Instrumental Variables Estimator

In the textbook simultaneous equations model, in which regression
disturbances are iid, use of instruments other than those in the reduced form
would yield no asymptotic gain and possibly a finite sample penalty. That
this is not true when disturbances are serially correlated is implicitly
recognized in textbook discussions of generalized least squares (here, we
interpret OLS and GLS as IV estimators where the instruments are the
right-hand-side variables or transformations of those variables). Hayashi and
Sims (1982) pointed out that while the usual GLS estimator is inconsistent in
models with moving average errors and predetermined but not exogenous
instruments, a tranaformation similar to that of GLS can yield an estimator
more efficlent than that of Hansen (1982). More generally, Hansen (1985)
established conditions for optimality of an instrumental variables estimator
in models in which instruments are predetermined but not exogenous, and the
orthogonality condition is potentially infinite dimensional. Such is the case

in many time series models, including ours, in that any and all lags of
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predetermined variables (in our case, H, and S;) are legitimate instruments.

In our application, a smaller asymptotic variance-covariance matrix is
obtained when a larger number of lags of H, and S, is used as instruments in
estimation of (3.3). Thus, the asymptotic variance-covariance matrix of, say,
IV6 is smaller than that of IV4, and that of IV12 1is smaller still. For
models in which the disturbance follows a conditionally homoskedastic moving
average process, such as ours, Hansen (1985) provides a closed form expression
for the linear combination of instruments that emerges asymptotically as the
number of instruments used approaches infinity. Because this estimator 1is
optimal in the class of estimators that use linear combinations of lags of H,
and S, as instruments, we call it IV rather than IVe.

Let R} be the (4xl) vector of reduced form variables, R} -
(He-1,S¢-1,He-2,5e-2) ¢ (= the vector of instruments used in IV4). Write the

second order VAR (2.2) as a first order VAR in R:,
Rf = F'R{-y + €4, €2 = (€gp-1, €5¢-1,0,02 ", (32.8)

where, e.g., F'(1,1) = Aj#Xy, F'(2,2) = ¢,. Write the moving average

representation of equation (3.1)'s disturbance vy,; as
Verz = sz - Bifenr - G2y Me ™ VerE(VelVerVezo .o (3.9)

Let P* be the 3x4 matrix of coefficients of the projection of X, on R:,
E(X.|R]) = EX,R}'(ER{R{*)7'R;{ = P'R{. In our particular case, application of the
general formula supplied by Hansen (1985) indicates that an optimal set of

instruments Z; satisfies
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70 = 8,20 + 8,28, + PU(1,-6,F-8,F)7IRE. (3.10)

Any instrument vector obtained by a nonsingular linear transformation of Z; is
of course optimal as well. The population variance-covariance matrix

resulting from use of an optimal Instrument vector is

(EZeX, ') 1(W") "1(EX,Zy ') 7, (3.11)

(W) = yGp + 11(Gr+Gy’) + 72(G#Gy'), vy = Evyve.y, Gy = EZgZe "

Asymptotic standard errors may be computed from (3.10) and (3.11) in
straightforward but tedious fashion.

Observe from (3.10) that if 4, and 9, were zero, as would be the case if
v,,; were iid, the optimal instrument list would be the usual two stage least
squares one, Z; — EX,R{’ (ER;R;")7'R{, and there would be no point in using as
instruments any variables other than those in the reduced form (2.2). It
follows that if 4, and 4, are close to zero, efficiency gains from using
instruments other than those in the reduced form will be small, while if 8,
and §, are large, in the sense that one or both of the roots of 2%.8,z-8, are
near unity in modulus, such efficliency gains potentially will be large. For
each of our four DGPs, Table 2 presents ¢, and §, along with the modulus of
the larger root of z2-§,z-8,. It may be seen that this root is smallest for
DGP B, suggesting that the efficiency gains from use of IV* will be relatively
small with that DGP.

Table 3 presents the ratio of the standard errors of (1)IVg for various
q's to (2)IV*, for each of our four DGPs. Diminishing returns to use of

instruments beyond those in the reduced form set in fairly rapidly; indeed,
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when 12 instruments (6 lags each of H, and 5.) are used, the asymptotic
standard errors in all cases are within 8 percent of those of IV*¥. On the
other hand, for DGPs A, G and D, there are substantial gains to using
{nstruments beyond the 4 in the reduced form. Table 3 persuaded us to include
IV12 in our simulation analysis: in DGPs A, C and D it is much more efficient
than IV4; it is roughly as efficlent as IV* asymptotically, but may (and In
fact does) perform worse in samples of typical size than IV#, presumably
because of the large number of parameters estimated in the first stage
regression.

(It should be noted that the class of estimators in which IV* is optimal
does not include full information maximum likelihood (FIML), which gains
additional efficiency by exploiting the cross-equation restrictions of the
{H,,S,)' process. For B,, for example, the ratios of the asymptotic standard
errors of FIML to IV* are: A: 0.90; B: 0.84; C:0.69; D: 0.90. The ratios for
the other parameters are comparable. For our DGPs, then, the efficiency gains
assoclated with FIML relative to IV* are modest.)

We operatfonalize (3.10) for a given artificial sample of size T as
follows, leaving for future research evaluation of other ways of making IV*
feasible. (1)We estimate &4 different autoregressive systems in (H..S5.)" by
OLS, and use the Schwarz criterion to choose one of them. The specifications
differ in terms of right-hand-side variables in the two equations.
He-1,Se-1,He2) Heoys SeetoHeo20Se-20 HeeqrSe-iiHeezsSe-z HeosiSeeas
He-yoSp-1,H-2,Se-2,He-3, Se-3.He-i 1 Sg-a . Once we have chosen the order of the
autoregression, we write the system as a vector AR(1l)Y. Let % be the estimated
autoregressive coefficients of that system, R, the associated variables.

A
(Note that F has the same dimension as F*, and R,~R}, only when the Schwarz
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criterion chooses the correct data generating process.) (2)We then obtain P
from an OLS regression of X, on R, 31 and 32 by maximum likelihood applied to
residuals obtained from IV4. (3)Next, we use (3.10) to construct an estimate
of the unconditional variance-covariance matrix of (2;',§;ﬁ')', and then draw
(i;‘,i:l')' from its unconditional normal distribution. (4)Then we use (3.10)

to generate 2: recursively forward from t=1 to t=T,

A. A A. A A. A A A A A

Zp = 8,25 + 83283 + P(I-8,F-0,F)7IR;. (3.12)
(5)Finally, we estimate f£ as

~ 'r A. R -1 T A‘

B = (ZfayZeX," ) EeayZeH, - (3.13
3.3 Test Statistics

For our first two estimators, we construct covariance matrices and

compute test statistics in a familiar way. For example, for the conventional

IV estimator, an estimate of V (defined in (3.5)) is constructed as

Ve [(ELyX,Z,' /TW(EL 2K, /T |7 (3.14)

for ¥ defined in (3.7). Let V(i,j) be the (i,j) element of V. The

t-statistic for Hjp: 31-ﬂ1, for example, is then computed as
A A
B1-By / [V(1,1)/T]Y2, (3.15)

J-statistics, or tests of instrument-residual orthogonality, were
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computed for our first two estimators as

T'1(22.13t+22h')W(I$.1Z=Gt+2) 2 x*(q-3), (3.16)

where W was constructed as described above. The test of instrument-residual
orthogonality is not applicable for the optimal estimator, since the dimension
of the instrument vector is identical to that of the right-hand-side
variables.

For the optimal estimator, the variance-covariance matrix used in

computing test statisties was

T o (I K /TN WY T ET K 2 /T L (3.17)

In (3.17), we initially computed W' in a fashion analogous to (3.7). But the
resulting test statistics sometimes were very poorly sized. So fer B, 51 and
;2 defined in (3.12) and (3.13), we instead followed West (1994) and estimated

AQ
W as

@ - (14,4, )Y, (3.18)
~ A A. A A-. A A.
d, = ﬂg«z(zg'91za+1'8zzg+z).

A A AA A ~

A A A A
Veez ™ feez-F1Meer-020es Veez = He-X '8, no=n-1=0.

W' is positive semidefinite by construction. It may be shown that W so
defined is consistent. In estimation G, it might be of interest to apply a
computation like (3.18) (or, as a referee has pointed out, to impose

conditional homoskedasticity, or to iterate once more so that IVq residuals
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are used in estimation of 8 [see Kocherlakota 1990]). To keep the scope of
the study manageable, however, we did not, and limited our analysis of the
conventional instrumental variables estimator to the version that seems to us

to be most widely used.

4. SIMULATION EVIDENCE ON DISTRIBUTION OF PARAMETER ESTIMATES

Tables 4 and 5 present some Monte Carlo results on the distribution of
the parameter estimates, Table 4 for a sample size T-100, Table 5 for T=300.
They are organized by DGP. For each DGP the tables present results for three
estimators, IV4 (eqqations (3.2)), IVi2 (¢3.3)) and IV* (3.12, 3.13). The
"asy*" rows in each panel give asymptotic quantities for IV*, while the "asy4"”
row at the bottom of the table does the same for IV4; in light of Table 3, the
"asy*" row applies approximately to IV12 as well.

Each estimated parameter was standardized by subtracting the population
parameter value and then dividing by the IV4 population asymptotic standard
error. The population rather than estimated standard error was used because
our interest at the moment is in the distribution of parameter estimates
rather than the distribution of test statistics. According to the asymptotic
theory, the resulting quantity should be approximately N{(0,1l) for IVs4,

N(O, (o*/0,)2) for IVx, N(O, (015/0,)%) for IV12, where o%*/g, and o,,/0, are
computed from the relevant rows of Table 3. For example, in DGP A, the
asymptotic theory implies that standardizing the IV* estimate of A, in this
fashion produces a N(0,.452%) variable, where .45 = 1/(2.21); the comparable
variance for IV12 is .47% = (1.03/2.21)2.

For each of the three parameters, the columns labelled "50% CI" gives a

50 percent confidence interval constructed by dropping the largest 250 and
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smallest 250 of the 1000 standardized parameter estimates, or, for
rasymptotic”, the values appropriate for a N{0,1) variable. The difference
between the upper and lower bounds of these confidence intervals is the
interquartile range. "Median" gives the medlan of the 1000 estimates.

"Trimmed MSE"™ gives a mean squared error computed by (1l)dropping all
entries greater than 3.0 in absolute value, (2)calculating the average squared
value of the remaining observations, and (3)dividing by .9733, which is the
variance of a N(0,1) variable doubly truncated at -3 and +3 (Johnson and Kotz
1970, p. 83). We trimmed before computing the MSE because the simultaneous
equations literaturé indicates that second moments of our estimator may not
exist, since our equation has only one more instrument than right hand side
variable (e.g., Phillips 1983). The decision to truncate at 3.0 was
arbitrary; in related work, which only considered a sample size of 300 (West
and Wilcox 1994) we found little sensitivity to the exact point of truncation.

In conjunction with Table 3, we read Tables & and 5 as follows. First,
as measured by either interquartile range (width of the 50% CIs) or trimmed
MSE, the asymptotic theory underpredicts the variability of all three
estimators. The discrepancies between asymptotic and simulation are larger
for T=100 than T=300 (no surprise) and larger for f; than for f, or §; (for
reasons that are not clear to us). Of the three estimators, the asymptotic
approximation predicts variability most poorly for IV12. The trimmed MSE for
this estimator is generally more than twice the approximate theoretical figure
in the asy* row, as is the width of the interquartile range. By the same
measures, the theory does moderately better for IV¥, but better still for IV4.

On the other hand, the measures of dispersion that are probably most

relevant in practice are the raw figures themselves rather than those figures
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relative to asymptotic theory. Our second point is that in this light IV12 is
less variable than 1V4, slightly so with T=100 (Table 4), more notably so with
T=300. But IV* is notably less varfable than IV4 and IV12 for both sample
sizaes (although there are occasional exceptions).

Our third point pertains to blas. For T=100, centering of parameters is
a little erratic. While there does not appear to be a persistent tendency for
median bias to be of a particular sign, median bias is often substantial from
the point of view of asymptotic theory. In particular, if one standardizes
the IV12 estimate by its asymptotic standard deviation, rather than the IV4
standard deviation used in Tables 4 and 5, all 12 estimates have a median
value of ﬁ.-ﬁ_ that Is more than 0.4 asymptotic standard deviations, and 10
are greater than 0.5. For all three estimators, asymmetry in the 50% ClIs is
also evident in Table 4. On the other hand, Table 5 indicates that while some
problems remain, particularly with IV12, by and large the estimators are
centered correctly for T=300.

Once again, however, the measure of bias that is more relevant in
practice is that reported in the Tables, in which all parameter estimates are
normalized by the same asymptotic standard error. Our fourth point, then, is
that the IV12 estimator shows the most median bias, IV*¥ the least.

Scme of these points are clearly fllustrated in Figure 1. For T=300,
DGP A, this plots estimates of the density of the simulation estimates of the
parameters (solid lines) along with the thecretical normal density suggested
by the asymptotic theory (dashed lines). We constructed the simulation
densities using a normal kernel and a bandwidth of .27 = 1.06(1000)7%/3 =
1.06(sample size) /3 (see, e.g., Silverman 1986)). Note that while the

horizontal scales are the same on all 9 plots, the vertical scale for IV4 (row
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1) is different from that for IV12 (row 2) and IV* (row 3).

The Figure illustrates that the asymptotic approximation works best for
IV4, worst for IV12. The IV12/IV* discrepancies between simulation results
and asymptotic theory are, however, sufficiently small that either is less
disperse than is IV4. The IV4 and IV* simulation densities are noticeably
better centered than are those of IV12, The appendix available on request has
comparable figures for the other DGPs and for T=100. These tell a
qualitatively s%milar story. So, too, do estimates that set the bandwidth at
(.75)x(bandwidth in Figure 1) and (1.25)x(bandwidth in Figure 1).

Overall, then, IV12 probably shows the sharpest departures from
asymptotic theory, perhaps because of overfitting in the first stage
regression; IV4 shows the least. By our measures of variability, IV4 is
worst, IV* best; by our measures of bias, IV12 is worst, IV* best. Regardless
of how one trades off variability versus bias, then, IV* seems the best
performing estimator. With the exception of 8, for DGPs B and € for T=100 and
T=300, IV* is better than either of the other two estimators as measured by
median blas, trimmed MSE or width of 50% CI.

Table 6 presents information on the size of test statistics. Panel A
presents the size of nominal .05 tests of the hypothesis H,:8, = populacion
value, i=1,2,3, computed as the square of the usual t-statistic.
Asymptotically each test statistic is x?(1}, and the table reports the
fraction of the 1000 simulations for which the computed statistic was greater
than 3.84 (the .05 critical value for a x?(1) random variable). The
asymptotic standard error on a given fraction is [(.05)(.95)/1000}}% = 0.007.

For IV4 and IV*, tests for B, and f, typically were well-behaved for

both T=100 and T=-300 (at least by the standards of recent work such as Newey
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and West 1994!): actual sizes ranged from about .02 to about .12. For wvl2,
test statistics of B; and B, were more poorly sized, especially for T=-100
(e.g., in DGP C, both sizes were about .26). This latter result is perhaps
unsurprising, in that Tables 4 and 5 and Figure 1 indicated that the
asymptotic approximation works more poorly for parameter estimates of IV12
than for IV4 or IV,

Those tables and that figure also indicated that all three estimators
had greater difficulty estimating j, than g, or §;. Table 6 does indeed shgw
that tests on §, were generally more problematic than these on f; and §;, but
in a fashion that surprised us: IV4 and IV12 tend to reject not too much but
too infrequently. Presumably this indicates that even though the parameter
estimates are too spread out (Tables 4 and 5), the relevant entries of the
variance-covariance matrices are even more spread out, the result being
egregious under-rejection rather than egregious over-rejection. IV* suffers
from no such problem. {We conjecture that this is due more to the way the
covariance matrix was estimated [see section 3.4] than to something inherent
in the way the parameters were estimated: We repeated the Table 6 calculation
for T=300 for IV*, calculating equation 3.17's @ in a fashion analogous to
that described in equations 3.6 and 3.7. The size of Table 6's nominal .05
tests on f8;, B, and f; were: DGP A, .001, .000, .001; DGP B, .040, .037, .044,
DGP C, .023, .022, .003; DGP D, .000, .000, .001. The evidence in West (1994)
suggests that use of the estimator (3.18) might result in a similar
improvement of the sizes of the test statistics for IV4 and IV12.)

Once again, some of these points are clearly reflected in a figure, this
time the Figure 2 plot of actual versus nominal sizes for DGP A, T=300. All

three estimators reject slightly too much for B, and g, (the first two columns



23

of the Figure), as does IV¥ for f; (last column, last row). IV4 and IV12
reject much too infrequently for B3 (last column, first two rows). The Figure
shows that this applies not only to nominal .05 tests {the focus of Table 6)
but to tests of nominal sizes ranging from .0l to .25. (A referee has noted
that such statements should be interpreted with caution, since we do not
provide a p-value for statements concerning the joint behavior of tests over a
range of nominal sizes.) Analogous plots for other DGPs and for T=100 are
available in the additional appendix, and are also consistent with Table 6.

IV4 is sufficiently simple computationally that we repeated our
simulation exercise for DGP A with samples of size 10000 (relaxing the
constraint on the maximum value of the bandwidth m [defined below (3.6}] in a
fashion that insured consistency). Even here there was evidence of missizing
for one hypothesis test: the nominal .05 t-tests on f, had an actual size of
.007. (The comparable figures for B, and B, were ,048 and .048.) It seems
that for test statistics, the asymptotic approximation may work poorly even
for samples that are very large relative to those of most economic time
series.

Panel B of Table 6 indicates that J-tests are approximately correctly

sized for IV4, poorly sized for IV1Z.

5. EMPIRICAL EXAMPLE

Here, we apply the IV4, IV12 and IV* estimators to aggregate inventories
and sales of nondurables manufacturing industries, morthly, seasonally
adjusted. After accounting for lags and leads, the sample was 1967:3-1992:10.
In applying IV*, we used the procedure deseribed in section 2. including use

of the Schwarz criterion, which happened to choose R; = (Hy-1,Se-1.He-2, 80220 "
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Our aim is not to provide a reinterpretation or even a refinement of the
existing inventory literature, but merely to underscore the ease with which
the IV* estimator can be applied.

The first row of Table 7 has the IV4 estimates. The estimates of the
moving average parameter yield an implied larger root of 0.42, about the same
size as that for DGP B (see Table 2). Accordingly, dramatic efficiency gains
in going to either IV12 or IV* are not to be expected. Lines 2 and 3 bear out
this expectation. While the t-statistic on B; becomes noticeably larger, that
on B, falls and that on f§, falls for IV*, rises for IV12. Upon transforming
the estimates of the f,'s to the underlying economic parameters, we find that
two of the four underlying parameters are positive for IV4, three of four for
1v12 and IV*. Some (but not all) investigators have argued that all four
underlying parameters should be positive. See the Appendix for details and

discussion.

6. CONCLUSIONS

This paper has compared several estimators of a dynamic linear model.
For all our estimators, the asymptotic theory characterizes the distribution
of parameter estimates tolerably well. .But test statistics occasionally are
very poorly sized. The recommended estimator would seem to be the one that is
most efficient. This is the estimator suggested by Hansen (1985), which for
three of our four data generating processes yielded substantial asymptotic and
finite-sample benefits relative to conventional instrumental variables
estimators.

Because earlier, related work has found sensitivity of results to choice

of data generating processes, one priority for future work includes
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experimentation with additional data generating processes. Other priorities
include development of alternmative methods of computing test statistics and of

refined asymptotics to better characterize finite sample distributions.

APPENDIX: SPECIFICATION AND SOLUTION OF THE MODEL

The model and data generating processes were also used in VWest and
Wilcox (1994), so some of the prose in this Appendix and in section 2, and
some of the entries in the Tables, are also found in that paper.

The model underlying (2.1) follows Holt et al. (1960). A representative
firm maximizes the expected present discounted value of future cash flows,
with a cost function that includes linear and quadratic costs of production
and of changing production and of holding inventories. As in (2.1), let S, be
real sales, Q, real production, H real end of period inventories, b a
discount factor, O<b<l, E, mathematical expectations conditional on
{nformation known at time t, assumed equivalent to linear projections; also
let C; be real costs, p, real price, and u, a cost shock that is observable to

the firm but unobservable to the econometrician. The objective function is

28X 110 e ErZjuod? (PresSees-Ceey)
S.t. Quay = Sees + Hury = Heego1,
Ceey = -5808Q%; + .5a,Qf.y + .5a5(Hyrjo1-838pe)® + Heaglleay

+ linear terms + (linear x trend) terms.

The a;"s are the parameters of interests. Omission of shocks that shift the

marginal cost of production or of changing production (i.e., terms of the form
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shock % Qu4y OT shock x AQusy) is for notatlional economy and without economic
substance. An optimizing firm will not be able to cut costs by increasing
production'by one unit this period, storing the unit in inventory, and
producing one less unit next period, holding revenue unchanged throughout.

Formally, differentiating (2.1) with respect to H, gives

E( au(AQ,_-ZbAQ“1+b2AQ“2) + a;(Q,-bQysy) + baz(Hy-a35p4)

+ deterministic terms + uw, } = O,

where the deterministic terms result from the linear and (linear x trend)
terms in the cost function.

let c ™ ao(l-!-&b+b2)+al(1+b)+ba2. Then (2.1) follows from the above
equation with f;=ag/c, fz=a,/c, By=basaz/c. The values of the a,'s in each DGP
are as follows (see the text for a reference to an empirical paper that
suggests such values): A: ag=1., a;=0.1, a,=0.1, a;=0.1; B: ag=1., a;=-2.0,
a;=6., a;=1.0; C: ag~l., a;=0.1, a,=2., a,=0.1; D: ag=1., a;=-0.5, a,=0.1,
ay=0.5.

The reduced form parameters in (2.2b) relate to the underlying cost
parameters as follows: Let \; and A; be the two smallest {in modulus) roots
of:

AY - b 2a3l{ba,+2agb(1+b) A+ b 2a;![ag(1+4b+b2) +a, (1+b)+ba,] A2
- b 2a3l[a;+2a,(1+b) ]2 + b2 = 0.
Define the scalars p,, pz, W;., Wz, W3, and w,, the (1x2) vector e’ and the
(2x2) matrices @ and D as
pL = Aptdg, pp = -Agdg, Wy = bPpy, Wy = -pz[b2+2b+b(ay/ag)+(bayas/as) ],

Wy = py[2b+14(a;/a0)], W, = -pz, e = (1 0},
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= ($1 $2), D = [I-bpy®-bpy#*]7%.
(1 0)

Then

(ry,%2) " = e'D(w @ +uwd2+uydiw,I),

ege = (p2/a0)uy + (Wa/d2)€se.

With regard to the empirical results discussed in section 5: For each
estimator, at least one of aq, 2; or a; must be positive by construction. The
parameter estimates that were positive for both IV* and IV4 were the costs of
production a; and of changing production a,. The inventory holding cost
estimate a, was positive for IV* as well. The estimate of the parameter a,
that determines the target inventory-sales ratio was negative. Since the
simulations found it particularly difficult to get a reliable estimate of B;,
it may be noteworthy that the two parameter estimates that were positive may
be inferred from the estimates of B; and B, without use of the estimate of

By, while the estimates that were negative relied in part on the estimate of

Ba.
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Additional Appendix

This not-for-publication appendix contains results omitted from the body
of the paper to save space. Following are:

Al. Plots of parameter density estimates, T=100 (4 plots).

A2. Plots of parameter density estimates, T=300 (4 plots, one of which repeats
Figure 1).

Al. Plots of nominal vs. actual sizes of t-statistics, T=100 (4 plots).

A4. Plots of nominal vs. actual sizes of t-statisties, T=300 (4 plots, one of
which repeats Figure 2).

For Figures Al.A-Al.D and A2.A-A2.D, see the description in the paper for
Figure 1. For Figures A3.A-A3.D and AL . A-A4L.D, see the description in the
paper for Figure 2.
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Table 1
Data Generating Processes

A. Parameters of Cost Function

Mnemonic b1 B2 B

A 0.160 0.016 0.002

B 0.126 -0.252 0.376

C 0.099 0.199 0.01001
D 0.197 -0.099 0.010

B. Parameters of Exogenous Processes
) b2 var{eg) var{u) p(eg,u)

.75 .20 .120833 3.5 -.5

C. Implied Coefficients of Inventory Equation

DGP Ay “2phy "y N
A 1.22 -0.42 0.14 -0.12
B 0.24 -0.14 0.38 0.05
c . 1,07 -0.22 0.10 -0.09
D 1.43 -0.69 0.33 -0.15

NOTE: f8;, B and B; are the regression parameters in (3.1); ¢, and ¢, are the
autoregressive parameters of the sales process defined in (2.2); ¢g is the
sales shock defined in (2.2); u is the cost shock defined in (2.1); Aj+i,,
-2z, *;, and wn; are the coefficients of the reduced form inventory equation
(2.3b),



Table 2

Parameters of the MA(2) Disturbance

Modulus of
DGP 8, 8, Larger Root
A 1.27 -0.45 0.67
B 0.5C -0.19 0.43
c 0.93 -0.18 0.67
D 1.44 -0.71 0.85

NOTE: 8, and #, are the parameters of the MA(2) disturbance v.,;; see (3.1) and
(3.9). The modulus presented is that of the larger of the two roots to
zi-8,2-6, = 0.



Table 3

Asymptotic Standard Errors, IVq Relative to IV«

DGP Estimator Parameter
Bq B2 8,

A wa 2.21 2.26 1.40
A IVE 1.46 1.47 1.13
A ve 1.19 1.20 1.05
A Ivi2 1.03 1.03 1.01
B V4 1.12 1.10 1.02
B Ive 1.00 1.00 1.00
B s 1.00 1.00 1.00
B Ivi2 1.00 1.00 1.00
c Iv4 1.49 1.51 1.31
C Ve 1.16 1.17 1.10
[of vs 1.06 1.07 1.04
C V12 1.01 1.01 1.01
D Ivs 3.02 2.99 1.31
D Ive 1.67 1.63 1.07
D Ivg 1.23 1.22 1.03
D V12 1.08 1.08 1.03

NOTE: IVq is the conventional instrumental variables estimator described in
(3.2) and (3.3), where Z, consists of g instruments (q=4,6,8, or 12); IV* is
the optimal estimator described in (3.12) and (3.13). The table presents the
ratio of the square roots of the diagonal elements of (l)the
variance-covariance matrix of IVq (computed according to (3.5)), to (2)the
variance-covariance matrix of IV* (computed accerding te (3.11)).



Table 4

pistributions of Standardized Parameter Estimates, From Simulations, T=100

DGR/
Estimator a ~ .
B1-51 B2-8, B3- 861
50% CI Medfan Trimmed 50% CI Median Trimmed 50% CI Median Trimmed

MSE MSE MSE
A
IV4 (-0.6,0.8) 0.07 1.14 (-0.8,0.6) -0.10 1.20 (-3.1,1.6) -0.68 2.51
Ivl2 (-0,3,0.9) 0.29 0.92 (-0.9,0.3) -0.30 0.98 (-4.3,0.8) -1.26 2.52
IV (-0.4,0.4) 0.04 0.61 (-0.5,0.4) -0.06 0.63 (-2.7,1.6) -0.39 2.27
asy* (-0.3,0.3) 0.00 0.21 (-0.3,0.3) 0.00 0.20 (-0.5,0.5) 0.00 0.51
3
Ive (-0,5,1.0) 0.27 1.13 (-1,1,0.4) -0.38 1.24 (-0.5,1.2) 0.23 1.47
IV12z (-0.2,1.0) 0.47 0.94 (-1.4,-0.0) -0.63 1.24 (-0.2,1.7) 0.67 1.79
Iv* (-0.5,0.7) 0.14 0.93 (-0.9,0.4) -0.22 1.09 (-0.5,1.1y 0.24 1.33
asy* (-0.6,0.6) 0.00 0.79 (-0.6,0.6) .00 0.82 (-0.7,0.7) 0.00 0,97
4
ivs (-0.7,0.8) 0.11 1.14 (-0.8,0.6) -0.13 1.17 (-1.1,2.8) 0.66 2.41
V12 ( 0.0,1.0) 0.54 0.98 (-1.1,-0.1) -0.59 1.06 (-2.3,1.0) -0.59 2.18
Iv* (-.0.8,0.5) -0.06 0.91 (-0.5,0.8) 0.03 0.91 (-0.4,3.9) 1.19 2.06
asy* (-0.5,0.5) 0.00 0.45 (-0.4,0.4) 0.00 0.44 {(-0.5,0.5) 0.00 0.59
D .
Iv4 (-0.6,0.9) 0.11 1.23 (-0.9,0.6) -0.11 1.28 ¢-3.1,0.5)y -1,02 2.30
Ivi2 (-0.4,0.8) 0.15 1.05 (-0.8,0.5) -0.15 1.06 (-3.6,0.3) -1.3%9 2.38
V> (-0.3,0.4) 0.05 0.53 (-0.5,0.3) -0.07 0,55 (-2.6,0.5) -0.84 2.11
asy* (-0.2,0.2) 0.00 0.11 (-0.2,0.2) 0.00 0.11 (-0.%5,0.5y 0.00 0.58

asy4 (-0.7,6.7) 0.00 1,00 (-0.7,0.7) 0.00 1.00 (-0.7,0.7) 0.00 1.00

NOTES:

1. The estimating equations are: IV4, (3.3); IVi2, (3.3); IV*x, (3.13).

2. The difference between estimated and population parameter is standardized by
dividing by asymptotlic standard error for IV4.

3. The "50% CI" is a 50 percent confidence interval constructed using the 230'th and
750'th largest of the 1000 estimates; "Medfan" is the 500'th largest such encry;
*Trimmed MSE" is a mean squared error computed after dropping observations greater
than 3.0 in absolute value, and is expressed relative to the MSE for a standard
normal similarly trimmed.

4. "asy*" presents the asymptotic values for IV* and (approximately) IV12, which
vary from DGP to DGP because the ratio of standard errors of IV* to IV4 varies from
DGP to DGP (see Table 3 and the text). "asy4” presents the asymptotic values for
V4.



Table 5

Distributions of Standardized Parameter Estimates, From Simulations, T-300

per/

~

A

A

Estimator

B1-8,
Median Trimmed

B3-B2

B1-81
508 CI Median Trimmed

50% CI

Medlan Trimmed

508 CI

MSE

MSE

MSE

1.76

(-1.2,0.9) -0.17

(-0.8,0.6) -0.15 1l.14

0.14 1.14

(-0.7,0.8)

Iv4

-0.29 0.37
-0.09 0.35
0.00 0.20

2)
B
3)

.21
1.38
1.11

0.14 1
0.37
0.18

(-0.6,0.9)

.16

1

(-0.9,0.5) -0.30

(-0.6,0.9) 0.21 1.10

Iv4

0.00 0.97

0.36 1.66

-0.11 1.14 (-0.6,1.5)
.9y -0.07

(-0.8,0.7)

0.10 1.13

(-0.7,0.8)

Iva

0.8,0 1.33
0.1,1.7) 0.58 1,39
0.5,0.5) 0.00 0©.59

{-
{-
(-

0.04 0.70
0.00 Q.44

1.53

(-1.3,0.4) -0.34

(-0.8,0.6) -0.15 1.16

(-0.6,0.8) 0.15 1.14

V4

WO W w®
YR
— O
Ll 2 =]
3 NO
o oo
L )

L Nt
2 g
o oo
N
O
Vo
— e

0.26

1.00

0.00

(-0.7,0.7)

(-0.7,0.7) 0.00 1.00

0.00 1.00

asy4 (-0.7,0.7)

See notes to Table 4.



DGP

DGP

NOTES:

1. In each of 1000 simulations, we computed t-statistics testing whether
each of the three 8,5 equals its Table 1A population value.
presents ths fraction of simulations in which the square of the t-statisrtic
exceeded 3,84, which is the .05 critical value for a x?(1) random variable.

2. In each of 1000 simulations, tests of instrument-residual orthogonalicy
Panel B presents the fraction of simulations

Table 6

A. Size of Nominal .05 T-Tests, from Simulations

Estimator

Iv4
Ivi2
v

Iva4
112
vk

Iva
Ivi2
IV

V4
Ivi2
Iv*

-

0.061
0.142
0.080

0.073
0.193
0.115

0.073
0.264
0.115

0.020
0.047
0.083

T=100 T=300

B B3 81 82

0.056 0.004 0.063 0.060 ¢]
0.134 0.020 0.080 0.067 0
0.077 0.068 0.076 0.073 o]
0,072 0.065 0.065 0.053 0
0.260 0.231 0.103 0.104 4]
0.073 0.059 0.056 0.052 0
0.071 0.010 0.075 0.076 0
0.264 0.031 0.158 0.154 0
0.119 0.053 0.080 0.082 0
0.018 0.002 0.037 0.028 0
0.044 0.026 0.017 0.015 0
0.086 0.091 0.118 0.117 (4]

B. Size of Nominal .05 J-Tests, from Simulations

Estimator

V4
Iv12

Iva4
V12

Iva
Iv12

Iva
Ivi2

T-100
J-size

0.041
0.001

0.052
0.004

0.039
0.003

0.042
0.001

were computed as in (3.16).

in which the resulting statistic was greater than 3.84 (IV4) or 16.92

T=300
J-size

0.056
0.001

0.061
0.023

0.051
0.001

0.055
0.000

Ba

.001
.004
.087

.061
.106
.066

.011
.014
.050

.002

. 006
.14

Panel A

(IV1i2), which are the .05 critical values for x*(1) and ¥2(9) random
variables.



Table 7

Estimates of Aggregate Nondurables in Manufacturing, 1967-1992

(L) (2) (3) () (3 (6) )
. " . - Modulus of
Estimator J; B2 B fy [P Larger Root
Iv4 0.114 0.160 0.004 0,84 -0.35 Q.42

(0.044) (0.134) (0.008)

Ivl2 0.155 0.036 -0.004
(0.016) (0.048) (0.004)

V= 0.145 0.068 0.001L
(0.024) (0.071) (0.008)

NOTES:

1. The table presents estimateg of IV4, IV12 and IV*, computed according to
(3.3) and (3.13). The vector R; (defined above (3.12)) was the set of lags
that maximized the Schwarz criterion, where the following four sets were
considered: He.j,Sc-1.He-2i He-g:Se-1,He-20Se-2i Heo1sSe-10He-2,0 502, Hees, Senai
Hyo1,5¢-1+He-2,Se-2 He-3, Se-3, Heed o Sema All four also included intercept and
trend.

2. Columns (5)-(7) are as described in Table 2, and are estimated from the
two stage least squares residuals.
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