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1. Introduction

Dynamic equilibrium models are now used routinely in many fields. Such models,
for example, have been used to address a variety of macroeconomic issues, including
business-cycle fluctuations, economic growth, and the effects of government policies.’
Additional prominent fields of application include, among others, agricultural economics,
international macroeconomics, and public economics.?

But in economics, as in all the sciences, one counts on the interplay between theory
and data to fuel progress. At present, many important que;tions regarding the empirical
implementation of dynamic equilibrium models remain unasked, unanswered, or incompletely
answered. The questions fall roughly into two methodological groups. The first group
involves issues related to assessing model adequacy, and the second involves issues related to
model estimation. We propose and illustrate a framework that deals squarely with these
issues. Some parts of the framework are new, while others exploit established theory. Our
approach has a number of key distinguishing features. It is:

A. Based upon the realistic assumption that all models are misspecified. We regard
all of the models we entertain as false, in which case traditional statistical
methods lose some of their appeal.

B. Graphical and constructive. Qur procedures permit one to assess visually and

quickly the dimensions along which a model performs well, and the
dimensions along which it performs poorly.

! Among many others, see Kydland and Prescott (1982), Hansen (1985), and Christiano
and Eichenbaum (1992) (business cycles), Lucas (1988), Jones and Manuelli {1990), Rebelo
(1991), and Krussel (1992} (growth), and Lucas (1990}, Cooley and Hansen (1992), and
Ohanian (1993) (policy effects).

? Among many others, see Rosen, Murphy and Scheinkman (1994) (agricultural
economics), Backus, Kehoe and Kydland (1992) (international macroeconomics), and
Auerbach and Kotlikoff (1987) (public economics).
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C. Capable of providing a common set of tools that can be used by researchers with
potentially very different objectives and research strategies. The framework
can be used to evaluate strictly calibrated models, and it can also be used
formally to estimate and test models.

D. Based on a full second-order comparison of model and data dynamics. This is in
contrast to the common approach of comparing only a few variances and
covariances of detrended variables from the model economy and the actual
economy.

E. Frequency-domain and multivariate, Working in the frequency domain enables us
to decompose variation across frequencies, which is often useful. The
multivariate nature of our framework facilitates simple examination of cross-
variable correlations and lead-lag relationships, at the frequencies of interest.

F. Focused on finite-sample distributions of objects estimated from the data,
including spectra, goodness-of-fit measures, model parameters, and test
statistics. Whenever possible, we eschew reliance on asymptotics, which may
be unreliable in samples of the size arising in many applications. Instead, we
propose and use new bootstrap procedures.

G. Capable of delivering goodness-of-fit measures and estimators that are invariant to
the method of trend removal adopted.

Related literature includes Christiano and Eichenbaum (1992), Gregory and Smith (1990,
1991), Canova (1991), Hansen and Sargent (1993), Hansen, Sargent and Tallarini (1994),
Hansen, McGrattan, and Sargent (1994), Kim and Pagan (1994), Leeper and Sims (1994),
Cogley and Nason (1994), and especially Watson (1993) and King and Watson (1992, 1994).
In many respects we pick up where Watson (1993) leaves off, and we make progress
along a number of dimensions. Our methods can be used both to assess the performance of
a model (for a given set of parameters), to estimate the model’s parameters, and 1o rest -
hypotheses about parameters or models. All of this is done using a loss function selected by
the user, which might involve only certain frequencies of interest and might be very different

from the loss function implicit in Gaussian maximum-likelihood (ML) estimation.
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We focus for the most part neither on calibration nor on ML, however, because in
many applications neither may be satisfactory. Our approach is considerably broader,
involving the comparison of models and data from a complete second-order vantage point,
with the loss function used to gauge "closeness” specified by the user. That is, we proceed
by comparing model and data spectral density functions.® The frequency-domain approach is
attractive for a number of reasons. First, the spectral density function is continuous, 2x-
periodic and symmetric around the origin, all of which makes for convenient manipulation,
Second, and more importantly, the spectral density function represents a convenient
orthogonal decomposition of variance across frequencies, which facilitates analysis of
dynamics. For example, all of the classical ideas of business-cycle analysis discussed by
Lucas (1977) have spectral analogs, ranging from univariate persistence ("typical spectral
shape™) to multivariate issues of comovement ("coherence™) and lead-lag relationships
("phase shifts") at business-cycle frequencies. In fact, in order to economize on discussion,
we draw mostly upon the business-cycle literature for motivation in the methodological
sections 2 and 3. In section 4, however, we present a complementary microeconometric
application to modeling the well-known cycle in U.S. cattle consumption and stock. We

conclude in section 5.

3 The spectral density function provides a2 complete summary of Gaussian time series
dynamics and an approximate summary of non-Gaussian time series dynamics.
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2. Assessing Agreement Between Model and Data

Our basic strategy is to assess models by comparing model spectra to data spectra.
Our goal is provision of a graphical framework that facilitates visual comparisons of model
spectra to interval estimates of data spectra. We compute model spectra exactly (either
analytically or numerically); thus, they have no sampling uncertainty. Sampling error does,
however, affect the sample data spectra, which are of course just estimates of true but
unknown (population) data spectra. We exploit well-established procedures for estimating
spectra, and we propose new bootstrap techniques for assessing the sampling uncertainty of

estimated spectra.’

2a. Univari
We focus first on the univariate case, in order to fix ideas and establish notation. We

also assume covariance stationarity. In subsequent sections of the paper, we analyze the

objects of ultimate interest: trending, multivariate processes. Consider the linearly regular

covariance-stationary stochastic process

Yt =@ + B(L)El = p + E bi8|-i’ (1)

i=—on

where bo =1, E bl < o, and g ~ WN(Q, o). The autocovariance function is

iw—cn -

* Alternatively, one could fix the data spectrum, and assess sampling error in the model
spectrum by simulating repeated realizations from the model. The two approaches are
essentially complementary, motivated by the usual "Wald" and "Lagrange multiplier” testing
perspectives. See, for example, Gregory and Smith (1991). For our purposes, however, it
proves fruitful to view all uncertainty as associated with the data spectrum, because we don’t
want to condition on any particular model when performing our bootstrap procedures.
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N L o:z bb,., and the spectral density function is f(u) = 2_11 L y(ne™, -x<w<r.
Lt ol re—o
Given a sample path {Y‘}Ln we estimate u consistently by the sample mean,
T
7=l ¥y, From this point onward, we assume that all sample paths have been centered

t=]
around this sample mean. We estimate the autocovariance function with

A 1 Tfi 1 3 - M
Hr) = T 2 Ye Yoyop T ™ 0, +1, ..., £(T-1). This construction ensures that Hr)isa
positive definite function of r, which we know holds true in population. We estimate the

spectral density using the Blackman-Tukey lag-window approach in which the sample spectral

T .
density function, f(y) = _1__ Wt (g, = ?ﬂ i= 1, ... I-l)is laced with
ty (@) ZTHEH) Joe™ (o = 2, 5= 1, o, 5 rep
one involving the "windowed" sample autocovariance sequence,
1 = . . Ixi . T . . .
fo(w) = — A W (@, = £% i =1, ..., —-1). This results in a consistent
(@) n;) (1) 3ne ™ (u; = ZH, | .

estimator if the lag window A(7) is adjusted with sample size in such a way that variance and
bias are reduced simultaneously.’®

A key issue for our purposes is how to ascertain the sampling variability of the
estimated spectral density function. Asymptotic results have been available for some time,
but they may be unreliable guides in samples of the size that concern us. Therefore, we
shall consider various bootstrapping algorithms. Our first bootstrap approach is based
directly on frequency-domain considerations. It is well-known that in large samples
2;53) - i_ifi x5, or equivalently, f(wj) = % f(w) Xa w = _2__?_., i=1, .., ;—1,

Franke and Hirdle (1991) suggest replacing the population spectral density on the right side

with a consistent estimator, drawing from the distribution of the gjl ¢ to form a drawing of

* Alternatively, of course, one may smooth the sample spectral density function directly.
The duality between the two approaches, for appropriate window choices, is well known.
See Priestley (1981).
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#(w)’s which are then smoothed, and repeating many times to build up an approximation to
the distribution of the f '(m,)’s.

As always, one may perform either a parametric or a nonparametric bootstrap. The
Ta
parametric bootstrap proceeds as follows. At bootstrap replication (i), we draw {gj‘”};fl
T.
7" via

from a 52 distribution and convert them into {f “(w)};u,

1% = 21 @) &, @

which we smooth to obtain f*®(w), j = 1, . %:—1. At the end we have f*O(w),

=1 .. .;.—1, i =1, ..., R, where R denotes the number of bootstrap replications
performed. Then we form confidence intervals for f(w), j = 1, .. %—1, using the

percentile method.®
The nonparametric bootstrap, on the other hand, is motivated by the fact that the X

distribution for g obtains only asymptotically, so that it may be preferable to sample with

replacement directly from the empirical distribution of the "observed” ¢* = _23?_}_).,
@)
i=1, .., _’;'_-1_7 We proceed as follows. At bootstrap replication (i) we draw {gj‘“}j'{ll by
. . . gl : : T
sampling with replacement from {g, }JZ] and convert them into {}° ’(w;_)};fl via

T 1.. . i L6
%o = _2_f @& i=12 .., %-1, We then smooth to obtain f*®(w),

j=1,2, .., %-1_ At the end we have f'(f)(mj)’ i=1, .. R, fromwhich confidence

¢ The percentile method proceeds by simply using the empirical percentiles (across
bootstrap replications) of the f*(w)’s. For details and refinements, see Efron and Tibshirani
(1993). The method as described here produces intervals with asymptotically correct
coverage for any fixed frequency, w. Construction of confidence intervals for the entire
spectral density function requires additional refinements, which we discuss later.

7 Following standard practice, the af's are first rescaled to have mean equal to their
known asymptotic population mean, 2, by the transformation g’ =26 /e,
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intervals are formed for () using the percentile method, j = 1, 2, ..., %-1.

Our second bootstrap approach is more general, and of independent interest, in that it
can be used to bootstrap a variety of objects. This contrasts with the Franke-Hardle
bootstrap, which works only for the spectral density function. As before, let y = {y ]},
denote a T-period sample path of a covariance-stationary time series with population mean ,
and sample mean y, The population covariance matrix associated with the sample path is
Toeplitz; call it ¥, where L = ¥(|i-j|). By symmetry and positive definiteness of the
covariance matrix, we can write T ~ PP/, where the unique Cholesky factor P is lower
triangular, Similarly, the sample covariance matrix associated with the sample path is
Toeplitz; call it £, wheref;,', = 4(|i-j|}. By symmetry and positive definiteness of the
sample covariance matrix, we can write £ = pp’/, where the unique Cholesky factor P is
lower triangular. Now let {) | i_”}ITi'_;' - b aset of' decreasing weights applied to the
successive diagonal elements of £, and call the resulting matrix £+  Finally, let p* be the
Cholesky factor of L*,

First consider a parametric bootstrap. We draw e® = {e}l, ~ N(0, L), and form®

y® =y + P e® ~ Ny, L°). &)

Then we compute the estimate f'@(mj), j=1, .., =-1,i=1,.,R,after which we

(ST

construct confidence intervals,

Alternatively, we may use a nonparametric bootstrap, which proceeds as follows. In

* Following Efron (1982), the e vectors should be centered around their mean to reflect
the known population mean of 0. The same argument suggests standardizing them, to ensure
that the variance matches the known population variance of 1.
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population we have that y = , + Pz, where ¢ ~ (0, I), so that ¢ = P7'(y - p). The
sample analog is that y = y + P "e, SO that e = P*I(y - y). These are the "residuals”
from which we bootstrap. We proceed by drawing e® with replacement from e. Then we

construct

y® =y +P'e® ~ (3, £7), “

from which we compute f'm(wj), ji=1, .., ,}-1_ i =1, ..., R, and then we construct
confidence intervals.
2b. Multivari

In the multivariate case, the analysis becomes somewhat more complicated, but our
general approach remains intact. Consider the N-variate linearly regular covariance

stationary stochastic process,

yom B & =kt T B e, ®)

’ £ ift=s
Ee) [0 otherwise,

where E(e ) =0, B, = I, and the coefficients are square summable (in the matrix sense).
The autocovariance function is I'(r) = E B, B, and the spectral density function is

F(w) = .2_.11 rg I'(7z) e™, ~r<w<r.

Consider now a generic off-diagonal element of F(w), fu(w). In polar form, the
cross-spectral density is fi,(w) = gay(w) expli phy(w)], where gay(w) = fre*(fy(w)) +
im?(f,())]'" is the gain or amplitude, and where phy(w) = arctan{im*(fy(w)) / re’(fu(w))} is

the phase. As is well known, the gain tells how the amplitude of y, is multiplied in
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contributing to the amplitude of y, at frequency w, and phase measures the lead of y, over y,
at frequency w. (The phase shift in time units is ph(w)/w.) We shall often find it convenient
to examine coherence rather than gain, where the coherence is defined as

2
coh, (w) = _g;a_“&, which measures the squared correlation between y, and y, at
ful(w) fy(w)

frequency w.
We estimate the Nx1 mean vector with§ = Gv ey yn)’ . We estimate the
T-|r

autocovariance function with fi(;) = [4,(r], where 3 (r) = = E YoYire We estimate the

a0 =l .
spectral density matrix with p “(w) = 1 E A(D (D) e, o = 2%,

‘ 2 T ! T
T I-x where A(p) is a matrix of lag windows. This amounts to smoothing the
J ] ) 2 y ()
T=1) .
sample spectral density function, fi(w) = L P A T L
ple spec ty (w) 27'_;) (e™, o= 52§ =1, s 5

The sample gain and phase at any frequency w, are then obtained by transforming the
appropriate elements of F * ().

To approximate the finite-sample distribution of the smoothed spectral density
estimator with the bootstrap, we first generalize the Franke-Hdirdle procedure to the
multivariate case. The parametric bootstrap proceeds by making use of the result that
F(wj) ..d. Wi(l, F(w)), an N-dimensional complex Wishart, j = |, ..., '_:12:-1.9 Thus, in
parallel with our univariate discussion, we have that in large samples
F(mj)'”’ f"(@,) F(mp-ln =g l,l.(,j Wye(l, I), or equivalently,

Fw) = F@)'? Wil, D F@)"?, w, = 3%1 i =1, ..., T-1. This suggests drawing a

0| =3

bootstrapped sample spectral density as

% See Brillinger (1981).
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B = F @) W1, D F @), § =1, -, ;-1, i=1,..,R (6

where w1, I) is a draw from an N-dimensional complex Wishart distribution, and
F .("’i) is the smoothed estimate of the spectral density function. We then smooth to obtain
F‘m(wp j=1,. I—] i =1, .. R, from which we compute confidence intervals.
y ] A | 2 ? ) b ] ] b T
‘l . .
To make the bootstrap nonparametric, we obtain {¢®}% by sampling with
- ;4 - =112 A . -17 . T W

replacement from {g}2, » where g° = F*(w)™" Flw) F @™, j = 1, ..., _2_—1_ e
then form f:"’(wi) = F*(w)"" gj‘” F* ()" and we smooth to obtain F *O(w)s
j = _T..‘.-l ,i =1 .. R, from which we compute confidence intervals.
j l’ sy 2 ’ » t

The Cholesky factor procedure is readily generalized to the multivariate case.
Consider the sample path {y ..., Yahu- LU Z, =y ooes Vi) Then
z =z, ..., 20y ~ (1@, E), where 1 is an N-dimensional column vector of ones,
and T = Band(T(0), I'(1), ..., [(T-1)). In parallel to the univariate case, we estimate by y

T-I7i

and E by £ = Band(f'0), f'(1), ..., ['(T-1)), where f'(r) = % Y 7zl

t~1
r =0, +1, ..., +(T-1). This construction ensures that £ is symmetric and positive
semidefinite, enabling the Cholesky factorization £ = pp’/, As before, let {)\”_ji}’l‘i'_}l.o be
a set of decreasing weights applied to the successive (block) diagonal elements of £; call the

resulting matrix £+ with Cholesky factor p *,

z® =7 + P*e® ~ Nz, L) Y]

To perform a parametric bootstrap, we draw ¢® = {C;}Eﬂ ~ N, I, and form

where 7 = @y, Finally, we compute the estimate p*(D(wj),j =1, ..., 22:-1' 1 =1,

aeey

R, after which confidence intervals are formed.
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The multivariate nonparametric bootstrap also parallels the univariate case. In
population we have that z = 1@y + Pe, & ~ (0, L), sothat ¢ = P~z - 18y). The
sample analog is z = Z + P°e, sothat ¢ = P*~I(z - 7). These are the "residuals” from
which we bootstrap. We proceed by drawing e® with replacement from e. Then we

constructct

2@ =z +Pe® ~ (z L), ®

from which we compute F‘“’(wj), i=1, .., _';_-1, i =1, ..., R, and then we construct
confidence intervals.
*Tunnels”

Consider first a univariate spectral density function. If interest centers on only one
frequency, we simply use the bootstrap distribution at that frequency to construct the usual
bootstrap confidence interval. That is, we find g, q; such that p(f*‘(w) < g7) = 1-%
and P(f *O(w) = qh - 1-%, where (1-a) is the dpsired confidence level, "L" stands for
lower, "U" stands for upper, the "T" subscript indicates that the band is tailored to the finite-
sample size, T, and the (.) superscript indicates that the probability is taken under the
bootstrap distribution. The (I-a)% two-sided confidence interval is [qF, qr]."

However, one often wants to assess the sampling variability of the entire spectral
density function over many frequencies (e.g., business—cycle frequencies, or perhaps all:

frequencies) to learn about the broad agreement between data and model. One approach is to

form the pointwise bootstrap confidence intervals described above, and then to "connect the

10 Note that, in general, the confidence interval is not symmetric around the point
estimate,
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dots.” But obviously, a set of (1-a)% confidence intervals constructed for each of n
ordinates will not achieve (1-a)% joint coverage probability. Rather, the actual confidence
level will be closer to (1-a)"%, which holds exactly if the pointwise intervals are
independent. A better approach is to use the Bonferroni method to approximate the desired
coverage level, by assigning (1 - o/n)% coverage to each ordinate.!’ The resulting tunnel
has coverage of at least (1 - a)%."

A third approach to confidence tunnel construction is the supremum method of
Woodroofe and van Ness (1967) and Swanepoe! and van Wyk (1986), which uses an estimate

of the (standardized) distribution of

S| (w) - )], , = zTﬂ,j -1, .. .';_-1.

0<q<1

to construct a confidence tunnel for the curve. Specifically,”

o e 27 L -
(1) Calculate f*0O(w), w, = 1, ..., > 1.-

(2} Find ¢ such that:

1 In the univariate case, typically n = T/2 - 1. In the multivariate case, the question
arises as to "how wide to cast the net” in forming confidence tunnels. One might view each
element of the spectral density matrix in isolation, for example, in which case each of the
respective confidence tunnels would use n = T/2 -1. At the other extreme, one could use
n = N%T/2-1), effectively forming a tunnel for the entire matrix.

11 Bonferroni tunnels achieve the desired coverage only for (1) independent values of the
estimated function across ordinates, which is clearly violated in spectral density estimation as
the smoothing required for consistency results in averaging across frequencies, and (2) large
n, (because (1 - a/n)* = (1 - &), for any finite n.

13 This procedure is similar to the one advocated in Gallant, Rossi and Tauchen (1993).
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Fow - e
JE/"'r" £ (w)

p| sup

= |-o,
0<w<~

where the probability is evaluated with respect to the bootstrap distribution.
(3) Construct the confidence band, £*(w) + ¢f2iT f°(w),
w = ..2_';_1;,3 =1, ..., %-l.
In the multivariate case, one can bootstrap coherence and phase in identical fashion.
Unlike the Bonferroni tunnels, the supremum tunnels attain asymptotically correct
coverage rates even with statistical dependence among ordinates. Little is known, however,

about the comparative finite-sample performance of the Bonferroni and supremum tunnels,

and the supremum tunnels may require very large samples for accurate coverage.™

3. Estimation: Maximizing Agreement Between Model and Data

Now we consider estimation, together with the related issues of goodness-of-fit and
hypothesis testing.
Ja._Univariate

Estimation requires a loss function, or goodness-of-fit measure, for assessing
closeness between model and data, Many loss functions may be entertained; the particular
loss function adopted reflects the user’s preferences. In most cases it would seem that a

function of the form

14 See Hannan (1970), p. 294.
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C.0) = Lg(f,(w; 8), f*(w) wlw) dw ©)
will be adequate. The function g measures the divergence between f (w; 6) (model
spectrum) and f * () (estimate of data spectrum).’”® This divergence is weighted across
frequencies by the function w(w). In practice, the integral is replaced by a sum over
frequencies w = zﬁ, j=1, .., _';_-1, Quadratic loss with uniform weighting over all

frequencies, for example, corresponds to g(a, b) = (a - b)? and w(w) = 1, yielding

C.0) = ; (fulw; 6 - £ @)
The goodness-of-fit measure may readily be transformed into an estimation criterion

by taking
6, = ar%min C,.(6). (10)

ML, for example, is (asymptotically) of this form, for a particular and potentially restrictive
choice of g, £+, and w; it is
1 1 fw) 11
argmax | -~ YoIn f (w; 0) ~ 5}, ———x |- (1D
5 7 L0 fulei O 22 (w0 0
We also use bootstrap procedures to compute standard errors and interval estimates
for parameters of interest, and to test hypotheses about the elements of 9‘_’_ We proceed as

follows:

(1) At bootstrap replication (i), draw a bootstrap sample of size T using the Cholesky

15 Note that the model spectrum is either computable analytically or numerically to any
desired degree of accuracy. The data spectrum, on the other hand, is consistently estimable.
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factor algorithm.
» 9 . m

(2) Numerically minimize C%(6) to get aw_

(3) Repeat R times.

(4) Compute standard errors, form interval estimates, implement bias corrections, or

test hypotheses using the distribution of ég, i=1,..,R.

Note that, unlike typical implementations of the bootstrap, ours does not involve
conditioning on the model; instead, the bootstrap samples are generated directly from the
autocovariance matrix of the data. This is important in our environment, in which all models
are best regarded as false.
3b. Multivari

The multivariate analog of our earlier loss function is

Cow(® = 1G(F,(w; 6), F" () @ W(w) do, (12)
where (© denotes component-by-component multiplication. The multivariate analog of our
earlier univariate quadratic loss function, for example, is

. 27}
Cowl®) = ,_Etr(D’(w,.; 6) D(w; 6)), Where D(u; 6) = F(u; 6) - F'(w) v = 52,

. T 16
=1, ..., =-1.
! 3

The estimation criterion function has the same form as in the univariate case,

16 Other matrix norms are of course possible, such as Sl]lp

Dy (w;; 0)1), which has a
minimax flavor.

k
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Bow = argg\in C w8 13)

It is worth emphasizing how all parts of the spectrum contribute to loss in the multivariate

case. Consider, for example, a bivariate model (variables x and y) under quadratic loss.

Then
b g d, (o &) d (w; )]
©5 0" 4w 0 4,0 0]
where
Aoy ) = £, (w; 0) - fo(w)
d(w; 6) = f (o3 6) - f,;(w})
do(w; 6) = fo (@i 8) = fo(w)
d“(wj; a) - fm(wj; 6 - fy: (wj) - f;m(wj; Bj - fm;(wj) = a—‘;(wj; ).
Thus,

te(D’ (w0 0Dy 6) = [dl(wy O + d (e O, (w; O] * [dpwy 6) + dyley; 6)d, (w5 O]
= di(w; 6) + 2]d, (w; O] *+ dy(w; 6)
J

= foml@ 0) - falw)P + 2re(f, (w; 6) - re(fo (0)]

+ 2fim(f,, (o 6) - il @IF *+ [, (55 6) - fiy (I

xy.m

This expression shows clearly how the goodness of fit of both univariate spectra, as well as
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both the real and imaginary parts of the cross spectrum, contribute to loss.

The multivariate ML estimator is
arggmx [-.%Elan_(wj; 6] - %trEFS'(w}; 6) f:(wj)} . (14)
3 i

Some economic models, such as stylized real business cycle models in which one shock
drives the evolution of a higher-dimensional system, have a singular spectral density F_.
This presents a problem for implementation of the ML estimator, which involves F_'. We
have found that this problem can be satisfactorily skirted in practice, because the model
spectrum is typically obtained by simulating a long realization from the model, whose
spectrum is then consistently estimated. This has the effect of introducing just enough
*measurement error” to avoid a singular spectrum."”

The bootstrap approaches to computing standard errors, confidence intervals, and
hypothesis testing parallel the univariate case precisely.
%._On Detrending"

If loss functions involving ratios of data spectra to model spectra are used, and if the
data and the model are first passed through identical linear filters, then any results obtained
by comparing filtered data spectra to filtered model spectra will match those obtained from

unfiltered data spectra and model spectra. In light of the common practice in

I” Note that our "measurement error” is just a numerical device to facilitate matrix .
inversion, in contrast to the approaches of Altug (1989) and Hansen and Sargent (1990), in
which measurement error plays a key role.

'* A 1993 conversation with Tim Cogley influenced the development of this section,
which was written contemporaneously and independently of Cogley and Nason (1995), but
which was nonetheless influenced by their ideas.
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macroeconomics of subjecting both the data and the model to identical detrending filters, this
result may be of interest, because it indicates that the contentious issue of detrending may be
less important than commonly believed. Instead, it may be unnecessary to detrend at all.

To see this, consider first the univariate case. Consider filtered "model data,” and
filtered “real data,” y = H(L)A=(L)e, and y; = H(L)A ‘L), Immediately,
) = ;—',:,Iﬂfe*‘ol’m-(e*')l' and £(w) = glﬂ(e*ovlwe*“ov. Thus, the ratio
of filtered model spectrum to filtered data spectrum is the same as the ratio of the (pseudo)
spectra of the original series. This suggests the attractiveness of loss functions involving

only the ratio of model spectrum to data spectrum,

C,.(0) -2 l )] w(w), (15)
d w

50 as to achieve invariance to H(L). Our earlier quadratic loss function, for example,
achieves invariance if recast in terms of Jog differences,
. 2

C.0) = E(m f(05 0 - In £ ().

7 4

Similar results hold for the multivariate case. In fact, they are even stronger, in the
sense that coherences and phases are always invariant to linear filtering, quite apart from the
particular loss function adopted. First consider an arbitrary pairwise coherence of filtered
. I, @)|? .

series, coh (w) = .. 2r. % Making use of the fact that ) = Y12 (.

ST T e ey = IHE I

rewrite the coherence of the filtered series as

| [HE™)| £ () |2 _ @l
HE™ fa) [HE L) &) 5’

coh, .r.(wi) =

which of course is just the coherence of the unfiltered series.
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Next, consider an arbitrary pairwise phase of filtered series,

[ im(f,, (@)

re(f, (@) + i irr::(fvr(w,.)) = |H(e™)|? re(f () + i[H(e™)|? im(f, (w)). Thus,
|HEe ™)) im(fv(wj))] o | )

| [HEe™)|? re(f () re(f,,(w))

Phq,(w ) = tan™ . The cross spectrum is rc(fm(wj)) 4+ im(f”r(w )) » ot

, which is the phase of the

ph,, () = tan™!

unfiltered series.
In closing this subsection, we note that although we think the results reported here are
of interest, we don’t regard them as resolving the many difficult issues associated with trends
and trend removal in economig time series. First, as we have emphasized repeatedly, a loss
function should be chosen that reflects the investigator’s goals, regardless of whether it is
"convenient.* Second, since model data are usually stationary time series, a user may
reasonably decide not to filter them. In contrast, the real data clearly display trend, so that
detrending the real data may be desirable. Typically, there is no one "best” way to detrend,

. and one may want to check robustness of results to alternative detrending procedures.

4. Application: The U.S. Cattle Cycle

A cycle of roughly ten years in U.S. cattle consumption and stock ("the cattle cycle”™)
is well-known among agricultural economists. In this section, we provide a detailed
illustration of the use of our assessment and estimation techniques by applying them to an
important model of the cattle cycle developed by Rosen, Murphy, and Scheinkman (RMS,
1994). The cattle cycle is of intrinsic interest, and it also provides a convenient vehicle for

illustrating our framework.



4a. The Data

The data are annual U.S. cattle consumption and stock, 1900-1990." The series are
plotted in Figures 1 and 2, in which the cycle is visually apparent. Moreover, the series are
ciearly trending. The trends may be removed in a variety of ways, and it is not clear how
"best” to remove the trends, or, in light of our earlier discussion, whether the trends need be
removed at all. Also in Figures 1 and 2, we superimpose three estimated trends: linear,
kinked-linear, and Hodrick-Prescott. Linear trend is widely-used, kinked-linear treqd is used
by RMS and allows for some nonlinearity in the trend shape, and Hodrick-Prescott trend is
popular and allows a great deal of nonlinearity in the trend shape.”® Clearly, the three
procedures produce very different trend estimates.

We make use--here and throughout--of a matrix graphic with univariate spectra
plotted on the main diagonal, coherence in the upper-right corner, and phase in the lower-left
corner. This estimated data spectrum is presented in Figure 3. Not all frequencies are of
equal interest, however. The frequencies most relevant to an investigation of the cattle
cycle, typically thought to have a pe:;iod of roughly ten years, are not those in the entire [0,
x] range, but rather those in a subset that excludes very low and very high frequencies. This
presents no problem for our procedures and in fact provides a good opportunity to illustrate

the ease with which they can be tailored to specific applications. Thus, for much of our

19 The data were kindly supplied by Sherwin Rosen and were originally obtained from
Historical Statistics: Colonial Times to 1970 and Agricultural Statistics, published by the
U.S.D.A.

 The kink in the kinked-linear trend is in 1930, following RMS. The smoothing
parameter for the Hodrick-Prescott trend is 400, following Englund, Persson, and Swensson
(1992).
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analysis, we concentrate on the frequency band corresponding to periods of 34 years to 4
years, indicated by the vertical dashed lines in Figure 3. Interestingly, it turns out that the
various detrending procedures have very little effect on the estimated spectra within that
band.?’ Thus, although we have performed the analysis for all three detrending methods (as
wel! as on non-detrended data), we report results almost exclusively for kinked-linear
detrending.

Two features of the point estimates of the data spectra stand out. First, consumption
(and to a lesser extent, stock) clearly displays a power concentration at roughly a ten-year
cycle. Second, each spectrum otherwise has Granger's (1966) "typical spectral shape,” with
high power at low frequencies, and declining power throughout the frequency rapge.

As for the point estimates of the cross spectrum, the coherence between consumption
and stock is generally high and varies across frequencies, ranging from a maximum of about
.95 (at roughly a ten-year cycle), to a minimum of about .60 (at roughly a three-year cycle).
The phase indicates that, for periods in the band of intcrest., consumption consistently leads
stock.Z At the len-year cycle, the phase lead is roughly one year.

Figure 4 presents the data spectra, coherence and phase shift, along with 90%
confidence tunnels computed using the Bonferroni technique in conjunction with the
Cholesky-factor bootstrap. To facilitate evaluation, the spectra are plotted on a logarithmic

scale. All of the point estimates are subject to substantial uncertainty, as manifest in the

2 The different detrending procedures do, of course, have different effects on behavior at
the excluded very low frequencies.

2 phage shift is measured in years by which consumption leads stock.
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90% confidence tunnels. This is typical of economic time series, although it often goes

unacknowledged.

4b, The Model

We begin with some accounting identities. The head count of all animals (y ) is the
sum of the adult breeding stock x), the stock of calves (assumed equal to gx ), and the

stock of yearlings (assumed equal to gx ), where g is a fertility parameter. That is,

Yt - xl + gxt«-l + gxt-!'

The adult breeding stock consists of surviving stock from the previous period (assumed equal
to (1-8)x,,) and the yearlings from t-1 entering the adult herd (gx,_,) less the number that
are marketed (C.)'

x, = (1-9x_, *+gx., ~ ¢

We are concerned with the equilibrium determination of ¢, and y,. The risk-neutral
rancher maximizes the present discounted value of expected profits, which involves equating
the expected marginal benefit of marketing an animal for consumption to the expected
marginal benefit of holding the animal for breeding. First, suppose that the rancher markets
the animal for consumption. He receives net revenue q, = p,-m,,, where p, is price and m,
is finishing cost. Alternatively, suppose the rancher holds an animal for breeding. Expected
discounted net revenue is the sum of expected discounted revenue from selling tomorrow plus
expected discounted revenue from marketing its offspring, less expected total holding costs
(=), E[B(1-8)q,, *+ A8, - z]). Total holding costs are equal to the sum of time t holding

costs (h,), discounted holding costs of the resultant time t+1 calves, and discounted holding
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costs of the resultant time t+2 yearlings. That is, z, = h + Bgyh., + Bgvh., (assuming
proportional costs for calves and yearlings, 4 and ).

In equilibrium, the expected marginal net revenue from marketing for consumption

equals the expected marginal discounted net revenue from holding for breeding; that is,

Elq) = E[B(1-3)q,., * %8¢, ~ Z)-

The model is closed by specifying the exogenous processes {m, h, d} as first-order
autoregressions.? Following RMS, we assume that each of the three shocks has commeon
serial-correlation parameter p.

The model structure implies that the reduced-form equations for ¢, and y, can be
expressed in terms of a single disturbance, «, which is a linear combination of the
independent innovations from the three AR(1) driving processes. In particular,

c,~ ARMA(2,1) and y, = ARMA(4,2):

(A-A\LX1-pL) ¢, = =(1 - $,1) w,

(1-A\L)(1-$,L)(1-¢,L)(1-pL) y, = (1 + gL + gLY w,

where ¢ is the one unstable root and ¢, and ¢, are the two stable roots of
$ - (1-8)¢? - g = 0,
and N is the one stable root of

The associated univariate spectra are

B d, is a preference shock. We have not discussed the demand side of the model,
because it is not used in estimation.
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gBN + (1-8)BN - 1 = 0,

fw) = 2 14 DN
. C1A - MM - peM))

@ = 2 |01+ ge + g .
AT TE R~ 9670 - 69~ eI

and the cross spectrum is

- - s - or - N
| (1 - el . $.e )(.1 é,e*) £ ().
(1 + gem + gelw) y

£ (w)

These equations provide a full description of the model in the frequency domain. 42 is a
complicated function of the structural parameters, including some from the demand side of
the model. All of the parameters of present interest, however, may be identified from the
other reduced-form parameters, with the exception of v, and v,. We therefore treat 42 as a
free parameter and estimate it subject to no restrictions.

We first compare the data spec&um to the model spectrum evaluated at the band-
restricted n;aximum likelihood parameter estimates (Band-ML). Band-ML estimates are
obtained by using a loss function that coincides with ML, but with the important difference
that feriods of more than 34 years or less than 4 years are excluded. Figure 5 displays the
model spectra, coherence, and phase for the Band-ML parameter configurations,
Interestingly, neither the consumption nor the stock model spectrum has a peak
corresponding to a ten-year cycle. Similarly, mode! phase shift fails to peak at a ten-year

cycle. The model coherence reminds us of an additional limitation of the model. As
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presently specified with a single shock, the model is singular, resulting in unit coherence at
all frequencies, regardless of the parameter configuration. Although the data coherence is
estimated very imprecisely, it seems unnecessarily restrictive to force the model coherence to
be unity at all frequencies.

Figure 6 displays the same information in log form and adds the earlier-discussed
90% confidence tunnels. The diagonal elements provide comparative assessments of model
and data univariate dynamics, and the off-diagonal elements provide comparative assessments
of cross-variable dynamics. The model spectrum lies in the 90% confidence tunnels for the
data spectrum at almost all frequencies.

The Band-ML estimation results appear in Table 1; several features are noteworthy.
First, the estimated parameters are remarkably similar across detrending methods. The only
exception is p, the serial correlation parameter. The variation in the estimates of , occurs
because the three detrending procedures differ in terms of how much low-frequency variation
is removed from the data. For example, removal of a linear trend leaves considerable power
at low frequencies, which results in a relatively high value of , (.72). The HP procedure,
on the other hand, removes more power at lower frequencies and accordingly yields 2 lower
estimate of 5 (.20). The kinked-linear detrending procedure is intermediate and results in an
intermediate value of p (.52).

Second, the estimates of the fertility rate g and the death rate § accord with the

biological considerations discussed by RMS, but the estimate of the discount factor 8
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appears low.* This conveys information as to the workings and possible limitations of the
model.?® The low estimated discount factor may perhaps be interpreted as follows. The
model requires that g8 = 1, but capturing the persistence in the dynamics, which is a key
feature of the data, requirc; t;mt A, and ¢ belarge. (Recall that and ¢ are the
coefficients in the ARMA(1,1) representation for consumption.) This works to produce a
small estimated discount factor,

Third, the RMS values for g, & and p are close to our point estimates.?® Our methods
let us go farther, however, and assess the uncertainty associated with the estimates. Standard
errors are of some use 'in that regard; we compute them using 200 replications of the
Cholesky factor bootstrap procedure, and we report them in parentheses below the estimated
parameters., Moreover, our bootstrap procedures allow us to examine the entire sampling
distribution of the estimated parameters; they are shown in Figure 7. It is evident that all of
the sampling distributions are highly non-Gaussian. Those of the discount and death rates
are asymmetric, while that of the fertility parameter appears roughly uniform. Interestingly,

the sampling distribution of the persistence parameter appears bimodal, with one mode at the

point estimate and one much closer to unity. This may be indicative of multiple local

% Others have also had trouble estimating 8 in the RMS model. Hansen, McGrattan and
Sargent (1994), for example, fail to obtain convergence unless 8 is held fixed at a
prespecified value.

¥ To gain mote insight into this finding, we imposed a higher value for the discount
-factor (.91); and left the other parameters free. This specification led to an optimized loss
function that was considerably larger than the original optimized loss function, and it resulted
in implausible estimates for fertility and depreciation rates.

% The variance of the exogenous shock ¢, is not reported in the table, because it is not
reported by RMS.
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minima of the loss function in that dimension, and if so, the bootstrap would be performing a
useful service by highlighting it. This is clearly an interesting direction for future research.
Finally, we can examine the joint distribution of the estimated parameters. Table 2
presents the correlations between the estimated parameters. Perhaps the most interesting
relationship is the strong negative correlation between the discount factor and the fertility
rate. This is because the discount factor and the fertility rate enter multiplicatively in one of
the cubic equations that define the ARMA polynomials, so that the loss function trades high

fertility rates for low discount factors.

§. Concluding Remarks

We have tried to develop a flexible framework that will be useful to a variety of
applied economists—-a constructive framework that provides a comprehensive comparison of
model and data, while nevertheless taking seriously the user’s preferences, model
misspecification, and small sample sizes. Such a framework can facilitate communication
between researchers with potentially very different research objectives and strategies. As
economists use richer and more complicated models to understand a wider variety of data,
the procedures discussed in this paper can help significantly in understanding the dimensions
along which models are consistent (and inconsistent) with data. The information provided
can in turn be used to construct new and improved models. We hope the framework will

help bring modern dynamic economic theory into closer and more frequent contact with data.
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Table 1
Parameter Estimates
Band-Restricted Maximum Likelihood

B g & o

Linear Detrending 72 .80 .07 .72 1.14
(.06) (24) (.05 (.14) (1.31)

Kinked-Linear Detrending 279 .07 52 115
(.06) (.23) (05) (27 (1.29)

Hodrick-Prescott Detrending g3 7 09 2000 1.37
(.06) (.23) (.08) (.23) (1.26)

Rosen-Murphy-Scheinkman 909 85 .10 .60
: - (NA} (NA) (NA) (NA)

Notes to Table: 8 = discount factor, g = fertility rate, § = death rate, p = serial
correlation coefficient. The frequency band used for estimation corresponds to periods from
34 t0 4 years. Standard errors, based on 200 bootstrap replications, appear in parentheses.
The Rosen-Murphy-Scheinkman parameters are included for comparison. (They have no
standard errors, because they were not estimated.)

Table 2
Estimated Parameter Correlations
Band-Restricted Maximum Likelihood

B 3 ) P o
g 100 -92 .07 .02 .25

4 -92 100 .25 .11 -17
8 07 .25 1.00 .25 .11
p 02 11 25 1.00 .13

T 25 -17 .11 13 1.00

Notes to Table: B8 = discount factor, g = fertility rate, = death rate, p = serial
correlation coefficient. Estimated parameter correlations are based on 200 bootstrap
replications. The frequency band used for estimation corresponds to periods from 34 to 4
years.



Figure 1
U.S. Cattle Consumption, 1900-1990
Actual and Three Estimated Trends

Notes to Figure: We show cattle consumption with a solid line. We superimpose three
estimated trends: linear (dash), kinked-linear (dot), and Hodrick-Prescott (dash-dot).

Figure 2
U.S Total Stock of Cattle, 1900-1590
Actual and Three Estimated Trends

2000

Notes to Figure: We show cattle stock with a solid line. We superimpose three estimated
trends: linear (dash), kinked-linear (dot), and Hodrick-Prescott (dash-dot).



Figure 3
Estimated Spectral Density Matrix
U.S. Cattle Consumption and Stock
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Notes to Figure: We detrend using the kinked-linear method. We show the point estimate
of each element of the spectral density matrix, obtained by smoothing the periodogram. The
frequency band indicated by vertical dashed lines corresponds to cycles with periods of 34-4
years and is the band of primary relevance for studying cattle cycles. See text for details.



Figure 4
Estimated (Log) Spectral Density Matrix and Confidence Tunnels
U.S. Cattle Consumption and Stock
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Notes to Figure: We detrend using the kinked-linear method. We show the point estimate
together with a 90% confidence tunnel for each element of the spectral density matrix. We
obtain the point estimates by smoothing the periodogram. We construct confidence tunnels
by the Bonferroni technique in conjunction with the bootstrap. The frequency band indicated
by vertical dashed lines corresponds to cycles with periods of 34-4 years and is the band of
primary relevance for studying cattle cycles. See text for details.



Figure §

Model Spectrum Evaluated at Band-ML Estimates
U.S. Cattle Consumption and Stock
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Notes to Figure: We show the model spectrum evaluated at the band-restricted maximum
likelihood parameter values, for each element of the spectral density matrix.



Figure 6
{Log) Model Spectra, and Data Spectra Confidence Tunnels
U.S. Cattle Consumption and Stock
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Notes to Figure: We show the 90% confidence tunnel for the data spectrum, together with
the model spectrum evaluated at the band-restricted maximum likelihood parameter values,
for each element of the spectral density matrix.



Figure 7
Sampling Distributions of Parameter Estimates
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Notes to Figure: Sampling distributions are based on 100 bootstrap replications. We
detrend using the kinked-linear method.



