TECHNICAL WORKING PAPER SERIES

JACKKNIFE INSTRUMENTAL
VARIABLES ESTIMATION

Joshua D. Angrist
Guido W. Imbens
Alan Krueger

Technical Working Paper No. 172

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
February 1995

We thank seminar participants at the Harvard-MIT Econometrics workshop, the Duke-UNC-SAS
Econometrics workshop, Tel Aviv University, and Hebrew University for helpful comments.
This paper is part of NBER’s research program in Labor Studies. Any opinions expressed are
those of the authors and not those of the National Bureau of Economic Research.

© 1995 by Joshua D. Angrist, Guido W. Imbens and Alan Krueger. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit permission
provided that full credit, including © notice, is given 10 the source.



NBER Technical Working Paper #172
February 1993

JACKKNIFE INSTRUMENTAL
VARIABLES ESTIMATION

ABSTRACT

Two-stage-least-squares (2SLS) estimates are biased towards OLS estimates. This bias
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one-out" jackknife-type fitted value in place of the usual first-stage equation. The new estimators
are first-order equivalent to 2SLS but with finite-sample properties superior to those of 2818 and
similar to LIML when there are many instruments. Moreover, the jackknife estimators appear
to be less sensitive than LIML to deviations from the linear reduced form used in classical
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1. INTRODUCTION

This paper develops twosimple alternatives to two-stage-least-squares (25LS) and limited-
information-maximum-likelihood (LIML) estimators for models with more instruments than
endogenous regressors. The new estimators can be interpreted as instrumental variables esti-
mators based on an asymptotically optimal instrument constructed in a manner that ensures
that even in finite samples it is independent of the disturbance in the regression equation.
One way to achieve this is by doing the first stage regression NV times, once for each ob-
servation, leaving out one observation at-a time. V\;hile this may seem cumbersome and
computationally expensive, this estimator can be written in a way that requires only two
passes through the data. The resulting computation is of the order of weighted least squates.
The second version removes the dependence on the value of the endogenous regressor on the
estimated instrument in a similar manner. Both estimators are simple to implement in
standard packages and are first-order equivalent to 2SLS and LIML.

The finite sample properties of these estimators, which we refer to jointly as jackknife
instrumental variables estimators (JIVEL and JIVE2), are superior to those of 2SLS and
similar to those of LIML in the case of many instruments which are only weakly correlated
with the endogenous regressor. This case has received considerable attention in the recent
literature on instrumental variables estimation (Bekker, 1994; Staiger and Stock, 1994; An-
grist and Krueger, 1995; Bound, Jaeger and Baker, 1995) in reaction to applications (Angrist,
1990; Angrist and Krueger, 1991). Unlike 2SLS, JIVE1 and JIVE? are centered around the
true parameter value, even with many weak instruments. The JIVE estimators are closely
related in spirit to the two sample instrumental variables (TSIV) and split sample instrumen-
tal variables (SSIV) estimators developed by Angrist and Krueger (1992, 1995). But they
differ importaatly from the SSIV estimators in two respects. First, they.are asymptotically
efficient. Second, they do not require an arbitrary sample split.

Like 2SLS, JIVEI and JIVE2 can be interpreted as instrumental variables estimators

with a constructed instrument of the same dimension as the endogenous regressor. For



2SLS, as well as for JIVE] and JIVE2, this constructed instrument converges to the best
linear predictor of the endogenous regressor given the instruments. The probability limit of
the new estimators is therefore identical to that of 25LS even under general misspecification.
This is important because if the model is mis-specified, LIML and 2SLS can have very
different properties. While neither dominates the other, Fisher (1966, 1967) suggests that
25LS (and therefore JIVEL and JIVE2) may have the edge in more cases.

Section 2 discusses the bias of 25LS and Section 3 introduces the JIVE estimators. A
Nagar-type approximation argument (Nagar 1959, Bu.;e 1992) is used in Section 4 to explain
why the JIVE estimators are likely to perform better than 2SLS when there are many
instruments. In Section 5, we use a Bekker (1994) group-asymptotic parameter sequence
to further characterize and compare the finite-sample properties of JIVE, 25LS, and LIML.
25LS is not consistent under this sequence while LIML and JIVE are. The group-asymptotic
approach also provides some insight as to when JEVE might perform better than LIML.
Section 6 presents a small Monte Carlo study.! Here we report coverage rates for confidence
intervals constructed using conventional asymptotic approximations, as well as quantiles and
median bias from the Monte Carlo sampling distribution. Section 7 applies the estimators

to the Angrist and Krueger (1991) data and Section 8 concludes.

2. THE BIAS OF TWO-STAGE-LEAST-SQUARES

The model we are interested in is
Yi=XiB+e¢
Xi=Zix + .

The random variable Y; is a scalar, X; is an L dimensional row vector and the instrument
Z; is a K dimensional row vector, with K > L. The number of overidentifying restrictions

is K — L. In matrix notation we can write this model as

'In a comment on an earlier version of this paper, Blomquist and Dahlberg (1994) found (in a Monte
Carlo study) that JIVE is typically the minimum mean squared error estimator in the group of approximately
unbiased estimators they consider.



Y = X3 +¢, (1)
X=2r+7. (2)

In the matrix formulation, Y is an IV vector with typical element Y;, X is an N x L dimen-
sional matrix with typical row X;i, Z is an N x K dimensional matrix with ith row equal
to Z;, € is an N vector and 7 is a matrix of dimension N x L with typical rows ¢; and ;.
If there are M common elements in the vector of regressors and the vector of instruments,
then M columns of the N x L matrix 5 are identicall;/ zero.

We assume that conditional on Z; the disturbance &; has. expectation zero and variance
o?. We also assume that E{n|Z} = 0 and Elgfn;] = Iy, with rank L — M. Finally, Eleini]
is equal to the L dimensional column vector o and the probability limits of Z'Z/N and
X'X/N will be denoted by £z and Lx respectively. We assume that all observations are
independent and identically distributed.

The standard estimators for 8 are, first the OLS estimator:

B = (X'%) 7 (X1Y).

OLS is not consistent if o, differs from zero. Its probability limit equals g 4 (x'Ez7 +
L) '0e. Second, the instrumental variables estimator using the optimal instrument of

lowest dimension, Z:
Bowt = ((Z2)X) ™ ((Z7)Y).
Third, the 2SLS estimator:
b = (x'2(z2) "' 2X) 7 (x'2(2'2) " 2'Y)

It is useful to work with a characterization of Paats 38 an instrumental variables estimator

using the instrument Z# where # = (Z'2)"(Z'X). In particular,

Baas = ((ZRYX) ™ (ZAYY). @)



The limiting distribution of both VN (B, — B) and VN (ﬁm — f) is normal with mean zero
and variance (7'E,7)"'o2.

The main idea behind our approach is that ﬁ,,. has much better small sample properties
than ;,;, in the presence of many instruments, even though the two estimators have the same
asymptotic normal distribution. This follows directly from the Nagar (1959) bias formula,
which shows that keeping the explanatory power of the instruments constant while increasing
the number of instruments increases the bias of ﬂ,,,,..The intuition for this is that the first
stage fitted values, Z#, can be written a3 RX = iw + Pze where Py is the projection
matrix Z(Z'Z)~'Z'. These fitted values are therefore correlated with . Even though this
correlation vanishes in large samples, it increases with the number of instruments for fixed
sample size. It should be kept in mind, however, that B.pt does not have any moments, while
Basts can have moments up to order K — L (Phillips, 1983). We therefore focus on robust
measures of dispersion around the true parameter value such as median absolute error.

The previous discussion suggests that the bias of ﬁg,;, towards ﬁoh is related to the
difference between the estimated instrument Z;# and the optimal instrument Z;x. This leads
us to develop new estimators of 8 based on different estimates of the optimal instrument Z;x.
The key feature of this approach is that these alternative estimates of the optimal instrument
are independent of ¢; even in finite samples, unlike the standard estimate Z;& which is only
asymptotically independent of £;. While these estimated instruments may have a variance
different from the variance of Z;#, the difference in variance goes to zero fast enough to give
the resulting estimators the same first order asymptotic properties as both Bops and Baats-
The resulting bias reduction is such that in models with many instruments the associated

estimators of 3 are superior to 2SLS, and, in some cases, LIML.

3. JACKKNIFE INSTRUMENTAL VARIABLES ESTIMATION

Our approach begins with the instrumental variables interpretation of 2SLS. The ith row

of the estimated instrument Z# underlying 2SLS can be written:



Zix = Z(Z'2)"1(Z'X) (4)
= Ziw + Z(Z'2)"(Z'n).
The covariance of this with &; given Z; is generally different from zero:
EleiZi#|Z) = 2{Z'2)" 2} Elemi] = Z(Z'2)' Z; - oy,

The reason for this is that X; is used in the construction of Z/#, and X; is correlated with
€ if oy #0. |

Let Z(i) and X(i) denote matrices equal to 2 and X w1th the ith row removed. JIVEI]
removes the dependence of the constructed instrument Z!#% on the endogenous regressor for

observation i by using

#(i) = (Z()'2()) " (ZG)X (),
as an estimate of x. The estimate of the optimal instrument is

Ziw (i) = Zi(Z()'Z()) " (ZG)X(D)-
Define j(,-,-.,,; to be the N x L dimensional matrix with ith row Z;#(i). Then the associated
estimator for 3, denoted by JIVEL, is equal to: '

- Iy -1 s~

ﬁjl'uel = ( ;ivelx) ( ;'l'uclY)'
The JIVEL estimator appears to require separate calculation of N least squares estimates,
#(i) fori =1,..., N. Inlarge samples this would be prohibitively expensive. All we actually
need, however, is the estimated instrument Z;#(i). This can be calculated using a formula
from the literature on influential observations (Cook 1979):

(Z'Z)-l YA h.'X.'
1- Z(Z'2)1 2 1-h '

Zi#(i) = Zi (Z'X - ZIX)) = (5)



where h; = Z;(Z'Z)~' Z;.? Given Z;#(i), calculation of B,-,-.,,, is straightforward.
An alternative version of this, denoted by JIVE2, removes the dependence on &; by
adjusting only the Z'X component of # = (Z'2)~'(Z'X). Define
#(i) = (Z2)"NZ(E)X(E) - (NN = 1)) = (N/(N = 1)) - (F - (Z'Z) " Z{ X))

as the associated first stage parameter. A formula similar to equation (5) is:

(Z'2)" ox = zix,y = ZiF = hiXi
1—1/1\'(zx ZiXi) = 1-1/N.. (6)

The resulting estimator for 3 is:
A v/ =175
ﬂjiue? = (xjive’lx) ( jivc?Y)?

where the N x L dimensional matrix )‘(,-,-.,,—,. has ith row equal to Z;#(i). Note that the only
difference between JIVEL and JIVE2 is the difference between 1 — Z;(Z2'2)~'Z} and 1-1/N

Z,'i‘(i) = Z;

in the denominator of (5) and (6). Again, this estimator requires only two passes through

the data.

4. THE Bias OF JACKKNIFE INSTRUMENTAL VARIABLES ESTIMATORS

In this section we investigate the bias of the leading terms of an expansion of ﬁ;,;,, ,9,-.-.,,1
and Bj;,,g. This expansion allows us to interpret differences between the estimators as arising
from alternative estimates of Z;r, and provides intuition for the superior performance of JIVE
with many weak instruments. The bias calculation is similar to those by Nagar (1959) and
Buse (1992), with the main difference that we expand the estimators of interest around the
just—identified instrumental variables.estimator B,P,.

For any N x L matrix X, we can define the following estimator for g:
AX) = (X’X)"IX'Y.

This is the just-identified estimator for 8 based on the single instrument X. In this notation,

the four estimators of interest are:

2The term h; is sometimes called the observation leverage and is computed by many regression packages.
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Bope = B(Z7) = (FTX) N (x'TY),
Basts = B(Xaus) = B(PzX) = (X' PzX) (X' PzY),
Biiver = BXjiver) = (Kjiuer X) ™ (Kfiuer Y,

and

Bjiue? = B(ijiw?) = (X;’ivﬂx)-l(ﬁ;iueﬁY)'

where the ith row of Xj.‘yel and X,-.-.,,g is defined as before.

The Nagar (1959) and Buse (1992) approximate bias of fBope equals —(7'E,m) Yo, /N.
This is proportional to the covariance of ¢ and n and therefore to the bias of OLS, as
is the approximate bias of 2SLS. But unlike the Nagar bias of 2SLS, which equals (K —
L —1)-{n'T,x) 'o/N, the approximate bias of fop is not a function of the number of
instruments. The Nagar bias of ﬁo,,, therefore provides a natural standard when comparing
the finite-sample properties of alternative feasible estimators. We begin our discussion of
the bias of JIVE and 2SLS with this comparison.

Note that for 25LS, JIVEL and JIVE2 we can write

X = Zr + Cy,

where X is an estimator of Zr with C a N x N matrix such that the elements of Cn are of
stochastic order 0,(1/V/N). The (i, §)th element of Cy,, is:

Cataig) = Zi(Z'2)7' Z;, (7

the (i, j)th element of Cjiva is:
ZAZ()YZ(i)' Z; ifi#]
Cliver,(ij) ={ 0 (262677 itigds (8)

ifi=j,

and the (i, 7)th element of Cjivez is:



Z; YAV AA ife )
C,,,.u,,(,.,,,z{ z ¥(2'2)'Z; it f;’, 9)

The next step is to derive the (order 1/N) bias of 3(X) relative to the bias of (Zx), for
any X:

A(X) - f(Zx) = (X'X)"H(X'Y) - (Zr)
= (r'Z’X + yC'X) N (*Z'Y +¢'CY) - ;?_(zn).
Defining R = (x'2Z'X)"", we can write this as
A(X) - B(2Z) = (R7N(T + Ry'C'X)) " (*'Z'Y +7'CY) - j(Zr)
= (T + RyC'X)" (R*'2Z'Y + Ry'C'Y) - B(Z~).

Expanding (Z + Rp"C'X)~? around Rp’C’'X = 0 and ignoring terms of order less than 1/N
in the muitiplication with (Rn'Z'Y + Ryn'C’Y) leaves only terms involving T — A7'C’X. In

particular, we have
B(X) - B(Zx) = (T - RYC'X) - (Rx'Z'Y + Ry’C'Y) — B(Z7) + 0,(1/N)
= Rr'Z'Y + Ry'C'Y — Ry C’XRx'Z'Y — Rf'C'XRy'C'Y - j(Zx) + 0,(1/N).
Using the fact that #(Zx) = (¢'2'X)~)(x'2'Y) = Rx2'Y, this equals
Ry'C'Y — Ry'C'Xj(Zx) - Rq;C'XRn‘C’Y + 0,(1/N)
= Rn'C's — Ry'C'X{B(Zx) — B) — Ry'C'XRn'C'Y + o,(1/N).

The third term in this representation, Ry'C'XRy’C'Y, is of lower order than 1/N and is
ignored in the approximate bias calculation. We therefore focus on the bias coming from the

terms



Ry'C'e — Rn'C'X(3(Z~) - B).
Expanding the ith row of X(4(Zr) — ), we have
Xi(B(Zx) - B) = Xi(n'T'X)"N(r'T'e) = Zin(x'B'Lr) " (¢'T'e) + 0,(1/VN).
Finally, expanding N - R around Ro = plim(x'Z'Zx/N)~! = (xZz7)"'. we can write
Rn'C'e — RyC'X(8(Z7) - B)
= %(Ro’i'c'i — Ron'C' Pg.e) + 0p(1/N). " | (10)

The expectation of the first term is the approximate bias of B(X) relative to 8(Zr), up
to order (1/N). The fact that this bias is nonzero stems from the nonvanishing covariance
between Cn and e.

The final step is to evaluate the expected value of (10) for 25LS, JIVE1 and JIVE2. For
A(Xaas) - B(Zx), we have:

bia-52|h = E[(RO/N)’?’ 'hfae - (ROIN)T” 'Ithz"e] (11)
= E[(ROIN):)'Z(Z'Z)“'ZE - (Ro/N)q'Z(Z'Z)“IZPz,,e]
= (Ro/N)E[y'(Pz ~ Pz Pz Pz)e).

In the last equality we use the fact that Pz, = Pz.Pz. The ith element of the bias vector
is equal to (Ro/N) - trace(Pg — Pz Pz, Pyz) times the ith element of ¢i,. Note that (Pz —
PzPz.Pz) is an idempotent matrix with rank and trace equal to K — L, the number of

overidentifying restrictions. This implies that the expectation of (11) equals
. 1
biasy,, = -R-(K — LYRyo.n, (12)

which is the difference between the bias of Bayts and the bias of 3,,,,. This is the same result
one would obtain by direct application of the Nagar formula to Baate and ﬁc,‘.

Next, we evaluate (10) for B;‘iue?v



. l I Fald '] 1
biasjivez = 7 E(Ro' Cliaca ~ Ro'Clivea Paet). (13)

Because Cj;,.3 has diagonal elements equal to zero, the ith element of Cjiyean is independent
of 1; and therefore of ¢;. Hence, the expectation of the first term in (13) is zero. To evaluate

the second term,
—ERoy/Cljyeq Pzt

we use the fact that

N
Cjives = No1 (Casts = Djivea),

where Djivea is a diagonal matrix with ith element Z;(Z'Z)™! Z], equal to the ith diagonal

element of Ca,;,. Therefore

N
~En'Cliuea Paae = 57—~ En'Chu, Prxe +

N ;
N—-1 ' E?] jl'udl:azfs

N

=51 (—La,,, + tra.ce(D,—,-,,,,Pz,)a,,,) = — Lo, + 0(1).

The last equality follows because order of the trace of Dj;,e3 Pz is smaller than that of the

leading term. The bias of JIVE2 relative to ﬁo,,, is therefore —(Ro/N) + La,, up to order

I/N. Finally, we can use the same argument to show that
. ] iy
biasjiver = 7 E(Ron Cjiveré = Ron'Clivns Pane) = ~(Rof N) - Lowy. (14)

Thus, the approximate bias of JIVEL is the same as the approximate bias of JIVEZ.

This argument shows that in contrast to the bias of 2SLS, the approximate bias of JIVEL
and JIVE2 does not increase with the number of overidentifying restrictions. When the
number of instruments X is much larger than the number of regressors L, the bias of JIVE]
and JIVE2 is therefore likely to be smaller than that of 2SLS. In the special case where
L = 1, the difference in the approximate bias of the JIVE estimators and B(Zx) is equal

10



to minus the approximate bias of B(Zx), so that the JIVE estimators are approximately

unbiased in this case.

5. ASYMPTOTICS BASED ON AN INCREASING NUMBER OF INSTRUMENTS

In a recent paper, Bekker (1994) compares a number of traditional (single-equation)
simultaneous equations estimators using an alternative asymptotic approximation where the
pumber of instruments increases with sample size while keeping the explanatory power of the
instruments constant. Bekker (1994) shows that LIML is consistent under this parameter
sequence but 2SLS is not. The Bekker parameter sequence is justified by a range of Monte
Carlo evidence showing that in practice it can give a good account of finite-sample properties.

In this section we show that JIVE1 and JIVE2 are consistent under the Bekker parameter
sequence. Qur argument mirrors the version of this sequence that Angrist and Krueger
(1995) refer to as “group-asymptotics.” Group-asymptotics amounts to drawing new i.i.d.
replications of X, Y, and new instrumental variables Z so that K/N is fixed at a number,
k. The new instruments, however, are uncorrelated with X. There are no other restrictions
on the distribution of the additional instruments except that E[Z!Z;) is finite for all N. The
sequence of first stage coefficients is 7y = (x4, %), with mo a vector of fixed length I, and
#n a vector of zeros of length k- N -1 = K - I, because the additional instruments are
uncorrelated with the endogenous regressor. The first-stage normalized population sum of
squares, 7'2'Zx [N, (sometimes called the concentration parameter) is therefore also fixed.

Let gplim(B) denote the group-asymptotic probability limit of the estimator B. Under
this sequence, it is easy to show that the group-asymptotic probability limit of all estimators

of the type B(X) can be written as
gplim(A(X)) = E(X'X/N)™ - E(X'Y/N). (15)

In fact, group-asymptotics can be thought of as a way to rationalize passing expectations

through a ratio®

35toker (1995) uses a similar approach to characterize the finite-sample bias of non-parametric regeession

11



Recall that X is a generic fitted value appropriate for either 2SLS, JIVEL, or JIVE by

choice of the matrix C. For any C, we have
E(X’X/N) = E((Zr + Cn)'(Zr + n)/N)
= #'Ezx + E(#'Z'n/N) + E(y'C'Zn/N) + E('C'n/N).

The second and third terms are zero for Cjiver, Cjivez and Cy,1, because 5 and Z are mean
independent. The last term is zero for Cjiye1 and Cjivea because Cjjyey and Cjiy,q have zeros

on the diagonal, and hence, a trace of zero. For 25LS, the last term is not zero but rather
kZ,.
Similarly, for the second part of 3(X), we have
E(X'Y/N) = E((Z7 + Cn)'(Zr8 +nB + €)/N)
= (r'Ezm)8 + E(x'Z'B/N) + E(y'C'ZnB/N)

+E(n'C'9B/N) + E(n'C'e/N).

The same argument as before implies that for Cjiy.1 and Cjj.g all terms other than the first
are equal to zero. This establishes the group~asymptotic consistency of the JIVE estimators.

For C,,,, the last two terms in the above expression differ from zero. In particular,
E(7'Ce/N) = ko, so that

gplim(ﬂ.hh) = ﬂ + (N'S,Tr + kE,,)"kcr,,,.

Finally, note that a similar argument can be used to show that the group-asymptotic prob-

ability limit of 3, is

gpﬁm(ﬁoh) =f 4 (r'T,r + E,) oy,

estimaltors.
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5.1 COMBINATION ESTIMATORS AND LIML

The argument in the previous section shows that the bias of 2SLS is proportional to
the bias of OLS under group-asymptotics, as well as under the approximation argument
developed in Section 4. This suggests that a linear combination of 25LS and OLS can have
less bias than either estimator alone. Interest in such “combination estimators” has a long
history in the literature on finite-sample properties of simultaneous equations estimators
(see, e.g., Sawa 1973, and more recently Staiger and Stock 1994).

Our interest in combination estimators stems from the link between these estimators
and LIML. Like the JIVE estimators, LIML does not share the many-instruments bias
of 2SLS towards OLS. For example, Bekker (1994) shows that LIML is consistent under
group-asymptotics. As a practical matter, our simulations show that LIML is approximately
median—unbiased.* This section provides an alternative proof of the group-asymptotic con-
sistency of LIML and an intuitive explanation for this result.

Consider the following theoretical combination estimator,
B=(r'Ser + kS, = kE;) 7 - (X' PeX)Bauts — k- (XX)fur)
= (#Ber - (1= 8)) 7 - (XPaX)Bauts = k- (XXK)Buas). (16)

This estimator can be motivated from the group-asymptotic probability limits of Baa, and
B.1,, or by direct calculation, which shows that B is actually unbiased. It is clearly not
a feasible estimator, however, because it requires knowledge of population parameters.. A
feasible version of § is obtained by replacing E, with X'X and (x'E,n + kX,) with X' PzX,

to give:

B = [X'PgX ~ kX'X| " [XPaXBaus, — X' Khou]

4The approximate median-unbiasedness of LIML has been noted by many authors. See, e.g., Anderson,
Kunitomo, and Sawa (1982).
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We now show that Biimi corresponds to a version of B with k replaced by a random variable
that estimates k. This provides some intuition for the superior performance of LIML relative
to 2SLS in situations where 2SLS is likely to badly biased, and establishes that gplim(ﬂ,;m,)
equals g.

Define A(B} as

NP L Xp) Pa(Y — Xp)
ge | (Y -XAN(Y-XB)

where ¢ = Y — X. Note that the group-asymptotic probability limit of A(8) evaluated at
the true value of 3 is E(e' Pze)/E(e’e) = k.
The LIML estimator can be defined as the solution to

min A(6),
which has the same solution as
mgn[ln((Y — XB) Py(Y - XB)) —In((¥Y — XB)(Y - x8))-
The first order conditions for this minimization problem can be written
X'PrY - AB)X'Y = (X' PgX — MB)X'X)B,
which implies
Bt = [X' P X~ MBim)X'X] " [XP2Y = M) X'Y]
= [X'PaX = M(Brem)X'X] " [X PgXBauts = M B XX B (17)

This is B with & replaced by MBrim)-
To complete this section, note that writing Biimt 38 in the previous equation leads to
a straightforward argument for the group-asymptotic consistency of Biimi- Because matrix

inversion and A(Bj;m!) are continuous functions, we have

14



gplim(Buimi) = E[X'P2X ~ gplim{Mgplim(Bum))XX] ™
E [Xszﬁw- - gplim(’\(gplim(ﬁliml)))x'xaoh]

Because gplim(A(8)) at the true value of g is k, gplim(fiim)) = B is a solution to this
equation. If the model is identified, this solution will be unique.

One reason the interpretation of Biimi as the sample analog of an unbiased combina-
tion estimator is useful is that this interpretation suggests when LIML is likely to be an
unattractive estimation technique. In part-i-cular, unlike 2SLS or the JIVE estimators, LIML
estimation requires that MPrimi) be close to k. Brimi is therefore also likely to be more sen-
sitive than either 2SLS or JIVE to deviations from perfect instrument.-error orthogonality
because such deviations tend to increase AB).

Another example when 2SLS or JIVE might be preferred to LIML is when some in-
struments are erroneously excluded from the second stage when they should included as
covariates (for example, when lagged dependent variables are used as instruments when they
should be used as controls.) If the erroneously excluded instruments are actually uncorre-
lated with the endogenous regressor, then 25LS, JIVEL and JIVE?2 will still be consistent.
But because of the functional relationship between Biim and A(B), LIML is not consistent

under this sort of mis-specification.
6. MoNTE CARLO STUDY

6.1.STuDY DESIGN AND MONTE CARLO STATISTICS

In this section, we report evidence on the finite sample behavior of the estimators pro-
posed in this paper, focussing on robust measures of bias. In particular, we report quantiles of
the Monte Carlo sampling distribution along with the median absolute error. Mean squared
error is not likely to be as useful a standard for comparison because neither LIML or the

JIVE estimators have moments.
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We also report coverage rates for 95 percent confidence intervals computed using the usual
asymptotic approximation to the distribution of OLS, 2SLS, and LIML (i.e., the estimate
plus or minus 1.96 times the asymptotic standard error.) For the JIVE estimators, we
report confidence intervals based on asymptotic standard errors for a just-identified IV
estimator using J'(,-.-m and f(,-,-.,,z as instruments. The justification for this is pragmatic: if the
usual approximation works in the sense of providing accurate coverage for the approximately
unbiased LIML and JIVE estimators, there would seem to be little reason to report more
sophisticated approximations such as those developed.' by Stock and Staiger (1994).

In fact, Bekker (1994) finds that some theoretically more accurate approximations to the
limiting distribution of LIML based on group-asymptotics provide little or no improvement
over the usual asymptotic approximation in most cases. This is not true for 25L5, however.
The results of our simulations confirm and extend this: asymptotic confidence intervals for
the approximately unbiased LIML and JIVE estimators turn out to be remarkably accurate

while conventional asymptotic confidence intervals for 25LS are quite poor.

6.2 MODELS AND RESULTS

We begin with a model where there is a single overidentifying restriction. The second
model is similar, with the modification that there are a large number of instruments relative
to the number of regressors. In both of these first two models, the errors are homoscedastic
and the first stage regression is linear, so that LIML is the maximum likelihood estimator.
In the third model, the first stage is nonlinear and heteroscedastic. Here LIML is less likely
to have good small sample properties since it is no longer the maximum likelihood estimator.
In both of the latter two models, 25LS should be badly biased because of the large number
of overidentifying restrictions. The last model sets the true reduced form coeflicients to zero
for all instruments in an attempt to ascertain how misleading the estimators might.be in
this non-identified case.

The models and results are as follows:

16



Model |
Yi=fo+ B Xi +&
2
Xa =mo+ )7 Zij +n;
i=1

with f1 =1, =0, ro = 0, m; = 0.3, and x; = 0. Here, K=3 and L=2, and

£ 0 0.25 0.20
() ~*((5)- (20 03 )
All Z;; are independent, normally distributed random variables with mean zero and unit

variance,

Table I presents quantiles of the sampling distributions of the estimators, as well as the

median absolute error and coverage rates. In this set of simulations, LIML, JIVEl and

Table 1: MoDEL 1: N=100, L=2, K=3; 5,000 REPLICATIONS

Quantiles Around 8, median coverage rate
estimator | 0.10 0.25 050 0.75 0.90 | absolute error 95% conf. interval
OLS 050 0.55 0.59 0.64 0.67 0.59 0.00
2S8LS -0.19 -0.06 0.04 0.14 0.22 0.11 0.91
LIML |-0.26 -0.13 0.00 0.11 0.19 0.12 0.96
JIVET |{-0.40 -020 -0.05 007 0.17 0.13 ' 0.96
JIVE2 {-0.40 -0.20 -0.05 0.07 0.17 0.13 0.96

JIVE?2 all have median absolute error close to that of éSLS, which is the estimator with the
minimum median absolute error. But confidence interval coverage is actually more accurate
for JIVE and LIML than for 2S5LS. One reason LIML is better is that it has a more symmetric
distribution. It is not surprising that LIML does very well, however, since it comes from the
normal likelihood function and in this example the disturbances are in fact normal. Note
that confidence interval coverage for JIVE is as good as that for LIML, in spite of some

asymmetry in the Monte Carlo sampling distribution of JIVE.
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Figure 1 presents the distribution functions of the sampling distributions for the five
estimators. The approximate median unbiasedness of 2SLS, LIML, JIVEL and JIVE2 for
this example shows up in the proximity of the intersection of the distribution function and
the vertical line at zero to the intersection of the distribution function and the horizontal

line at 0.5.

Model 2
Model 2 adds 18 worthless instruments to the design in Model 1. This is a situation

where we expect the performance of 25LS o deteriorate.
Yi=fo+br-Xa+ei
20
X =mo+ Y75 Zij + i

i=1

with 8y =1, 80 =0, 7 =0, m =03, and mr; =0for j =2,3,... ,20. Here, K=21 and L=2,

() ~~((8) (3% o3 )

All Z;; are independent, normally distributed random variables with mean zero and unit

and

variance,

Table 2 presents Monte Carlo statistics for this model. In this set of simulations, LIML,
JIVE1 and JIVE2 are all superior to 25LS and OLS in terms of median absolute error.
Unlike 2SLS and OLS, the three other estimators are essentially median unbiased and the
asymptotic confidence intervals have very good coverage. LIML is less dispersed than both
JIVE1 and JIVE2 with the latter having thick tails. The asymptotic coverage for 25LS is
also poor. Again, it is not surprising that LIML does very well here since in this example
the disturbances are normally distributed.

Figure 2 presents the distribution functions of the sampling distributions for the five

estimators.
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Table 2: MoDEL 2: N=100, L=2, K=21; 5,000 REPLICATIONS

Quantiles Around 3, median coverage rate
estimator | 0.10 0.25 0.50 0.75 0.90 | absolute error 95% conf. interval
OLS 0.51 0.55 059 0.63 0.67 0.59 " 0.00
2SLS 0.14 021 028 035 041 0.28 0.31
LIML -0.31 -0.14 0.00 0.11 020 0.13 0.94
JIVEFL |-0.61 -0.28 -0.04 0.12 0.23 0.17 0.94
JIVE2 |-063 -0.29 -0.04 0.11 0.23 0.17 0.94

Model 3
The third model has the same basic structure as before, except that the relationship
between X; and Z; is nonlinear and heteroscedastic. But as in model 2, there are 20 linear

instruments so that nonlinearities in the first stage are ignored in the estimation.
Yi=fo+Bi- X +e&
20 20 20
Xa=m+ er,-- Zij +0.3'ZZ.-2,-+7],‘0'ZZ‘?J-/19
J=1 =2 j=2
with Bi=1,8 =0,7 =0, m =03, and r; = 0 for j = 2,3,...,20. In the estimation,
K=21 and L=2, and

(2)~#((3):(s3 23))
Table 3 presents Monte Carlo statistics for this model. As expected, OLS and 25LS are still
biased, as evidence by the fact that almost all probability is concentrated on one side of the
true value of B, for these estimators. Moreover, in spite of the low median absolute error of
2SLS in this case, the asymptotic coverage of 25SLS is very poor.

JIVE! and LIML do not do as well in Model 3 as in Models 1 and 2. But JIVE2 is
the best estimator in terms of median-bias and median absolute error. It is clearly superior
to LIML and even to JIVEL in this model, both in terms of bias and (slightly) in terms
of asymptotic coverage. The medians of JIVEL, LIML, and 2SLS are all similar. The big
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difference in spread between JIVE1 and JIVE2 is surprising and only in this sort of nonlinear
example have we seen such a difference. It is important to note, however, that in contrast
with 2SLS, even the highly dispersed JIVEL generates an asymptotic confidence interval
with reasonably accurate coverage. The lack of dispersion in 2SLS, reflected correctly in the

9SLS asymptotic standard errors, actually leads to highly misleading inferences.

Table 3: MoDEL 3: N=100, L=2, K=21; 5,000 REPLICATIONS

Quantiles Around 8, " median coverage rate
estimator | 0.10 025 0.50 0.75 0.90 | absolute error 95% conf. interval
OLS 0.12 0.14 0.17 020 0.23 0.17 0.03
25LS 0.04 0.10 0.16 022 0.27 0.16 0.57
LIML }-0.59 -0.15 0.10 0.32 0.80 0.25 0.97
JIVEl }-069 -0.13 0.16 043 0.95 0.32 0.97
JIVE2 |-0.41 -0.13 0.04 0.16 033 0.15 0.95

Figure 3 presents the distribution functions of the sampling distributions for the five

estimators in this model.

Model 4
The fourth model has the same basic structure as model 2 but all coefficients in the

reduced form are set to zero.

Y, =Po+ - Xa +é&i
20
X =mo+ 3 7 Zij+ i
j=l
with By =1, fo = 0, and #; = 0 for all j. Again, L=2 and K=21, and
&\ A 0 0.25 0.20
ni 0/'\,020 025 /)
Table 4 presents Monte Carlo statistics for this model. The two JIVE estimators and
LIML are much more dispersed than either OLS or 25LS in this case, suggesting that a
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Table 4: MoDEL 4: N=100, L=2, K=21; 5,000 REPLICATIONS

Quantiles Around §, median coverage rate
estimator | 0.10 0.25 0.50 0.75 0.90 | absolute error 95% conf. interval
OLS 0.72 0.76 0.80 0.84 0.87 0.80 0.00
2SLS 0.62 0.71 0.8¢ 0.89 0.97 0.80 0.00
LIML |-1.14 0.18 081 142 269 1.01 0.71
JIVE1 |-0.40 041 080 121 2.07 0.88 0.71
JIVE2 |-035 041 080 1.20 2.05 0.88 0.71

researcher would not be misled by JIVE or LIML estimates into thinking that the instruments
generate reliable inferences regarding the coefficient of interest. It is also interesting to note
that the correlation between JIVE and LIML in this model is very low, unlike in models
where the instruments are valid. This suggests that a comparison of JIVE and LIML could
provide a useful check on the validity of inferences in applications with weak instruments.
Figure 4 presents the distribution functions of the sampling distributions of the five

estimators for this model.

7. RETURNS TO EDUCATION USING QUARTER OF BIRTH AS INSTRUMENT

In this section, we return to the Angrist and Krueger (1991) application that has mo-
tivated some of the recent literature on instrumental variables éstima.t.a with many weak
instruments. Angrist and Krueger (1991) estimated schooling coefficients using quarter of
birth as an instrument in a sample of 329,500 men born 1930-39 from the 1980 census. The.
dependent variable is the log weekly wage. In one version of this model, there are 30 inatru-
ments created by interacting quarter and year of birth. In a second version there are 180
instruments constructed by adding interactions of 50 state and quarter of birth dummies to
the 30 original instruments. The appendix to Angrist and Krueger (1991) provides a detailed
description of the data.

Table 5 reports schooling coefficients generated by different estimators applied to the
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Angrist and Krueger data. Exogenous covariates are listed in the table (these are either

state effects or state and year effects.) Table 5 shows that all IV estimators give very similar

Table 5: ANGRIST-KRUEGER DATA

no of instr. | state effects year effect ols 2sls liml jivel  jive2
30 no yes 0.071 0.08¢4 0.093 0.096 0.096
(0.0003) (0.016) (0.018) {0.022) (0.022)

180 yes yes 0.067 -0.093 0.106 0.119 0.119
-(0.0003) (0.009) (0.011) (0.084) (0.064)

results. This is important because Bound, Jaeger and Baker (1995) and Angrist and Krueger
{1995) note that if the instruments were in fact uncorrelated with schooling, 25LS could still
give results very close to OLS. In contrast, the two JIVE estimators and LIML would not
be expected to give similar or statistically significant estimates in such circumstances.

Another notable finding in Table 5 is that the asymptotic standard errors of the JIVE
estimators are quite large for the 180-instrument specification. The fact that the coverage
provided by asymptotic confidence intervals appears to be pretty good in the Monte Carlo
study suggests that the reported standard errors are an accurate reflection of the large
sampling variance of JIVE in this case. ‘The JIVE standard errors are actually larger than
those reported for a similar specification using an estimator that estimates the first and
second stage parameters in separate half samples (USSIV, Angrist and Krueger 1995). The
USSIV estimator works as follows: suppose the data are split into half samples, with data
matrices (Y3, X1, Z;) and (Y3,X,, Z3) Then USSIV is

) -1 g
ﬂu = ( nxl) (x:nyl)'
where X4 = Z.(2Z42,)' 25Y. The USSIV estimator has bias properties similar to those of

JIVE,
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The apparently unfavorable comparison with USSIV is puzzling because JIVE is asymp-
totically equivalent to the efficient 2SLS estimator while USSIV is not. But the USSIV
standard errors reported by Angrist and Krueger (1995) turn out to be incorrect because
they fail to take account of the random split into half samples. A random split clearly
generates additional sampling variance even in a single data set. This mistake highlights
another advantage of JIVE: there is no need to take account of a random sample split when
calculating sampling variance.

Finally, we note that in a comment on an ea.rlier.‘version of this paper, Blomquist and
Dahlberg (1994) present an extensive Monte Carlo compariéon of JIVE and USSIV, along
with another split-sample estimator discussed by Angrist and Krueger (1995) called SSIV.
They find that JIVE is typically the minimum mean squared error estimator in the group of

approximately unbiased estimators that they consider.

8. CONCLUSION

In this paper we present two alternatives to 2S5LS, LIML and other k-class estimators
for models with endogenous regressors. These estimators perform much better than 25LS in
models with many weak instruments, and have finite sample properties similar to those of
LIML. Moreover, simulations and a theoretical argument based on group-asymptotics suggest
that JIVE estimators combine the attractive bias properties of LIML with the robustness
of 2SLS. The JIVE estimators therefore seem to provide useful alternatives in applications
where there is concern about the number of instruments. '

Instrumental variables is one special case in a larger class of generalized method of mo-
ments models where a weight matrix is estimated in an initial stage and a weighted set of
restrictions is imposed in a second stage. In some cases, using the same data set to esti-
mate the weight matrix and to impose the moment restrictions leads to poor small sample
properties. In this context, Altonji and Segal (1994) discuss a sample splitting approach
similar to that used by Angrist and Krueger (1995). The jackknife idea developed here for
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instrumental variables extends to moment estimators such as those considered by Altonji

and Segal. Developing this extension appears to be a natural avenue for future research.
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Figure 1: Distribution Functions for OLS, 2SLS, LIML, JIVE1, JIVE2 (Model 1)
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Figure 2: Distribution Functions for OLS, 2SLS, LIML, JIVE1, JIVE2 (Model 2)
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Figure 3: Distribution Functions for OLS, 25LS, LIML, JIVE], JIVE2 (Model 3)
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