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unknown parameters. In this paper we develop tests for cointegration that can be applied when
some of the cointegrating vectors are known under the null or under the alternative hypotheses.
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of the cointegrating vectors contains unknown parameters. The asymptotic null distribution of
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are determined, and the local power properties of the test are studied. Finally, the test is applied
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1. Introduction

Economic models often imply that variables are cointegrated with simple and known
cointegrating vectors. Examples include the neoclassical growth model, which implies that
income, consumption, investment and the capital stock will grow in a balanced way, so that any
stochastic growth in one of the series must be matched by corresponding growth in the others.
Asset pricing models with stable risk premia imply corresponding stable differences in spot and
forward prices, long- and short-term interest rates, and the logarithms of stock prices and
dividends. Most theories of international trade imply long run purchasing power parity, so that
long-run movements in nominal exchange rates are matched by countrys’ relative price levels.
Certain monetarist propositions are centered around the stability of velocity, impfying
cointegration among the logarithms of money, prices and income. Each of these theories have
two distinct implications for the properties of economic time series under study: first, the series
are cointegrated, and second, the cointegrating vector takes on a specific value. For example,
balanced growth implies that the logarithms of income and consumption are cointegrated, and
that the cointegrating vector takes on the value of [1 -1].

The most widely used approach to testing these cointegration propositions is articulated and
implemented in Johansen and Juselius (1992), who investigate the empirical support for long-
run purchasing power parity. They implement a two-stage testing procedure. In the first
stage, the null hypothesis of no cointegration is tested against the alternative that the data are
cointegrated with an unknown cointegrating vector using Johansen’s (1988) test for
cointegration. If the null hypothesis is rejected, a second stage test is implemented with
cointegration maintained under both the null and alternative. The null hypothesis is that the
data are cointegrated with the specific cointegrating vector implied by the relevant economic
theory ([1 -1] in the consumption-income example), and the alternative is that data are
cointegrated with another unspecified cointegrating vector. Since a consistent test for
cointegration is used in the first stage, potential cointegration in the data is found with
probability approaching 1 in large samples. Thus, the probability of rejecting the cointegration
constraints on the data imposed by the economic model are given by the size of the test in the

second step, at least in large samples. An important strength of this procedure is that it can
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uncover cointegration in the data with a cointegrating vector different from the cointegrating
vector imposed by the theory. The disadvantage is that the sample sizes used in economics are
often relatively small, so that the first stage tests may have low power.

This paper discusses an alternative procedure in which the null of no cointegration is tested
against the composite alternative of cointegration using a prespecified cointegrating vector.
This approach has two advantages. First, and most important, the resulting test for
cointegration is significantly more powerful than the test that does not impose the cointegrating
vector. For example, in the bivariate example analyzed in Section 3 these power gains
correspond to sample size increases ranging from 40%-70% for a test with power equal to 50%.
The second advantage is that the test statistic is very easy to calculate: it is the standard Wald
test for the presence of the candidate error correction terms in the first difference vector
autoregression. The countervailing disadvantage of the testing approach is that it does not
separate the two components of the alternative hypothesis, and so may fail to reject the null of
no cointegration when the data are cointegrated with a cointegrating vector different from that
used to construct the test. We investigate this in Section 3, where it is shown that in situations
with weak cointegration (represented by a local-to-unity error correction term), even inexact
information on the value of the cointegrating vector often leads to power improvements over
the test that uses no information.

The plan of this paper is as follows. In Section 2, we consider the general problem of
testing for cointegration in a mode! in which some of the potential cointegrating vectors are
known, and some are unknown, under both the null and the alternative. In particular we
present Wald and Likelihood Ratio tests for the hypothesis that the data are cointegrated with
To, known and To, unknown cointegrating vectors under the null. Under the alternative there
are 1, and Ta, additional known and unknown cointegrating vectors respectively. The tests are
constructed in the context of a finite order Gaussian vector error correction model (VECM),
and generalize the procedures of Johansen (1988) who considered the hypothesis testing problem
with r0k=rak=0. In Section 2 we also derive the asymptotic null distributions of the test
statistics and tabulate critical values. Section 3 focuses on the power properties of the test.

First, we present comparisons of the power of likelihood based tests that do and do not use
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information about the value of the cointegrating vector. Next, since information about the
potential cointegrating vector might be inexact, we investigate the power loss associated with
using an incorrect value of the cointegrating vector. Finally, when there are no cointegrating
vectors under the null and only one cointegrating vector under the alternative, simple univariate
unit root tests provide an alternative to the multivariate VECM-based tests. Section 3 compares
the power of these univariate unit root tests to the multivariate VECM-based tests. Section 4
contains an empirical application which investigates the forward premia in foreign exchange
markets by examining the cointegration properties of forward and spot prices. Section 5

contains some concluding remarks.

2. Testing for Cointegration in the Gaussian VAR Model
As in Johansen (1988) we derive tests for cointegration in the context of the reduced rank

Gaussian VAR:

2.1a) Y, =d + X,
2.10) X, = TP _IX; + ¢

where Y, is an nX1 data vector from a sample of size T, d, represents deterministic drift in Y,
X4 is an n X1 random vector generated by (2.1b), ¢ is NIID(0,X ) and for convenience, the
initial conditions X _;, 1=0,...,p are assumed to equal zero. To focus attention on the long-run

behavior of the process, it is useful to rewrite (2.1b) as:
2.10) AX, = IIX, | + TP 88X, + ¢,

where IT=-I + ):Il’z 115+

Qur interest is focused on r=rank(II), and we consider tests of the hypotheses:

H,: rank()=r=r,
H,: rank(I)=r=r,+r,, with 1, >0.
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The alternative is written so that r, represents the number of additional cointegrating vectors

(U
cointegrating vectors that are known under the null and T, Tepresents the number of

that are present under the alternative. We assume that r,=r, +1, , where To, is the number of

cointegrating vectors that are unknown (or alternatively, unrestricted) under the null. Similarly,
Ty =Ty FTa where the subscripts "k" and "u" denote known and unknown, respectively. The Ta,
prespecified vectors are thought to be cointegrating vectors under the alternative; under the null
they do not cointegrate the series. In spite of this, for expositional ease, they will be referred

to as cointegrating vectors.

As in Engle and Granger (1987), Johansen (1988), and Ahn and Reinsel (1990), it is
convenient to write the model in vector error correction form by factoring the matrix II as
II=6a’, where & and o are nXr matrices of full column rank, and the columns of a denote the
cointegrating vectors. The columns of « are partitioned as a=(a, o), where a is an nXr,
matrix whose columns are the cointegrating vectors present under the null, a, is an nXr, matrix
whose columns are the additional cointegrating vectors present under the alternative. The
matrix  is partitioned conformably as 8=(3, 8,), where § is nXr, and 6, is nXr,. Itis also
useful to partition «, to isolate the known and unknown cointegrating vectors. Thus,
o‘a:(o‘ak O‘a.,)’ where the Ta, columns of g, are the additional cointegrating vectors known under
the alternative, and the Ta, columns of a, are the additional cointegrating vectors that are
present but unrestricted under the alternative. The matrix §, is partitioned conformably as
5a=(5ak 5a.,)' Using this notation, IIX, | = dolagXi1) Fo5(0 X 1), and the competing
hypotheses are: H:8, =0 vs. Hazéa#O, with rank(3,01)) =T,.

We develop tests for H, vs. H, in three steps. First, we abstract from deterministic
components and derive the likelihood ratio statistic and some useful asymptotically equivalent
statistics under the maintained assumption that d;=0. Second, we discuss how these statistics
can be modified for nonzero values of d;. Finally, the asymptotic null distributions of the
resulting statistics are derived and critical values based on these asymptotic distributions are

tabulated.



Calculating the LR and Wald Test Statistics when d,=0:

The likelihood ratio statistic for testing HO:r=rok+ Ty, VS- Ha:r=r0k+rak+r0u+rau will depend

ON T4y 5 Ta s Too Ta, and the values of g, and % We write the statistic as

LR; (¢, a). The values of r, and r, appear implicitly as the ranks of o, and e,
respectively. When 1, =0, the statistic is written as LR, rll(0, @, ), and as LR r.(aok’o) when

To derive the LR statistic, we limit attention to the problem with To=To, =

purposes of deriving the computational formula for the LR statistic, this is without loss of

ro.,:O' For the

generality since, in the general case, the LR statistic is identically

LRro’ra(aoks aak) = LRO’ro-i-r.(O’ [a0k aak])'LRO’ro(osaok).
With r =0, and ignoring the deterministic components, d;, the model can be written as:

(2.3) AY, = 8, (3 Yy.)) + 8, (03 Yy ) + BZy + ¢,

a,(%,
where 3=(® ¢, ... q’p—l)’ and Z,=(AY; 1 AY{ 5 ... AYE-p+1)" In the context of (2.3)
the null hypothesis H,,: r=0 can be written as the composite null H_: aak=o, 5au=0.1 It is
convenient to discuss each part of this null separately: we first consider testing aak=0

maintaining bau=0, then the converse, and finally the joint hypothesis.

The test statistic for H : r=0 vs. H,: 1 When ra.,=0’ equation (2.3) simplifies to:

Since aékYt-l does not depend on unknown parameters, (2.4) is a standard multivariate linear
regression, so that the LR, Wald and LM statistics have their standard regression form. Letting
Y=[Y; Yy ... YqI', Y 1=[Yg Y| ... Y11, AY=Y-Y |, Z=[Z21 Z; ... Z1]’,

e=[ey & ... egl’, and MZ=[I-Z(Z’Z)'IZ’], the OLS estimator of 5ak is
5ak=(AY’MZY_1aak)(aékY_l’MZY_laak)'l which corresponds to the Gaussian MLE. The

corresponding Wald test statistic for H, vs. H, is:
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@5 W= [vecs )03 Y. "Mz 1a,) ) @ z] [vec(a )
= [vec(AY'MzY_ja, )] (o, Y.'MpY_ja, ) ® E'l][vcc(AY MzY_ja,)l.

A

where Ee is the usual estimator value of }3 ie., E =T le’e and where ¢ is the matrix of

OLS residuals from (2.4). For values of 5ak that are T" -1 local to 6ak=0’ the LR and LM
statistics are asymptotically equal to W.

The test statistic for H .; r=0vs. Ha_;___r_g_rau _. The model simplifies to (2.4) with éau and oy
replacing 5ak and g - However, the analogue of the Wald statistic in (2.5) cannot be calculated
since the regressor ai.Yt-l depends on unknown parameters. However, the LR statistic can

be calculated, and useful formulae for the LR statistic are developed in Anderson (1951) and
Johansen (1988). Since 6au=0 under the null hypothesis, the cointegrating vectors oy are
unidentified, and this complicates the testing problem in ways familiar from the work of Davies
(1977,1987). The problem can be avoided when r,=n, since in this case II is unrestricted under
the alternative and the null and alternative become H: II=0 vs. H,: I1#0. The problem cannot
be avoided when the rank(IT) <n under the alternative. Indeed, in the standard classical reduced
rank regression, the general form of the asymptotic distribution of the LR statistic has only

been derived for the case in which the matrix of regression coefficients has full rank under the

2 qull

alternative. In this case, Anderson (1951) shows that the LR statistic has an asymptotic x
distribution. When the matrix of regression coefficients has reduced rank under the
alternative, the asymptotic distribution of the LR statistic depends on the distribution of the
regressors. Still, the special structure of the regressors in the cointegrated VAR allows Johansen
(1988) to circumvent this problem and derive the asymptotic distribution of the LR test even
when IT has reduced rank under the alternative.

As pointed out by Hansen (1990), when some parameters are unidentified under the null,
the LR statistic can be interpreted as a maximized version of the the Wald statistic. This

interpretation is useful here, because it suggests a simple way to compute the statistic. Since

this form of the statistic appears as one component in the test statistic for the general ra=rak+rau
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alternative, we derive it here.

Let LR denote the likelihood ratio statistic for testing H, versus H,, and let LR*(EE) denote
the (infeasible) LR statistic that would be calculated if E, were known. As usual,
LR=LR*(£JG)+op(1) under H and local alternatives (here, T'l). Let L(‘Sau’aau’ze) denote the
iog likelihood written as a function of 5au’ @y 0 and I, with 8 concentrated out, and let
6au(aau) denote the MLE of 53.1 for fixed g, - Then the well known relation between the

Wald and LR statistic in the linear model implies that

2.6) W(a

au) = 2[1"(5&,(‘1&)’a%’ze)'L(O’fm’ EE)]

= 2[L(6au(aau)aaauvzf)'L(Osoyze)]
where W(aau) is the Wald statistic in (2.5) written as a function of O s the first equality follows
because each of the log-likelihood function is evaluated using L, and the second equality

follows since oy does not enter the likelihood when 63.,:0‘ Thus:
-~ -~ ~ * P
SupOfau w(“a.,) = SuPaau 2[L(5au(°‘au)’“au’ze))'L(O’O’Ee)] = LR (Ee)

where the Sup is taken over all n Xr, matrices a,.

To calculate Sup ay W(aau), rewrite (2.5) as:

Q.7 Wey) = [vec(AY MY o, )T Y’IMZY_laau)'l ® X Nivec(AY'MZY_ja
—TR[E AAYMZY_jag e, Y.1'MZY. laau) o MZY’lAY)E Y
— TRIZ, A(AY'M, Y. 1) DD*(Mz Y’ AY)S, "], where D=a, (a3 Y2 MzY_ja
= TRID(Y{MzAY)E; (AY’'MY_)D]
= TR[F'CC’F],

»

au)-

Vs . - Y2,
Notice that F’F=ILlu and Supm‘m W(aa)=SupF,F=I TR[F'(CC’)F]. Letting A;(CC’) denote the

eigenvalues of (CC’) ordered so that Ay =M, 2... =\,. Then

where F=(Y:{MzY_1) o, (a3 Y’ MzY ja
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(2.8)  Sup, Wlay) = Suppop_ TR{F'(CCHF] = {2y N(CC)
= LR"(Z) = LR + op(1),

where the final equality holds under the null and local (T’l) alternatives. Since A;(CC’)=X;(C°C),
the likelihood ratio statistic can then be calculated (up to a term that vanishes in probability) as
the largest r,_eigenvalues of C'C [T AAY MY (Y MYl ManE A,

To see the relationship between the expression in (2.8) and the well known formula for the
LR statistic developed in Anderson (1951) and Johansen (1988), note that their formula can be
written as LR=-T }, {““= In[1-v;], where +; are the ordered squared canonical correlations
between AY, and Y, 4, after controlling for AYt—l""’AYt-p +1- Since y;=N;(S’S), where
S’S =(AY’MZAY)'V2(AY’MZY_1)(Y11MZY‘])'1(leMZAY)(AY'MZAY)'%’ (Brillinger
(1980), Ch.10), LR=-T§1-1'=“=11n[1-)\i(S’S)]=TE‘i"“=lki(S'S)+op(12 = Z{’": 1)\i(TS’S)+op(1).
Finally, since T(S’S) = I 2(AY'M,Y_)(Y2;MzY_) L(Y! MAV)E ", where
g: E=T'1(AY’MZAY), this expression is identical to (2.7), except that £ ¢ is estimated under the

null.

The test statistic for H.: r=0vs. H,: r=rakﬂa“ _. The model now has the general form of (2.3).
As above, the LR statistic can be approximated up to an op(l) term by maximizing the Wald
statistic over the unknown parameters in g - Let

Mzk=[I-(MZY_laak)(aéijleY_laak)'l( MZY’ PIM, denote the matrix that partials

a,
A -
both Z and Y_j« out of the regression (2.8). The Wald statistic (as a function of g, and C‘au)

can be wriiten as:

@9 Wlog,ap) = [VelAY'M,Y 10, )TT(05, Y. M, Y1) @ M Ivec(AY'M,Y o))

+ [vec(AY My Y_jor L@, Y. "My Y_jor ) © B J[vec(AY' M, Y o

-1
2) »)

The first term is identical to equation (2.5) above, and the second term is the same as (2.7),

except that M,AY and M, Y _; are replaced with M, AY and M, Y ;.
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When maximizing W(aak’o’au) over the unknown cointegrating vectors in a, » We can restrict
attention to cointegrating vectors that are linearly independent of g, SO that the LR statistic is

obtained by maximizing (2.9) over all nxra‘l matrices oy satisfying aéuaak=0. Let G denote an

(arbitrary) nx(n-rak) matrix whose columns span the null space of the columns of oy, Then oy,

can be written as a linear combination of the columns of G, so that aau=G°'a..,’ where oy is an

(n—rak) XTq, matrix, so that o, o G’aak=0 for all g - Substituting Gaau into (2.9)

a, %~ %
and carrying out the maximization yields:

= [vec(AY’MZY_laak)]’[(ozékY_l’MZY_laak)'l ® 2;1][vec(AY’MzY_1aak)]
+ T NH)
= LR + oy(1),

(2.10) SupmIlu W(aak,aaﬂ)

= Ay - ) P Y2,

where H'H = Z_“(AY'M_ Y GNG'Y M, Y 1G) (G Y M, AY)E
Before proceeding, we make three computational notes about (2.10). First, when rau=0, the

statistic is just the standard Wald statistic testing for the presence of the error correction terms
aékYt-l that is calculated by m:)st econometric software packages. Second, any consistent
estimator of £_ can be used as .. A particularly easy estimator, consistent under the most
general hypothesis considered here, is the residual covariance matrix from the regression of Y,
onto p lagged levels of Y,. Third, the columns of the matrix G (appearing in the definition of
H) can be formed in a number of ways, for example using the Gram-Schmidt orthogonalization

procedure.

Modifications Required For Nonzero Drift Component:

When dt;‘:O in (2.1a), Y, is not directly observed, and the procedures outlined above require
modification. The necessary modification depends on the precise form of drift function. Here
we assume that d,=pg+pqt, and thus allow Y, to have a nonzero mean and, when u; #0, a non-
zero trend. While more general drift functions are certainly possible, this formulation of d; has

proved to be adequate for most applications.2 In this case the VECM for y, becomes:



@11)  AY =6+t + &Y, ) + EPL @AY + ¢

where §=(1-% P:__lltl’i)pl-aa'uo and y=-da’p;.

There are three complications that arise when yq or g are nonzero. First, as discussed in
Johansen (1991),(1992a),(1992b) and Johansen and Juselius (1990), relationships between ng, pq
and the cointegrating vectors can lead to different interpretations of the drift parameters. For
example, some linear combinations of ) are related to initial conditions in the Y, process, while
other are related to means of the "error-correction” terms «’Y,. The second complication is that
these different interpretations can imply different trend properties in the data and this leads to
changes in the asymptotic distribution of test statistics. Third, in the context of the univariate
unit root model, Elliott, Rothenberg and Stock (1992) show that different methods for detrending
Y, (associated with different estimators of u( and u;) can lead to large differences in the power
of unit root test statistics, and Elliott (1993) shows that the tests’ power depends on assumptions
concerning initial conditions of the process.

Rather than investigate all of the possible methods here, we present results for what are

arguably the three most important cases. The first is simply the baseline case with pg=gp=0; in

this case §=+=0in (2.11). In the second case, p; =0 so that the data are not "trending"”, but 10 #0

and is unrestricted. This is appropriate when there are no restrictions on the initial conditions of
the X process or on the means of the error correction terms, a'Yt. Since " =0 in this case, then
+=0in (2.11); the parameter 6 is non-zero, but is constrained because it captures only the non-

zero mean of the error correction terms «’Y,. Imposing the constraint, leads to:
@2.12)  AY, = d'Y, B) + TP 8AY, + ¢

where 8§ = a’pg. In the third case, #0 #0 and is unrestricted and p #0, but is restricted by the

requirement that o’u | =0; in this case y=01in (2.11) and @ is unrestricted.

Asymptotic Distribution of the Statistics:

Above, the Gaussian likelihood ratio statistic for testing H:r=r

ok+r0u VS.
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Ha:r=r0k+rak+r0u+rau was defined as LRro,r.(o‘ok’ aak). Let wro,r.(aok' aak) define the

corresponding Wald statistic constructed by maximizing over all values of the unknown
cointegrating vectors. In particular, defining Wo l.a(O,ozak) ESupaw W(aak,aau) from (2.10Q), then
Wro’ra(aok, aak) EWO,rO +r.(0’[°‘ok c‘ak])'wo,ro(o’“ok)' Writing the statistic as Wro,ra(aok, aak)

completely describes the null and alternative hypotheses: r k=rank(a =r0—rank(a0k) and

o 0" To,

similarly for Ta, and r, . Using this notation, the well known likelihood ratio tests developed in

Ay
Johansen (1988) are denoted as LRro ra‘(0,0) and the associated Wald statistics are Wro rll(0,0).

To derive the asymptotic distribution of Wl.0 l‘.(aok’ aak) we make four sets of assumptions:

A. The data are generated by (2.1a)-(2.1¢) with:
(A.1) Ee,| &1, ..., €)=0,
Eee, | €1, - 0 €))=E,
E(e?'t)<x< o for all i and t.
(A.2) Letting $(2)=1-&,z-...-®
(A.3) X;=0, i=0,...,p-1.

p_lzp-l, then the roots of | #(z) | are all outside the unit circle.
(A.4) Three alternative assumptions are made about d,:

(A.4.1) d;=0forallt;

(A.4.1i) d;=p for all t;

(A.4.iii) dy=pg+pqt for all t, with oy =0 and “ék“l =0,

Note that under assumption (A.4.iii) we assume that o i annihilates the deterministic drift in the

a
series under both the null and the alternative.

The test statistic will be formed as described above, when dt=0' When dt#O, the VECM is
augmented with a constant, and the statistic is calculated as above with Z; in (2.3) augmented by
a constant. Since, under assumption (A.4.iii), the constant term in the VECM (2.11) is
unrestricted, augmenting Z, with a constant and carrying out least squares produces the Gaussian
maximum likelihood estimator. However, under assumption (A.4.ii), the constant term in the
VECM (2.11) is constrained (see (2.12)), and thus the least squares estimator does not correspond

to the Gaussian MLE. We nevertheless, consider test statistics based on this formulation for two
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reasons. First, when some columns of « are known, the unconstrained estimator and test
statistics are much easier to calculate than the constrained estimator; the required calculations
when « is known are discussed in Johansen and Juselius (1990) and Johansen (1991). Second, we
show that when « is unknown, the test based on the unconstrained estimator has somewhat better
local power than the test based on the constrained estimator.

Convenient representations for the asymptotic null distribution can be derived using the
following notation. Let: B(s)=(B;(s) By(s) ... B,(s))’ denote an nX1 dimensional standard Wiener
process; § GF(9)ds= § Fand | JF(s)dB(s)= | FdB, for arbitrary function F(s); B*(s)=B(s)- | B
denote the corresponding "demeaned" process; s# =s- | s=s-% denote the demeaned time trend; let
Bi’j(s)=(Bi(s), Bj(s))’ denote a (j-i+ 1) X1 subvector of B(s), and let B¥ . be defined

i,j
analogously.

Theorem 1: The asymptotic null distribution of W ¢ (aok,aak) can be represented as:
0s'a

Wro,r,(aok’aak) => Trace[( | FldBl’k)’( § FlFl')'l( § FldBl,k)] +
£ NI FpdBy )'(f FoFyy 1] FydBy ()]

where k=n-r, , F2(s)=F3(s)-y3,1F1(s) with 13,1= § FaF°[§ FlFl‘]'l, A;[.] is the i’th largest
eigenvalue of the matrix in brackets, and the definition of F(s) and F5(s) depends on the
particular assumptions employed. In particular:

Case (1), Suppose that (A.1)-(A.3) and (A.4.i) hold, and the statistic is calculated with

Z,=(AY{ | AY{, ... AYE_p_H)’, then Fl(s)=B1,m(s) with m=r, and F3(s)=Bi’j(s) with

1=rak+1 and j =n-T, Ty

Case (2), Suppose that (A.1)-(A.2) and (A.4.ii) hold, and the statistic is calculated with

Z,=(1 AYy | AY(, ... AY} ;)" then F (s)=Bf (s) with m=r, and

F3(s)=B’i‘,j(s) with i=r, +1and j=n-r;, -1, .
Case (3), Suppose that (A.1)-(A.2) and (A.4.iii) hold, and the statistic is calculated with
Z,=(1 AYp | AY{, ... AY( 54 q)', then F(s)=Bf (s) with m=r, , and

Fa(s)=(s"(s)’ B’{:j(s)) with i=r, +1and j=n-rg -, -1.
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Proof: See Appendix

We make six remarks about these results. First, Theorem 1 is a generalization of the results
in Johansen [(1988)(1991)] who considered the problem with rok=rak=0. Second, when a
constant is included in Z,, the test statistic is invariant to the initial conditions for Xp
t=0,...,-p+1 under the null hypothesis. Thus, assumption (A.3) is not necessary under Cases (2)
and (3) in Theorem 1. Third, whenr =rau=0, the limiting distributions in Cases (2) and (3) are
the same. Fourth, under Cases (1) and (3), the wro,r.("‘ok’aak) statistic is asymptotically
equivalent to the LR statistics; this equivalence fails to obtain in Case (2) because the constraint
on the constant term in the VECM (2.11) and (2.12) is imposed when the LR statistic is
calculated, but the W statistic is calculated using an unconstrained estimator. Fifth, while the
case with d;=pq+put for all t, with ¢jp =0 and aékpl #0 is not covered by the theorem, the
limiting distribution of the test statistic is readily deduced in this case as well. Since we did not
tabulate critical values for this case, we did not include the limiting distribution in the theorem.
As a practical matter, our calculations indicated that the critical values for the test statistic under
the assumption that af;k‘“l =0 are larger than those under the assumption aék'ul #0, and so using
the Case (3) distribution results in conservative inference. Finally, it is also straightforward to
generalize the theorem to accommodate linear restrictions on the cointegrating vector of the form
Raau=0, where R is a known £ Xn matrix respectively. Specifically, the statistic is formed as in
(2.10) where now the matrix G is nx(n-rak-f) with columns spanning the null space of the
columns of (o, H’); the asymptotic distribution Theorem 1 continues to hold except that the
index j in the definition of F(s) becomes j =n—rou-rak-f. General linear restrictions of the form
R[vec(aau)] =h are not covered by the theorem.

Critical values for n-T, < 5 are provided in Table 1. These critical values were calculated by
simulation using 10,000 replications and T=1000, Extended critical values of n-r, <9 are

tabulated in Horvath and Watson (1993). When rok=rak=0 these correspond to the critical values
tabulated in Johansen (1988), Johansen and Juselius (1990) and Osterwald-Lenum (1992).3
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3. Comparison of Testing Procedures
In this section we carry out three power comparisons. First, we compare the local power of
the W/LR tests that impose the value of the cointegrating vector under the alternative to the
corresponding tests that do not use this information. Second, since a priori information about
the cointegrating vector may only be approximately correct, we investigate the power
implications of imposing an incorrect value of the cointegrating vector. Finally, for the special

4
root tests applied to the error correction terms.

case with ry=r, =0 and T = 1, we compare the power of the VECM-based tests to univariate unit

For tractability, our discussion will focus on a bivariate version of (2.11), with @ =®5=... =

Qp-l =0

Ay 8 ) €
AY7 ¢ 92 ) €2,t

Since the likelihood based procedures are invariant to nonsingular transformations of Y, we can
set =(0 1)’ and &; =0 when studying these tests. This will also prove convenient when studying

univariate testing procedures. Thus, the model that we consider is:

(3.22) Ay, (= 4 + ey
(32b) Ayz’t = 02 + 52y2,t-1 + 62,['

To investigate the local power of the tests, we suppose that §, is local to zero; specifically we set
62=52,T=-c/T. This allows us to study local power using local-to-unity asymptotics familiar
from the work of Bobkowsky (1983), Cavanagh (1985), Chan and Wei (1987), Chan (1988),
Phillips (1987b,1988) and Stock (1991). To rule out drift in the error correction term we set
0,=0. Finally, our initial comparisons are made with E_=I; the case of correlated errors is
discussed below.

The local power results are conveniently stated in terms of a two dimensional
Wiener/diffusion process, Bc(s)=(B1’C(s) Bz’c(s))’. Let B(s) =(B(s) B,(s))’ denote a two
dimensional standardized Wiener process, let B; ’c(s) =B(s), and let Bz’ (s) evolve as
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de’C(s)=-CB2’C(s)ds+de(s). Thus, the first element of B.(s) is a random walk, and the second
element is generated by a diffusion process with parameter ¢. Let B‘é(s)=Bc(s)- ] B, denote the
demeaned version of this bivariate process, and let D(s) =(s*(s) sz" c(s)) denote the bivariate
process composed of the demeaned values of the time trend and B2,C' Corresponding to the

three cases in Theorem 1, it is straightforward to derive limiting representations for the
cointegration test statistics under local departures from the null. Let y=(y| 77)’ denote an
arbitrary 2 X1 vector, and let a=(0 1) denote the true value of the cointegrating vector. Using the
notation introduced above wo,l(O’T) (with v #0) denotes the test statistic for Hg: r=0vs. Hy:
r=rak=1 constructed using v as the cointegrating vector under the alternative; similarly WO,I(O’O)

denotes the test statistic for Hy: r=0vs. H,: r=rau=1. The limiting distribution of these statistic

is given by:

(Case 1): Suppose that the data are generated by (3.2a)-(3.2b) with 01 =02 =0, 62=—c/T, and €,
satisfies assumption (A.1) with Z_=I. If the test statistic is calculated without including a
constant in Z,, then:

W,10.7) => Tracel(y' { BdB'Y'(y' | BB.') (r" § BdB)l;

Wp,1(0,0) => X [( | B.dB)'( § B.B.") ( § B.dB)].

(Case 2): Suppose that the data are generated by (3.22)-(3.2b) with §;=0,=0, 3,=-c/T, and ¢,
satisfies assumption (A.1) with I =I. If the test statistic is calculated including a constant in
Zy, then:

Wo,1(0.7) => Trace[(y’ § BEdB')' (v | B’é‘B‘é’y)'l(y' § BLdB")];

Wo,1(0,0) => MI(§ BLdB')'( | B’éB’é’)'l( § BEdB™)].

(Case 3): Suppose that the data are generated by (3.22)-(3.2b) with §; %0, 8,=0, 6,=-c/T, and
¢; satisfies assumption (A.1) with L. =1 If the test statistic is calculated including a constant
in Z,, then:

Wo,1(0,7) => Trace[(y’ § D.dB’)’(y’ DCDC"Y)'I(V’ § DdB")], for v =0;

WO,I(O"V) => Trace[( § s*dB’)’( | (s“)z)'l( § s#dB")], for 11#0;
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Wg,10.0) => A[(§ DdB'Y (| DD, (§ D.dB")I.

In Case 3, when 68, #0 and vy, #0, the regressor 7'y, ; is dominated by the linear trend y6;t. In
contrast, y’yy_ is linear function of a diffusion process in Cases (1) and (2) for all values of v,
and in Case (3) when v =0. This difference leads to the two possible limiting representations for
WO,I(O*'Y) in Case (3). When v =0, the limiting distributions of WO, 1(0,7) coincide in Cases 2
and 3, since the second elements of B"é and D, are identical.

In Figure 3.1, we plot the local power curves associated with these limiting random variables

for a='y.4

Thus, the WO, I(O’O‘ak) plot shows the power of the test that imposes the true value of
the cointegrating vector, while the WO, 1(0,0) plots shows the power of the test that does not use
this information. The power gains from incorporating the true value of the cointegrating vector
are substantial: at 50% power they correspond to sample size increases of approximately 70%,
50%, and 40% for cases 1-3 respectively. Panel B of the figure also shows the local power of the
LR analogue of WO, 1(0,0) that imposes the constraint on the constant term shown in (2.12). As
discussed in Johansen and Juselius (1990) and Johansen (1991), this statistic is calculated by
augmenting the matrix Y_; in (2.10) by a column of 1’s and excluding the constant from Z,.
Letting F (s) denote (1 B_(s)), this statistic has a limiting distribution given by
AICS FdBY(§ FCFC’)'I( § F,dB")). Interestingly, the power curve lies below the corresponding
WO, 1(0,0) power curve that does not impose this constraint on the constant term, and of course
both curves lie below their case | analogue. The reduction in power for the LR statistic in
Figure 3.1b relative to Figure 3.1a arises because, under the null that §=0, the constant term § in
(2.12) is unidentified. The LR statistic maximizes over this parameter, leading to an increase in
the test’s critical value. The reduction in power for the WO, 1(0,0) statistic in Figure 3.1b
relative to Figure 3.1a arises because the data are demeaned in 3.1b, leading to a reduction in
the variance of the regressor. Apparently, more powerful tests obtain from using demeaned data
rather than maximizing over the unidentified parameter .

Since the a priori knowledge of the cointegrating vector may be inexact, it is also of interest
to consider the behavior of the statistics constructed from incorrect values of the cointegrating

vector. Asymptotic results for fixed values of 4, <0, imply that using the correct value of the
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cointegrating vector is critical to the power gains apparent in Figure 3.1. For fixed alternatives,
the WO, 1(0,0) and corresponding LR tests are consistent, On the other hand, since 87 is I(1)
when +y is not proportional to «, the test based on WO,I(O"Y) for y#a, will not be consistent.
Thus, imposing the incorrect value of the cointegrating vector would seem to have disasterous
effects on the power of the test,

However, this drawback is somewhat artificial, since it applies in a situation when the power
of the WO, 1(0,0) test is unity. An arguably more meaningful comparison obtains from the local-
to-unity results where cointegration is weak. Figure 3.2 shows the power results for WO, 10,1
test for a variety of values of v=(vy 1); also plotted are the power results for WO, 1(0,0). Results
are presented for the non-trending data Cases 1 and 2; results for Case 3 will be discussed
shortly. It is apparent from Figure 3.2 that for values of ’y1 reasonably close to the true value of
0, the WO,I(O"Y) test continues to dominate the WO, 1€0,0) test. For example, for the entire range
of values of ¢ considered, the WO, 1(0,7) test dominates the WO,I test for 7 < .1. On the other
hand, for larger values of v1 the wO,l(O’O) test dominates for large values of ¢, in line with the
results for the fixed alternative described above.

The results are quite different in Case 3. These results are not shown because the rejection
probability for the test constructed from incorrect values of v for the WO, 1(0,7) test are very
small for all values of ¢. The reason for this can be seen from the limiting representation for
W0’1(0,~y) in Case 3 that was given above. When vy #0 the WO, 1(0,7) statistic converges to
(§ s*#dB”)'(§ (s“)z)'l( { s*dB’) which has a x% distribution. From Table 1, the 5% critical value
for the WO,I(O"V) test is 10.18, so that the corrésponding rejection probability for the WO, 1€0,7)
test using the incorrect value of v is P(x% >10.18)=0.6%.

Arguably, these resuits for Case 3 have little relevance. After all, when 6, #0, v’y will be
trending when + #0. This behavior would be obvious in a large sample, and so the hypothesis
that 'y, is I(0) could easily be dismissed. This suggests that the comparison should be made, for
example, with 8; or v, local to zero, say 6, =c01/T1/2 or vy -—-c,n/T%. Since these power functions
depend critically on the assumed values of the constant <q, and €y and since reasonable values
of these parameters will differ from application to application, we do not report these functions.

Instead we carry out an experiment for a fixed sample size and Gaussian errors, using values for
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the parameters in (3.22)-(3.2b) and values of v that are relevant for a typical application: the
analysis of postwar U.S. quarterly data on income and consumption. Letting Y1t denote the
logarithm of per capita consumption, and Y2, denote the logarithm of the consumption/income

ratio, then 81 =.004, 01=.006, 02=.011, cor(fl,t‘2,t)=0'21 and T=175.5 In Figure 3.3 results are
shown for values of vy ranging from 0 to .10. For comparison with previous graphs, 8 is

written as -¢/T, and the power is plotted against ¢. For this example, the WO,I(O"Y) dominates

the WO, 1(0,0) statistic for all values of ¢ considered when the error in the postulated

cointegrating vector is S% or less.

When there is only one cointegrating vector under the alternative, simple univariate tests
provide an alternative to the likelihood based tests. Thus, if the cointegrating vector is assumed
to be known, then the error correction term oy, can be formed, and cointegration tested by
employing a standard unit root test. The final task of this section is to compare the VECM
likelihood based test to standard univariate tests.

There are three distinct differences between the multivariate tests considered in this paper
and standard univariate unit root tests. These are easily discussed in terms of the bivariate
example summarized in (3.1)-(3.2). First, univariate tests consider concentrate on equation
(3.2b) and test the simple null, 4, =0. Multivariate tests consider the whole system (3.1) and test
the composite null, 8; =8,=0. This has both positive and negative effects: since 81 =0 (from
(3.2a)), the multivariate tests lose power through an extra degree of freedom. In this sense, the
univariate test is more powerful because it is focused in the right direction. On the other hand,
the multivariate tests utilize any covariance between €1 ¢ and €.t to increase test power. This
potential covariance is ignored in the univariate tests. The second difference between the
univariate and multivariate tests is that the univariate tests typically use a one-sided alternative
(62 < (), while the multivariate tests consider two-sided alternatives, The third major difference
is the conditioning set used to estimate &, in (3.2b). In general, lagged first differences enter
equation (3.1), so that both the univariate and multivariate tests must be constructed from
regressions "augmented” with lags of the variables. The multivariate tests include lagged values
of Ayl,t and Ay2,t in the regression; univariate procedures, such as augmented Dickey-Fuller

regression, include only lags of Ay, .. Thus, when lags of Ay , help predict Ay, ,, the error
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term in the multivariate regression will have a smaller variance than the error term in the
univariate regression. When AYl,t and Ayz’t are I(0), as assumed here, this leads to a more
efficient estimator of 55 and a more powerful test. (Of course this final point has force only
when it is known that Ay, t and Ay2,t are 1(0).)

This last point is the subject of recent papers by Kremers, Ericsson and Dolado (1992) and
Hansen (1993). These papers carefully document the power gains associated with augmenting
standard Dickey-Fuller regressions with additional I{0) regressors, and allow us to focus instead
on the the potential power gains and losses associated with the first two differences in the
univariate and multivariate procedures. Specifically, figure 3.4 compares the power of the
univariate and multivariate tests using the same design discussed above, but now for various
values of p=c0r(e1’te2’t). All statistics are computed using demeaned values of the data. Two
results standout from the figure. First, the power functions of the one-sided Dickey-Fuller t-
test and the two-sided test based on the squared t-statistic are nearly identical. This is a
reflection of the skewed distribution of the Dickey-Fuller t-statistic. Thus, the two-sided nature
of the W statistics has little impact on the power relative to the one-sided univariate test.

Second, the relative performance of the W(0,c) statistic depends critically on the value of p2, the
squared correlation between €1t and € 1 When p2=0, the power loss in the W(0,«) statistic
relative to the univariate test corresponds to a sample size reduction of 10% at 50% power. This
is the loss of power associated with the extra degree of freedom in the multivariate test.
However, the power gains from exploiting non-zero values for p are large. For example, when

p2=. 10, the multivariate and univariate tests have essentially identical power. For larger values

2 2

of p“, the multivariate dominate the univariate tests. For example, when p“=.50, the power gain

corresponds to a sample size increase of over 60% at 50% power. The reason for this power

gain, follows from standard seemingly unrelated regression logic: non-zero values of p2

essentially
allow the multivariate procedure to partial out part of the error term in (3.2b) and increase the
power of the test.

Of course, the results shown in Figure 3.4 apply to a design with one cointegrating vector in
a bivariate system. In a higher dimensional system with only one cointegrating vector, the power

of the multivariate test will fall because of the extra degrees of freedom. Univariate tests could
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still be used in this case, but these tests become difficult to use and interpret when there are

multiple cointegrating vectors.

4. Stability of the Forward-Spot Foreign Exchange Premium

In this section we examine forward and spot exchange rates, focusing on whether the
forward-spot premium, defined as the forward exchange rate minus the spot exchange rate, is
I(0). The data come from Citicorp Database Services, are sampled weekly for the period January
1975 through December 1989 (for a total of 778 observations), and are adjusted for transactions
costs induced by bid-ask spreads and for the two-day/non-holiday delivery lag for spot market
exchange orders as described in Bekaert and Hodrick ( 1993).6 The forward-spot premia for the
British Pound, Swiss Franc, German Mark, and Japanese Yen, the currencies used in our analysis,
are shown in Figure 4.1,

The tests for cointegration are performed on bivariate systems of forward and spot rates in
levels, currency-by-currency. In each case, the number of lagged first differences in the VECM
was determined by step-down testing, beginning with a lag length of 18 and using a 5% test for
each lag length, (See Ng and Perron (1993) for an analysis of step-down testing in the context
of testing for unit roots.) Results for testing for cointegration between forward and spot rates
are presented in Table 4.1. For each currency we report the test statistic for the case where we
impose a=(1 -1)’ (denoted by wO,l(O’aak))’ the test statistic for the case where « is unspecified

(denoted by Wq 1(0,0)), the cointegrating vector estimated in this case (denoted by o, ), and the

)s
A
ADF statistic calculated from the forward premium. All statistics are reported for the optimal
lag length chosen via the step-down procedure. Constant terms were included in all regressions,
and so the p-values for the Wy l(O,aak) statistic are from the Case (3) asymptotic null distribution

(equivalently Case (2), since o 0) . Since nominal exchange rates exhibit some trending

=a. =
behavior over the sample periozl: thea;-values for the WO, 1(0,0) statistic are reported from the
Case (3) asymptotic null distribution.

Looking first at the WO, I(O’O‘ak) column, the null of no cointegration is rejected for all
currencies at the 5% level. The WO, 1(0,0) statistics, which can be interpreted as WO,I(O’“)

maximized over all values of «, differ little from the Wy, I(O,aak) statistics. Their p-values are
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much greater however, since their null distribution must account for the fact that they are
maximized versions of WO, 1(0'“ak)' The next column shows why the two statistics are so similar:
the estimated values of the cointegrating vector are equal to (1 -1), out to two decimal places.7
The final column shows the ADF test statistic applied directly to the forward-spot premium.
Like the WO,I(O'“ak) statistic, the ADF tests reject the null at the 5% level for all of the
currencies. This application clearly shows the power advantage of testing for cointegration using

a prespecified value of the cointegrating vector. Using the W 1(0,0) statistic, the null of no

cointegration is rejected at the 5% level for only two of the four currencies.

Concluding Remarks

In this paper we have generalized VECM-based tests for cointegration to allow for known
cointegrating vectors under both the null and alternative hypotheses. The results presented in
Section 3 suggest that the power gains associated with these new methods can be substantial.
These power gains were evident in the tests for cointegration involving forward and spot
exchange rates. Cointegration was found in all currencies using tests that imposed a
cointegrating vector of (1 -1), but the null of cointegration was rejected in only half of the cases
when this information was not used. Yet, in these bivariate exchange rate models, the univariate
ADF test applied to the forward premium (F-S,), yielded roughly the same inference as the
multivariate VECM-based tests that imposed the cointegrating vector. Arguably, a more
interesting application of the new procedures will be in larger systems with some known and
some unknown cointegrating vectors. As argued in Section 3, the power tradeoffs in the
multivariate and univariate tests for cointegration are more interesting in higher dimensional
systems.

The tests developed here rely on simple methods for eliminating trends in the data -
incorporating unrestricted constants in the VECM. In the unit root context, the work in Elliott,
Rothenberg and Stock (1992) suggests that large power gains can be achieved using alternative
detrending methods. Hence, one extension of the current research will be a thorough

investigation of alternative methods of detrending and their effects on tests for cointegration.
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Appendix

Proof of Theorem 1: To prove the theorem, it useful to introduce two alternative representations
for the model. The first is a triangular simultaneous equations model used by Park (1990); the
second is Phillips’ (1991) triangular moving average representation. The first representation is
useful because it allows the test statistic to be written in a particularly simple form; the second
representation is useful because it neatly separates the regressors into 1(0) and I(1) components.

We begin by defining some additional notation. First, partition Y, as
Yt=(Yi,t Yﬁ,t Yé,t Y‘i,t),’ where Yl,t i roux 1, Y2,t is rokx I, Y3,t is rakXI and Y4,t is
(n—rou-rok-rak) % 1. Since the cointegration test statistic is invariant to nonsingular
transformations on Y,, we set a0k=[0 Irok 007 and aak=[0 0 Ir.k 0]’, where these matrices are
partitioned conformably with Y,. Thus, O‘(').;Yt=Y2,t and “ékYt=Y3,t' Without loss
generality, we write a(,h=[1rou wy w3 wy and aéu=[0 00 a."lu], which insures that the
columns of a=[a0u o, %, aau] are linearly independent. Finally, we assume that the true (but
unknown) values of wy, wg and wy are zero. These normalizations imply that
“t=(Yi,t Yit)’ denotes the I(0) components of Y, and Vtz(Yé,t Y&’t)’ denotes the I(1),
non-cointegrated components.

Using this notation, the VECM in equation (2.3) can be reparameterized as the simultaneous

equations models:

(A)  AY) =0Y ) +B1Z + ey
(A2)  AQ = 8,(Hvy ) +7'S + ¢

where Q=(Y3; Y3, Y44, S;=(8Yj; Y51 Zp)'s and

I 4]

H=| ™ _ .
0 al
Q

u

These equations follow from writing the first r, equations in (2.3) as:

(A3) AYy ¢ =81 500 Ye1 + 816, Y261 + 01,3, 3,01 + 0100 aeD) T A1t T e
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and the last (n- o.,) equations as:

(A4) AQt = BQ,OuaC’LYt-l + 6Q,0kY2,t'1 + 6Q,akY3,t-l + 5Q,au(a::\uY4,t-l) + ﬁQZt + EQ,t'

In equation (A.1), the term 8"Y, 1 captures the effect of all of the error correction terms on
AYl,t' Since wy, w3 and w, are unknown, 6 is unrestricted. To obtain (A.2), equation (A.3) is
solved for “&,Yt-l as a function of AYl,t' the other error correction terms, Z,, and €105 this
expression is then substituted into (A.4). Thus for example, et=EQ,t'5Q,ou‘51- ,1ou51,t in
(A.2). In terms of the reparameterized model (A.1)-(A.2), the only constraints on the
parameters are those imposed by the null hypothesis: H,: 5a=0.

Equations (A.1) and (A.2) are useful because, for given &au, the parameters in (A.2) can be
efficiently estimated by 2SLS using Ci=(ui 1, Vi.1) Zy)’ as instruments. Thus, letting
Q=[Q; Q... QfI’, V1=lvg vq ... vp_1I’, S=I51 S ... $71', C=[C{ C5 ... Crl’s
e=[e ey ... eq]’, §=C(C’C)'1C’S, and Ms=l-§(§’§)'1§’, the Wald statistic for testing
Ho::Sa=0 using a fixed a‘a..’ is:

(A.5) W(&au)=[vec(AQ’M§V_1H')]’[(Hv_1’Mgv_llf)‘l ® Eél][vec(AQ’Mgv_IH’)]
=[vec(e'MgV_{H)'[HV: MgV_H) ! @ £ ljiveceMgv_H),

where the second equality holds under H,,.
To asymptotic distribution of sup&“W(&au) depends on the behavior of the regressors and
instruments, which is readily deduced from the triangular moving average representation of the

model:

(A.6) u =D L) + p,
(A.7y  Av; =D, (LD)a; + g,

where a,=E ¢, where p, =0 in Case 1 and p,, =0 in Case 1 and Case 2. Since the variables are
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generated by a finite order VAR, the matrix coefficients in the lag polynomials D, (L) and D(L)
eventually decay at an exponential rate. Since v, is I(1) and not cointegrated, D (1) has full row
rank. Furthermore, the error term e, in (A.2Z) can be written as ¢,=Da,, and D, (1)D’ has full
row rank since only the first differences of Yl,t enter (A.2).

The theorem now follows from applying standard results from the analysis of integrated
regressors to the components W(&au). (For example, see Chan and Wei (1988), Park and Phillips
(1988), Phillips (1988), Sims, Stock and Watson (1990), Tsay and Tiao (1990), or the
comprehensive summary in Phillips and Solo (1992).) We now consider the theorem’s three cases

in turn.
Case 1: In this case, u,=0and p,,=01in (A.6) and (A.7), and it is readily verified that

(A8.0) T2V MgV y = T2V V| +oy(D)
A8i) TV Mge = TV je + 0D,
(A.8.iii) plim(T,) = I, = FF’

so that

W(a fvec(Tle'v_{HNI' KT 28V 'V By L@ @Dy livee(rlev 1)) + op(D)-

a) =
From the partitioned inverse formula:
A9  [vee(Tle'v_HNI(T2HY_ 'V 1) @@'D) HveeT ey 1)) =

[vec(T'le’Vl’_1)]’[('T'2Vi’_1V1’_1)'1®(D’D)'1][vec(T'1e’V1,_1)] +
[vec(T &My, V; 1o )PI(T 2a) V3 My, Va 13,) ®(D'D) ivec(T 'e'My, V5 _13,)]

where Vl,—l denotes the first T2 columns of V_{, and V2,-1 denotes the remaining N-Ty To -

Ta, columns. Letting D¢ denote the first Ty, TOWS of D,(1),

(A.10) [vee(Tle'Vy DIV vy ' @@ Dy ivee(Tlevy 1 =
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Trace[('D) (T le'v) (Vi v, plalvi jempy*
= > Trace[(D'D) (D, § BAB’F’)(D, | BB'D}) (D, § BdB'F")(D'D) ']
= Trace[( { F1dBy ;. )'({ F{F) ([ F1dBy ;)]

where B(s) denotes an nX1 standard Brownian motion process, F{(s) =B l_ak(s) (the first Tay
elements of B(s)), and the last equality denotes equality in distribution.
As shown in equation (2.7)), maximizing the second terms in (A.9) over all values of oy

yields:

(A.11) Sup&m[vec(r‘1e’MVlvz;_1&%)]’[(r'2&50vi_1lev2’_I&au)‘l®(D'D)‘1]
[vec(T™le'My V5 14, )]
= LR N®)

where,

(A1) R = O'D) AT e My Vo T2y My Vo (THT leMy, v, 1 @D) ™,
Using notation borrowed from Phillips and Hansen (1990), R is readily seen to converge to:
(A-13)R => (| FpdB{ . Y'(] FoF3)'(§ FodB{ [ )

where F4(s) =F4(s)-yF(s), with y=[ § FFill § FlFi]'1 where F3(S)=Brak +1,n-ro(s)' Case (1) of
the Theorem follows from (A.10) and (A.13).

Case 2: In Case (2), u#0 but 1, =0. Letting \7_1 =T'1 ¥ v;_|» the proof follows as in Case (1)
with (V_l—\—/_l) replacing V_; in (A.8)-(A.12) and B¥(s) replacing B(s) in the limiting
representation (A.10) and (A.13).

Case 3: In Case (3), both ., and g, #0. However, since E(aékYt)=O is assumed in Case 3, the
first Lo elements of g, =0. Thus the first term of the statistic (the analogue of (A.10)) is

=25 -



identical to the corresponding term in Case 2. The last N-To “To, Ta, elements of v, contain a

Ok-
linear trend, and so, appropriately transformed, this set of regressors behaves like a single time
trend and “'ro.,'rok'rak'l martingale components. With this modification, the result for Case (3)

follows as in Case (2).
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Footnotes

1. Formally, the restriction rank(ﬁéaa) =T, should added to the alternative. Since this
constraint is satisfied almost surely by the estimators under the alternative, it can be ignored
when constructing the likelihood ratio test statistics.

2. The formulation used here is not as general as that used in Johansen (1992b), who considers

a model of the form: AYt=ﬁO+Blt+HYt-l + Elp‘=11<I>iAYt_i+et. Johansen’s formulation allows
for the possibility of quadratic trends in Yy, which are ruled out in our formulation of d;. See
Johansen (1992b) for more discussion.

3. There are many repeated entries in Table 1. For example, as noted above, when rau=0, the
Case (2) and Case (3) critical values are identical. Furthermore, within each case, the critical
values are the same for all combinations of Ta, and Ta, with rak+rau=n—rou. In this situation
when rou=0, these hypotheses all correspond to H,: II=0 in equation (2.2). There are a number

of other examples of identical critical values that are not listed here.
4, These power curves were computed using 10,000 replications and T=1000.

5. These parameter values were calculated using consumption and output from the Citibase
database, spanning the quarters 1947:1 through 1990:4, and are in constant (1987) dollar, per
capita terms. The consumption series is the sum of consumption expenditures on nondurables
and services. The output series corresponds to gross, private sector, nonresidential, domestic
product and is constructed as gross domestic product minus farm, nonfarm housing, and
government production.

6. We thank Robert Hodrick for making the data available to us.

7. Evans and Lewis (1992) using monthly data over the 1975-1989 period also find estimates of
cointegrating vectors very close to (1 -1). While their estimated standard errors suggest that the
cointegrating vectors may be different from (1 -1), Evans and Lewis argue that this arisses from
large outliers or "regime shifts" that are evident in the data, see Figure 4.1. Recent work on
robust estimation of cointegrating vectors reported in Phillips (1993) suggests potential
efficiency gains for data sets such as the one examined here. Further work is required to
determine how the presence of outliers affects the cointegration tests discussed here.
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Table 2.1 {(Continued)
Critical Values for Tests for Cointegration

34.64 29.41 26.66 40.57 35.03 32.20 40.73 34,50 31.42
37.35 31,75 2B.94 44.87 39.03 36.03 43.65 37.21 34.13
15.32 11.41 9.46 19.00 14.53 12,49 19.00 14.53 12.49
31.01 25.89 23.64 36.35 31.38 28.72 36,34 30.899 28.34
37.35 31.75 28.94 44,87  39.03 36.03 43.65 37.21 34.13
26.01 20.92 18.55 31.26 26.15 23.51 31.26 26.15 23.51
37.35 31.75 28.94& b 87 38.03 36.03 43.65 37.21 34.13
37.35 31.75 28.94 44,87 39.03 36.03 44,87 39.03 36.03
20.52 16.39 14,39 24 .46 19.95 17.70 23.82 19.16 16.94
26.01 20.92 18.55 31.26 26.15 23.51 28.71 23.83 21.25
15.32 11.41 8.46 19.00 14,53 12.48 18.00 14.53 12.49
26.01 20.92 18.55 31.26 26.15 23.51 28.71 23.83 21.25
26.01 20.82 18.53 31.26 26.15 23.51 31.26 26.15 23.51
15.32 11.41 9.46 18.00 14.53 12.48 15.02 11.23 9.31
15.32 11.41 9.46 19.00 14,53 12.49 19.00 14.53 12,49



Figure 3.1
Local Asymptotic Power

A. Case 1: No Drift
no constant in regression

B. Case 2: No Drift
constant in regression
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C. Case 3: Drift
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Notes for Figure 3.1: Panels plot local power curves for a 2 variable system.
Curves labeled Wo,1(0, azk) show the power of the test that imposes the true value
of the cointegrating vector. Curves labeled Wo,1(0,0) show the power of the test that
does not use this information.

Panel A: Data contain zero drift terms and statistics are calculated without inclusion
of explanatory constant terms.

Panel B: Data contain zero drift terms but statistics are calculated with explanatory
constant terms in regressions. The curve labeled LRo,1{0,0) shows the local power
of the LR analogue of Wo,1(0,0) that imposes the constraint on the constant term in

eq. (2.12).

Panel C: Data contain non-zero drift terms and statistics are calculated with
explanatory constant terms in regressions.
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Figure 3.2
Local Asymptotic Power
Incorrectly Specified Cointegrating Vector (y, 1)
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Notes for Figure 3.2: Panels plot local power curves for a 2 variable system.
Curves labeled Wo,1{o, aak) show the power of the test that imposes the true
cointegrating vector (0,1). Curves labeled Wo,1(0,0) show the power of the test that
does not use this information. Dotted curves show the power of the test that imposes
an incorrect cointegrating vector (y,1) for particutar vaiues of y .

Panel A; Data contain zero drift terms and statistics are calculated without inclusion
of explanatory constant terms.

Panel B: Data contain zero drift terms and statistics are calculated with explanatory
constant terms in regressions.
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Figure 3.3
Power in the Income/Consumption System
Incorrectly Specified Cointegrating Vector (y, 1)
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Notes for Figure 3.3: Panel plots local power curves for a 2 variable system
with parameters chosen to match the postwar U.S. quarterly data on income and
consumption. Notation on curves matches that of Figure 3.2, See notes for
Figure 3.2 for clarification.
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Figure 3.4
Local Asymptotic Power
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Notes for Figure 3.4: Panel plots local power curves for a 2 variable system
where the covariance between the error terms is allowed to be different from
zero, Solid curves labeled DF and DF2 show the power of one- and two-sided
Dickey-Fuller univariate tests for a unit root. The solid curve labeled p2 = 0
shows the power of the Wald test imposing the correct cointegrating vector
when the (squared) correlation between the error terms is zero. Dotted curves
show the power of the Wald test for different non-zero levels of the squared
correlation in the error terms.



Table 4.1
Tests for Cointegration
Between Spot and Forward Exchange Rates

(Weekly Data, January 1975 - December 1989)

Currency _Ho’ligigakl __Ho,ligﬁgl &au ADF
British Pound 10.95 (0.04) 10.97 (0.21) (1 -1.001 (.004)] -3.12 (0.03)
Swiss Franc 12.73 (0.02) 13.67 (0.08) [1 -0.998 (.003)] -3.33 (0.02)
German Mark 23.38 (<.01) 25.00 (<.01) [1 -0.999 (.002)] -3.58 (<.01)
Japanese Yen 15.00 (<.01) 15.02 (0.05) [T -1.001 (.003)] -2.99 (0.04)
Notes: The statistics WO,l(O'aak) were calculated using aax-(l -1)'. The

numbers in parentheses next to the test statistics are p-values. The estimated

~

cointegrating vector a, is normalized as (1 B8), and the numbers in
u

A

parentheses are the standard errors for 8 computed under the maintained

hypothesis that the data are cointegrated.
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