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I. Introduction

A moment's reflection yields the insight that prediction problems involving
asymmetric loss structures arise routinely, as a myriad of situation-specific factors may
render "positive” errors more (or less) costly than "negative" errors, or conversely. The
potential necessity of allowing for asymmetric loss has been acknowledged for some time.
Granger and Newbold (1986), for example, note that although “an assumption of symmetry
about the conditional mean ... is likely to be an easy one to accept, ... an assumption of
symmetry for the cost function is much less acceptable™ (p. 125). The applied literature
has echoed this sentiment, in fields ranging from business-cycle forecasting and financial
forecasting, to sales forecasting, electricity peak-load forecasting, and government revenue
forecasting.' |

Moreover, recent developments in economic theory suggest that asymmetric loss may
arise quite generally, On the demand side, "loss aversion” is a fundamental component of
the influential non-expected utility theory of Kahneman and Tversky (1979) and Tversky
and Khaneman (1991). Loss aversion refers to situations in which present wealth serves as
a focal point, with the utility of wealth rising only gradually above that point but falling
sharply below that point,?

On the supply side, Stockman (1987) argues that decision making by firms,
especially in financial markets, leads naturally to asymmetric loss functions. The intuition
is that, in realistic market conditions, the ultimate variables that cconomic agents seek to

influence (¢.g., value of the firm) are likely to depend nonlinearly on profits obtained from

speculation based on predictions (e.g., exchange rate predictions).

! See, for example, many of the articles in Makridakis and Wheelwright (1987).

! For an early development, see also Roy (1952).
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This paper is part of a research program aimed at allowing for general loss structures
in model selection, estimation, prediction, and forecast evaluation. Recently a number of
authors have made progress toward that goal, including Weiss and Anderson (1984) and
Weiss (1991, 1994) on model selection and estimation, and Diebold and Mariano (1994) on
forecast evaluation. In this paper, we focus on prediction, beginning where Granger's
(1969) classic paper ends. In section 2, we extend Granger’s results to the case of
conditionally Gaussian, but unconditionally non-Gaussian, processes. Among other things,
this allows treatment of conditionally heteroskedastic processes. In section 3, we provide
analytic solutions for the optimal predictor under two popular asymmetric loss functions.
In section 4, we provide methods for computing the optimal predictor under more general
loss functions for which analytic solutions are not possible, and also for processes that are
not conditionally Gaussian. In section 5, we illustrate our results and methods by

forecasting the GARCH(1,1) process. We conclude in Section 6.

2. Optimal Predictors for Unconditionally and Conditionally Gaussian Processes
Granger (1969) establishes optimality of the conditional mean predictor under
symmetric loss, so long as the conditional distribution of the process being predicied is
symmetric and one of two technical assumptions is met. Under asymmetric loss the
conditional mean is no longer optimal, but a simple translation of the conditional mean is
optimal for unconditionally Gaussian processes. More precisely,
Theorem | (Granger) If {v} ~ N(x, E) is a Gaussian process and L(e, ) I8 any loss
function defined on the h-step-ahead prediction error, € * Yia - ia then the optimal

predictor is of the form g | = 4 |+ a, where Boap = E(y,4]10), is the conditional mean,
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0 = (Y, Vs -} and o« is a constant that depends only on the loss function and the
{constant) conditional prediction-error variance.

Granger's fundamental theorem has two key limitations. First, the process is
assumed to be Gaussian, which implies a constant conditional prediction-error variance.

This is unfortunate because conditional heteroskedasticity is widespread in economic and
financial data.’> Second, the loss function is defined directly on prediction errors. More
general functions of predictions and realizations are ruled out.

Let us begin, then, by generalizing Granger's theorem to allow for conditional
variance dynamics. We shall subsequently allow for more general loss functions and more
general conditional distributions as well.

Theorem 2 If Yol — NGty p0 Gfau) is a conditionally Gaussian process and Lye, ) is any
loss function defined on the h-step-ahead prediction error ¢ , then the optimal predictor is
of the form Sa ™ Heape * where o depends only on the loss function and the
conditional prediction-error variance o, = var(y,,|@) = var(e,,|G).

Proof We seek the predictor that solves

Lyafia) (%ialB) ¢¥,

1

min E(L(y,4 g} = 0

91* (Y

Without loss of generality we can write ¢ = Hap * @ and y | = gy, * R SO that

MR E(L(y,, -9} = BN [ L(x~a) f(x]0) dr,,

b

[N—

Because f(x ,|0) dcpc_nds on o lt but not Bra 59 too does the ¢ that solves the

3 See Bollerslev, Engle and Nelson (1994) and Diebold and Lopez {1994).

‘ Here and throughout, E,(x) denotes E(x|1)).
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minimization problem depend on 4, but not Mooy n

The upshot is that the optimal predictor under conditional normality is not necessarily
just a constant added to the conditional mean, because the conditiona! prediction-error
variance may be time-varying. The class of conditionally Gaussian GARCH processes. for
example, falls under the jurisdiction of Theorem 2. Thus, under asymmetric loss,
conditional variance dynamics are important not only for interval prediction, but also for
point prediction. If loss is asymmetric but conditional heteroskedasticity is ignored, the
resulting point predictions will be suboptimal and may have dramatically greater
conditionally expected loss in consequence.

In closing this section, we note that its result (Theorem 2) depends crucially on
conditional normality. It is apparent, moreover, that even if we maintain the conditional
normality assumption but let loss be a general function of predictions and realizations, then
the additive "correction” to the conditional mean predictor no longer obtains. That is. if
Yol = Nty dgiay) and L(Y,s $,,) i8 not of the form L(y,..-¥,..)» then although the
optimal predictor depends only on My a0d o pis it appears impossible to characterize its

form.

3. Analytic Solutions For Two Leading Loss Functions

Here we examine two asymmetric loss functions for which it is possible to solve
analytically for the optimal predictor under conditional normality. We work with the
Process y |0, ~ N(u,. o). For cach loss function, we characterize the optimal
predictor, ¢ = » Prapy * @, and we compare its conditionally expected loss to that of two

competitors:



(1) the conditional mean, By
(2) the pseudo-optimal predictor, ¢ = Boay * @, where o depends only on the 1oss
function and the unconditional prediction-error variance, 4 = var(e, ).
Note that the optimal predictor acknowledges loss asymmetry and the possibility of
conditional heteroskedasticity through a possibly time-varying adjustment to the conditional
mean. The conditional mean, in contrast, is always suboptimal as it incorporates no
adjustment. The pseudo-optimal predictor is intermediate in the sense that it incorporates
only & constant adjustment for asymm;:try; thus, it is fully optimal only in the conditionaily
homoskedastic case for which of = 4}, We include an examination of the conditionally
expected loss of the pseudo-optimal predictor in order to explore the cost of ignoring
conditional heteroskedasticity under asymmetric loss.
3a, Linex Loss
The "linex* loss function, introduced by Varian (1974) and further studied by Zellner
(1986), is given by

L(x) = blexpax) -ax -1}, a € B\{0}, b € R,

The linex loss function is so-named for its almost linear shape on one side of the ongin,
and almost exponential shape on the other. The parameter “a“ plays an important role in
the linex loss function; when a > 0 the loss function is approximately linear to the left of
the origin and approximately exponential to the ﬁéhl, and conversely whena < 0.
Moreover, quadratic loss is approximately nested within linex loss, because if a is smali,

one can accurately approximate the exponential part of the loss function by the first two

terms in its Taylor series expansion, yielding
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2
L(x) =~ b[[ I +ax + “2"’] - ax - l] =b%]x‘.

which is just a quadratic loss function, [(x) = cx?. Thus, for small a, we expect the
optimal predictor with respect to Jinex loss to be close to the optimal predictor with respect
to quadratic loss. Various shapes of linex loss functions are illustrated in Figure 1.

Now let us compute the optimal h-step-ahead predictor under linex loss. The optimal

predictor solves
oin E, flerpatyoa 9.0) - atya-5,) - 1]
which is equivalent to
b min {Eexptay, ) exp(-a9,.0) - aE(y,.0+ ag.. - 1}

Before performing the minimization, we evaluate the expectation of the exponential by

using the conditional moment-generating function for a conditionally Gaussian variate,

au . a"’f—su
(L V] 2 ¢

Efexp(ay,,)) = exp

Substituting this expression into the conditionally expected linex loss function, and then

differentiating, we obtain the first-order condition that defines the optimal predictor,

a 2
$ia = Py * 3 e

Similar calculations reveal that the pseudo-optimal predictor is



where o = var(e,,,) i8 the unconditional h-step-ahead prediction-error variance.

Theorem 2 shows that the optimal predictor under conditional normality is the
conditional mean plus a function of the conditional prediction-error variance. Under Jinex
loss, the function is a simple linear one, depending on the degree of asymmetry of the loss
function, as captured in the parameter a.” The intuition is simple--when a is positive,
positive prediction errors are more devastating than negative errors, so a negative
conditionally cxpected error is desirable. The optimal amount of bias depends on the
conditional prediction-error variance of the process. As the conditionally expected variation
around the conditional expectation grows, so too does the optimal amount of bias, in order
to avoid devastating large positive prediction errors.

Let us now compute the conditionally expected linex loss of the optimal, pseudo-

optimal and conditional mean predictors. Consider first the optimal predictor, which when

inserted in the conditionally expected loss expression yields

aps a0,y ba’al.
E, bl:exp(a(ym‘!ﬁ..g."“;' n- Y, "By 02.") - l] = 3 il

The conditionally expected loss of the pseudo-optimal predictor, on the other hand. is

¥ The correction is non-trivial for values of a not oo close to zero. When a is close 10
zero the conditional mean is close to optimal, reflecting the fact that linex loss is then close

to quadratic loss.
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E,[L{ym - 9...)} - b[exp('il;.(af..,pa:)) * %zaﬁ - l].

By construction, the conditionally expected loss of the pseudo-optimal predictor is at leasi

as large as that of the optimal predictor.

Finally, when using the conditional mean as the predictor, the resulting conditionally
expected linex loss is b[cxp(a_’%,’ﬂ) - 1), which is strictly larger than the linex-optimal loss
for all admissible values of a and b,

Notice that, perhaps contrary to expectations, it is not possible in general (i.e., for
all values of 4},,) to rank the pseudo-optimal as superior to the conditional mean predictor

in terms of conditionally expected loss. For the conditionally expected loss of the

conditional mean to be higher than that of the pseudo-optimal predictor we need
a’ 3 ? al 2 al ;
exp[Ta...,,] -1 2> CXP[T(UMH'%)] * 5% " L.
Subtracting 32_103,." from both sides yields
a? a’az ? a’ 7 H al ?
exp —z-at-m -1+ 5 Tiean = exp -2-( vaemo) | - (1 -2—-(U|-s||'01))-

Because exp(x) - (1 + x) is increasing in x for x > 0, we infer that the conditionally
expected loss of the conditional mean is indeed larger that the conditionally expected loss
from the pseudo-optimal predictor when 4? an > o However, for a sufficiently small
value of g}, (depending non-linearly on the value of a and 4!) the conditionally expecied
loss of the conditional mean will be smaller than that of the pseudo-optimal predictor. The
intuition is simply that in very low volatility times the conditionally optimal amount of bias

is very small, resulting in a higher conditionally expected loss for the pseudo-optimal
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predictor (which injects too much bias} than for the conditional mean (which injects no

bias).

These effects are illustrated in Figure 2, in which we piot conditionally expected loss
as a function of g}, ,, for each of the three predictors. As must be the case, the loss of the
optimal predictor is always lowest. The losses of the pseudo-optimal and the optimal
predictors coincide when g}, = &} = 1, The loss of the conditional mean intersects the
loss of the pseudo-optimal predictor from below at some value of 47 e 1688 than g7 As
oryy. 8Cts close to zero the optimal predictor makes only a very small correction to the
conditional mean and the losses of the two predictors get very close.
3b. Linlin I

Granger (1969) considers the simple asymmetric loss function,

alYafials if Ya~fa > 0

hah) = Biyiu-fl if Yo%y s 0.

We call this the linlin loss function, because it is linearly increasing on both sides of the
origin with the slopes a and b, respectively. The degree of asymmetry depends on the ratio
of a to b, Various shapes of linlin loss functions are shown in Figure 3.

In the linlin case, the optimal predictor solves
min B, [L&,0~fi2) = 2 J G IS0, = 0 [ a9 DY,
The first-order condition is

~a(1-F(§,10)) + b F(§,,[0) = O,

which is equivalent to
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F(§,.10) = be-

where Fy,,|0) is the conditional c.d.f. of y,,,.*

In the conditionally Gaussian case y |0 ~ Ng,,,0%,,0, We have

a

= ¢ —_— = e,
o‘,ml a+b

F(y"‘ln') = Pr((y"ls O‘l'ill * al))lnl) = Pr[ [ yu‘-““.“ ) - l Ini

%an Tap

where $(z) is the N(0,1) c.d.f., values for which are readily available in tables. From this

we can obtain the o that when added to the conditional mean yields the optimal predictor,
a, =0, ¢ [;%-6] .
Thus, the optimal predictor is
s = Biap * Fap ! l.a_“:_b.] .

Similar calculations reveal that the pscudo-optimal predictor, which ignores conditional
variance dynamics, is

a

fia = Aap * 6 r‘[ﬁ] .

Thus, with linlin loss, as with linex loss, it is easy to allow for conditional variance
dynamics when constructing the optimal predictor.
Now let us compute conditionally expected linlin loss with the optimal, pseudo-

. * Note that the optimal predictor depends only on the ratio a/b, because a/(a+b) =
(@/b)/((a/b)+1).
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optimal and conditional mean predictors. In general, the conditionally expected loss of the

lintin predictor, ¢ ., is

- v,

EI{L()’!‘&-?I'IJ] - a J(ytd—ylﬁ)f()'p\lnc)dy“u - bl (Y..ﬁ'f’.-\,)f()".Jﬂ.)dy..‘

(LY

Recall the formulae for the truncated expectation,

J yphf(ytlnx)dYt-i
Et{yloil(}'loh)yl*b)} = = I‘F()",,,)

|
Yo Ty, [ Oy,

E‘{Y.QI(Y|&<9‘*)} ) F(S'pb)

and substitute into the expected loss expression to obtain

E{L(Y,a -0} = 21 -FO L ONEF W] 0ia> 0]} = Fin) = OFQual DEN Al Gra <F)} - S1al.

Invoke conditional normality and use the properties of the truncated normal distribution 1o

obtain

_ $(&
E‘(ypgl(y\-i)yl*)]- Frap :,op.l‘ 1'4’(‘:‘)

#(¢
Effial O <S)} = #an ™ 4‘_(‘:’%’

where ¢ » S and () is the N(0,1) c.d.f. Substitute into the conditionally

e
expected loss expression to obtain (after some algebraic manipulation)
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EI{L(y"‘—g"‘)} * (a+b)u"h|'¢(el) - a@"hll-u‘t'hil) + (a‘b)¢(£|)(jt.b“—“l_|“)-

For the optimal predictor,

yielding an expected loss of

Ewm9.r@wuwl hE”.

For the pseudo-optimal predictor,

E"l’[ .

ah
a+b %

yielding an expected loss of

ELOw9)) = @+b)o,, ¢

e )

For the conditional mean predictor, ¢ » 0, yielding an expected loss of

»aé-'[_‘.] Aoy ashyp| e
a Fap

-

E{L(Y,q R} = @tbo,, (0.

Figure 4 shows that, just as in the linex loss case of Figure 2, the linlin-optimal and

pseudo-optimal predictors coincide when the conditional and unconditional prediction error
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variances coincide (at 1). Also, for a sufficiently low conditional prediction error variance,
the loss of the pseudo-optimal predictor is actually higher than that of the conditional mean,
whic'h in turn approaches zero as does the loss of the optimal predictor.

In closing this section, we note that in the linlin case (in contrast to the linex case) it
is very easy, even for general conditional distributions, to find the optimal predictor--just

draw the conditional c.d.f. and read the value on the x-axis corresponding to a/(a+b).

More formally,

atb

Py = F-'[i nl] ,

so ¢, is simply the (a/(a+b)th conditional quantile. When a=b, of course. g, is the -

conditional median.

4. General Solutions to the Optimal Prediction Problem

We have characterized the optimal predictor under conditional normality, and we
have computed it analytically in some leading special cases. In most cases, however, it is
impossible to solve analytically for the optimal predictor. To see the difficulty associated
with analytic solution, even for very simple loss functions and under conditional normality,
consider the following natural generalization of quadratic loss ("quadquad” loss), in which

loss is quadratic on each side of the origin, but positive errors cost more than negative

errors (or conversely):
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a(yl'h-yub)]' if yI‘I—?!'I >0

Liy,a-9i) =
. b(qu—yuu)]' if yl’i-yt'l s 0

Conditionally expected loss is

o ,w

Eﬁ{L(y"i-9|~b)} = aJ (y"l_?l-l): r(YI’iIQl) d)'nh M bl (Yt-i_yt-h)z f()'l-hlﬂt) dYu-h'

Differentiating with respect to the predictor, we obtain the first order condition
- fa
a J Gua~hw) ©alB) @i 0 [ Gra5i) 1114100 ey = 0

It is clear that analytic solution of this first-order condition is impossible in general.
Moreover, even in cases as highly-structured as conditional normality, analytic solution
remains impossible. To see this, rewrite the first-order condition as

a(l-FOLIONEY L Ga> 2] = 80 * BFELIMEY LG <F)l - 50 = 0.
Under conditional normality, expressions for the truncated expectations are given above.
Inserting these representations for the truncated expectations, using F(§,,[@) = #(,) and
canceiling terms yields’

(@-D)$(E)0 0 + @-DIBEIG uHrap) - 2a i) = O-

Thus, although conditional normality does yield some simplification, closed-form analytic
solution remains impossible.

Existence and uniqueness of the optimal predictor are casily established under
conditional normality, however. Denote the first-order condition that defines the optimal

predictor by g(9,) = 0. Existence follows from lim g(9 ) < 0 and

-
1+h

" Notice that for a=b the conditional mean is of course optimal.
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lim mg(yh‘) > 0, together with continuity of the first-order condition. The two limits
Z;J easily verified; immediately, 9.22“8(9"') e -c and 9‘.:1."‘-0:’&(9"') = +o. For
uniqueness we need that g/(9 ) be strictly negative everywhere. This too is easily
verified; immediately,

g'(9.) = - all-¥(t)) - bd(¢),

which is strictly negative everywhere, because a>0, b>0 and ¢(.) is a c.d.f.

This situation, in which existence and unidueness of the optimal predictor are easily
established but a closed-form does not exist, is typical. The good news, however, is that in
such situations numerical algorithms (nonlinear equation solution aigorithms in conjunction
with numerical integration) may be used to compute the optimal predictor quickly and
reliably, even in condirionally non-Gaussian cases. One such loss function, and one that is
particularly appealing in light of its simplicity and flexibility, is the piecewise-linear loss
function.

4 ecewise.Li

Consider a loss function L{(¢) constructed by concatenating linear segments, such that
the loss of zero is zero and it is nondecreasing on both sides of the origin. This may
actually be the relevant loss function, or it may be used as an approximation to any
prediction-error loss function. Conveniently, the optimal predictor associated with this loss
function falls into the class for which existence and uniqueness are easily established. and it
is easily computed numerically.

Conditionally expected loss is

' Note that any desired leve! of approximation accuracy may be obtained by taking
sufficiently many segments.
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-1 fatu -
EllL(yhh_yl-b)} = EI f (ai(yt'l_9l-h)+bi)f(y|'h=n()dyl-n * I (al(yl’i_s,l'b) *b‘)f(ymlﬂ‘)dy‘_.
LIS B Fiatin
pp Bane” fase™
+ E I (aj(ym-yt_.)*b")f(y.,“n')dyp. I (a’(ym yl A ’)f(ymlﬂ‘)dym.

e
The first line denotes the pieces on the positive side of the origin and the second line the
negalive, i.¢., a > 0, vi and ai < 0, vj. The ¢'s and ¢'s denote the breakpoints between
segments, with ¢! < ¢* < 0and 0 < ¢, < ¢, forall | > k. For zero loss at the origin we
impose b, =b! =¢y=c® =0 To ensure that neighboring segments connect at the

breakpoints we impose b =b,_, +(a_,-a),.,i=23,..1, and similarly

9

bl = bt o+ @it -aleit, j=2,3, .., ).
Differentiating with respect to the predictor, ¢, and using Leibniz’s rule, we obtain

-1 1-1
Z(aici’bs)f@m*cilﬂu) = E @, *0)M(9,.,*c.., |10) - (ae,  *bI@,  +c,. 1D)

-1

aI(F((ylviﬂ:l) I 0;) “F§ia*ci.)) - (1 -Fl(§,4%c,.) 10

1-1
+ 3 @i b((F,4 Q) ¢ (@', ') - Y @IS, ) D)

it I

-1

- 3 UEGa e D0 F(Qa 2D - 2@, I = 0.

which is the first-order condition that defines the optimal predictor. After some

* The familiar linlin loss function is of course a special case of the piecewise-linear loss
function, corresponding to 3, = a,, i =2, 3, ..., land 2l =a', j = 2,3, ..., J.
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manipulation all p.d.f. terms cancel, leaving

-1
- -Zl al(F((yl‘i “C‘) ' 01) -F((yq-ﬁ’ci-l) | Q;)) - al(l "F((S"M, *C1.|) | QJ)

-~

aj(F(Gug"ci-l)|n|)-F((9p|+cj)|Q‘)) - a'F((SJ"'h:’")]ﬂl) = 0,

-

i
or cquiva]c;:ntly (after a bit more manipulation),

‘1 1
2 @ R+ )10) + 3 @M -a)F((§,, <) [0} + (a,-2")F((5,.)]Q) - a, = 0.
j=1

i"2

This first-order condition cannot be solved analytically, but it is easy to solve numerically,
given the conditional c.d.f. F(y,,[0)- Sufficient conditions for existence and uniqueness of
the solution are given in the following theorem.
Theorem 3 If:

M a 22a,i=223,.,Tad a" 2 aj,j=2,3,..,]

@) fy[0) > 0, vy

(3) a,>a_, for some i, or al'>al, for some j.
then a solution to the first-order condition exists and is unique.

Proof Denote the first-order condition by g9, ) = 0. We shall show that
lim g9 > 0 and lim g9 < 0, %0 that the first-order condition has at least one
oo

9;.."“ " .
root, by continuity of g(.). Immediately, lim g9 ) =« -a’ and lim g ) = -a,.
g -]

.——
1 o

These limits are strictly positive and negative, respectively, by condition (3) in conjunction
with the fact that the a's are all non-negative and the 2''s are all non-positive. Now we
establish uniqueness by showing that g/g ) > 0, v¢,,. Immediately,

Notice that all terms are nonnegative from condition (1) in conjunction with the fact that the
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I ) .
25,0 = @ a )@ a e )R+ T @ -anf@,, e NI0) - @ -ahiE,10).
[T j=2

a’s are all non-negative and the @'s are all non-positive, and because f(-) is a p.d.f
Conditions (2) and (3) are sufficient to guarantee strict positivity, by guaranteeing that at
Jeast one term is strictly positive, but of course they are not necessary. s

The method just discussed involves numerical solution of a piecewise-linear
approximate loss function. Effectively, we obtain the exact solution to an approximate
objective function. Now, in contrast, we shall obtain an approximate solution to the exacl
objective function,

The approach is of interest for at least two reasons. First, it enables us to dispense
with the assumption that the loss function is of "cost-of-error® form, in favor of the general
form L(y,.,, 9. Second, and potentially more importantly, exact numerical solution
under piecewise-linear loss (or any other loss function) can become very complicated 1f
predictions at more than one horizon are desired, because the conditional c.d.f. will in
general change with the horizon. Expressions for the requisite set of c.d.f.'s are typically
very difficult to obtain. Thus, for example, even if the one-step-ahead conditional c.d.f.is
Gaussian, the multi-step-ahead c.d.f.’s will generally nor be Gaussian, and they are
typically very difficult or impossible to characterize exactly. The method of this section, in
contrast, requires computation of only a few low-ordered conditional moments, as opposed
to the entire conditional distribution.

First consider the conditionally Gaussian case. Assume that the optimal predictor

exists and i3 unique,
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91-5 = G(ﬂ;.mp Ulz'hh)v

where G(-, ) is at least twice continuously differentiable. Then we can take a second

order Taylor approximation around the unconditional (and time invanant) moments , and

2
Ty
FI‘NI-“\ #\—hu‘“\
- 2 !
Ya = G, a:) + G'(y.‘, i , . (Heppe =Py af.m—a:) G (pys ab ) |-
Jiap =0 Oy~ Oy

Rewrite this as

Yoa = Bo * Bisiap * B-zd‘zﬁn + B:(F‘uu.)z M Ba("-’-m)] + B,(ﬁ...*.af...t) =y L8),

where g = (8,, 8,, ..., 89’ ard B = Hu,, o), i =01, ..,5. Because the function
G(-, +) is generally unknown, so too are the H(., -) functions. But ,  and o1y ATC
known, and the minimization that defines 3 can be done over a very long simulated

realization,

N
B - argmin L0, Y6,

=1

As N=o, y (Brsy(B), Where y (8 is the best predictor within the y7(-) family. with

respect to the metric L(-, +)."

A number of remarks are in order.
(1) In the conditionally Gaussian case, the h-step-ahead conditional expectation and the

corresponding conditional variance may be computed conveniently using the Kalman

filter recursions.

19 N is the size of the simulated sample.
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(2) In the conditionally Gaussian case with "cost of .crror" loss, L(e,.},). one may set 8, =
1 and B, = 5 = 0 a priori, due to Theorem 2.

(3) In the conditionally Gaussian case, it is nevertheless clear that higher-order expansions
in By ppe 0 a.’_m may be entertained and may lead to improvements. We conjecture
that if p denotes the order of the expansion, then as N+ and p—»o with p/N=0,
FaBr+d

(4) In conditionally non-Gaussian cases, expansions in more variables (e.g., involving
conditional skewness and/or ku;tosis) may be necessary and may be undertaken. We
conjecture that if p denotes the order of the expansion and k denotes the number of
variables, then as N+, p+o, and k—+o0, with p/N-+0, k/N-0, and k/p—0,
YerBr+9a:

(5) For any fixed N, in both the conditionally Gaussian and conditionally non-Gaussian
cases, one might be able to obtain more accurate approximations to the optimal
predictor than that obtained by Taylor series expansion by mixing Fourier terms with

the Taylor terms, or by using methods such as neural networks."

5. A GARCH(1,1) Example
We shall illustrate the results with the conditionally Gaussian GARCH(1,1)

process under linlin loss. That is,

Y|o| - z]g]l 8|o||e| - N(oi 63'I|t)

where

1 See Kuan and White (1992).
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2 1 1
G ™" w + ag + Bam-l- w,a, f >0 a+8 < 1,

and

alyl'l-?lﬁ" if yt-h—?l-b >0

L(y "9I0 =
" J blYUl“?l-\" lf Y|-i—9|-a s 0

Throughout, we normalize the unconditional variance to | by taking 4 = (1-o-g3), and we
set @ =.2and B = .75,

We set the linlin loss parameters at a = .85, b = .15 (moderate asymmetry) or a = .95,
b = .05 (high asymmetry). Throughout, we take

We compare the conditionally expected linlin losses associated with the optimal

predictor, the pseudo-optimal predictor, and the conditional mean. This requires
conditioning on an initial value of af.”“ and the results will, of course, vary with the value
adopted. Here we set the initial conditional variance equal to the unconditional variance

plus one standard deviation of the conditional variance,

af-m = a} + Vvaffalz-m) .

Calculation of var(a.’,.,), the variance of the conditional variance, is straightforward but

somewhat tedious, We have

Var (a.’.m) = E [(a.’..,‘)z] - (af)z.

But recall that Eg!, = 3(d}.,%, S0 that (o}, )? = (E&.,)/3. Thus,
Ee!, 1
var(olz'lll) = -—5‘“! - (U:I!) '

by the law of iterated expectations. But, as shown by Bollerslev (1986), the unconditional
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fourth moment is

4 3wl +a+B)

Ee!, = . 3-a-B)(l+a+p)

(1-a~-B)(1-8*-2af -3c?) 1-02-2a8-3c?

]

because we set ¢ = (1-a-8)-

We will compare the conditionally expected losses of the optimal predictor, the
pseudo-optimal predictor, and the conditional mean predictor, at various horizons and for
various parameterizations of linlin loss. To do so, we need an expression for e which
enters the earlier-derived expression for the optimal linlin predictor. Using results from

Baillic and Bollerslev (1992), it is easy to show that for the GARCH(1,1) process,

a,

o = YO+ (@)

It is worth pointing out that the "optimal® predictor we use in this example is known
to be truly optimal only for h = 1, because conditional normality holds only for h = 1.
But, although the "optimal® predictor used in this example is in fact only an approximation
to the optimal predictor when h > 1 (it is in fact an “improved” pseudo-optimal predictor).
one expects it to perform better than the “constant adjustment” pseudo-optimal predictor.
because it explicitly makes use of the time-varying conditional variance. Recognizing the
abuse of language, we shall continue to refer to it as the "optimal predictor®. Other
approximations, such as the series expansion of section 4, are of course possible and may
perform better, but they would introduce unnecessary complexity into the example."

Because of the conditional non-normality when h > 1, we do not rely on the

1 Because the optimal predictor in this case is the appropriate conditional fractile, one
could also follow Baillie and Bollerstev (1992) and take a low-order inverse Edgeworth
expansion to approximate the conditional fractile directly.
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formulas derived in section 3b to compute the conditionally expected losses of the optimal.
pseudo-optimal, and conditional-mean prcdicto»rs. Instead, we compute them by simulation.
At each of 20,000 replications, we draw a GARCH(I, 1) realization of length 50, with the
conditional variance initialized as discussed above, and we compute the loss of each of the
three predictors at each of the 50 horizons. Finally, we average across replications.

In Figure 5, we show a typical GARCH(1,1) realization with o = .2, 3 = .75,
together with the real-time linlin-optimal, pseudo-optimal and conditional mean predictors.
for linlin loss parameters a = .95 and b = .05. It is apparent that the optimal predictor
injects more bias when conditional volatility is high, reflecting the fact that it accounts for
both loss asymmetry and conditional heteroskedasticity. This conditionally optimal amount
of bias is sometimes more and sometimes less than the constant bias associated with the
pseudo-optimal predictor, which accounts for loss asymmetry but not conditional
heteroskedasticity. Finally, of course, the conditional mean injects no bias, as it accounts
neither for loss asymmetry nor conditional heteroskedasticity.

In Figure 6, we show the conditionally expected linlin loss of the pseudo-optimal
predictor relative to that of the optimal predictor, across forecast horizons. All GARCH
and linlin parameters are maintained at the earlier-discussed values of Figure 5. The
conditionally expected loss from ignoring the conditional variance dynamics--that is, the
conditionally .expectod loss from using the pseudo-optimal as opposed to the optimal
predictor--is as high as 12% for short horizons. As with Granger (1981), although for very
different reasons, the optimal predictor is successful at "forecasting white noise.” Of

course, as the prediction horizon increases, the cost of ignoring the conditional vanance

dynamics decreases, and the ratio of conditionally expected losses converges to 1.
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In Figure 7, we show the conditionally expected linlin loss of the conditional mean
relative to that of the optimal predictor. Although the cost of ignoring the conditional
variance dynamics still decreases with horizon, the ratio of conditionally expected losses
does not approach 1, because the conditional mean predictor ignores loss asymmetry in

addition to conditional heteroskedasticity. The failure of the conditional mean 1o

acknowledge the loss asymmetry affects predictive performance at all horizons.

Figures 8 and 9 parallel Figures 6 and 7, the difference being that we now set a
.95 and b = .05, so that loss is more highly asymmetric. The results are qualitatively

identical, but quantitatively more pronounced.

6. Summary and Concluding Remarks

We have analyzed the optimal prediction problem under asymmetric loss. We
computed the optimal predictor analytically in two leading tractable cases and showed how
to compute it numerically in less tractable cases. A key theme that emerged was the
dependence of the conditionally optimal amount of bias on the conditional variance, thereby
providing a direct link from conditional heteroskedasticity to optimal poins prediction,
rather than simply to interval prediction. We illustrated this theme with an application to
forecasting the GARCH(1,1) process under linlin loss.

Some important recent work in dynamic economic theory is very much linked to the
idea of prediction under asymmetric loss discussed here. Building on Jacobson (1977) and
Whittle (1990), Hansen, Sargent and Tallarini (1993) set up and motivate & general-
equilibrium economy with "risk sensitive® preferences resulting in equilibria with certainty-

equivalence properties. Thus, the prediction and decision problems may be done
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sequentiatly--but prediction is done with respect to a distorted probability measure that
produces predictions that differ from the conditional mean.

As for extensions, we plan to use the predictors developed here to develop recursive
prediction-based procedures for selecting forecasting models under the relevant loss
function.” This of course also involves estimating models under the relevant loss function.
The end result will be an integrated tool kit for model selection, estimation, prediction. and
forecast evaluation under the relevant loss function. It will also be of interest to examine
the ability of the parametric proocdurés developed here to forecast actual economic time
series, and to compare the performance of our parametric predictors to White's (1992)
nonparametric predictor," as much of the forecasting literature suggests that simple, tightly

parameterized--but nevertheless sophisticated--models tend to perform best in out-of-sample

forecasting. **

¥ Important recent work along these lines, under a Kullback-Liebler distance metric. 1s
reported in Phillips (1994).

' White develops his nonparametric prediction procedure under linlin loss, but it is
readily extended to other loss functions.

' See Zellner (1992).
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Figure 1
Quadratic Loss and Various Linex Loss Functions
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Notes to Figure: Quadratic loss appears as a dashed line and linex loss appears as a solid
line. Linex loss is parameterized by a and b, where L(x) = b[exp(ax) - ax - [}, a = R\{0}
ndb > 0,



Figure 2
Conditionally Expected Linex Loss of
Conditional Mean, Pseudo-Optimal, and Optimal Predictors
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Notes to Figure: The Linex loss parameters are set to a=1 and b=2. As the current
conditional variance is changed (i.e., as one moves along the horizontal axis of the graph)
the process’ unconditional variance remains fixed at !,



Notes to Figure: Quadratic loss appears as

Figure 3
Quadratic Loss and Various Lintin Loss Functions
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Figure 4
Conditionally Expected Linlin Loss of
Conditional Mean, Pseudo-Optimal, and Optimal Predictors
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Notes to Figure: The Linlin loss parameters are set to a=.95 and b=.05. As the current
conditional variance is changed (i.e., as one moves along the horizontal axis of the graph)
the process’ unconditional variance remains fixed at 1.



Figure §
GARCH(1,1) Realization with
Linlin Optimal, Pseudo-Optimal, and Conditional Mean Predictors
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Notes to Figure: The linlin loss parameters are setto a = .95 and b = .05, so that
a/(a+b) = .95. The GARCH(1,1) parameters are set to a=.2 and §=.75. The dotted
line is the GARCH(1,1) realization. The horizontal line at zero is the conditional mean
predictor, the horizontal line at 1.65 is the pseudo-optimal predictor, and the time-varying

solid line is the optimal predictor.



Figure 6
Ratio of Conditionally Expected Linlin Loss
of Pseudo-Optimal and Optimal Predictors

1.15} o ]
1.1}

1.05} ;

i

1} I

]

‘\\—/\__//—"\“\/' 1

|

|

0.95 . . 3 |
0 10 20 30 40 50

Forecast Horizon

Notes to Figure: The linlin loss parameters are set to a = .85 and b = .15, so that
a/(a+b) = .85. The GARCH(l,]) parameters are setto a = 2 and 8 = .75.



Figure 7
Ratio of Conditionally Expected Linlin Loss
of Conditional Mean and Optimal Predictors
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Notes to Figure: The linlin loss parameters are set to a = .85 and b = .15, so tha
a/(a+b) = .85. The GARCH(1,!1) parameters are setto a = .2 and § = .75.



Figure 8
Ratio of Conditionally Expected Linlin Loss
of Pseudo-Optimal and Optimal Predictors

.. T
1.4} ;
1.35]
1.3} ]
1.25} jl
1.15] j
1.1}
1.05} :
1} ‘-"\/\_,W__‘
°95% 10 20 30 40 50

Forecast Horizon

Notes to Figure: The linlin loss parameters are set to a = .95 and b = .05, so that
a/(a+b) = 95. The GARCH(1,1) parameters are settoa = .2 and § = .75.



Figure 9
Ratio of Conditionally Expected Linlin Loss
of Conditional Mean and Optimal Predictors
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Notes to Figure: The linlin loss parameters are set to a = .95 and b = .05, so that
a/(a+b) = .95. The GARCH(l,1) parameters are set toa = .2 and 8 = .735.



