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1 Introduction

This paper assesses the small sample properties of Generalized Method of Moments (GMM)
based Wald statistics. The analysis is conducted assuming that the data generating pro-
cess corresponds to (i) a simple vector white noise process and (ii) the equilibrium business
cycle model considered in Burnside and Eichenbaum (1994). Our key findings are that
the small sample size of the Wald tests exceeds their asymptotic size, and that their size
increases uniformly with the dimensionality of joint hypotheses. For tests involving even
moderate numbers of moment restrictions, the small sample size of the tests greatly ex-
ceeds their asymptotic size. Relying on asymptotic distribution theory leads one to reject
joint hypothesis tests far too often. We argue that the source of the problem is the diffi-
culty of estimating the spectral density matrix of the GMM residuals, which is needed to
conduct inference in a GMM environment. Imposing restrictions implied by the underly-
ing economic mode! being investigated or the null hypothesis being tested on this spectral
density matrix can lead to substantial improvements in the small sample properties of the
Wald tests.

A common approach to evaluating quantitative equilibrium business cycle models is to
compare model and non-model based estimates of the second moments of aggregate time
series. No uniform method for making these comparisons has emerged. Many authors in
the Real Business Cycle (RBC) literature make these comparisons in a way that abstracts
from sampling uncertainty in estimates of models’ structural parameters (see for example
Kydland and Prescott (1982) or Hansen (1985)). Other authors have estimated and tested
RBC models using full information maximum likelihood methods (see for example Altug
(1989), Christiano (1988), McGratten, Rogerson and Wright (1993) and Leeper and Sims
(1994)).

An intermediate strategy is to simultaneously estimate model parameters and second
moments of the data using a variant of Hansen's (1982) Generalized Method of Moments
(GMM) procedure. Christiano and Eichenbaum (1992) show how, in this framework,
simple Wald-type tests can be used to test models’ implications for second moments of
the data. Three advantages of this approach are that {i) at the estimation stage of the
analysis one need not completely specify agents’ environments, (ii) it is easy to specify

which aspects of the data one wishes to concentrate on for diagnostic purposes, and (iii)



it is substantially less demanding from a computational point of view than maximum
likelihood approaches. Use of this procedure has become more widespread. However its
properties in small samples are not well understood. This is disturbing in light of recent
results in the literature casting doubt on the extent to which asymptotic distribution
theory provides a good approximation to various aspects of the small sample behavior of
GMM based estimators.!

In this paper we address four basic questions concerning the performance of GMM
based Wald statistics. First, does the small sample size of these tests closely approximate
their asymptotic size? Second, do joint tests of several restrictions perform as well or worse
than tests of simple hypotheses? Third, how can modeling assumptions, or restrictions
imposed by hypotheses themselves, be used to improve the performance of these tests?
Fourth, what practical advice, if any, can be given to the practitioner?

We answer these questions under two assumptions about the data generating process.
First, we assume that the true process generating the macro time series is the equilibrium
business cycle model developed in Burnside and Eichenbaum (1994). This case is of interest
for two reasons: (i) the model generates time series that in several respects resemble U.S.
data, and (ii) we can study issues of size and inference in an applied context. Second,
we assume that the data generating process corresponds to Gaussian vector white noise.
Working with such a simple process allows us to assess whether the findings that emerge
with the more complicated data process also arise in simpler environments. In addition
we find it easier to build intuition about our results in the simpler environment.

Our main findings can be summarized as follows. First, there is a strong tendency
for GMM based Wald tests to over-reject. Second, the small sample size of these tests
increases uniformly as the dimension of joint tests increases. For even moderate number
of restrictions, the small sample size is dramatically larger than the asymptotic size of the
test. Indeed correcting for the small sample properties of the Wald test turns out to have a
substantive impact on inference about the empirical performance of the equilibrium busi-
ness cycle model that is being analyzed. Third, the basic problem is difficulty in accurately
estimating the spectral density matrix of the GMM error terms. We investigate various
nonparametric estimators of this matrix that have been suggested in the literature. While

'See for Tauchen (1986), Kocherlakota (1990), Ferson and Foerster (1991), Burnside (1992), Fuhrer,
Moore and Schuh (1993), Neely (1993}, Christiano and den Haan (1994) and West and Wikax {1994).



there is there is some sensitivity to which nonparametric estimator is used, these differ-
ences do not affect our basic conclusions. Fourth, we argue that the size characteristics of
the Wald tests can be improved if the analyst imposes restrictions that emerge from the
mode! or the hypothesis being tested when estimating the covariance matrix component
of the Wald statistic. Not only does such information improve the size of simple tests, it
significantly ameliorates the problems associated with tests of joint hypotheses.

The remainder of this paper is organized as follows, Section 2 considers the case of
the Gaussian white noise generating process. In Section 3 we discuss the case where the
data are generated from an equilibrium business cycle model. Section 4 contains some

concluding remarks.

2 Gaussian White Noise Data Generating Processes

In this section we consider the small sample properties of GMM based Wald statistics
within the confines of a very simple statistical environment. In particular we suppose
that data generating process is a mean zero, unit variance Gaussian white noise process.
There are several advantages to working with such a simple process. First, we are able to
document that the basic problems which arise in the more complex environment considered
in section 3 also arise here. Second, developing intuition for the results is easier in a
stmpler environment. Third, we can examine the effects of imposing various assumptions
about the data generating processes on our procedures. Fourth, we can compute all
relevant population moments exactly. Fifth, simulation is straightforward and the number
of replications can be increased to gain accuracy in our Monte Carlo experiments.

The remainder of this section is organized as follows. Subsection 2.1 describes the
data generating process. In subsections 2.2 and 2.3 we discuss the hypothesis tests and
different experiments that we conducted. Finally, we report the results of our Monte Carlo

experiments in subsection 2.4.

2.1 The Data Generating Process

We suppose that an econometrician has time series data on J = 20 random variables Xit,
i=1,...,J, each of which are i.i.d. N(0,1) and mutually independent.? The econometri-

*We also conducted experiments in which the data were independent MA(1) processes with Gaussian
innovations, and which were either positively or negatively serially correlated. In both cases our results were
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cian has T = 100 observations on X, ¢ = 1,...,J. To simplify the analysis we assume
that the econometrician knows that EX;, = 0, for all s and ¢t. The econometrician is
interested in estimating and testing hypotheses about the standard deviations, o;, of X,
1=12,...,J. To estimate o; he uses a simple exactly identified GMM estimator based

on the moment restriction
E(Xi-o)=0, i=1,2,...,J (1)

This leads to the GMM estimators
1 T 1/2
é; = (T '_EIX,’,) : (2)

3.3 Hypothesis Testing

The econometrician estimates o; in order to conduct inference. The hypotheses of interest
pertain to the variability of the series X,. The specific hypotheses to be tested are of the
form
Hy:oy=03= =0y =1, M<J.
We consider this hypothesis because of its similarity to a diagnostic procedure that is
often used to evaluate RBC (and other) models. The basic idea is to see whether a model
can ‘account’ for various second moments of the data. In practice this amounts to test-
ing whether the second moments of some series estimated in a nonparametric manner
equal the analogous second moment implications of a particular RBC model (see section
3). Early work on RBC models tended to concentrate on the volatility of different eco-
nomic aggregates (see for example Hansen (1985)). Here there is no ‘model’. But we can
test sample moments against their true value (M = 1) and test whether various second
moments are equal to each other in population using similar statistical procedures.
The specific Wald statistic that we use to test Hy, is given by

Wi =T(6 - 1) A'(AVzA) 1 A(3 - 1). (3)

Here 4 = ( I Ongys—pe ) and V7 denotes a generic estimator of the asymptotic variance-
covariance matrix of VT(s - 0o}, where og is the true value of the parameter vector

o= ( oy, 03 - gy )’. Given well behaved estimators & and Vr, w,‘?‘—‘+x’(M).

qualitatively similar to the white noise case.



We consider several questions that arise in testing H,,. First, how does the choice of
estimator Vr affect inference? We are particularly interested in assessing the small sample
implications of using non-parametric estimators of V¢ and understanding the gains to im-
posing different types of restrictions on V. Particularly important sources of restrictions
are the economic theory being investigated and the null hypothesis being tested. For ex-
ample, intertemporal consumption based asset pricing models typically imply restrictions
on the degree of serial correlation in the error terms that define Vr. (See for example
Hansen and Singleton (1982) or Eichenbaum and Hansen (1990)). A different example is
provided in section 3 where we can use the structural model itself to generate an estimate
of Vr. Since imposing restrictions on Vy can often be computationally burdensome, and
asymptotic inference is not affected, it is important to understand the nature of the small
sample gains to doing so.

Second, how does the dimension of the test, i.e. the degrees of freedom M, affect the
size of the test? This question is important because, in many applications, the model
gives rise to a large number of over-identifying restrictions. The issue is what trade-offs
are involved in simultaneously testing more or less of these moment restrictions.

Third, how are the small sample properties of the Wald statistic affected by reparame-
terizing the example?® An asymptotically equivalent way of assessing hypothesis Hyy is to
proceed as follows. Suppose that we estimate 01, along with §; = 0;f0, for i = 2,3,...,J.

To estimate §; we utilize the following moment restrictions.

E(X-o}) = 0
E(X?,—ﬂ?)(f,) = 0 i=2,...,J (4)

This leads to the estimators

- (b

=1

|

=
[
'_n

zle,/,rzx“) Ci=2,..0,J

The analogous hypothesis to Hy, is

Au:oy=ty=---=6y=1, M<J

3Gregory and Veall (1985) study the effects of reparameterisng Wald tests in a regression context.
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The corresponding Wald test statistic for this hypothesis is

W =T — 1) A (AVrAY A6 - 1), (5)
where § = ( o 83 --- 4, )' and V7 is some estimator for the asymptotic variance-

covariance matrix of . There is no a priori reason to suppose that the small sample
properties of W’ will be the same as those of M,

This example is of interest because it can shed light on the common practice in the RBC
literature of testing whether a model matches the volatility of output and the volatility
of various aggregates relative to output. One could simply test whether a model matches
the absolute volatility of all the relevant variables. Asymptotically this choice should not
matter. But the small sample properties of the Wald tests in the two cases could be quite
different.

2.3 Alternative Covariance Matrix Estimators

In this section we discuss our estimators of the asymptotic variance-covariance matrix of
& and §. To be concrete we concentrate on the case of &. The case of § is discussed in
Appendix A. The moment conditions used to estimate o, (1), can be written in the form
E[g(X;,0)] = 0. Here (-, ) is the J x 1 vector valued function whose sth element is given
by (X} — o?). Denoting the true value of o by 0o, the asymptotic covariance matrix of
VT(6 — ;) is given by

Vo= (D(;SO—IDO)”I’

where
_ p99(X4, 00)
Do= B30
and

So= 3 9(Xi,00)9(X-;, )"
N
The corresponding estimator of Vo is given by
VT = (D'TS;IDT)-J'

where Dy and Sy are consistent estimators for Dy and So.



We consider several estimators of V;,. Each is defined in terms of some estimators Dy
and S7. The different estimators impose varying amounts of information at the econome-
trician’s disposal. Some of this information is in the nature of the maintained assumptions
concerning the serial and mutual independence properties of X;; and Gaussianity. Other
information derives from the null hypothesis being tested.

Initially we consider estimators of Sy which do not exploit any of this information.
Instead we estimate S, using versions of the nonparametric estimator proposed by Newey
and West (1987).' A general version of this estimator can be written as

T-1 .
Sr= 3 kg,
j==(r-1) ©T

where

il

&. { (YT)EL ;41 9(X0,8)9(X-5,6) forj>0
! (1/T) 23.:-54-1 9(Xi45,8)9(X:,6)" forj <0

_J1—|z] for|z] <1
k(z) = { 0 otherwise

Here By is a scalar that determines the bandwidth of the lag window k(-}. We consider

three variants of this estimator,
¢ S} uses bandwidth Br = 4,
o S} uses Br = 2,

o 57 has Br chosen automatically using a procedure suggested by Andrews (1991)

which is described in more detail in Appendix C.

The next group of estimators that we consider utilizes additional amounts of infor-
mation about the underlying data generating process. The estimator 53 exploits the

assumption that the Xj, are serially uncorrelated. This implies that
o St has ijth element given by £[ET, (X2 - 8})(X3 - 63)).

The estimator S} imposes the mutual independence of the X;,’s as well as their serial

independence. This implies that

4There are several alternative estimators which could be used at this stage. We have found our results
to be relatively insensitive to the choice of procedure in the RBC context so we present results based only
on the Newey and West (1987) method.



* 57 is a diagonal matrix with iith element given by F T (X3 - 62)3).

Our next estimator, S?, also exploits the fact that the Xis are Gaussian. Since Gaus-

sianity implies that E(X}) = 30},
o S? is a diagonal matrix with sith element given by 2&3.

Our next two estimators impose additional restrictions derived from the null hypothesis
being tested. Under hypothesis Hay, 0; = 1 for § = 1,...,M, while o; is unrestricted for
t=M+1,...,J. This suggests the estimator

 S7 which is a diagonal matrix with fith element 2 for i < M, and 26¢ for i =
M+1,...,J.

Corresponding to each estimator of S, discussed above, there is an estimator for V;
given by,
V¢ = (DF(Sp)7'D}),
k = 1,2,...,7, where D} is a diagonal matrix with fsth element —25;. Since the null

hypothesis can also be imposed on D}, we also consider the estimator
Vr = (DF(s7)'D3),

where Dj is a diagonal matrix with sith element —2 for i < M, and —24; fori = M +
1,...,J.5 Here the W statistic reduces to M (6 - 1)?/2.

We use the same differential information assumptions to define eight estimators for the
variance-covariance matrix of # that are analogous to V2, k = 1,2,...,8 (see Appendix
A).

3.4 Monte Carlo Experiments

Our experiments were conducted as follows. We generated 10,000 sets of synthetic time
series on { Xy, Xy, ..., X1}L.,, each of length 100. On each artificial data set, we esti-

mated the parameter vector o, the different estimators of the variance covariance matrix

*If we imposed o; = 1 for all § in the computation of ¥ and V¥ we would get numerically identical
results for our test statistics because all the matrices involved in the calculation are diagonal.



and then calculated the Wald test statistic, WM, that is relevant for testing hypothesis Hy,,
M € {1,2,5,10,20}. This allowed us to generate an empirical distribution function for
WM under the null hypothesis that Hys is true, corresponding to the different estimators
of V.

Our results are summarized in Table 1, the columns of which correspond to different
specifications of M (which also equals the degrees of freedom of the test}). The rows
correspond to fixed asymptotic sizes of the test while the entries in the table are the
Percentages, out of 10,000 draws, for which the W statistic exceeded the relevant critical
value of the chi-squared distribution.

A number of interesting results emerge here. Consider first the distribution of the test
statistics generated using V3, Vi, V! and Vi (see Panels A-D of Table 1). First, even for
M = 1, the small sample size of the tests exceeds their asymptotic size. This result is
similar to that obtained by Christiano and den Haan (1994) and Newey and West (1993).
Second, the small sample size of the tests rises uniformly with M. Indeed when we use the
estimator Vi, the W statistic for hypothesis Hy exceeds its asymptotic (1%, 5%, 10%)
critical values (59%, 73%, 80%) of the time. For even moderate sizes of M , relying on
asymptotic distribution theory leads one to reject Hy, far more often than is warranted in
small samples. It is true that as the bandwidth decreases, the small sample performance
of the Wald test improves uniformly. But as panel D indicates, even when we impose the
white noise assumption (i.e. we use V), the small sample performance of the large joint
tests is dismal. For example, with M = 20, tests with asymptotic size (1% , 5%, 10%),
lead to rejection (17%, 33%, 43%) of the time in samples of 100 observations.

The results generated using V¥ (which exploits the assumption that the X; are mu-
tually independent) are presented in Panel E of Table 1. Comparing Panel E to Panels
A-D, we see that the impact of imposing the independence assumption is to move the
small sample sizes of the tests substantially closer to their asymptotic values. Not surpris-
ingly, the impact of this restriction becomes larger as M increases since there are more
off-diagonal elements being set to their population values. (In the case of M = 1 the two
panels are identical). With M = 20, the W statistic for Hy, exceeds its asymptotic (1%,
5%, 10%) critical values (4.7%, 13.4%, 21.2%) of the time. This represents a substantial
improvement relative to the situation when we do not impose the zero off-diagonal ele-
ment restriction. Even so, the Wald test still rejects too often in small samples. Panel F,
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which reports results based on V7, indicates that imposing the Gaussianity assumption
improves the small performance of W} even further. To the extent that fourth moments
are less accurately estimated than second moments for Gaussian processes this result is
not surprising.

Recall that the estimator V] exploits information from the null hypothesis regarding
o; in constructing S{. The results generated using V{ are reported in Panel G of Table
1. Comparing Panels F and G we see that the net effect of imposing these additional
restrictions is to move the small sample size of the test even closer to its asymptotic size
(except for the 10% critical value for M = 1). For example, with M = 20, the W statistic
for Hp exceeds its asymptotic (1%, 5%, 10%) critical values (2.1%, 7.3%, 12.1%) of the
time.

Panel H of Table 1 reports results based on V¥ where we impose the null hypothesis on
Dy as well as on Sy. Now all of the anomalies associated with the small sample distribution
of the W statistic disappear. First, the degree to which the small sample sizes match their
asymptotic sizes is not affected by M. Second, the small sample size of the test statistic is
extremely close to the corresponding asymptotic size. Indeed, this is true even when we fix
the asymptotic size of the test at 1%. So, at least for the present example, the parameter
estimates appear to have a small sample distribution which is very well approximated by
their large sample distribution. The problem with the small sample distribution of the W
statistic seems to be closely related to the small sample distribution of Sy and to a much
smaller extent Dr. The more information the econometrician imposes on Sy and Dy, the
better the performance of the tests appears to be in this example.

Table 2 presents results pertaining to the Wr statistic that is relevant for our alternative
parameterization of the problem in terms of relative standard deviations.® In many ways
these results are qualitatively similar to those obtained with the original parameterization.
Broadly speaking, the second set of tests leads to slightly more rejections, although only
to a modest extent. However, unlike the previous parameterization, when we impose all
of the available information on St and Dy (Panel H of Table 2), there is still a noticeable
tendency of joint tests with many degrees of freedom to reject more frequently than tests
of single hypotheses.

*The column in Table 2 headed M = 1a is for tests of the hypothesis o; = 1, while the column headed
M = 1b is for tests of the hypothesis 03/0; = 1. Both tests have one degree of freedom.
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These results suggest that simply reparameterizing the problem will not dramatically
improve the performance of tests constructed using nonparametric estimators for Sy and
Dr. The key problem with inference seems to arise from difficulties in estimating the
spectral density matrix of the GMM error terms, S;. Imposing as much information as
possible when estimating Sy and Dy leads to significant improvements in the size properties
of the Wald tests. In the next section we investigate the extent to which these conclusions

continue to hold in a more complex statistical environment.

3 A Real Business Cycle Model As a Data Generating Process

In this section we consider the small sample properties of GMM based Wald statistics
assuming that the data generating process is given by the business cycle model developed
in Burnside and Eichenbaum (1994). The model is briefly summarized in subsection
3.1. Subsection 3.2 describes the way the model’s structural parameters were estimated.
Subsection 3.3 discusses the hypothesis tests we investigated. In subsection 3.4 we present

the results of our Monte Carlo experiments.

3.1 The Model

The model economy is populated by a large number of infinitely lived individuals. To go
to work an individual must incur a fixed cost of ¢ hours. Once at work, an individual
stays for a fixed shift length of f hours. The time ¢ instantaneous utility of such a person
is given by

In(Cy) + 81n(T — ¢ - W.f) (6)

Here T denotes the individual’s time endowment, C; denotes time ¢ privately purchased
consumption, § > 0, and W; denotes the time ¢ level of effort. The time ¢ instantaneous
utility of a person who does not go to work is given by In(C;) + 8 In(T).

Time ¢ output, Y;, is produced via the Cobb-Douglas production function

Y, = (stc)l"(Ntfwlxt)" (7)

where 0 < a < 1, K, denotes the beginning of time ¢ capital stock, U; represents the

capital utilization rate, N; denotes the number of individuals at work during time ¢, and
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X represents the time ¢ level of technology. We assume that the time ¢ depreciation rate
of capital, &, is given by
& =sU? (8)

where 0 < 6 <1 and ¢ > 1. The stock of capital evolves according to
Kiyn=([1-8)K + 1, (9)

where I; denotes time ¢ gross investment.

The level of technology, X;, evolves according to
Xe = Xy exp{y + vy)

where v; is a serially uncorrelated process with mean 0 and standard deviation o,. The

aggregate resource constraint is given by
CG+hL+G <Y, (10)

where G, denotes the time ¢ level of government consumption. We assume that G, evolves

according to
Gg = ng: (11)

Here g is the stationary component of government consumption and ¢t = In(g;) evolves
according to

w=p+pg-1+6 (12)

where 4 is a scalar, |p| < 1 and ¢ is a serially uncorrelated process with mean 0 and
standard deviation o,.
In the presence of complete markets the competitive equilibrium of this economy cor-
responds to the solution of the social planning problem:
o0
Eo 3 8'[In(C\) + 8N, In(T — € — W,f) + 6(1 — N,) In(T)] (13)
=0 .
subject to (7) - (12) by choice of contingency plans for {Ct, Keyrs Ney U, W, : ¢ > O}
We obtain an approximate solution to this problem using King, Plosser and Rebelo’s
(1988) log-linear solution procedure.” Let ke = In(K,/X,_1), h: = In(H,), ¢; = In(C,/ X,),
TSee Burnside (1993) for details.
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wy = ]n(W‘), U = ln(Ug), Ve = ln(Yi/XS): a; = In(}’l/Nle)! '.‘ = ln(Il/Xl)g h: = ln(H:)'
and a} = In(Y;/H; X,). Here H; and HY denote actual and observed time ¢ hours of work.
As in Prescott (1986), we assume that

In(HY) = In(H,) + & (14)

where £, is an i.i.d. random variable with mean zero and variance og. The time ¢ state of
the system is given by
!
8¢=(1 ke by v g fz)

Define the vector of time ¢ endogenous variables f; as
+ r.] '
fc=(Ct W W W 6 & A a,)
and the vector of time ¢ shocks
)
&=(000uy & &).

Our assumptions about the exogenous variables and the log-linear approximation to the

model imply that the evolution of the system can be summarized as

5 = M&g-] + E‘

Ji=11s, (15)

where M and II are functions of the model’s underlying structural parameters. We take

(15) to be the data generating mechanism in our Monte Carlo experiments.*

3.2 Estimation

With certain exceptions, the parameters of the model were estimated using a variant of the
GMM procedure described in Christiano and Eichenbaum (1992). We did not estimate
B, T, ¢ and f. Instead we set # = 1.03~Y4, T = 1369 hours per quarter, ¢ = 60 and
chose f so that the nonstochastic steady state value of W, is 1. Rather than estimating
the parameter 6, we estimated § = §U'*, where U is the nonstochastic steady state value
of U;. To obtain a value of ¢ we use the fact that in nonstochastic steady state,

= B 'exp(q) -1

7 + 1.

$See Burnside (1993) for details.
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In the data, the series g; displays a time trend, so this series was detrended using a
linear time trend. To simplify matters we did not include the time trend in the Monte
Carlo experiments. In addition, we chose to estimate the nonstochastic steady state value
of G;/Y,, as the parameter g/y, rather than the mean of the process g; = In{G,/X,).°

In light of these decisions, the vector of model parameters to be estimated, denoted by
¥,, is given by

\I’;=(0 a b v o, gly p o a;)‘.

The hypotheses that we investigate involve various second moments of the data. Since
many of the relevant series exhibit marked trends, some stationary inducing transformation
of the data must be applied. To facilitate comparisons with the RBC literature, we chose
to process the data using the Hodrick and Prescott (1980) filter. Consequently, the second
moments to be discussed pertain to those of Hodrick and Prescott (HP) filtered data.'

We focus on a set of second moments that have received a great deal of attention
in the RBC literature: the standard deviation of output, o,, the standard deviations of
consumption, investment and hours relative to the standard deviation of output, o./0,,
0i/oy and o) /0, and the standard deviation of hours worked relative to the standard devi-
ation of average productivity, o5/o,. We also consider the dynamic correlations between
average productivity and hours, p%, = Corr(APL, Hyy), ¢ = £1,+2,43,+4, and the
dynamic correlations between average productivity and output pf,, = Corr(APL,Yesi),
1= —4,-3,-2, 1.1 We denote the vector of diagnostic moments that must be estimated

in ways not involving the model by

i = (o afo, aifo, ooy orfon st b3 sk P

- - ]
P:). P:h p:h p:h pay‘ pc: ﬂ“’ parl) d

9The mean of g would matter in the linearised solution only in determining the steady state share of
government expenditure in ontput, which we parameterise directly.

19We have redone all of the experiments in this paper with first differenced data. For a comparison of
some of the small sample properties of GMM with HP-filtered and first differenced data see Christiano and
den Haan (1994).

11 The contemporaneous correlations between thess variables and Piyrt = 1,2,3,4, can be deduced from
the other moments that we consider.
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3.3.1 Moment Conditions Underlying the Estimator of ¥,

As discussed in Burnside and Eichenbaum (1994), our estimator of ¥, is based on the

following moment conditions:

E{ag - %[A n(E;)]” + %A In(H?)A m(fz:)} = 0 (16)
E[in(H;) - In(Nf)] = o (17)

E[ln(6) -In(Z)] = o (18)
E[l-ﬁ(%)[(l—a)(l—«»”')%ﬂ]] =0 (19)
E[In{X?) ~ In(X;_,) 4] = © (20)

E[in(X7) - n(X;.,)] - of - 2030} = 0 (21)
Efin(G) - n(¥}) - In(g/y)] = o© (22)

E[(9f - pg?_1) In{af_,)] + pdo} = o© (23)

El(g - pgi-1)'] - (1 + PP)plol—0? = 0 (24)

In equation (16), H? and HY refer to our two measures of hours worked (see Appendix D).1?
The variables N, representing the nonstochastic steady state value of N;, and 3, a reduced
form parameter, are functions of the underlying parameter vector, ¥;. Furthermore, X?
represents a measurement-error corrupted signal of the level of technology which can be
constructed given the data and a vector of parameters ¥,. Similarly, g7 is a signal of g,

based on the error-ridden measure of technology X?.!3

3.2.2 Moment Conditions Underlying the Estimator of ¥,

Our estimator of ¥; is based on the following moment conditions:

Efyi-d)] = 0
E[“z—(“e/"v)zyc’] =0
E[i - (ai/o)'sl] = 0

13Unlike Burnside and Eichenbaum (1994), we abstract from issues concerning the observability of & and
K:. In particular, we assume, for the purposes of our Monte Carlo experiments, that the econometrician
observes these series directly.

13See Burnside and Eichenbaum (1994) for details.
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E[k} - (ar/on)'si] = 0
E[h} - (or/os)a}] = 0
i (4% 3 2 Ox .
E[achs-ﬂ' — Pa (a—') oy (0—.)] = 0,1==%1,...,%4

Elawisi — o, (g:i) o (52)] = 0,i=1,..,4,

where a lower case variable, e.g. 2, is the cyclical component of In(Z;) as defined by the
HP filter.

To define our joint estimator of ¥, and ¥, consider the following generic representation

of our moment conditions:
E[w(®)]=0 t=1,.,T

where ¥° is the true value of ( ¥ ¥ )' and u, is a vector valued function of dimension

equal to the dimension of ¥°. Let
1 X
gr(¥) = TZu.(\I’).
) =1
The GMM estimator, \If;-, minimizes
Jr = Tgr(¥)' Trgr(¥). (25)

where T7 is a symmetric positive definite weighting matrix of dimension equal to the
dimension of gr(¥). Since our GMM estimator is exactly identified, ¥r is independent of
Tr. We simply set Tr equal to the identity matrix in (25).

A consistent estimator of the variance—covariance matrix of +/T(¥r — ¥;) is given by

Ve = (DyS7'Dr)”

where Dy = 3¢r(¥r)/3¥ and Sr is a consistent estimate of Sy, 2x times the spectral

density matrix of u,(¥°) at frequency zero.

3.3 Hypothesis Testing

Suppose we wish to assess the empirical plausibility of the model’s implications foragx 1
subset of ¥; given by w. Let &(¥) denote the value of w implied by the model, given the
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structural parameters ¥,. Here & denotes the (nonlinear) mapping between the model’s
structural parameters and the relevant population moments. Denote the nonparametric
estimate of w obtained without imposing restrictions from the model by I'(¥)." The

hypotheses that we investigate are of the form
Ho: F(¥°) = ®(¥°) —I(¥°) =0 (26)

Christiano and Eichenbaum (1992) show that a consistent estimate of the asymptotic

variance-covariance matrix of VT{F(¥r) — F(%,)| is

_ [aF(w,)] [aF(wr) "

v v
and that the test statistic
Wr = TF(¥r)'Vy 1 F(¥r) (27)
is asymptotically distributed as a x* random variable with ¢ degrees of freedom.
We consider two types of hypothesis tests. The first type involve tests of individual
moments of the data. The test numbers and corresponding moments being tested are

summarized in the following table.

Test # | Moment | Test # | Moment | Test # | Moment
1 Oy 6 Par 15 Pa
2 |o.foy, T |k 16 |p)
3 oifo, 8 |pa 17 | ea
4 arfo, 9 s 18 | o,
5 or/de 10 | A% 19 |45,
11 | A 20 |ol,
12 | gl 21 |4,
13 | pd 22 |0,
14 | pla 23 | psy

The second type of tests involve joint moment restrictions. Hypothesi_s H1 states
that the values of 0,, @./0,, 0i/9,, or/0, and ox/o, implied by the model are the same,
in population, as the corresponding moments of the data generating process. Hypothe-

ses H2, H3 and H4 are similar to hypothesis H1 but pertain to the moments {p,, 1 =

14Often the mapping I is linear. In particular, T is often a conformable matrix of seros and ones that
selects the vector w from W3.
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0,+1,12, £3, +4}, {pi,, § = 0,£1,£2,£3, +4} and {0y, 0./0y, 0i/0y, ar/0y, Ou/0s, P
i = +1,12,+3,%4, p},, ¢ = —4,-3,-2,-1}, respectively.!® The test statistics for H1,
H2, H3 and H4 have 5, 9, 9, and 17 degrees of freedom, respectively.

To implement our hypotheses tests we require an estimator, Sz, of So. As in section
2, our estimators are of the form

ST= k(—)n,
j=S@-y \Br)’

where . ) .
ﬁ — (I/T) Et=j+1 ﬁtu:-j fOl’ J 2 0
! (1/T) Tl 41 esiiiy forj <O

The kernel function k varies depending on the estimator, By is the bandwidth and 4, =
uy(¥7r). Our baseline results are generated using the Bartlett kernel function

ta= {7 R
and Andrews’ (1991) automatic selection procedure for Br. Appendix C discusses the
other estimators of S; that we consider. As it turns out, our basic results are robust
across these different estimators of So.

The bandwidth selection procedure that we used can be described as follows. Andrews
(1991} provides an expression for the optimal bandwidth corresponding to a given kernel,
a process u;, and a set of weights on the different elements of S;. The bandwidth is
optimal in the sense that it leads to minimum MSE estimates of a weighted inner product
of the elements of S;. Andrews’ (1991) procedure simplifies the dependence of the optimal
bandwidth on the entire spectral density of u, by assuming a simple parametric model for
the error term. The choice of model does not affect the consistency of Sr. The model
which we use corresponds to the simplest example in Andrews (1991). Specifically, we
treat the elements of u; as independent AR(1) scalar processes. No weight is given to
the off-diagonal elements of S;. Under these circumstances, the bandwidth selected will
depend on the sample size, T, the weights, and coefficient estimates obtained by fitting
AR(1) processes to the elements of u;(¥r). Roughly speaking, the more persistent the
errors, the greater the bandwidth.

18The last set of moments contains the nonredundant elements from among the moments involved in tests
1-23.
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In the standard case, equal weight is placed on all of the error terms. However we
found that doing this led to test statistics with very poor small sample properties. (See
Appendix C). Instead we placed zero weight on {17}, (18) and (22) along with unit weight
on the other error terms. The resulting median bandwidth across the different Monte

Carlo draws was 2.78.

3.4 Parameter Estimates and Some Results Based on Asymptotic Theory

Table 3 reports our point estimates of ¥, along with corresponding standard errors. The
data set used to generate these estimates is described in Appendix D. Table 4 presents
the non-model and model based estimates of {o,, 0./0,, o;/oy, Or/0,, Ox[/0.}. Numbers
in parentheses are the standard errors of the corresponding point estimates. Numbers in
brackets are the asymptotic probability values of the W statistics for testing whether the
individual model and data population moment are the same. Notice that we cannot reject
any of the individual hypotheses in question.

Figures 1 and 2 summarize the model’s implications for the dynamic correlations be-
tween hours worked and average productivity as well as the dynamic correlations between
average productivity and output. The dotted lines in row 1 correspond to the non-model
based estimates of {p',, § = 0, £1,+2,+3,+4}, and {p{,, § =0, 1, +2, +3,+4}, while the
solid lines denote the moments implied by the model. The solid lines in row 2 graph the
differences between the model and non-model based estimates while the dotted lines de-
pict an asymptotic two standard error band for the differences. According to these figures,
the model does quite well at accounting for the individual dynamic correlations between
average productivity and output as well as average productivity and hours worked.

We now turn to our joint hypotheses. Columns 1 and 2 of Table 5 report the w
statistics for hypotheses {H1, H2, H3, H4} and the corresponding asymptotic probability
values. Notice that hypotheses H2, H3 and H4 are all rejected at very low significance
levels. To us the strength of these rejections seems at variance with the results of testing
the individual components of these hypotheses. One way to reconcile these results is to
invoke the pattern of covariances in question. However, in light of the results in section
2, these strong rejections may simply reflect the small sample properties of GMM based

Wald statistics as applied to hypotheses involving joint moment restrictions. With this as
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motivation we turn to the Monte Carlo experiments

3.5 Monte Carlo Experiments

To generate data for our Monte Carlo experiments we proceeded as follows. Given the
estimated value of ¥,, we generated artificial time series according to the following rules:
Ci = exp(e) Xy, Vi = exp(w) X, Ki = exp(k)Xi-1, G = exp(g) Xy, I = exp(i) Xy,
H, = fexp(ny) and & = Sexp(du;). Here ¢, w, ki, 4y, n and i, are given by (15). The
variables X; and g; were generated according to the laws of motion specified in section 3.1.
One thousand artificial time series data sets, each of length 113, were generated, assuming
that the stochastic elements of é were normally distributed.!®

We begin by reporting the small sample behavior of the W statistics for hypotheses H1,
H2, H3 and H4. Column 3 of Table 5 reports the percentage of times (out of 1000 Monte
Carlo trials) that the W statistics for these hypotheses were greater than or equal to the
corresponding W statistic obtained using U.S. data (see column 1). We refer to this fraction
as the Monte Carlo probability. For hypothesis H1, H2 and H3 the asymptotic and Monte
Carlo probabilities are reasonably similar. However for hypothesis H4 the Monte Carlo
probability is much larger than the asymptotic probability (.08 versus .00). According to
asymptotic standard distribution theory, the W statistic which we obtained for hypothesis
H4 would be very unlikely if the model were specified correctly. But according to the small
sample results, one would obtain a W statistic this large or larger roughly 6% of the time.

A complementary way to assess the small sample properties of the Wald tests is to
consider the fraction of the time that the W statistics emerging from the Monte Carlos
exceed the 1%, 5% and 10% critical values of the relevant chi-squared distributions. These
are displayed in columns 4, 5 and 6 of Table 5. Notice that the small sample sizes of the test
statistics for hypotheses H1 and H4 greatly exceed their asymptotic size. This tendency
is particularly dramatic in the case of H4, where the W statistics exceed their asymptotic
1%, 5% and 10% critical values 37%, 51% and 58% of the time.

18With one exception all the moment conditions underlying our estimator of W, hold exactly for the
artificial data generating process. The exception is the planner’s Euler equation for K41, equation (19),
discussed in Appendix B. To deal with this problem, we computed the expectation in equation (19) for the
true log-linearised model. As it turns out, at these parameter values the error is appraximately equal to
2 x 1075, To correct for possible bias we implemented our Monte Carlos centering equation (19) around
2 x 107% rather than 0.
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Before analyzing this finding, we briefty discuss the size of the test statistics applied to
the individual moments that make up joint hypotheses H1, H2, H3 and H4. Our results
are displayed in Figure 3. The height of each bar graph in Panels A, B and C denotes
the percentage of times (out of 1000 trials) that the W statistic for a given hypothesis
exceeded the 10%, 5% and 1% critical values, of the asymptotic chi-squared distribution.

According to Figure 3, the small sample sizes of the test statistics for hypotheses 1 and
4-25 are moderately higher than their asymptotic sizes. The small sample sizes of the test
statistics associated with o./o, and 0:/0, are substantially larger than their asymptotic
sizes. This is consistent with our finding that Wald tests of hypotheses H1 and H4 over-
reject in small samples. However, these effects do not seem large enough to explain the
extent to which the Wald test over-rejects H1 and H4.

Viewed overall, the outstanding feature of our experiments is the large (small sample)
size of the Wald test of hypothesis H4. Inference based on the asymptotic distribution of
the W statistic leads to a grossly overly critical assessment of the model’s performance.
In Appendix C we show that this conclusion is robust to various perturbations. First,
we consider the effects of different bandwidths when constructing Sr. These were chosen
both on an @ priori basis and using the Newey and West (1993) automatic bandwidth
procedure. Second, we consider different estimators of Sy that correspond to different lag
windows. Third, we discuss the impact of using a samall sample correction suggested by
Andrews (1991).

A different dimension along which our results could be sensitive is how we parameterize
the elements of ¥,. Specifically, we could include the moments {o,, 0i, o5 04} rather than
{0./0,, 0:/0,, On[0,, 01]0s}. Under these circumstances the moment conditions defining

our estimator of ¥, are given by:

Elyi -] =
E [cf - a:] =
E [zf - a,-’] =
E [h? - a,’,] =

Ea:—cr:] =

oo © O o o O

Elacheyi - aden] =
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Elaysi — p‘;_,o.a,] = 0,i=1,...,4.

Consistent with this reparameterization we redefined tests 2 through 5 so that they
pertained to 0., 9;, o) and o, respectively and adjusted the definitions of H1 and H4
accordingly.’”

Figure 4 reports the small sample size of the Wald tests with asymptotic size equal to
10% (Panel A), 5% (Panel B) and 1% (Panel C) for the reparameterized system. Notice
that in most cases, small sample size increases. This is true for hypotheses H1-H4, except
for the test of H1 at the 1% level. For the tests based on correlations (hypotheses 6-
23) this is true for 51 out of 54 cases. Notice, however, that small sample performance
improves dramatically for the tests based on o, and o; over those based on 0./0, and
0;/o, (hypotheses 2 & 3). Interestingly, this improvement does not translate into improved
performance for the test of hypothesis H1. So while the reparameterization appears to lead
to more uniform performance across the different moments, it does not solve the overall
excessive small sample size of the Wald tests. And it certainly does not account for the
dramatic problems associated with tests of hypothesis H4.

In the remainder of this section we discuss the factors underlying the large (small
sample) size of the Wald test of hypothesis H4. For this purpose we return to the original
parameterization of ¥3 and focus on the role played by the matrix Sr in the small sample
distribution of the W statistic. To this end, we redid our Monte Carlo experiments using
the population value of Sr, Sy, that is implied by the parameters governing the data
generating process. Specifically, on each of the one thousand data sets, we estimated the
parameters of the model but formed the W statistic using the fixed matrix S;. We found
that the W statistics for H4 exceed their asymptotic {1%, 5%, 10%) critical values (4%, 8%,
11%) of the time. This contrasts with our baseline findings that the W statistic exceeds
its asymptotic (1%, 5%, 10%) critical values (37%, 51%, 58%) of the time.!* Evidently,
the fact that we must estimate S; accounts for a substantial part of the problem. But
even when S, is known, relying on asymptotic distribution theory would still lead us to

17The reparameterisation indirectly aflected all of the other test statistics because of the covariance
between the GMM error terms.

18We also found that the W statistics for H1, H2 and H3 exceeded their asymptotic (1%, 5%, 10%) critical
values (3%, 7%, 11%), (0%, 2%, 4%) and (2%, 5%, 7%) of the time, respectively. The analogous numbers in
thf% bue;.l):e Monte Carlo where we use Sy rather than Sp are (12%, 23%, 32%), (8%, 17%, 24%) and (7%,
13%, 20%).
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reject hypothesis H4 too often.

A natural question arises as to whether the small sample distribution of the W statistic
for H4 would coincide even more closely to its asymptotic distribution if we imposed the
population values of Dr and F(¥r) as well as Sr in the Monte Carlo experiments. For
our data generating process the answer is no. Indeed, we found that the small sample size
of Wald test for H4 actually moved substantially farther away from its asymptotic size
under these circumstances. Specifically, the W statistic for H4 exceeded its asymptotic
(1%, 5% 10%) critical values (16%, 25%, 32%) of the time. While this does not represent
a logical problem, we are surprised by the result.

Overall our results suggest that sampling error in Sy plays a substantial role in the large
(small sample) sizes of Wald tests involving multiple moment conditions, This suggests
an alternative way to estimate Sr. Specifically, the econometrician could calculate the
implied population value of Sr for any given set of parameter estimates when estimating
the model. The obvious drawback to this procedure, it that, for nontrivial models, it is

computationally quite burdensome.

4 Conclusion

This paper examined the small sample properties of Generalized Method of Moments
(GMM) based Wald statistics. For the data generating processes considered we found that
the small sample size of these tests exceeded their asymptotic size. The problem became
dramatically worse as the dimensionality of the joint tests being considered increased. We
offered evidence that the basic problem has to do with the difficulty of estimating the
spectral density matrix of the GMM residuals that is needed to conduct inference. Our
results lead us to be very skeptical that the problem can be resolved by using any of
the alternative nonparametric estimators of this matrix that have been discussed in the
literature. Instead we advocate using estimators which impose a8 much a priori information
as possible. Two important sources of such information are the economic theory being
investigated and the null hypothesis being tested. There are two costs associated with
pursuing this strategy. The first is computational. The second is that to pursue it the
analyst will often be required to make stronger distributional assumptions about the nature

of the unobservable shocks impacting on agents’ environments. But, in this case, two of
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the prime reasons for using a GMM strategy, as opposed to maximum likelihood methods,

disappear.
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TABLE 1

Small Sample Performance of Joint Tests
Using Normally Distributed White Noise Data
Estimating Standard Deviations

A. Estimated Sr, Br =4

Asymptotic Size

Small Sample Size (%)

M=1 M=2 M=5 M=10 M=20

1%
5%
10%

2.59 3.41 6.99 16.98 58.68
7.49 9.25 15.61 30.92 73.37
1265 1493 23.32 40.10 80.29

B. Estimated Sy, Br =2

Asymptotic Size

Small Sample Size (%)

M=1 M=2 M=5 M=10 M=20

1%
5%
10%

2.31 2.87 4.83 9.17 28.88
6.90 8.26 12.22 19.91 45.62
12.03 13.62 19.32 28.55 55.88

C. Estimated Sy, By by Andrews Procedure

Asymptotic Size

Small Sample Size (%)

M=1 M=2 M=5 M=10 M=20

1%
5%
10%

2.27 291 4.71 9.06 26.64
6.94 8.27 11.94 19.27 43.43
1198 1350 19.04  27.87 53.83

D. Estimated Sy, No Lags

Asymptotic Size

Small Sample Size (%)

M=1 M=2 M=5 M=10 M=20

1%
5%
10%

2.15 2.713 4.17 6.67 17.31
6.74 1.94 10.82 16.23 32.87
11.79 13.22 1743 24.10 42.51
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E. Estimated Diagonal Sr, No Lags

Asymptotic Size

Small Sample Size (%)

M=1 M=2 M=5 M=10 M=20
1% 2.15 2.67 3.33 3.88 4.71
5% 6.74 7.58 9.32 11.04 13.39
10% 11.79 13.04 1550 17.56 21.20

F. Gaussianity Applied to E

Asymptotic Size Small Sample Size (%)

M=1 M=2 M=5 M=10 M=20
1% 1.67 1.82 2.22 2.40 2.58
5% 5.94 6.08 7.20 7.72 8.53
10% 10.60 11.30 12,50 13.25 14.45

G. Impose Hy on Sz in F
Asymptotic Size Small Sample Size (%)

M=1 M=2 M=5 M=10 M=20
1% 1.46 1.67 2.03 2.10 2.10
5% 461 5.33 5.97 6.58 7.26
10% 9.34 9.55 10.47 11.70 12.05

H. Impose Hp on Sr in F, and on Dr

Asymptotic Size Small Sample Size (%)

M=1 M=2 M=5 M=10 M=20
1% 0.96 0.97 0.99 0.96 0.92
5% 5.16 4.90 5.08 5.01 4.99
10% 1014 10.13 1020 10.11 9.99
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TABLE 2

Small Sample Performance of Joint Tests

Using Normally Distributed White Noise Data

Estimating Relative Standard Deviations

A. Estimated Sr, By = 4

Asymptotic Size

Small Sample Size (%

M=1a M=1 M=2 M=5 M=10 M=20
1% 2.59 2.26 3.65 7.88 18.55 59.25
5% 7.49 7.09 955 16.62  32.30 73.11
10% 12.65 12.12 15.35 2417  40.99 79.98
B. Estimated Sy, By = 2
Asymptotic Size Small Sample Size (%)
M=1a M=1 M=2 M=5 M=10 M=20
1% 2.31 1.95 3.14 5.65 10.61 31.09
5% 6.90 6.63 8.58 13.08 21.73 47.21
10% 12.03 1146 14.13 2032 29.98 56.65
C. Estimated Sy, Br by Andrews Procedure
Asymptotic Size Small Sample Size (%)
M=1a M=1 M=2 M=5 M=10 M=20
1% 2.28 1.90 3.12 5.45 .9.80 27.60
5% 6.88 6.57 846 12.87 20.65 43.72
10% 11.84 1140 1393 1998  28.84 53.46
D. Estimated Sy, No Lags
| Asymptotic Size Small Sample Size (%
M=1a M=1 M=2 M=5 M=10 M=2
1% 2.15 1.84 2.95 488 8.18 20.29
5% 6.74 6.42 809 1190 17.92 34.91
10% 11.79 11.15 13.54 1841  25.80 44.46
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E. Impose Mutual Independence

Asymptotic Size

Small Sample Size (%)

M=1la M=1 M=2 M=5 M=10 M=20
1% 2.1 1.79 2.87 4.07 5.37 7.36
5% 6.74 6.24 7.88 10.43  12.44 16.51
10% 11.79 11.07 13.29 1660 19.24 23.72

F. Gaussianity Applied to E

Asymptotic Size Small Sample Size (%)

M=1a M=1 M=2 M=5 M=10 M=20
1% 1.67 1.44 2.10 2.81 3.53 4.51
5% 5.94 5.45 6.45 8.10 9.41 11.28
10% 10.60 1025 1168 13.48 14.81 17.33

G. Impose Hyon Sy in F

Asymptotic Size Small Sample Size (%)

M=1a M=1} M=2 M=5 M=10 M=20
1% 1.46 2.79 1.76 2.50 2.08 3.86
5% 4.61 6.09 5.63 7.04 8.45 9.51
10% 9.34 9.86 9.82 11.71 13.23 15.19

H. Impose H; on Sr in F, and on Dy
Asymptotic Size Small Sample Size (%)

M=1la M=1b M=2 M=5 M=10 M=20
1% 0.96 1.36 1.21 1.71 2.02 2.67
5% 5.16 5.43 5.36 6.19 6.71 7.76
10% 10.14 10.11 10.25 11.24 11.92 13.40




TABLE 3

Model Parameters ¥,
Estimates and Standard Errors®

Parameter | Estimate Std. Error
[ 3.5055  (0.0377)
a 0.6422  (0.0193)
] 0.0208  (0.0002)
~ 0.0038  (0.0012)
oy 0.0088  (0.0007)
/v 0.1763  (0.0022)
g 1.7885  (0.0809)
0 -0.0019  (0.0003)
) 09456  (0.0299)
o, 0.0152  (0.0012)
o 0.0088  {0.0011)

* All standard errors shown in this table are based on estimates of Sr computed using
the Bartlett window suggested by Newey and West (1987), and the automatic bandwidth
selection procedure suggested by Andrews (1991).



TABLE 4
Tests of the Models®

Moment | U.S. Data Model W
Oy 0.0192 - 0.0167 1.614
(0.0018)  (0.0013) (0.204)
o.f Oy 0.437 0.480 2.005
(0.020)  (0.009) (0.157)
oi/o, 2.224 2244  0.044
(0.068) (0.072) (0.835)
Ox / Ty 0.859 0.795 0.990
(0.069)  (0.051) (0.320)
O / O, 1.221 1.033 2.258
(0.115)  (0.037) (0.133)

*Numbers under the heading U.S. Data are second moments of HP-filtered U.S. data.
Numbers under the heading model, are the model’s implications for the corresponding
moments as functions of ¥;. Standard errors for each are in parentheses. The p-values
for the corresponding W statistics are in parentheses.

TABLE 5

Small Sample Performance of the Joint Tests

Hypothesis | Test Performed Using U.S. Data’ | Size (%) of Tests'
W p-value MC p-value 10% 5% 1%

H1 664 0.25 0.48 31.7 23.0 11.9
H2 43.7 0.00 0.01 236 165 7.6
H3 35.5 0.00 0.01 20.2 133 6.5
H4 663 0.00 0.06 576 50.7 36.7

*The numbers under the heading ‘p-value’ are the p-values obtained when the W statistics
for H1, H2, H3 and H4 are compared to x? distributions with 5, 9, 9 and 17 degrees
of freedom respectively. The numbers under the heading ‘MC p-value’ are obtained by
comparing these statistics to the distribution of the W statistics generated by our Monte
Carlo experiments.

'The numbers on this side of the table indicate the frequency (in %) with which the W
statistics from our Monte Carlo experiments exceed the 10%, 5% and 1% critical values
of the relevant x? distributions.
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TABLE 6
The Form of the Lag Window and Small Sample Performance’

Moment 10% 5% 1%
B P Q B P Q B P Q

1 16.1 160 158|101 97 951130 31 30
2 25.5 24.0 254|179 163 175 8.2 80 8.3
3 25.4 25.7 255|188 19.7 190| 82 9.0 8.2
4 13.2 142 133173 80 73|20 22 18
5 124 134 12067 76 67|12 16 13
6 155 150 149 90 89 88 ;32 31 26
7 144 142 143| 83 80 78 2T 28 26
8 17.1 174 176| 9T 95 86 |30 30 26
9 182 183 177105 106 99 | 25 31 27
10 16.3 169 16.4/10.5 105 10.1| 3.8 44 4.0
11 78 88 79139 52 44105 11 06
12 106 10.1 93 | 40 45 4013 14 12
13 130 123 124/ 68 69 64 | 20 22 2.2
14 128 128 125/ 69 75 67|28 28 24
15 172 164 16.1{105 98 98 | 40 39 3.8
16 189 176 179(107 10.1 102] 36 3.7 3.3
17 199 19.1 192118 116 109) 3.5 3.7 3.6
18 19.1 193 186[11.1 11.1 104} 40 38 3.5
19 126 139 122/62 65 54|16 19 1.5
20 71 85 74|48 55 43|05 09 07
21 11.8 111 101|/ 63 59 52 (13 16 1.2
22 142 136 124! 72 71 69| 22 24 23
23 144 139 137/ 88 82 80 {22 24 24
H1 31.7 326 30.4[23.0 24.1 227|119 132 115
H2 236 28.1 26.11165 21.3 188| 76 106 8.3
H3 20.2 237 21.1/13.3 167 149} 65 87 173
H4 57.6 63.6 50.0|50.7 569 52.4|367 434 383

*The sets of columns labelled z% refer to the sizes of tests (in %) with asymptotic size
equal to z%. The labels B, P, Q refer to the Bartlett, Parzen and Quadratic Spectral
windows. The Bartlett kernel columns are our baseline case, the others differ from that
case only in the lag window used, and consequently in the bandwidths chosen by the
Andrews (1991) procedure. Tests are numbered as described in the text.
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TABLE 7
The Impact of Excluding Some Moment Restrictions®

Moment 10% 5% 1%
Ex Inm | Ex In | Ex In

1 16.1 28.8 {101 224 | 3.0 13.0
2 25.5 334 |179 255 | 82 149
3 254 357 |188 204 | 8.2 192
4 132 285 | 7.3 222 | 20 124
5 124 28.1 | 67 207 | 1.2 110
6 155 300 | 90 220 | 3.2 121
7 144 270 | 83 202 | 2.7 116
8 17.1 266 | 9.7 200 | 3.0 118
9 18,2 309 {105 22.7 | 2.5 13.2
10 16.3 298 | 105 23.1 | 3.8 13.7
11 78 23539 170 | 05 9.0
12 106 26.1 | 4.0 188 1.3 103
13 130 266 | 68 194 | 2.0 11.0
14 128 2509 [ 69 193 | 28 11.0
15 17.2 339 1105 254 4.0 15.1
16 189 33.5 110.7 253 { 3.6 13.5
17 199 34.2 {118 254 | 3.5 15.1
18 19.1 322 111.1 24.1 4.0 145
19 126 296 | 6.2 23.3 1.6 120
20 7.1 285 | 48 205 | 05 104
21 118 293 | 63 218 | 1.3 131
22 142 3131 7.2 245 | 2.2 147
23 144 31.3 188 250 1| 2.2 148
H1 31.7 854 |230 823 [119 717
H2 236 958 |[16.5 93.T | 7.6 882
H3 202 935 (13.3 916 | 6.5 859
H4 57.6 100.0 | 50.7 100.0 | 36.7 99.9

*The columns labelled ‘Ex’ correspond to our baseline case, while those labelled ‘In’ cor-
respond to experiments in which the three moment restrictions, excluded in our baseline
case, are not excluded in computing the automatic bandwidths.
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TABLE 8
The Newey and West Automatic Bandwidth Procedure’

Moment 10% 5% 1%
A NW@E) NW(iZ)| A NW[E) NW(2) [ A__NW({E) NW(i2)

1 16.1 16.5 19.0 10.1 9.8 11.3 3.0 3.3 4.0
2 25.5 27.0 24.7 17.9 18.9 179 8.2 9.2 0.2
3 25.4 25.1 26.8 18.8 17.6 20.5 8.2 7.5 10.0
4 13.2 12.5 16.5 7.3 7.1 94 2.0 2.0 2.9
5 12.4 12.1 158 8.7 6.7 04 1.2 1.3 2.8
6 15.5 16.0 18.6 9.0 9.4 10.4 3.2 3.0 4.2
T 144 14.5 16.1 8.3 8.7 93 2.7 3.4 4.2
8 17.1 16.9 18.1 9.7 0.4 115 3.0 2.4 3.2
9 18.2 17.5 19.0 10.5 9.6 11.3 2.5 2.7 3.8
10 16.3 17.2 18.4 10.5 10.0 12.5 3.8 3.9 5.6
11 7.8 7.9 11.0 3.9 3.8 6.0 0.5 0.5 1.8
12 10.6 11.1 14.0 4.0 5.0 79 1.3 1.5 2.2
13 13.0 13.1 14.7 6.8 7.2 9.1 2.0 23 3.3
14 12.8 13.8 15.3 6.9 7.6 9.2 2.8 29 4.2
15 17.2 17.7 21.0 10.5 10.5 13.0 4.0 4.0 4.7
16 18.9 18.5 215 10.7 11.3 13.1 3.6 4.1 5.3
17 19.9 19.6 22.7 11.83 11.8 14.0 3.5 4.2 53
18 19.1 19.8 21.2 11.1 11.2 13.0 4.0 3.8 5.0
19 12.6 11.3 16.1 6.2 6.1 8.8 1.6 1.3 2.6
20 7.1 7.5 11.7 4.8 4.5 6.7 0.5 0.6 1.7
21 11.8 11.8 15.8 6.3 6.6 9.1 13 14 2.8
22 14.2 13.7 179 7.2 8.1 11.1 2.2 2.6 4.6
23 144 14.9 18.4 88 9.4 12.1 2.2 2.9 4.4
H1 31.7 31.8 424 23.0 21.8 34.6 119 12.1 20.8
H2 23.6 24.8 41.8 16.5 17.2 34.8 7.6 8.7 239
H3 20.2 20.7 38.6 13.3 14.9 30.9 6.5 8.4 20.7
H4 57.6 55.9 78.8 50.7 49.8 73.0 36.7 36.4 63.0

*The columns labelled ‘A’ correspond to our baseline case, which uses the Andrews au-
tomatic bandwidth procedure, while those labelled ‘NW{(z)’ correspond to experiments
using the Newey and West procedure, with z being the value of n.



TABLE 9
Variable Versus Fixed Bandwidth®

Moment 10% 5% 1%
Vv 2 4 Vv 2 4 A" 2 4

1 16.1 164 166101 105 9.8 | 3.0 3.1 3.0
2 255 283 239|179 20.1 163)82 98 79
3 254 242 2561|188 174 196 82 6.4 8.7
4 13.2 120 13673 65 803120 111 21
5 124 109 136 6.7 59 7512 1.1 1.6
6 155 155 153/ 90 93 88 (|32 26 3.2
7 144 148 1441 83 85 80 (27 24 29
8 171 176 171} 97 89 103! 30 22 3.2
9 18.2 178 1791105 95 104 25 22 29
10 16.3 158 1741105 10.1 104 38 3.5 4.3
11 78 6.1 87|39 29 44 {05 03 09
12 106 9.2 114 | 4.0 3.7 4.7 1.3 1.2 1.4
13 130 128 127168 68 7020 24 22
14 12.8 13.1 13.0]| 6.9 7.3 75 | 2.8 2.5 3.1
15 172 171 165105 11.0 98 | 40 39 36
16 189 18.7 1841}10.7 109 10.7) 36 3.9 3.9
17 199 198 20.1|11.8 118 11.8] 35 34 4.2
18 19.1 188 195 11.1 104 11.7) 40 3.2 3.8
19 126 95 136 6.2 4.1 6.1 1.6 1.0 1.7
20 71 58 87|48 25 49 (05 02 05
21 118 9.7 127163 50 69|13 09 1.5
22 142 131 144 7.2 72 76 |22 24 27
23 144 142 142 | 88 8.4 8.6 2.2 24 2.3
Hi1 31.7 286 323|230 196 2431119 10.7 12.8
H2 236 200 256|165 129 194 | 76 58 B.7
H3 20.2 16.7 216|133 106 149! 65 53 7.2
H4 57.6 496 62.7| 50.7 41.2 55.21{36.7 27.5 416

*The sets of columns labelled z% refer to tests with asymptotic size equal to z%. The
labels V, 2 and 4 refer to variable bandwidths picked with the Andrews (1991) procedure,
a fixed bandwidth of 2 and a fixed bandwidth of 4 respectively. All results are based on
our other baseline choices.
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TABLE 10
Variable Versus Fixed Bandwidth*®

Moment 10% 5% 1%
Vv 6 8 Y 6 8 Vv 6 8

1 16.1 178 19.0/10.1 104 116) 30 36 3.9
2 255 23.1 232|179 158 166} 8.2 76 8.0
3 254 267 265|18.8 200 208| 8.2 9.8 99
4 132 160 169! 73 90 103 20 25 28
5 124 151 16667 86 961}12 22 28
6 155 16.3 1781 90 93 9932 42 50
7 144 155 159} 83 86 99| 27 34 3.6
8 17.1 173 176 9.7 10.7 11.2{ 3.0 35 4.0
9 18.2 18.0 19.0/10.5 110 116 25 34 4.0
10 16.3 186 19.5}10.5 115 125 38 50 5.3
11 78 110 122139 57 7005 14 1.7
12 106 133 146 40 59 74 1.3 21 23
13 130 136 144/ 68 81 91|20 30 33
14 128 142 152/ 69 B8.T 94| 28 3.7 4.1
15 172 182 2021105 10.8 126 40 4.0 49
16 189 209 2301107 120 140 36 4.4 53
17 199 21.0 22.7/11.8 13.1 148| 35 4.8 5.0
18 19.1 21.0 21.8|11.1 124 13.9| 40 5.1 5.2
19 126 151 172/ 62 83 10.1}16 24 3.3
20 71 109 1261 48 60 73|05 16 21
21 11.8 152 171163 81 93|13 22 27
22 14.2 173 188 7.2 100 124] 22 3.5 4.8
23 144 168 192| 88 109 125122 368 5.1
Hl 31.7 378 42.9]23.0 28.5 34.1|11.9 163 20.3
H2 236 34.7 43.2!165 264 356 | 7.6 148 216
H3 20.2 20.8 39.7)13.3 220 308| 6.5 11.8 17.8
H4 576 76.3 86.6|50.7 69.6 819367 559 72.0

*The sets of columns labelled z% refer to tests with asymptotic size equal to z%. The
labels V, 6 and 8 refer to variable bandwidths picked with the Andrews (1991) procedure,
a fixed bandwidth of 8 and a fixed bandwidth of 8 respectively. All results are based on
our other baseline choices.
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TABLE 11
First Order VAR Prewhitening®

Moment 10% 5% 1%
[Ex In | Ex In | Ex In

1 71 1151 4.2 7.7 1.2 34
2 85 14.1 | 58 9.5 20 4.8
3 152 216} 92 154 ) 3.2 69
4 66 12.71 4.0 9.2 1.0 33
5 73 119 | 4.1 7.8 1.3 3.7
6 46 1101 25 6.3 11 290
7 5.1 9.7 3.0 6.0 1.2 33
8 55 106 | 3.2 6.5 0.5 2.7
9 70 123 | 3.7 7.5 1.0 2.7
10 70 1161} 3.9 7.7 14 4.2
11 2.8 6.7 1.8 3.9 0.3 18
12 3.6 6.9 18 3.9 06 1.8
13 3.0 6.5 1.7 4.1 04 1.1
14 3.6 6.8 1.9 4.4 0.7T 25
15 6.6 124 | 4.2 8.5 1.5 3.2
16 8.5 15.2 | 4.9 10.4 1.7 4.2
17 84 138 1 45 9.5 14 4.6
18 B.6 14.5 | 4.3 9.9 16 4.3
19 73 13.3 | 3.2 9.0 09 3.3
20 4.1 7.7 2.3 4.5 08 24
21 3.7 6.9 2.2 5.2 06 20
22 2.6 6.4 1.4 3.6 0.5 18
23 4.6 7.5 29 4.5 0.7 24
H1 39.8 68.5 1308 629 ]19.T 51.2
H2 49.5 89.7 1423 859 |289 799
H3 49.1 88.8 |40.5 84,5 |28.1 77.2
H4 91.1 100.0 | 88.1 100.0]81.8 99.7

*The columns labelled ‘Ex’ correspond to our baseline case, while those labelled ‘In’ cor-
respond to experiments in which the three moment restrictions, excluded in our baseline
case, are not excluded in computing the automatic bandwidths.
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FIGURE 1
CORRELATION OF APL, WITH H,,; (HP FILTER)"

Factor Hoarding Modsl

Benchmark Modsl

FIGURE 2
CORRELATION OF APL; WITH Y;; (HP FILTER)®

Benchmark Model Factor Hoarding Model
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*In the Correlation panels: solid line - model predicted correlations, dashed line - sample
correlations. In the Difference panels the dashed lines represent a 2-standard error band

around the difference.
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FIGURE 3

SMALL SAMPLE SIZE OF THE W TESTS
RBC Example

A. Asymptotic Size = 10%

40 50 80 70

0 20 3

0

6 7 @ 89 10 1N 12 13 14 15 1@ 17 18 18 20 21 22 23 Hl H2 HI H4
Test

B. Asymptotic Size = 5%

60

A0 30

20 30

10

8 7 8 9 10 H 12 13 %4 15 18 17 18 19 20 21 22 23 H1 H2 HI Hae
Test

C. Asymptotic Size = 1%

40

%

20

10

& 7 8 9 10 N 12 13 14 5 16 17 18 18 20 21 22 23 Hl H2 H3 H4
Teast

39



0 20 30 40 S0 60 70

0

20 30 40 50 60

10

40

SMALL

FIGURE 4
SAMPLE SIZE OF THE W TESTS
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A Covariance Matrices for the Reparametrized White Noise
Case

In this appendix we discuss our estimators of the asymptotic variance-covariance matrix of
f. The estimators S}, S% and S} are defined as for . When we allow the econometrician
to exploit the lack of serial correlation in the data generating mechanism, we obtain
o 53, with (1,1) element [T, (X3, - ) ], (1,5} and (7,1) elements T[E (X3, -
3)(X75, — 63X3,)] for § > 2, and (4,)) element given by r[E,ﬂ(X:‘, §2 XX, -
02X3,)], for £ > 2, and 5 > 2.

If the econometrician imposes the mutual independence restriction then we obtain

o S, with (1,1) element 1 ©7_, X§,~4%, (1,5) and (j,1) elements 62 (&{ -3z, Xn‘:)
for § > 2, (5,) element £ =T, X4 — 8364 + 6} (i'l" L, X4 - &f) for i > 2 and (i, §)
element given by 828} (3T, X ~4f) for i >2and 2< j #1.

If in addition the econometrician exploits the fact that the X, are Gaussian, we have
that E(X{,) = 30f and E(X},) = 30} = 30}o{ for j > 2. This restriction can be imposed
on S3, which yields

o S%, with (1,1) element 25, (1,7) and (5, 1) elements ~2625 for j > 2, (i,1) element

46354 for £ > 2 and (4, j) element given by 25}5}&: fori>2and2< 5 #1.

We consider two types of hypotheses when estimating g : (i) hypothesis Hy 1 6, =1,
t=1,...,M, and (ii) hypothesis Hy, : §; = 1. When we impose Hys we obtain

. S,-, with (1,1) element given by 2; (1,5) and (J,1) element —2 for 2 < j < M and

—262 for j > M (i,1) element equal to 4 for 2 < § < M and 48! for i > M; and
(:,J) element equal to 2 for 2 <§,j <M, 283 for 2< i< M, j > M and 2638; for
ii>M.

When we impose hypothesis Hy, we obtain

e SI, which is identical to ST except in the second row and second column. The
diagonal (2,2) element is 44} while the (2,5) and (4,2) elements are 2625¢, j > 2.

For each of the estimators above we construct an estimator for the variance-covariance
matrix of the GMM estimator:

Ve = D{(Sf)"' Dy},

where Df is a diagonal matrix with (1,1) element —24, and (i,1)) element ~26,83, for
7 > 2. Since the null hypothesis Hj can also be imposed on D}, we also conslder the
estimator

Vi = |DF(s) DR,
where D} is a diagonal matrix with ith element —2 for i < M, and —26; for i > M. For
the hypothesis Hy, we have D3 equal to D} except that the (2,2) element is —257.
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B The Euler Equation for Capital in the RBC Example

In this appendix we discuss our procedure for ensuring that the Euler equation for capital
holds exactly in the data generating process underlying our Monte Carlo experiments.
The Euler equation for K41 does not hold exactly for our linearized representation of the
model. This equation is given by

E[l - ﬂ(a%) (1-a)(1- ¢"1)-};“—:‘1— + 1)] =0. (B.1)

As a result, when we estimate the model using artificially generated time series from
the linearized model it is important to adjust this moment restriction appropriately. We
compute the expectation in equation (B.1) for our linearized model (it is approximately
2 x 10~%) evaluated at the parameter values we use to generate the artificial data. We
then center the moment restriction around that value rather than 0. This expectation,
denoted by ¢, is computed as follows

e = E 1—3(5%)((1—.::)(1—‘#")1};:—‘:“)]

= E[l — Bexp(e — °t+1)((1 —-a)(1- ¢_1) exP(yt+1 — ke1) + exp(—v — vl+l))]!

Let 3, = ( 1 k N v o0 & )' and 3;,; = ( s, s )'. Any variable in the linearized
model, say 2z, determined at time ¢ is given as a function x! 8;, for some vector x, de-
termined by the solution to the model. Therefore we can write the Euler equation error
simply as

¢= E[l _ ({1 - a)(1 - ™) exp(utirs) + exp(—) exp(u',sm))],

[ =%t _f &=,
e(205) ().

In our simulations we assume that the innovations to the exogenous variables are normally
distributed. In this case the properties of log-normal random variables can be exploited
to show that

where

1,
e=1- ﬂ[(l —a)(1 - ¢ Yexp(u EZ+ %u’lr,p;) + exp(— + 1 E3 + E#zr-ﬂz)],

where E5 and T', are the mean and unconditional covariance matrix of &i1. These are
both computable as a by-product of the solution method.
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C Alternative Covariance Matrix Estimators

This appendix considers the robustness of the results presented in section 3 to alternative
estimators, Sz, of the the weighting matrix S,.
We consider various forms of Sr which depend on

i. whether we include a small sample correction or not,
il. the form of the lag window, k({-),
iii. the method for determining the bandwidth, Br, and
iv. whether we prewhiten the errors ;.
As described in the text, we take as our baseline case an estimator which
i. does not apply any small sample correction,
ii. uses the Bartlett lag window suggested by Newey and West (1987), and

ili. selects the bandwidth automatically using the method suggested by Andrews
(1991), and

iv. does not prewhiten the errors.

C.1 The Small Sample Correction

The large sample performance of the tests is unaffected by the inclusion of a small sample
degrees of freedom correction in the estimator Sr. In a regression context, Andrews (1991)
suggests the small sample correction of multiplying Sr by a factor of T/(T ~ d) where
d is the dimension of the coefficient vector. In our simulated samples, the sample size
is T = 113, while the length of the parameter vector ¥ is d = 27. Therefore, applying
Andrews’ small sample correction increases the magnitude of the elements of Sr by a factor
of 31%. Since the effect is uniform, applying the correction unambigously decreases all test
statistics by 31%. This decreases the small sample size of the tests, although this effect will
not be uniform. We did not apply the small sample correction in our baseline experiments.
Although applying the correction would have improved our resuits somewhat, we found
that this was special to results based on the HP filter, as opposed to results based on first
differenced data.

C.2 The Lag Window

We consider three forms of lag window, k(-). Newey and West (1987) suggest using the
Bartlett kernel given by

_J1-|z| forlz|<1
kz) = { 0 otherwise.
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Gallant (1987) proposes using the Parzen kernel given by

1-6z +6[z]* for0<|z| <1/2,
kp(z) = ¢ 2(1-]=z))* for1/2<|z| <1,
0 otherwise.

Andrews (1991) examines the properties of the Quadratic Spectral (QS) kernel given by

25 (sin(ﬁﬂ/5) _.cog(ﬁﬂ'zIS)) .

ka(2) = 55z \ Tenass

Andrews (1991) shows that within a certain class of estimators, which includes each of
these kernels, the QS kernel is optimal in the sense that it minimizes the asymptotic MSE
of Sr.

We use the Bartlett kernel as our baseline lag window. Holding the other elements of
the baseline estimator fixed we examine the small sample performance of our Wald tests
using the Parzen and QS kernels. The results are summarized in Table 6 which shows the
small sample size of the tests using the different lag windows. The results indicate that
the small sample size of the tests is insensitive to the choice of lag window, at least in our
example.

C.3 The Choice of Bandwidth

An issue which arises immediately with these estimators is how to choose the bandwidth
parameter By for a given kernel. Andrews (1991) shows that the optimal bandwidths (in
an MSE sense) for the three kernels are

1.1447[c(1)T}/* Bartlett kernel
B} = { 2.6614[«(2)T]/* Parzen kernel
1.3221[c(2)T]/* QS kernel,
where a(g) is a function which depends on the unknown spectral density matrix of u;
given by

JN) =2 3 0
T ox Pl ! !
where ﬂ,- = E&(‘I’o)ﬂg..,‘ (‘I’o)'-
Since Sy is a matrix estimator, its MSE is typically measured with respect to some
weighting scheme such as (following Andrews 1991)

MSE(T/BT,ST,W) = -;‘—T-EVeC(ST - Sg)'erc(Sr - So),

where W is some d? x d® positive definite matrix. The measure of MSE depends on the
choice of the matrix W. Given a particular matrix W the optimal bandwidth formulas
can be made operational since

_ 2(vec ) Wecs@
alg) = wW(I +K,,)](0)®/(0)’
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where K, is defined so that vec(A') = K vec(A), and

f(q) - ‘z I71°0;.

;——oo

Automated bandwidth selection procedures provide a means of estimating the a's in the
above formulas.

C.3.1 Andrews’ (1991) Automated Bandwidth Procedures

Andrews (1991) proposes various automatic bandwidth estimators. These are data-based
procedures which implement the above formulas for estimates of a(1) and «(2). There
are many possible procedures, both parametric and nonparametric, that can be used
to estimate a(l) and a(2). Parametric estimators require choosing an approximating
parametric model for the errors u,. Typical choices are parsimoniously parameterized and
may model the errors individually. They further require the choice of a weighting matrix
W.

Since the possibilities were numerous, we chose perhaps the simplest approach which
is to choose a weighting matrix which only puts weight on the diagonal elements of Sz
and to model each error term as an AR(1). Of course, the errors do not follow AR(1)
processes but this does not affect consistency of the estimators for So. Rather it generates
a bias in estimates of the optimal bandwidth. In the AR(1) case

“ 4

a(2) = Sf: )./>:

A2 o4

. Ny 45},
0(1) = zwi(l_ |)‘(1+P;),/Z P)‘,

i=1

where w; is the weight given to error term § in computing the estimator, and (5;,d;) are
standard estimates of the parameters of the AR model obtained from residual 5. The
simplest estimator sets w; = 1 for all 1.

Andrews suggests setting w; to zero for any error terms corresponding to a constant re-
gressor in a regression model. Presumably, this is motivated by the fact that the covariance
properties of those error terms are qualitatively dissimilar to the covariance properties of
the error terms corresponding to nonconstant regressors. In our examples, we placed no
weight on the error terms corresponding to (17), (18) and (22) and unit weight on all other
error terms, as these error terms behave very differently than the others. This constitutes
our baseline method. To assess the impact of excluding these three moment restrictions
we compared our baseline results to experiments where they were not excluded. In our
baseline experiments the median bandwidth from the 1000 draws was 2.78 for the Bartlett
kernel. With equal weight given to all moment conditions the median bandwidth rose sig-
nificantly to 40.1. Furthermore, as can be seen in Table 7, the small sample performance
of some of our tests deteriorated significantly.
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C.3.3 Newey and West’s (1993) Automated Bandwidth Procedure

Newey and West’s (1993) procedure is related to the procedures outlined above but is
nonparametric in the sense that no pseudo-model of the residuals is specified in order
to estimate the a’s. Newey and West note that when the MSE criterion is rewritten as
@'(Sr — So)t@ for some d X 1 vector @, the formula for a(g) can be rewritten as

0 1% /[ = 2
a(q) = LZ |j|‘ﬁ}'0,-15 / 2 tﬁ‘ﬂ,&')] .
In order to estimate a(g), Newey and West (1993) suggest the approximation

n -3 r 3
a(q) = z l7fe'0;w / E u":'ﬂ,-tﬁ] ’
jm—n

J=—n o

where n is chosen @ priori in order to be consistent with n — oo and n/T*® — oo (for
the Bartlett window) as T — oco. Newey and West cite evidence that Sr is less sensitive
to arbitrary n than it is to arbitrary choices of Br. :

We present results for choices of n = 4 and n = 12. The weight vector we use puts
zero weight on the same moment restrictions we excluded from our baseline Andrews
method. The results are summarized in Table 8. When we chose n = 4 we obtained
very similar results to when we used the Andrews procedure. This is not surprising:
the median bandwidth chosen by the Newey and West procedure was 2.74 while the
median bandwidth chosen by the Andrews procedure was 2.78. When we used n = 12
this increased the median bandwidth of the Newey and West procedure to 7.39. This
led to massive overrejections of the joint hypotheses similar in scale to when we used a
fixed bandwidth of 8 (see the next subsection). Overall our results indicate that automated
procedures may perform similarly but only if they are ‘tuned’ in a way that happens to lead
to similar bandwidths. We suspect that the Andrews procedure, while it has no parameter
like n to be chosen, would be analagously sensitive to the choice of pseudo-model for the
error terms.

C.3.3 Arbitrary Fixed Bandwidth

It is difficult to compare results obtained with fixed bandwidths to those obtained using
variable bandwidths, since any resulis we find may not be interpretable beyond the confines
of our example. However, in Table 9 and Table 10 we compare our baseline results with
results obtained using fixed bandwidths of 2, 4, 6 and 8 in repeated samples. While the
results are mixed for small bandwidths, the results indicate a deterioration of small sample
performance {especially for joint tests) for bandwidths of 6 and 8. What is also clear from
these tables is that the bandwidth affects the various tests differentially.

C.4 Prewhitening of the Errors

Andrews and Monahan (1992) suggest a procedure which prewhitens the error terms as
a first step prior to the computation of Sy. Prewhitening is motivated by the apparent
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problem in estimating Sp when the nature of the persistence in the errors is unknown. A
particular bandwidth in tandem with a particular lag window may not adequately capture
the nature of the persistence in the errors in small samples. The whiter are the error
terms the less important will be the choice of lag window and bandwidth. A prewhitening
procedure uses an arbitrary procedure to whiten the error terms, computes the equivalent
of Sy for those whiter errors, then recolors the estimated matrix.

As an example, suppose that a first-order VAR is fit to process g,

& = fld,_y + -

Suppose that I1 converges to IT asymptotically so that the errors u,(¥o) have the repre-

sentation
ue{Wo) = IMue—1(Wo) + mi.

Define " -
5= 3 E(nm_j)= Y Ol
J==-o0 j=—o0
Then notice that
S=(I- II)"‘S{,'(I— H')".

An analagous estimator St is
Sr = (I -T)'Sp(1-1")"4,

where S7 is an estimator of the variety described in previous sections applied to 7j;. For
higher order VARs represented as [I — TI(L)]u; = ¢, the corresponding estimator would
be

s = [1-1u(n)] " sp{r - frry]

We conducted experiments using 1st-order VARs for the error terms. The results of
these experiments are presented in Table 11. Given that we prewhitened the errors we
thought that comparisons should be made with both the ‘Ex’ and the ‘In’ columns in Table
7. Notice that small sample sample performance of the tests changes dramatically. Some
of the tests reject less often, but the joint tests perform terribly. The test of H4 almost
always rejects in the ‘In’ case where we include all the error terms in our bandwidth calcu-
lations. These results are somewhat surprising. We might expect prewhitening to improve
performance. However, the median bandwidth chosen by the automated procedures rises
to 7.72 in the ‘Ex’ case and drops to 29.7 in the ‘In’ case. The rise in the ‘Ex’ case is not
surprising since the included errors have been projected onto lags of the excluded errors.

D Data

In this appendix we describe the data that was used to estimate the RBC model of section
3. Private consumption, C;, was measured as the sum of private sector expenditures on
nondurable goods plus services plus the imputed service flow from the stock of durable
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goods. The first two measures were obtained from the Survey of Current Business. The
third measure was obtained from Brayton and Mauskopf (1985). Government consump-
tion, G;, was measured by real government (federal, state and local) purchases of goods
minus real government investment. The government data was provided to us by John Mus-
grave at the Bureau of Economic Analysis. The official capital stock, K., was measured as
the sum of consumer durables, producer structures and equipment, and government and
private residential capital plus government non-residential capital. Data on gross invest-
ment, I, are the flow data that conceptually match the capital stock data. Gross output,
Y,, was measured as (Ci+ G+ 1,) plus time ¢ inventory investment. Our basic measure of
hours worked is the quarterly time series constructed by Hansen (1985), which we refer to
as household hours. The data cover the period 1955:3-1984:1 and were converted to per
capita terms using an efficiency weighted measure of the population.’® We use Prescott’s
(1986) model of measurement error in hours worked. In particular we assume that the
log of measured hours worked differs from the log of actual hours worked by an iid.
random variable that has mean zero and standard deviation og. To estimate o we need
two measures of hours worked. The first is Hansen'’s measure of hours worked which is
based on the household survey conducted by the Bureau of the Census. The second is the
establishment survey conducted by the Bureau of Labor Statistics.

193¢¢ Christiano (1988, appendix) for further details.
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