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When Are Anonymous Congestion Charges
Consistent with Marginal Cost Pricing?

With any congestible facility, whether it be a road, a swimming pool, or a telephone network,
there are certain constraints on congestion pricing. For one thing, congestion charges can be
differentiated across heterogeneous users only on the basis of observable differences. For another,
there may be constraints on the time variation of congestion charges. Do these constraints
undermine the feasibility of marginal (social) cost pricing? Put alternatively, what is the scope of
application of the firsi-best theory of congestible facilities (which includes for example the well-
known result that, for a congestible facility which exhibits constant long run average cost, the
revenue from the optimal congestion charge exactly covers capacity costs when the facility's
capacity is optimal)?

We came to this issue via consideration of urban auto congestion pricing, which is being
actively discussed in Europe (see May (1993) fora review) and will presumably be seriously
considered in North America before too long, particularly if the European policy experiments are
successful. We posed the following problem: Suppose that rush-hour commuters behave the
same way in traffic, but differ from one another in observationally indistinguishable ways such as
work starting time or the shadow value of ime. Then tolling (congestion pricing) must be
anonymous. Does the anonymity of tolling in this situation preclude the possibility of marginal
cost pricing? 1If it does, then the design of the optimal toll is an exercise in the theory of the second
best, and the optimal toll will be some variant of Ramsey pricing. A toll is said to have the form
('} if it is a member of the family of time-dependent toll functions T(t) = Q(t) + k, where k, a
constant, is the toll level. Does the answer depend on the Jorm of the toli? For example, does
constraining the toll to be uniform over the rush hour affect the answer?

Prior work throws some light on the issue. Arnott, de Palma, and Lindsey (1993)
demonstrated, in the context of Vickrey's (1969) bottleneck model of morning rush-hour auto
congestion, that with identical commuters, marginal coss pricing can be achieved independently of

the form of the toll. The argument, extended to allow for other congestion technologies, is as



follows: Consider two po_ints, A and B, where consumers live and work, respectively. A and B
are connected by a single congestible road, and driving is the only way to commute. Consumers
have a common work starting time t*. A consumer who arrives at work before or after t* incurs a
schedule delay cost. User cost equals schedule delay cost plus travel time cost. And trip price
equals user cost plus the toll. Each commuter decides when to depart from home so as to minimize
trip price. The crucial point is that in equilibrium the trip price must be constant over the departure
interval and at least as high outside this interval. Otherwise, some commuters would change their
departure times. Given any number of daily trips, solving for equilibrium entails solving for the
time pattern of departures, which determines a time pattern of travel time cost and of schedule delay
cost, such that the equilibrium trip-price condition is satisfied. In the bottleneck model,
equilibrium is unique, so that total user costs can be determined as a function of the number of
daily trips and the form of the toll, i.e. TC = TC(N, Q), where N is the number of daily trips.
Marginal social cost is then determined as MSC(N, Q) = 0TC(N, Q)/oN. Thus, marginal social
cost, too, is constant over the equilibrium departure interval. Now consider some arbitrary change
in the toll level, k. For any given value of N, this has no effect on the equﬂibﬁum departure
pattern and thus on marginal social cost. However, the equilibrium trip price goes through the
same change as k. Thus, regardless of the form of the toll, k can be set so that price equals
marginal social cost. Furthermore, with this toll level, since each commuter pays the marginal
social cost of a trip, the toll equals the congestion externality throughout the departure interval,
Arnott and Kraus (1993) extended the bottleneck anaiysis of Amott, de Palma, and Lindsey
(1993) to treat heterogeneous commuters who behave the same way in traffic. Their argument
with two commuter types (indexed by i = 1, 2) goes as follows. Given any anonymous toll
function t(t) = Q) + k, total user costs in equilibrium can be determined as a function of the
number of daily trips of each type, from which the corresponding marginal social cost functions,
MSC;i(Ny, N3, Q), can be determined. Also, the trip price for each type, Pi» must be the same
throughout its (equilibrium) departure interval and as least as high outside its interval. Now
suppose that the toll level is adjusted such that the price of a type 1 trip equals its marginal social
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cost, implying that the toll equals the congestion externality of a type 1 trip throughout the
departure interval for 1's. The issue is whether this results in the price of a type 2 trip equaling its
marginal social cost. Sufficient conditions for this are that in equilibrium the two types have a
common departure time, T, and that at T both types' congestion externality be the same. Where

¢i(t) is user cost and v;(t) the congestion externality, this result follows from the following chain of

equalities:
p2 = p2AD) (since there are type 2 departures at T)
=¢2(T) +1(7)
= c(T) +vi(T) (since 7(t) = vy(t) at any departure time used by type 1's)
=c2(T) + (1) (since va(T) = v1(1))
= MSCy(1)
= MSC,. (since there are type 2 departures at )

In that paper it is shown that these conditions are satisfied with the optimal time-varying toll, which
has both the optimal form and the optimal level, but not generally otherwise. The reason is that
with the optimal time-varying toll, the congestion externality is anonymous -- vi(t) = va(t) for

all t -- but with other toll forms the congestion externality is generally nonanonymous. The results
can be extended to an arbitrary number of commuter types. Thus, in the bottleneck model with
heterogeneous commuters who behave the same way in traffic, marginal cost pricing is possible
with the optimal anonymous time-varying toll, bus not generally with anonymous tolls of other
Jorms.

The possibility of marginal cost pricing in these circumstances therefore turns on whether the
congestion externality is anonymous or nonanonymous. How is it possible that two drivers who
depart at the same time and who behave the same way in traffic can generate different congestion
externalities? Perhaps the simplest way to illustrate this is with a bottleneck model with two
commuter types and no toll.

All commuters have the same work starting time, t*, and cannot arrive late. The user cost



functions are

ci(t) = ay(travel time (1)) + B(time early (1)),
where t is departure time, o is the shadow cost of travel time, and B the shadow cost of time carly.
Thus, the two types differ only in terms of a. Assume that o > 0t > B -- type 1 commuters
dislike being stuck in rraffic more than type 2's, and both types' shadow cost of travel time
exceeds the shadow cost of time early. The congestion technology is simple. There is a single
bottleneck with capacity s -- only s commuters can pass through the bottleneck per unit time. If the
arrival rate at the bottleneck exceeds s, a queue develops. Travel time equals queuing time. Since
there is no toll, trip price equals user cost. Thus, in equilibrium all commuters of a given type will
incur the same user cost. Since commuters who depart later arrive less early, they must incur
greater travel costs and hence face a longer queue than those who depart earlier. All type 1
commuters, who dislike queuing more, depart earlier in the momin g rush hour when the queue is
shorter. Figure 1 characterizes equilibrium in terms of cumulative departures and arrivals over the
rush hour. The initial equilibrium cumulative departure schedule is given by abcd. Cumulative
arrivals are given by ad. The departure interval for type 1 commuters is [to, T]; the departure
interval for 2's is [T, t;]. The important feature to note is that to satisfy the equal-trip-price
conditions, the queue (given by the vertical distance between the cmulaﬁvc departure and
cumulative arrival schedules) grows more rapidly over the type 2 departure interval than over the
type 1 departure interval. Equilibrium requires that queuing cost grow at a certain rate. Since
queuing cost equals the shadow cost of queuing time times queuing time, queuing time -- and
therefore queue length -- must grow faster when the shadow cost of queuing time is smaller.

Now consider taking away one type 1 commuter at T and adding a type 2 commuter at T. This
causes the equilibrium cumulative departure schedule to change to ab’c’d, implying that all other
type 2 commuters face a longer queue. Otherwise, the equilibrium is unchanged. This implies that
a type 2 commuter imposes a larger congestion externality at T than a type 1 commuter. Thus, two

drivers who depart at the same time and who behave the same v{ray in traffic can generate different
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Figure 1. The No-Toll Equilibrium in the Bottleneck Model

Notes: ad has a slope of s. ab and bc have slopes of os/(cy — B) and aps/(ca — B),
respectively,



congestion externalities because they cause the queue to evolve in different ways in order to satisfy
the equal-trip-price conditions.

With the optimal time-varying toll, there is no queue. Consequently, the cause of the
difference in the two types’ congestion externality disappears, so that the congestion externality is
anonymous. _

The obvious question is: To what extent do the results from the traffic bottleneck model
generalize to other congestion technologies and to other congestible facilities? We examine this
issue using a rather general model of congestion. In the course of our analysis, we generalize
existing theorems concerning the extent to which the revenue from the optimal congestion charge
covers capacity costs when the facility's capacity is optimal.

We show that the results do indeed generalize. With users who behave identically when using
a congestible facility but differ in other, unobservable ways, the time-varying congestion
extemality is anonymous with the efficient time pattern of utilization. Setting an anonymous
congestion charge equal at all points in time to the corresponding congestion externality
decentralizes the efficient time pattern of utilization. Under these circumstances, anonymous
congestion charges are consistent with marginal cost pricing. When, however, the form of the tol}
is constrained, the time pattern of utilization is not efficient, the congestion externality is generally

nonanonymous, and anonymous congestion charges are inconsistent with marginal cost pricing.]

1. The Model

A congestible facility can be used by G types of consumers. The number of daily utilizations
by consumers of typei(i=1,.., G) that begin by time of day t is denoted by Ni(t). Lettand ¢
denote the earliest and latest times of day, respectively, that a utilization by any consumer begins.
Then, foralli=1, ..., G, the number of daily utilizations by consumers of type i is given by
Ni(t).

For a utilization beginning at time t, a consumer incurs a cost (excluding the congestion

charge) given by ci(t, n(t), N(t), x(t), s), where i is the consumer's type; N(t) = (N1(1), ..., Ng(O));

-6~



n(t) = (ny(1), ..., ng(1)) = (N1 (1), ..., Ng(®):2 x(t) = (x1(t), ..., x3(t)), a vector of state variables at
time t; and s is the facility's capacity. The state equations for xy, ..., x; are given by

xj(t) = gj(t, n(t), N(t), x(t), s) ji=1..,1 (1)
x(to) is given, while x(t¢) is free. Capacity costs are given by K(s).

Observe that different consumer types may differ in terms of their cost functions or how their
usage directly affects other consumers' costs or the state of the congestible facility. Later, we shall
particularize the treatment of congestion to consider groups that are observationally
indistinguishable and whose usage affects other users' costs and the state of the facility in the same
way.

The specification of the congestion technology is as general as possible, consistent with
congestion being described by a set of state variables. The interpretation of the state variables
depends on context; possible state variables include air quality, temperature, blocking rate,
load, ....

A type 1 utilization beginning at time t is subject to a congestion charge t;(t), which for the
moment can differ across consumer types. The price of the utilization is given by

Pi(t) = ci(t, n(t), N(1), x(1), 5) + T;(1). @
Consumers choose when 1o begin utilizations so as to minimize price. Lett” be a time chosen by a
type i consumer to begin a utilization. Then pj(t") = p;*, where pi* is the minimum of pj(t) over
alit.

The number of daily utilizations by type i consumers, Nj(t7), is given by the demand
relationship

Ni(t) = Di(pi*). 3
This assumes that the benefit from a utilization is independent of the time of usage. Put
alternatively, utilizations at different points in time are treated as perfect substitutes in demand.
Preferences regarding time of usage are captured in the cost function. Denoting the inverse of D;

by P,



pi* = PitNi(tp). ()
Let T; denote the set of times at which type i consumers begin utilizations. The economy's
equilibrium conditions are that, foralli=1, ..., G,
pi() = Pi(Ni(t))  teT; (52)
pi(t) 2Pi(Ni(t)) £ T;. (5b)

Special cases. The treatment of congestion has as special cases both bottleneck and static
congestion. To see this, consider two points, A and B, where consumers live and work,
respectively. A and B are connected by a single road, and driving is the only way to commute.

For consumers of type i, work starts at t;*. Let d(1) denote travel time for a consumer who leaves
home at ime t. If t + d(t) # t;*, the individual's arrival is early or late. Besides travel time costs,
individuals incur schedule delay costs for arriving at work early or late,

With the simplest form of bottleneck congestion, the road has a single bottleneck having a
well-defined capacity -- the maximum rate at which cars can pass through the bottleneck per hour.
If arrivals at the bottleneck ever exceed this rate, then a queue forms. An individual's queuing time
is his travel time from A to B.

Under these assumptions, d(t) = h(t)/s, where h(1) is the length of the queue at time t, and s is

the bottleneck's capacity. As for queue length,
h(t) = ny(t) + ... + ng(t)—s for h(t)>0 (6a)
=max {ny(t) + ... + ng(t) - s, 0} for h(t) =0, (6b)
with h(to) = 0; ny(1), ..., ng(t) and to are defined as above.

Now consider the general treatment of congestion with x(t) a scalar. We want to make x(t)
correspond to d(t).3 It is casily checked that bottleneck congestion corresponds to the special case
of the general treatment of congestion in which x(t,) = 0,

X(t) = (m(t) + ... + ng(t) — s)/s for x()>0 (7a)

=max {ny{t) + ... + ng(t) — s, 0}/s for x(t) =0, (7b)



and c;(°) is of the form c;(t, x(t)).

With static congestion and the road having a uniform capacity of s,4 d(t) is given by

d(t) = f(ny(t) + ... + ng(1), s),

®)

where f(-) is homogeneous of degree zero. Thus, static congestion corresponds to the special case

of the general treatment of congestion in which ¢i(*) is of the form ¢;(t, ny(t) + ... + ng(t), s) and is

homogeneous of degree zero in ny(t) + ... + ng(t) and s. Introducing x(t) is unnecessary.

2. Analysis

2.1 The Social Optimum

Let the benefits to type i consumers be given by
Ni(tp
| Pita)da.
0
Society's problem can then be stated as

¢ Ni(tp) tf g
max b j Pi@dq-K(s)- [ ¥ ni(t)ci(t, n(r), N(1), x(t), s)dt
5, to,tf,n(') i=1 i=1
0 fo
s.t.
Ni(9) = ni(1) i=1,...G
xj(1) = gj(t, n(t), N(t), x(t), 5) i=1,..17,
with initial conditions
Ni(to) =0 i=1,..,.G
xj{to) = x;° i=1..7]

for given x(°, ..., x;%, and inequality constraints

ni(t) 20 i=1,..G

9

(10)

(11
(12)

(13)

(14)

(15)



(10)-(15) define an optimal control problem with state variables Ny, ..., Ng and xy, ...

control variables ny, ..., ng. Assume that ¢,(*), ..., ¢g{(*), g1("), ..., gx(-) and K(-) have

continuous first derivatives, and define the Hamiltonian

G G
H(t, n(t), N@), x(), (1), A(1), 8) = - 37 niftei(t, n(r), N(1), x(1), ) + ¥, Hi(tni(t)

i=1 i=1

J
+ 3, Aj(0gjt, nf), N@), x(V), s),
=1

where pi(1) and (1) are the costate variables corresponding to (11) and (12) respectively. The

first-order conditions are

JH _J_ ..

a—nj=-_cl an_—+’-ll +ij SO 1 =11~--1G
oH __J_ .
i3 = i - an—ﬂh *Bj5,0=0 i'=1,..,G
1

Jir = — ——— = N g & i'=1, ..,

H aNl )3 "Ny aN, E JaN. vebhenG
dH acl ag

l = e ——— = -— l_—l = l’ »

) axj- 4 laJle- JZ "Bx_i' . !
Pi(Ni(t9) = ity i=1,..G
lj(tf) =0 i=1,..,17

H(ty, n(tp), N(tg), x(t0), p(te), A(tg),s) =0

H(to, n(to), N(t5), x(to), 1ito), Atp),5) = 0

—K(S)— j(z nl Elja_gi)dt=

as well as (11)-(15).
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2.2 Decentralization of the Optimum

There are two distinct ways to identify the decentralizing congestion charges, depending on
how congestion externalities are conceptualized. The first approach is based on the left-hand side
of (17). Atany time t, this expression equals the marginal net social benefit of a type i” utilization
beginning at t, conditional on the values of state variables at t, but allowing the controls to
optimally readjust at times greater than t (see, e.g., Dorfman (1969)). Because of the conditioning
on state variables at t, we term this the ceteris paribus marginal net social benefit. In the absence of
a congestion charge, a type i” utilization beginning at t has a marginal net private benefit given by
Pi-(Ni-(tp) — ci-(t). Subtracting this from the ceteris paribus marginal net social benefit and
reversing the sign gives the ceteris paribus congestion externality. Denoting the ceteris paribus
congestion externality by vj«1),

2 Jg;
vit=3 nign%‘;—ur-}j: ’“jé‘f}Lf Pi-(Ni(tp). (26)

We now show that this is the optimal congestion charge.

Proposition 1. An optimum to (10)-(15), conditional on s, can be decentralized with the
ceteris paribus congestion charge 1;-(t) = v;-(t), where v;-(t) is evaluated at the conditional

optimum.
Proof. See the Appendix.

Remark 1. In the special case of static congestion, (26) reduces to the classic congestion

externality
dci
vi(t) = i 27
l‘( ) iz nl ani.
To see this, recall from Section 1 that when congestion is static the only state variables of the
model are Ny, ..., Ng and that these do not appear as arguments of the cost functions c;(-). Then

the third term on the right-hand side of (26) can be dropped, and (19) reduces to [1j* = 0, implying
that ;- in (26) is equal to pi(tr). The result then follows from (21).
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The second approach is based on the equivalence between the optimal control problem defined
by (10)-(15) and a two-stage optimization problem in which N (tg), ..., Ng(tf) are given at the first
stage and optimized at the second stage. The problem at the first stage is to minimize the last term
in (10), subject to (11)-(15) and given values for Ny(tg), ..., Ng(tp) and s. The minimum value
function for this problem is the facility's short run cost function, which we denote by
C(N1(tp), ..., Ng(tp), s). At the second stage, values for Ni(ty), ..., Ng(tr) and s are determined to

maximize net social benefits, written as

¢ Ni(w)
Y | Pilada- K - CONto), ..., No(tg), ) (28)
1=} 0
For later use, we note that this requires
Pi(Ni(tp)) — 0C/oNj(tp) = 0 i=1,.,G 29

Starting from a solution to the stage one problem, what is the marginal cost of a type i’
utilization beginning at ime t when the utilization times of other consumers are adjusted, if
necessary, to minimize costs? If t & Ty, this mutatis mutandis marginal cost must equal
dC/ON;(ty), while if t ¢ Tj-, it cannot be less than this value. The mutatis mutandis congestion
externality is simply the difference between the mutatis mutandis marginal cost and the marginal
user's own cost, ¢;(t). Denoting the mutafis mutandis congestion externality by @;(t),

@i-(t) = 0CON;(tg) ~ ci(t) for teTy (30a)
2 0C/oN; (te) - ¢i(t) for t1¢ Tj- (30b)

The relationship between @;<(t) and v;i-(t) is given by:

Lemma 1. At an optimum to (10)-(15), conditional on s, the ceteris paribus congestion

externality v;(t) is equal to the mutaris mutandis congestion externality @;«(t) for all t e T~

Proof. See the Appendix.
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It can then easily be shown that

Proposition 2. An optimum to (10)-(15), conditional on s, can be decentralized with the
ruaatis mutandis congestion charge 1;(t) = @j-(t), where ¢;(t) is evaluated at the conditional

optirnum.
Proof. See the Appendix.
We next introduce the assumption

(A.1) Foralli=1,.., G, ci(-) is of the form ci(t, n1(t) + ... + ng(t), N1(1) + ... + Ng(1),
x(t), s), while forallj=1, ..., J, gj(-) takes the form gj(t, n(t) + ... + ng(1), N1{t) + ... + Ng(1),
x(t), ).
(A.1) corresponds to our assumption in the earlier discussion that commuters behave the same way
in traffic. It is a standard assumption in models in which distinct consumer types are introduced to
represent differences in time valuation or, in commuting models, work start time.

QOur key result is:

Lemma 2. Suppose that (A.1) holds. Then at an an optimum to (10)-(15), conditional on s,

the ceteris paribus congestion externality v;-(t) is the same for all consumer typesi’,

Proof. From (26) and (21) we have that at any time {°,

a 1 a i
vit) = E“: - —ui'—E lja—g_Lwr(tf) @31

j oo

ogj i
_):n, _): Mo+ [ rds 32)

t
From (32) and (19),
3 3
W)= % n.a -):‘, ,a—f": I gy -zx,—gL)dt. (33)
n;”

But under (A.1) each term on the right-hand-side of (33) is independent of i*. 1l
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The intuition for L.emma 2 goes as follows. First, v;-(t) consists partly of an extemality on
consumers who begin utilizations at time t, and partly of an externality on consumers who begin
utilizations later than t. The first of these is given by the first term on the right-hand-side of (26).
Under (A.1), ny(1), ..., ng(t) enter the user cost functions only through their sum, which makes
this term anonymous. The externality on consumers who begin utilizations later than t comes
about through the effect that nj-(t) has on x,, ..., xy and Nj- at a time shortly after t. The part of
this that operates through xy, ..., x; is given by — X A;0g;/0n;-, since A; is the marginal social
value of xj (Dorfman (1969)). (A.1) also assumcsjthat ny (1), ..., ng(t) enter the functions gj only
through their sum, so that this 100 is anonymous. Finally, the marginal social value of Nj- is p;-.
The effect that operates through Nj- is therefore — (j- — Pi-(Nj(tg)). The additivity conditions in
(A.1) involving N, (1), ..., Ng(t) are sufficient to make this anonymous.

Together with Proposition 1, Lemma 2 implies the main result of the paper:

Proposition 3. Suppose that (A.1) holds. Then an optimum to (10)-(15), conditional on s,

can be decentralized with anonymous congestion charges.
Proof. Proposition 3 is a direct implication of Proposition 1 and Lemma 2.

‘When there are constraints on the time variation of the congestion charge, it is not in general
possible to achieve marginal cost pricing for all types. Determination of the optimal congestion
charge (subject to the constraints on its time variation) is then an exercise in the theory of the
second best. The optimal congestion charge will entail Ramsey pricing, under which the absolute
value of the deviation from marginal cost will "on average” be higher for types with less elastic
demand. |

2.3 Self-Financing Results

In this section, we develop two self-financing results analogous to those developed by
Mohring and Harwitz (1962) and Strotz (1965) for the traditional model of a congestible facility.
Both depend on the assumption ‘
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(A.2) c1(), ..., cg(*) and g1(°), ..., gi(*) are homogeneous of degree zero in n(t), N(1)

and s.
For the case in which a nonanonymous congestion charge is possible, we have:

Proposition 4. Suppose that (A.2) holds and that s and 11(+), ..., Tg(*) are unconstrained
optimal. Then the ratio of receipts from congestion charges to capacity costs is given by the

elasticity of capacity costs with respect to capacity.
Proof. See the Appendix.

The intuition for Proposition 4 is as follows. The facility is an input ir a joint production
j:roccss in which utilizations are viewed as distinct outputs if they either are made by different
consumer types or begin at different times. The output levels of the process are given by

ny(t), ..., ng(t) for all t € [to, ty]. Suppose that a scale factor @ which differs infinitesimally from
one is applied to all output levels and the facility's capacity. This scales N(-) by 6, so, by (A.2),
X1, ..s Xy and ¢y, ..., Cg are unchanged at all times. Total user costs are therefore scaled by 6.

Suppose, for example, that the elasticity of capacity costs with respect to capacity is equal to
one. Then capacity costs are also scaled by 6, and production involves constant long run ray
average costs. -

From (5a) and (29), all outputs whose production levels are positive are priced at long run
marginal cost® With constant long run ray average costs, this implies a total value of output equal
to the total cost of output. The total value of output is the sum of user costs and congestion
charges, while the total cost of output is the sum of user costs and capacity costs. Congestion

charges and capacity costs are therefore equal.

Now suppose that the congestion charge is constrained to be anonymous. If (A.1) holds, then

by Proposition 3 this is a nonbinding constraint. It follows immediately from Proposition 4 that
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Proposition 5. Suppose that (A.1) and (A.2) hold and that s and 1;(), ..., Tg(-) are optimal
subject to the constraint 7)(-) = ... = 75()). Then the ratio of receipts from congestion charges to

capacity costs is given by the elasticity of capacity costs with respect to capacity.

Remark 2. In the basic bottleneck model, the social optimum involves a zero queue length and
a full bottleneck at all times from t, to tr. Thus the state function associated with driving time has
only one-sided derivatives with respect to ny, ..., ng (see (7b)). As a result, the derivative JoH/on;-
(see (17)) that defines the ceteris paribus marginal net social benefit does not exist, and the ceteris
paribus congestion externality is undefined. Thus, the line of argument developed in this paper
does not apply to the bottleneck model.

‘The mutatis mutandis congestion externality remains well-defined, however. Amott and
Kraus (1993) use this definition of the congestion externality to prove that Propositions 2-5 hold

for the bottleneck model. (A.2) holds with travel time rather than queue length as a state variable.

Remark 3. Propositions 4 and 5 generalize in a straightforward way to the case in whichsisa
vector of capacity variables. In the generalized propositions, the facility's cost-recovery ratio is

given by the elasticity of scale of K(s) with respect to s.

3. Conclusion

This paper addressed the following issue: Suppose that the users of a congestible facility
differ from one another in unobservable ways, so that congestion charges must be anonymous.
Under what circumstances is marginal (social) cost pricing possible? To focus on the central
issues, we shall assume in the following discussion that users behave the same way when using
the facility (If this condition does not hold -- if, for example, there are good drivers and bad drivers
who cannot be distinguished -- it should be obvious that marginal cost pricing is not possible).
What distinguishes different user types are differences in time valuation and in the most preferred
time of use.

The single-period version of the traditional model of a congestible facility, which assumes
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static congestion and does not explicitly account for schedule delay costs, would give the following
answer: Since each type's user cost depends only on the total number of utilizations and not on
their composition by type, each utilization imposes the same congestion externality. Consequently,
application of an anonymous Pigouvian congestion charge equal to the common congestion
externality achieves marginal cost pricing. To allow for time-varying congestion, divide the
congestion period up into intervals. For each user type, each interval has its own demand function
which depends on that type's utilization prices in all of the intervals (reflecting cross-price effects).
Since each utilization is assumed to contribute to congestion in only one interval, the above
argument for the feasibility of marginal cost pricing applies for each interval separately.

This treatment of time-varying congestion is unsatisfactory in ignoring that congestion in a
time interval spills over into the subsequent time interval through stock or state variables, the most
obvious example being a queue. In the present paper, we examined the feasibility of marginal cost
pricing for a congestible facility when users differ in unobservable ways, employing a model
which not only accounts for such stock congestion effects but also explicitly models users'
schedule delay costs. Our main result was that, with an anonymous congestion charge, marginal
cost pricing is feasible when the time variation of the congestion charge is unconstrained but not
generally otherwise,

What is the significance of this result? On the positive side, it indicates that unobservable
differences between individuals do not undermine the feasibility of marginal cost pricing. Thus,
first-best rules for optimal capacity and first-best results on self-financing apply. On the negative
side, our main result implies that when the time variation of congestion charges is constrained, the
unobservability of user characteristics in general renders marginal cost pricing infeasible. Not only
does this generate inefficiency, but also calculation of the optimal congestion charge over time
(subject to the constraints on its time variation — an exercise in Ramsey pricing) as well as of
optimal capacity becomes considerably more difficult and informationally demanding. Thus, our

Paper makes a theoretical case for flexible, time-varying congestion charges.
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Appendix

Proof of Proposition 1. Suppose that T;<(t) = v;<(t) and that (10)-(15) is at an optimum,
conditional on s. The proof amounts to showing that (5a)-(5b) hold.

Given any consumer type i’, first consider t € Tj-. This is equivalent to n;-(t) > 0, so from

(18) we have that at t,
dcj ogi
—-Ci" - Ei nig:‘+p.i‘+ JE A.j-a—n;':=0 (34)

From (26), (34) and 1j-(t) = vj-(t),
Ci* + Ti"(t) = Pi(Nj(1p)- (35)
Finally, from (2),
pi(t) = Pi-(N;-(tg). (36)
If t ¢ Ti-, then (17) holds at t. Starting from this relationship and carrying out the same steps
as above gives

pi(t) 2 Pi-(Ni-(t9)). I

Proof of Lemma 1. For t e Tj-, (34) holds, from which (26) can be rewritten
vi'(t) = Pi(Ni-(t9) - ci(t). : (37
Using (29), this becomes
Vi<(t) = 0C/ON;(ty) - ci-(v), (38)

which is the same expression as in (30a). B

Proof of Proposition 2. Suppose that Tj-(t) = @i-(t) and that (10)-(15) is at an optimum,
conditional on s. As with Proposition 1, the proof amounts to showing that (5a)-(5b) hold.

Given any consumer type i°, first consider t € Tj~. By Lemma 1, ¢i-(t) = vj-(t), which together
with Proposition 1, establishes (5a).

Ift ¢ Tj-, then from (30b), g;-(t) = 3C/IN;(ty) — ci(t). Using (29) and i-(t) = @;t), this

implies
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7i(0) 2 Pi-(Nj-(tg) — ¢i-(1). (39)

(5b) then follows from (39) and (2). 1

Proof of Proposition 4. Multplying (25) by s,

oc; gi
- sK'(s) - J'( n.s—-’-Zl,s—i)dt=O. (40)
o
Expanding (18) and summing overi’,

de ogj
DTN ni’nié".!""z njpic+ 3y ni'lj—E-L= 0. (41)
% i i ni° i ] dnj*

Reversing the order of summation in (41),

og
uZn,c,—Zn,En, +Zn,u,+ElJZn5—‘L (42)
Muldplying (19) by Nj-, summing over i’, and reversing the order of summation,
. d
ZNi—ur—Zn,ZN, - +Zx,}:Nl—g-'— 0. a3)
i i
Adding (42) and (43),
. dej
= 2 nicir+ 3 nipis + 3 Nifli-— ):, nj ): (nn -+ N —")
i i i oNi:
+lez(n|—L+Ng'a_'N—l') 0. (44)
1

Integrating (44) from t, to t; and adding to (40),

i
_‘[;mc dt+jzn1u1dt+IZNlu1dt J‘Zn,[z(n‘ +Nlﬁ)+s_]dt
o

J'ZAJ[Z(n,-J-+N1 ﬁJ—Hs—l]dt—sK(s) (45)
1
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By (A.2), both of the expressions that appear in square brackets in (45) are equal to zero, and (45)

reduces to

i 5§ if
- J‘ Y nici-di+ jzni—ui-dz+ I T Nii-dt = sK(s). (46)
to 1 to 1 to 1

The third term can be rewritten,

tf tf
_[ 2 Nicfyirdt=3 f Ni-pi-dt
o ' T
tf kd
=3 ONew] - [ ey (using integration by parts)
i to to
1§
=L PMNi@Nit) - [ T nipiede (using (13) and (21)),
11 tO 1
from which (46) becomes
3
2 PN INi) - [ X nicyrdi = sK(s). (47
1 tO I

The left-hand side of (47) is the aggregate revenue from congestion charges; the proof is completed
by dividing (47) by K(s). N

Remark. Allowing for kinks in the functions Nj(*) requires only minor changes in the
preceding proof. We assume that there can be a finite number of times t3, ..., tr for which a kink
exists along the optimal time path of one or more of the Nj's. Then in the preceding proof, each
integral over [t, t¢] must be written instead as a sum of integrals over the subintervals [tg, t,],
[t1, t2], ..., [t, te]. As a result, the integration by parts step following (46) generates an

expression which includes

t t2 ) L
; (Ni'Lti'I'0 + Ni'l»li‘ltr ot N, + Ni‘lli'lt:). (48)
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where a minus indicates that the evaluation is to be carried out as a limiting operation from the left,
and a plus from the right. Optimality now requires that foralli’=1, ..., G, Ki- is continuous at

each of the times 1, ..., ty, from which (48) reduces to

; (49)

193
N..p‘.,
iZ' 1 ll[o

which is the same term as before.
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Footnotes

1. To those familiar with the traditional model of a congestible facility (e.g. Mohring (1970)),
the results from the bottleneck model must seem peculiar. One reason is that the traditional
model implicitly assumes that the congestion externality is the same for users who behave the
same way when using the congestible facility. The traditional model starts with a user cost
function for each group: ci' =¢(n!, ..., 0, 5), where n,l is the number of utilizations by type i
users during time interval t. It then assumes that if different types behave the same way
when using the facility, ¢; = ¢j(n} +... + nf, 5). Then total user costs during the interval are
T njc,(n', s), where nf = ¥ n!, so that vi= Zn: dc;(n', s)Y0n’ — the congestion externality is
alnonymous. This result sltcms from the asstlmpu'on that user cost in a time interval depends
only on the number of utilizations in that interval. Hence, it ignores the dynamic nature of
congestion -- that history matters, that past usage affects current congestion, as manifested by
a queue for example. Another difference between the traditional model and the bottleneck
model is the treatment of demand. In the traditional model, utilizations in different time
intervals are treated as different and imperfectly substitutable commodities, while in the
bottleneck and related models (dynamic, structural models of a congestible facility)
utilizations beginning at different times are treated as perfect substitutes with time-of-use
preferences being captured via user costs. According to the traditional model, with users
who behave the same way when using the facility, marginal cost pricing can be achieved with
an optimal time-varying toll but not generally otherwise, whether there is one or many user
types. We believe, as is argued in Amott, de Palma, and Lindsey (1993), that the dynamic
structural models of congestible facilities are superior, since they model explicitly the
congestion technology and time-of-use decisions, which enforces conceptual consistency.

2. Iftype i consumers begin utilizations only over some subinterval of [tg, t;], then Nj(-) may
have a kink at either the beginning or the end of the subinterval. In a Remark following the
proof of Proposition 4 in the Appendix, we show that allowing for kinks in the functions

Ni{-) does not affect our results.
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. x(1) can also be made to correspond to h(t); our reason for choosing d(t) will become clear
below.

In footnote 1, we discussed the traditional mode! of a congestible facility. That model
incorporates static congestion, but also assumes, in contrast to our specification, that
utilizations at different points in time are imperfect substitutes.

Henderson (1981) presents a model which combines static congestion with the
assumption that utilizations taken at different points in time are perfect substitutes in demand.
. Having capacity change at the same proportionate rate as output levels in the argument is
justified by the Envelope Theorem.

. When evaluated at the optimal capacity, dC/oN;(t;) is long run marginal cost.
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