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ABSTRACT

This paper develops asymptotic distribution theory for instrumental variable regression
when the partial correlation between the instruments and a single included endogenous variable
is weak, here modeled as local to zero. Asymptotic representations are provided for various
instrumental variable statistics, including the two-stage least squares (TSLS) and limited
information maximum likelihood (LIML) estimators and their t-statistics. The asymptotic
distributions are found to provide good approximations to sampling distributions with just 20
observations per instrument. Even in large samples, TSLS can be badly biased, but LIML is, in
many cases, approximately median unbiased. The theory suggests concrete quantitative
guidelines for applied work. These guidelines help to interpret Angrist and Krueger's (1991)
estimates of the returns to education: whereas TSLS estimates with many instruments approach
the OLS estimate of 6%, the more reliable LIML and TSLS estimates with fewer instruments fall

between 8% and 10%, with a typical confidence interval of (6%, 14%).
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1. Introduction

In empirical applications of instrumental variable techniques, very often the partial correlation
hetween the instruments and the included endogenous variable is low, that is, the instruments are
weak. Itis our impression that, in applications of two-stage least squares (TSLS), it is common
for the F-statistic, testing the hypothesis that the instruments do not enter the first-stage

regression, to take on a value less than 0.1

Unforwnately, standard asympiotic approximations to
the distributions of the main instrumentat variables statistics break down in this case. Recently
this has been highlighted for TSLS in quite different seitings by Nelson and Stariz (1990a,b) using
only a few observations and a single instrument and by Bound, Jacger and Baker (1993) t;sing up
to 180 instruments and over 300,000 observations. Both Nelson and Startz and Bound, Jaeger and
Raker find that the TSLS estimator is biased in the direction of the ordinary least squares (OLS)
estimator, and that the TSLS standard error is small rclative to the bias. While a large literature
on finite-sample distribution theory has tackled these departures from conventional asymptotics.
the ﬁnile:sample approach has several drawbacks which impede its use in practice, including the
assumption of Gaussian errors and fixed instruments, unwieldy expressions for distributions which
can be computationally intractable, and most importantly the failure to produce clear quantitative
guidelines which empirical researchers can follow.

This paper develops an alternative framework for analyzing the distributions of statistics
arising in instrumental variables regression in a single equation with a single endogenous variable
included as a regressor. Modern applications of instrumental variables techniques typically use
many chservations, so our approximations are asymptotic in the sample size N. Conventional
asymptotics, hoth first-order and higher-order such as Edgeworth expansions (see for example
Anderson and Sawa (1973, 1979) and for a review see Rothenberg (1984)), ucat the coefficient on
the instruments in the first stage equation as nonzero and fixed, an assumption which intplics that

the first-stage F statistic increases to infinity with the sample size. Not surprisingly, when this F



is small, these asymptotic approximations break down. Because our objective is to inform
infesence when the first-stage F-statistic is small, the asymptotics developed herc employ a device
which, loosely speaking, holds this F-statistic constant as the sample size increases. More
precisely, the coefficients on the instruments in the first-stage equation are modeled as being in a
N neighborhood of zero. We refer 1o this as the "nearly unidentified” case. Under this

2 random

assumption, the first-stage F statistic is asymptotically proportional to a noncentral x
variable.

These local-to-zero asymptotics are used to develop alternative asymptotic approximations to
the distribution of various statistics arising in instrumental variables regression, including the TSLS
and limited information maximum liketihood (LIML) estimators and their t-ratios; k-class
cstimators of the coefficients on the included exogenous variables; tesls of overidentifying
restrictions: and tests for endogeneity. Some of these distributions are closely related to ones
obtained in the finite-sample/Gaussian literature (see the review article by Phillips (1983) and, for
the exactly unidentified case, Phillips (1984, 1985)), but the results here hold under weaker
conditions and have simpler derivations and computalionsz. For example, the errors can be
martingale difference sequences and the instruments can be stochastic and merely predetermined,
in contrast to the assumptions of normal esrors and fixed instruments in the finite-sample
literature. The local-to-zero asymptotics bridge the exact (Gaussian) distribution theory and
fixed-parameter asymplotics, including as special cases both the usual normal asymptotics and the
nonstandard asymptotics obtained by Phillips’ (1989) and Choi and Phillips’ (1992) in the "partially
wlentified™ model, who treat the first-stage coefficients as fixed but permit some to be zero.

The paper has four main methodological conclusions. First, the resulting asympiotic
distributions are .very close to the finite-sample distributions, even with as few as 20 observations
in the extreme bimodal cases considered by Nelson and Startz (1990a) and Maddala and Jeong
{1992). Second, the nonnormal local-to-zero asymptotic distribution of the usual TSLS t-statislic
implies that conventionally constructed confidence intervals will fail to have the desired coverage

rates, even in farge samples. However, an alternative approach to the construction of confidence



intervals, based on a statistic proposed by Anderson and Rubin (1949), is asymptotically justified
for gencral error distributions. Third, LIML point estimates are found to be approximately
median-unbiased and LIML confidence intervals have approximately their nominal coverage rates,
cven for weak instruments. Fourth, the theoretical results suggest that key features of the
distributions, such as bias and coverage rates, can be summarized in a series of simple plots which
arc applicable to a wide range of models and number of instruments. These plots can be used to
provide concrete quantitative guidelines for empirical applications of instrumental variables
regressions.

We use these resulls to interpret Angrist and Krueger's (1991) important and innovative study
of the returns to education, in which they used the quarter of birth and its interactions with other
covariates as instruments for education In an earnings equation. Labor economists have long
hypothesized that OLS estimates of the returns to education are biased upward due to a positive
correlation between innate ability and years of education. Strikingly, Angrist and Krueger's TSLS
estimates suggested that OLS estimates are unblased or are biased slightly downward, perhaps due
to measurement error. However, in several of their specifications, the first-stage F statistic is less
than 5. The local-to-zero asymptotics suggests that the TSLS estimates and confidence inlervals
based on many instruments are unreliable, despite having more than 300,000 observations. In
particular the theory explains the observed movement of TSLS towards OLS as the number of
instruments increases. In contrast, LIML estimates and especially Anderson-Rubin (1949) (AR)
confidence intervals are arguably more reliable here. LIML and AR confidence intervals are
similar to the conventional TSLS confidence intervals when the first stage F is large and the
nuber of instruments is smatl, but for many instruments and low first-stage F's the LIML and
AR canfidence intervals are wider than the conventional but unreliable TSLS confidence intervals.
3ascd on our preferred statistics, we estimate returns to education which are higher, but
confidence intervals which are wider, than suggested by Angrist and Krueger.

The paper is orpanized as follows. The asymplotic framework is developed in section 2. where

asymptotic representations are presented for various statistics arising in instrumental variable



regression including TSLS and LIML. Monte Carlo experiments which check the quality of the
asymptotic approximation to the finite sample distributions are summarized in scction 3. Section 4
suggests guidelines for applying these resulls in empirical work. Angrist and Krucger's (1991)

Jdata are used in Scction 5 to study the returns to education. Scction 6 concludes.

2. Asymptotics with Weakly Correlated Instruments

A. The model, assumptions, and an example

In matrix notation, the mode} considered is,

2.0 y=Y8+Xy+u
2.2) YoZr+Xé+v

where y is the N x 1 vector of obscrvations on the endogenous variable in the equation of interest,
Y is the NX 1 vector of observations on the single included endogenous variable, X is the NxK,
matrix of K, exogenous regressors, Z is the NXK, martrix of K, instruments, v and u are each
NX 1 error lerms, and 8, v, . and ¢ are unknown parameters. The structural equation for y is
(2.1) and the reduced form equation for Y is (2.2). The errors (u;, v;) are assumed to be serially
uncotrelated and to be homoskedastic with covariance matrix {1, so that {1y | = o, Q=M =
LA and nn =0y Letp = auvr(ouuaw)"". Throughout, it is assumed that X; and Zi are
uncorrelated with u; and v;, where X; denotes the i-th observation on X, etc. With the sole
exception of the local power analysis of tests of overidentifying restrictions in section 2C, (2.1)
and (2.2) are assumed 1o hold throughoul.

We are interested in statistical inferences about 8 and y when the instrument Z is only weakly
related 10 Y. that is, when the F-statistic testing x =0 in (2.2) is smal) or moderate even though the

number of observations N might be large. If  is modeled as fixed, then this first-stage F statistic
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wends to infinity as N increases, suggesting that conventional fixed-x asymptotics is inappropriate
in the situation at hand. If, however, = is local to zero, this F statistic is Op(l). We therefore

assume,
Assumption L. x = 7 = N'V’g. where g is a fixed Ky X | vector.

Rather than make primitive assumptions on the errors and exogenous variables, we instead
assume moment conditions which they must satisfy. This permits the subsequent application of
the results in either time series or cross sectional seitings, where the primitive assumptions on the

variables typically differ. Let *= > " denole convergence in distribution.

Assumption M. The following limits hold joinuy:

(@ WuN, vuN, vviN) B (0, 0yy. 0y0):

(h) (X'XIN, X'ZIN, Z’Z/IN) B (B, Exz. Ez2):

© (Nx0u, N Bzu, Nx0e, N 20w = > (g, ¥y Yy Yo
where ¥ = (‘{'Xu'. \qu'. ‘va'. 'PZV')' is distributed N{0, N® L)
and £ = E(X;’ Zi')'()(i' Z).

These conditions hold under the standard assumptions in the literature on finite sample
distributions of IV estimators, namely X and Z fixed but having nonstochastic limits analogous to
assumption M(b). They also hold under much weaker assumptions, such as those found in time
series settings.  For example, if (Ui' vy is a homoskedastic vector martingale diffcrence sequence
with respect 1o the filtration based on l“j-l' Vi1 Xj. '1.]. j<i), if u; and v; have 4 moments, and
it X; and Z; are inteprated of order zero with four moments and satisfy additional weak
conditions limiting dependence, then (a) and (b) follow from the weak law of large numbers and
() follows from the central limit theorem for martingale difference sequences.

it o, is nonzero, then Y is endogenous and the OLS estimator of 8, aOLS‘ is inconsistent,

u
Le1 BBy denote the wrue valuc of B and le1 0 = o, /o, Then, under assumptions 1. and M.

5.



(2.3) BoLs ®Bp + 0.

Before turning to the general results, we illustrate the approach by sketching the asymplotics
{or the TSLS estimator BTSLS in the special case that there are RO CXORCNOUS TERTESSOTS in(2.1).

en Bygps = (98 ' (F'y) where €222 '2°Y. 50
24 Brsrs-Bo = N Ayznctzoy e tznr - Ay etz o iz,

By assumption M, N"Z'Z R Ep7 and (N'V’Z'u. N'V'Z‘v) => (¥, ¥7,). Applying assumptions
L,and Mo N'%Z'Y therefore yields,

2.5 NUZY = NP2 @edw) = N'ZDg + N2V => Bypp + ¥y,
I is useful to define,

-\ -1
16 (1) = Chz¥a Mg . T7a¥zMow
so that (z,,, z,)" is disiributed N(O,/® 1y ), where {l is the 2X2 matrix with ) =0yy=1 and
{t, =01y =0 and I, i8 the Ky XKy identity matrix. Define N = V%’Zgl\/ow. where V57 =

Lyz- I:ZXE.)'(XEXZ (in this example there are no X's so Vo7 = E77). Applying (2.5) to
12.4) and using the definition of X and (2.6) yields,

2N Brers-Bp = > (ouufon) TAHZY IO+  tz).

Thus aTSLS'ﬂo is asymptotically the ratio of quadratic forms in the Kz—dimtnsional jointty

normal random variables, z,, and zZ,



Because u and v are correlated the quadratic form in (2.7) does not have an elementary
inwerprewtion. 1t is therefore useful to rewrite 2, as its expectation given z,,, plus an independent
. [} . . .
residual, specilically, z, = ot + (]-pz) Aq, where » is an Kz-dlmensmnal standard normal random
. Ca e % . .
variable which is independent of z,,. Because plogfo, )" = oyv/oyy = 8, applying this

facwrizatiun to (2.7) yields the aliesnative asympiolic representation,
2.8 Drgrs- By => O+z, 2042, (N2} + {(h +2,V /(A +2,)' (A +2,))

where x=[(] -pz)auulawl'/’. Because E(nlzv) = (0, the bias of BTSLS is 05[()\+zV)'zvl(A+zv)'(A+zv)|.
Moreover, it is cvident that ﬁTSLS is not consistent but rather has the asymptolic mixture-of-

normals distribution, | N(00+m(zv),v(zv))dF(lv). where m(z,)) = 0{()\\+zv)'zvl()\+1.vi'()\+zv)}

and v(z,) = le()\ +1w)‘()\ +z2,).

B. Asympiotics for TSLS
We naw turn to a more precise statement of this sesult, extended to include excgenous
L genote the projection orthogonal 1o X, so y 1. Myy.

Y = MyYand 2t = MyZ where My = Iy - XXX X", and ter 91w P, 1YL where Py 2 =

regressurs X, Let the superscript

zi@zlz4 )"Z L. By standard projection arguments, nTSLS' its 1-statistic, tTgLs- and the

syuared standard error of the regression are,

(2.92) ﬂTSLS = (?""?l)'l(?l'yl)
(2.9b) sts = (0806, By - By
(.10 oy = (v-YBrsp 5 Xvpsy §(-YApgy s-Kipsp gHN-K 1)

=0tV g ety Y By 9NN -,

Let By denote the usual Wald statistic testing the juint significarce of the insttuments in the

first stage regression, that is. testing the hypothesis that x =0 against the alternative x 0. The nain



results on the fimiting distribution of the TSLS estimator and its refated statistics are given in

thearem 1.

Theorem !. Suppose that assumplions L and M hold. Then:

(@) Brgps - Bg = > Ovvy + xvglvy = B*,

(b) Guu = > "uulI‘gp("wl"uu)%ﬂ.+(°vv’°uum'2|‘

{c) Under the null hypothesis B = . Lyg) ¢ = > v4llv3|I-2p(owlouu)'ha°+(owlauu)ﬂ‘2|}v'. and
W) Fyy => vyiKy,

whete vy = (A+zv)'z.v. v = U\+zv)'n. vy = ()\+1v)'()\+zv). vy = (A+zv)'zu. 0 = o,y/9y

« = Loyl 10014, N = VEZeMas 2 = oz, + (1) P, and (2, 0') s a

N(O.szz) vector of candom variables.

Proofs are given in the appendix.

A comparison of theorem 1(a) and (2.8) reveals that the inclusion of exogenous variables in
(2.1) does not change the limiting distribution of Aygy g. and that in the general case Arg) ¢ has
the asymptotic mixture-of-normals disiribution given following (2.8).

The tepresentations in theorem | depend on only three unknown paramelers: A'MKq =
§'Vz28/(Kyo,,), where g is the local-to-zero parameter from the fisst stage regeession; the ratio
of the error variances, o, /o, . and p or equivatenily 8, which determines the magnitude of the
lmiting inconsistency of the OLS estimator. The parameter A’ has a simple interpretation: the
first stage F-statistic converges 1o a noncentral x|2(1. divided by the number of instruments K,,
with noncentrality parameter A'A. This noncentrality parameter is the asymplotic analog of the so-
called concentration parameter which appears in finite-sample treatments of the distribution of
Brsis’

In some cases, the disiributions do not depend on the raio o, /o, One important example
is the ratto of the TSLS bias to the OLS bias, which from theorem | has the limiting
representation, (aTSLS'nO)"’ = > ullu3 + p'l(l- 2)%v2h¢3. where the joint distribution of (vy, ¥,.



¥4) depends only on )\'AIKZ. K?_' and p. A second example is the TSLS t-statistic, which from
theorem 1(c) has the representation, sLs = > v4l(vall-2pf3‘+ﬁ'2]}%, where i* = p(vilva) +
(|-p2)%(v2/l13). the distribution of which also only depends on )\'MK:. K,, and p. Moreover, the
limiting distributions of mTSLS'ﬂO)m depends only on |p|, while the limiting distribution of
IrsLs IS symmetric in p.4 In particular, the limiting relative bias, Ef*/8, and the coverage rates
of symmelric two-sided confidence intervals based on 'TSLS depend only on |p}, A‘MKz. and Kz.
a simplification which shall be exploited in sections 3 - §.

A case of special interest is when the instruments are uncorrelated with the included
endogenous variable so N'A = 0, the so-called leading case. A direct calculation using theorem |

reveals that,

.11 PrsLs => fp + 0 + /K7,
2.12) trsLs = > 2y 2@, T 2000 oy ) 8% + (0l 18421}

where 'K, denotes a t distribution with K, degrees of freedom. These resulls were previously
obtained as exact results for the Gaussian/strictly exogenous regressor model by Phillips (1984,
1985}, and Phillips (1989) and Chol and Phillips (1992) showed that they hold asymptotically under
weak assumptions on the errors and instruments such as those here. (Phillips (1989) and Choi and
Phillips (1992) consider multiple included endogenous variables but their results are restricted to
the fixed-n case.) If Ky = [ then aTSLS has no moments asymptotically, although it does if K,
> 1. The distribution of bTSLS is centered around the probability limit of the OLS estimator, BO
+ 0. When the number of instruments is large, the normal approximation to the t distribution can
he used and ETSLS approximately has the distribution, N(B+6, nlez). Clearly, with many
irrelcvant instruments and/or |p| nearly one (so « is nearly zero) this distribution can be tightly
concentrated around ﬂ0+0.

IT N'AK9 = 0, tests based on tyg; ¢ can reject the true value B with high probability. To see

this, consider the extreme case of |p| = 1, Then z,=z, and p(awlouu)%ﬁ‘ = |, 50 from (2.12)



1TSLS is asymptotically the square oot of z,'z, (a sz random variable), divided hy 0 and
asympiatically the t statistic is infinite. For |p| meatly one, the t-statistic will be very large under
the null and typically will reject when tests are based an conventional critical valucs. Similar
problems occur for K, large even if |p] Is moderate. To see this, suppose Kz is sulﬁcicmly large
that "'K IK2 is neghgnb!c 0 ﬂ‘ = 0. Then (2.12) becomes, tygp g = > p(1-p ) /‘(zv zv)
(z, ‘Mz, zv) o p(l-p ) fl + tz. where ({'I. [,) are independent (xxz)f' and N(0.1) random
variables, respectively. Thus, for large K, the t-statistic will incorrectly reject @ = () with high
prabability.

Alternatively, consider the case that A‘)\IKI is large. Then from appendix lemma ALY,
PLQL NN = oy + OLON) + O (MK )!). When N'NK, is large enough for the

remainder terms to be negligible, the result in theorem 1(a) simplifies to,
(2.13) Brsis - Bo = > (Ouyfoyy) TNZINA = N(O, 0y oy W'N).

This is the usual fixed-x asymptotic normal approximation for ﬁTSLS' Similarly, for A'MK,
targe, the distribution of tyg) ¢ in theorem 1{c) is well approximated by a standard normal, the
usual result.

For intermediate values of the concentration parameter, BTSLS is biased with the magnitude
of the bias depending on 8, N'MKqy, Ko, and o, /0, Simitarly, tyors does not have a standard
1 or normal distribution. The nonstandard distribution for tpgp ¢ comes from two sources: the
nonstandard distribution of aTSLS and the nonstandard distribution of the estimator of the
variance, Gﬁu. This laticr contribution arlses because Apg g is not consistent for B but rather
has a limiting distribution, so aﬁu does not estimate a"zm consistently.

Unless N MK, is large, the nonstandard distribution of the t-statistic impedes the construction
of asymptotic confidence intervals in this problem. Because the t-statistic does not have an
asymptotic normal distribution, confidence intervals contructed as +1.96 standard errors will not in

general have a 95% coverage rate, even asymplotically. Rather, the limiting representation of
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irgLs indicates that the distribution depends on p in a complicated way, not just as a mean or
scale shift. Thus critical values for trsi.s depend on the null value being tested, so confidence
imervals must be constructed using confidence belis which depend on p. Worse, the distribution
of trgy g also depends on A'A/K, so that the confidence belts must be indexed by A'MK,.
However, N"MKj is not consistently estimable and is unknown In applications. Thus, without
resorling to conservative and cumbersome methods such as Scheffe or Bonferroni intervals, TSLS

does not provide a suitable statistic for the construction of asymptotic confidence intervals.

C. Tests of Overidentifying Restrictions and Endogeneity

Two tests commonly used in instrumental variables regression are tests of overidentifying
restrictions and the Durbin-Wu-Hausman (DWH) test for endogeneity. This section provides the
limiting behavior of these tests in the local-to-zero setting under the null and alternative
hypotheses.

We first consider two standard tests of overidentifying restrictions applicable if Ko> I NR2
from a regression of the residuals on the inswtﬁenls and exogenous variables, here denoted

5eg' and Basman'’s (1960) test, here denoted Fp,e- The two statistics are respectively,

2.14) Xreg = 0Pz L@'I/N)
(2.15) Fgas = {0'Pz LU/(Ky-D}(U'M7 LU/(N-K{-Ky))

where § = y1.yd Brsy g Is the residual from the second-stage regression. Because i depends
on aTSI.S' which in turn involves the errors v, even under normality these statistics do not have
exact xz or F distributions under the null. Relevant questions therefore are whether these tesis
have standard null distributions asymptotically in the nearly unidentified case, and what their
properties are when there is a small violation of the identification orthogonality restrictions.

The properties of these tests under small violations of the orthogonality conditions are
investigated by deriving their asymptotic representations under a local alternative in which (2.1)

fails to hold and instead the instruments weakly enter the equation of interest:



(2.16) y=Y0 +Xy+Zwtu, where w = wy = N"/‘d.

The limiling representation of the regression and Basman tests of overidentifying restrictions is

given in the next theorem.

Theorem 2. Suppose that assumptions L and M hold and that (2.1) is replaced by (2.16).
(a) BTSLS‘ﬁO => fiy, where By = B* + vi'()\-ﬁ-zv)"l%zdh/ow where 3* is
defined in theorem 1.

(v) Fpag=> Q(ﬂa)fﬂ(g-l). x%cg => QB and Fpas - x%cg/(Kz-l) R0, where
7! 2,4 A ' %
Q) = {l-2p(owlouu) b+(o,, 0,0 } [zu-(owlauu) ()\-Hv)bl lzu-(owlouu) (A +z,)b).

The 1wo tesls are asymptotically equivalent under the null and the local alternative. Under the
null, d=0 and 8§ = 8*. Inspection of the expression for Q reveals that for general A'MK,

neither the regression nor Basmann overidentifying tests have their standard x2

asymptotic null
distributions: aithough z,, is normally distributed, aTSLS is Op(l) which makes the asymptotic
Jdistribution nonstandard. However, the null distributions of the tests approach their standard
limits when A'A/K, s large. To see this, note that because d =0 the numerator of Q(B*) can be
writien a3 2,"My, 4 ; T Where My 45 = T, - M+ 2 A2 (A2 )] (42,0, When MVK Is
large, M), , = M), and 83 = 8* = 0, so the denominator of Q(B*) approaches one and Q(8¢)
- ' M)z, wh'ich has a "%2-! distribution since z,, is an K,-dimensional standard normal.

Under the local alternative, only the limiting distribution of aTSLS changes, namely aTSLS -
g => A3 The expression for the limit of aTSLS in theorem 2(a) elucidates the bias of the
TSLS estimator when there are small violations of the orthogonality restrictions. If M'A =

g'VgzBlo,, is large and g'Vgzdlo,, is small, then these small violations impart negligible bias
atthough they increase the spread of the distribution (because of the term z",V'ézd). in the



completcly unidentified case, the presence of nonzero d neither reduces nor increases the bias, but
it does increase the spread of the distribution.

We next turn to the behavior of the pWH test for endogeneity. There is a large literature on
this test, its computation and interpretation; see Davidson and MacKinnon (1993, ch. 7.9) for a
discussion and references. In the case at hand of a single included endogenous variable, the test

statistic is,

2.17) IDWH = (ﬂTSLs-ﬁOLs)f[\'ar(aTSLs)'Vsl(aow)l‘h

where Vs'mTSLS) and vSr(BOLS) are respectively the standard estimators of the variances of
ﬁTSLS and aOLS' The DWH statistic tests the null that p=0, that is, that Y is exogenous,
against the alternative that p %0,

The limiting representation of tpwi for general p obtains as & consequence of theorem 1(a)
and (b) and appendix femma A1(l). Under assumptions M and L, B, & & 65+6 and
var(Bop o) B 0, so bwH = (ﬂTSLs-ﬂo-G)Ivﬁr(ﬁTSLS)% + op(1). Thus,

(2.18) thwh = > (+2)'10-6D B 50N l301-20(0, 10, 28% + (0, fo,, 1852 .
Under the null hypothesis p=0, this simplifies to,
(2.19) n > byl P

. DWH Lo l»‘2 ‘l’s“‘l"(l’z,l‘a) " '
ITA'NK, is large, then vyfvy is approximately N(O, 1/A'A) and va/N'A = 1, 50 iy i
approximately N(0,1) under the nufl. In general, however, the null distribution of IDWH i
nonnormal and depends on N'NMK,. This is perhaps unsurprising in light of the nonnormality of

ﬁTSLS and its t-statistic and in any event implies that conventional critical values are

inappropriate for the DWH test unless NNK, is large.



The limit (2. 18) applies under nontocal alternatives p and thus can be used to obtain
asymptolic power functions of the test. Because tpyyy is Op(l) for general p, the test is not
consistent.  For general p and A'VK,, the power function based on (2.18) must be computed
numerically and this is not undertaken here. However, some intuition can be gained by examining
the leading case of A=0. Substituting A=0 into (2.18), one finds that for general o, tpwi =~
z.v'qll(zv'z.v)ll +(1V'U’lv'ly)2“%- This does not depend on p and is nonnormal. Thus, in the
leading case the DWH test has power equal 1o its size against all p, that is, the DWH test is
uninformative about endogeneity, but its size is not equal to its level if standard normal critical

values are used.

D. Asymptotics for alternative estimators and test statistics.

The twin problems of biased estimation and the invalidity of conventionally constructed
confidence intervals for TSLS suggest exploring allernative methods for inference. This
subscction explores two alternatives which might fruitfully be applied with weak instruments.

The first alternative concerns estimation. Various estimators of 8 with reduced bias have been
previously proposed; see for example Sawa (1973a, 1973b), Morimune (1978), and for a review,
see Phillips (1983, section 3.10). The asymptotic representation in theorem 1 suggests another
estimator which is a linear combination of the OLS and TSLS estimator. Inspection of the
timiting representation for 31‘81.8 indicates that the bias in the aTSLS estimator, conditional on
z,. is Ovy /vy, that is, the bias is proportional to the bias in the OLS estiniator. This suggests that
using a linear combination of the OLS and TSLS estimators might reduce bias. From (2.3) and

the expression in theorem 1(), we have,
2200 PrsLs- (yirpBoLs = (1-0vgig + xvpfhs + 0p(1) -

Rearranging (2.20) and defining By = 1/(1-vj/v3) yiclds,
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(2.2 GNﬁTSLS + (I-EN)aOLS = 00 + KG&'PZII’J + Op(”

Conditional on z,,, EG,{,' velvy = 0, so the right hand side of (2.21) has asymptotic mean .
Although v4/K9 = Fyy + 0 (I). vy is unobservable so (2.21) cannot be used as an estimator.

However, when Kz is farge and \ is fixed, '1"‘2 "7 zlez + Nz IKI al+o (Kz ) For

N"MKy moderate and K, large, the stochastic error in this approximation is likely to be small.

This sugpests the approximation, br H( - UFy), which leads to the modified estimator,
(2.22) B, = bybrsLs + (-bpBops. where by = Fyf(Fy - 1).

it FN > 1 then by > | and ﬂm is not a convex combination of TSLS and OLS but rather is further
{rom OLS than TSLS. This estimator has the advantage of involving only standard regression

autput. The limiting representation of ﬂm is readily ohtained from theorem 1:
(2.23) B - By = > 0lr-KM(r3Kg) + wiplley-Ky).

The presence of ¥4-K, in the denominator of the second term in (2.23), rather than vy as appears
in the limiting representation for 3TSLS' suggests that the variance of 3m will exceed that of
ﬁTSLS' particutarly for first-stage F statistics near 1. However, for large K, in this case the
representation (2.23) suggests that there will be a bias reduction. Numerical evaluation of (2.23)
is needed 10 ascertain whether the bias reduction offsets the variance Increase and yields a
reduction in mean squated error.

We next turn 1o the construction of asymptotically vatid confidence intervals. Anderson and

Rubin (1949) suggested testing the null hypothesis B = B using the statistic,

(224) ApBy =yt Logyrgrty -y LK )ity LY LogMgLiyt-y L ggIN-K K.
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It shoutd be cmphasized that it is maintained that 7 satisfies the instrument orthogonality
conditions, that is, w=0 in (2.16). 1 u;, v;) are i.i.d. N(O, () and Z is strictly exogenous, then
under the null AN(BO) has an exact FK:.N-K 1Kz distribution, which has a "iz(leZ limitas N
gets large. With nonnormal ervors and/or instruments which are valid but not sirictly exogenous,

\his result obtains asymptolically, as stated in theorem LY

Theorem 3. Supposc that assumptions L. and M hold.
(a) Uader the null hypothesis § = 00. AN(GO) =D xlz(lez.
(b) Under the fixed alternative hypothesis § = B, AN(BO) => Q(B;-8,VK;. where Q(¢) is

defined in theorem 2.

Theorem (a) shows that, as pointed out in the finite sample case by Anderson and Rubin
{1949) and discussed by Phillips (1983), confidence intervals can be constructed as the set of points
{Bg) for which Ap(Bg) fails to reject, using the asymptotic xﬁzll(z critical values. {In practice,
it might be desirable to use the more conservative FKz.N-K;-K: criticat values, so that the
resulting confidence set will have a somewhat higher coverage rate.) However, this raises
conceptual issues which are discussed in section 5.
Under the fixed aliernative, the AR statistic has a noncentral xl(all(z disiribution, To see
s, tet v = (5,404 0 HBg BB VI1-2oyylayy) PoBg:0) oy o, By B, so thatv is an
Kz-dlmensmnal standard normal variable. Then Q(Bo - I) w (u-2)'{v-a) which has a noncentral
“K distribution where a’a = {(uwlauu)(ﬂo ﬁl) Ill Z(uwluu“) p(Bo 8|)+(ow uu“"o
0l) 1(\'N) is the noncentrality parameler. Note thai Iu'nwu_a”_,wa a = A"\, s0 that the probability
of rejecting very distant alternatives depends not on the alternative or the sample size hut rather
only on N'A. An implication is that tests based on the AR statistic are not consistent. This
accords with the failure of ﬂTSLS {0 concentsate on a decreasing region.
When the number of instruments is large, the AR statistic involves projections onto a high-

dimensional subspace which could result in reduced power and thus wide confidence intervals (but
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see the Monte Carlo study of Maddala (1974)). One approach (o this problem is therefore to
construct a "split-sample” AR statistic, in which the projection is on a smaller subspace formed by

a linear combination estimated from the first-stage regression run using a separate suhsamples.

Let subscripts "1" and "2" denote terms or data from a first and second randomly chosen subsample
of sizes N and N,, respectively, where Nl +Ny=Nand N /N tends to a constant limit in (0.1).

The split-sample AR statistic is,

225 Ay, N,00) = (5 Y3R) Pylyg-Y3RgN Ky Hi(ys- Y380 Mtyd- Y38 (N, K | -K ).

where P?& = i’%(\-’%'?%)'l\-’%' and My& = l-P7&, where ?‘IL = Z‘ll';l

and ;I is the OLS estimator of x from the first subsample. If the deia are independently
distributed, then straightforward modifications of the proof of theorem 3a show that, conditional
on the first subsample, AN|,N2(BO) => xf under the null that 8=84: this limit does not depend
on first-subsample data and thus is the unconditional distribution as well. It follows that the
split-sample AR statistic (2.25) can be inverted to construct confidence intervals for 8 in the
same way as the AR statistic (2.24).

E. Asymprotic Distribution of LIML

The k-class estimator of the vector of parameters in the equation of interest, © = (8 4°)', is,
(2.26) Ok) = (W'(-kMz W) (W' (kM )y}

where W = (Y X)and Z* = (X Z). When k=1, this is of course the TSLS estimator. The LIML
estimator is given by (2.26) with k = kp vy, = 1 + §y, where fyy is the smallest root of |G - {C|
= 0, where G = V'(Pz4 - Py)V and C = V'Mz,V, where V = (y Y). By projection arguments,

the k-class estimator of @ and a standard formula for its t-statistic, t(k), are
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12.272) By = (¥ vy Y Ey Y b 1y )
(2.27h) (k) = (AR)-BIY L (-kMz 1Y+ 7Y

where 3, (k) = G(k)TkI(N-K -1}, where {(k) = yL-¥ 120, The LIML estimator,
By ML is Bikpypg) For k=1, k) = tygy g as defined in (2.9b). For LIML, the formula
(2.27b) can be justified using fixed-» asymptolics and is used in applications (For example, it is
implenicnied in TSP version 4.2 (Hall, Cummins and Schake (1992, p. 145-6)).

The limiting representation "mLiML' given in the next theorem, is ablained by expressing

kLIMLa.s kL'ML =2 |+rN,N' $0 “N - NfN.

Theorem 4. Suppose that assumptions L_ and M hold. Then:

(@ fy=> 1" where {* is the smallest root of |G* - 0] = 0, where G* = (2, N+ (7 (M+z))
and i is the 2% 2 matrin with i} =)y =1 and §) =1y =».

) Brime < Bp = > A*(F*), where A%(D) = (8 +avy0D)/(vy-1)

© LML= (V.;-pf‘)f!(vyf’)ll-In(dwfouu)%ﬁ‘(f’)+(owlvuum‘(f‘)zl}%-

where vy, vy, »3, and 4 are defined in theorem |.

The limiting marginal disuribution of {3y = N(ky gy, - 1) depends on only the nwmnber of
wstruments and A'MK,. To sce this, note thal the zeros of |G* - {11 are the same as the z¢ros of
|ﬁ'%0‘ﬁ""'-m. Now (z," z.,") is distributed N(O, ﬂQle)' 30 fl"/'(ru (A +z,))" has the same
distribution as {n (N+2,))’, where n and 2,, are independent N(0, IKz) random variables. It
follows that the distribution of {* is the distribution of the smallest eigenvalue of G* =
(2 (A +2,))'(3 (A+2,)). the distsibution of which depends only on A'MK;, and K,. Also, by
arguments similar 1o those given for TSLS following theorem 1, (B ypqp-Bg)0 and 1y ypqp, have
distributions which depend on only A'MK; and Ko, and p: the limiting distribution of (ﬁLlML'
)18 depends on |p|, while the limiting disribution of t) |4 is symmetric in . However, the
distribution of aLIML“’O depends on the ratio o, Jo, , as well,
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This represcntation provides a further approximation to BLIML when the number of
instruments is large. In this case, from the representation in the previous paragraph, G’IKZ
diag(l, 1+X\° MKZ) +0 (K2 ). so the minimum eigenvalue {* is approximately [*Ky =1 +

(K2 ) so{* = K2 Evidenly, for more than one instrument, the LIML and TSLS estimators
are not asymptotically equivalent in this setting, and the approximately linear dependence of {* on
K2 suggests that the divergence between LIML and TSLS increases with the number of
instruments, holding A'\ fixed.

The results in theorem 4 are readily extended to modified LIML estimators. As an example,
consider Fulter's (1977) estimator, which is given by A(kg) where kg = 1 + f- £/(N-K,-K,) =
| + fF'NIN. where fF.N = f)y - IN/(N-K I'KZ) {see the discussion in Morimune (1983)). For
fixed K| and Ky, this has the limit, { g = > {* - €, 50 Blkp)-Bg => A*(*-¢). Under
conventional asymptotic assumptions, this estimator with £ =1 is mean unbiased to order O(T'l).
However, these assumptions do not hold here, and it is an open question whether this estimator

improves upon LIML under the current assumptions,

F. Distribution of k-class estimator of the coefficients on exogenous variables

The coelficients y on the exagenous regressors are often of as great interest as 8. This
subsection provides an asymptotic representation of the k-class estimator of v, ¥(k), when k =
L +{/N, which specializes to representations for the TSLS and LIML estimators of ¥.

The case smudied here is when X enters the reduced form equation for Y weakly; specifically,

it is assumed that ¢ in (2.2) is local to zero:

Assumption Ly: & = ¢y = N'%f. where { is a fixed K | x| vector.
One motivation for this assumption is that if ¢ is fixed but = Is local to zero, then asymptotically

¢ and X are multicollinear and v is nearly underidentified. In the fixed-¢ case, the regressor

moment matrix is asymptotically singular and the identified and nearly unidentified linear
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combinations need 1o be treated separately, as done by Phillips (198Y) in the exacily
underidentified (x = 0) case. In contrast, letting ¢ be local to zero permits a single treatment of

the various lincar combinations,

The k-class estimator of y is, from the matrix inversion formula and (2.26),
(2.28) Ay = (XX - X'Y(Y'(I-RMZ.)Y]'IY'XI'|IX'y - X'YIY'(I-RMZ.)YI'IY'(l-kMz.)y}.
The asymptotic representation of (k) is given in the next theorem:
Thearem 5. Suppose that assumptions Ly L¢. and M hold, and that k = 1 +{/N. Then,

NAGH)y) => 03 B i xlaxy - Hezy + P19
where

H = Cluy +zy iz +27,) DD

J = € Ny 2 MDD

C = 1- (uy + 2y Ny 2xy) 10D

D = (uy tay,) iy +xy) + (hz 2z bz *2z))

nx = I R xExz8Mow * LY xMowy

nz = V7780w
and (zy,)' %y’ Zxy W) is distributed N(O, ﬁ@lx‘ +K2"

1 estimation is by TSLS, § = 0, while if estimation is by LIML, then { = > {*, the
representation of which is given in theorem 4(a). The limiting random variables z,, and z,, are the
same as in the previous subsections, so the representation in theorem 5 combined with the previous
results provides joint representations of ﬁTSLS' ;'TSLS' BLlML' and ';LIML'

Although the expression in theorem 5 is complicated, some general observations can be made.

Most importantly, under these assumptions both the TSLS and LIML estimators of vy are consistent
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but their asymptotic distributions are nonstandard. As in the previous subsections, write z, = pz,

1
+ (107"

distributed N(0, IZ(Kl +K2))' Then the representation in theorem 5 can be rewritten,

n and additionally let Zyy = PIxy + (l—pz)%‘nx, so that (zy,," z,” . m) s

145 a 1 -1 1 I -1
(2.29) NG => o} Exlaxy - Hzy + o15) + (1002072 T Exiny - Hu.

Because (7, "X) is independent of (zy. ZXV), N%(:}(k)--y) is, conditionally on (zv, Zyy )

. . 1
asymptotically normal with mean pol/f

(l-pz)ouu(E')I(X + E';?XHEJ)/%X’), so that unconditionally "fr(k) has an asymptotic mixed

uE'l)/(zX(sz - Hz,, + pJ¢) and variance

normal distribution. Phillips (1989) and Choi and Phillips (1992) obtained mixed normal limiting
distributions for %\’TSLS when the parameters are fixed rather than local-to-zero and when some
coefficients are exactly unidentified while others are identified; in our notation, this corresponds
to #=0 and ¢ fixed and nonzere. Their mixed normal distributions differ from that here,
however; in particular the distribution here depends on the local parameters f and g. This
dependence on the local parameters f and g poses a problem for inference: the distribution of v
depends on the extent to which both Z and X enter the reduced form equation for Y, and since
neither f nor g are consistently estimable, the distribution in theorem 5 cannot be consistently
estimated using sample statistics.

The representation in theorem 5 simplifies in some special cases. As an example, suppose g is
large. ThenC =1 - poX’/(,LLX’yX+yZ’ p7) which is nonrandom and % has the standard
asymptotic normal distribution found in the usual w#0, ¢#0 case. However, if f is large but g is
not, then C = I - pxciy Ty, which is singular and the limiting distribution in (2.29) is
degenerate, in particular is a mixture-of-normals distribution with a conditional covariance matrix
which has rank equat to K;-1. This corresponds to the case in which one linear combination of
X, namely X¢, is asymptotically perfectly multicollinear with ¥, so that the linear combination of

coefficients associated with X¢ is poorly estimated.
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3. Numerical Resulls

A. Monte Carlo Comparison of Asympiotic and Finite-Sample Distributions

Several Monte Carlo experiments were performed to examine the quality of the preceding
asymplotic approximations to the finite-sample distributions of aTSLS' TSLS BLIML' I ML
and Apn(fg). Two designs were considered. The first reflects time series applications where the
aumber of instruments is small and the instruments are stochastic. The second design is motivated
by cross-sectional applications with a large number of binary instruments as in Angrist and
Krueger (1991). The second design also uses nonnormal errors. In both designs, the data are
generated according to (2.1) and (2.2) with e, o,,=1and with X being a vector of ones, so that
the only included cxogenous variable is a constant.

In the first design the errors and instruments were drawn according to,
(3.1)  Designl: Z;iid. NGO, Ig,), (v, v Lid. NO, ).

Results are reported for Ky=1 and Kp=4 and, for each K,, for p=.5and p=.99.

In the second design,

(3.2)  Designlt: Z; = b, (u, v = &y, ok +(1-6) 28y, where (k. £;) are
i.i.d. and mutually independent with distribution (x3- V2.

where ’ji is an indicator variable if observation j is in cell i, where j = 1, .. .. Ky +1 and the
final cell was omitted. An equal number of observations were drawn from each cell (up to integer
constraints), 8o ¢ach cell has approximately N/(Ky +1) observations. Results are reported for Ky =4
and Ko =100 and, for each Ky, for p=.2 and p=.5.

In both designs, the true value of B is taken to be zero, which is done without loss of

generality by interpreting the results as pertaining to ﬂ-ﬂo. All results are hased on 20.000

.22 -



Monte Carlo replications. The asymptotic distributions were computed using 20,000 draws of the
random varlates appearing in the limiling representations in theorems | and 46

The results for the first design are summarized in figures | - 3 and tables | - 5. In the just-
identified (l(z== 1) case in which LIML and TSLS are equivalent, the asymptotic and finite-sample
pdf’s of Bpgy g. computed using a kernel density estimator (Gaussian kernel), are plotted in
figure t for p=.5 and p=.99, In each case for NMKy=.25 and 1.0, for a sample size of 20, The
case p = .99 and \'NK4=.25 is close to one of the cases examined by Jeong and Maddala (1992)
(they used Ky =1, N=20, p=.99, and A'NKy=.2), and the pdf's in figure 1(c) exhibit the same
bimodality as theirs. As the concentration parameter increases, the upper mode gets smaller and
moves to the right, and for smaller correlations it disappears. In each of the cases examined, the
asymptotic distribution provides a good approximation (o the finite-sample distributions: the
asymptotic distributions are bimodal when the finite sample distributions are, and often the
differences between the two distributions are almost indistinguishable at the level of detail of the
plot.

The approximation continues to be good for the case of 4 instruments and 80 observations (20
ohservations/instrument) plotted in figure 2 for TSLS and in figure 3 for LIML. When N'NK, +
0. the 1.IML distribution is better centered (LIML is approximately median unbjased) but is more
dispersed than TSLS. This feature of LIML has been noted in the finite-sample literature (c.g.
Anderson (1982) and Mariano (1982)). The asymptotic distribution continues to be bimodal for
£.IML, but not TSLS in the overidentified case with p= .99,

Quantitative compatisons of the asymptotic and finite-sample distributions for this design are
given in tables 1 and 2 for Brgp g and tygy g and tables 3 and 4 for By gy and by gy .
respectively. The entries are the finite-sample cdf, evaluated at selected quantites of the
asymptotic distribution. In addition to the cases in figures | - 3, the tables report results for
smaller sample sizes and other values of A'NK4. The results indicate that even for as fewas S
observations per instrument the asymptotic theory provides a good approximation to the sampling

distribution for BTSLS and aLIML: the maximum absolute difference between the asymptotic
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cdf and the finite-sample cdf at the evalution points in tables § and 3 is . 11 for N/Ky =35, and is
.03 for N/K5=20. The asymplolic approximations to the distribution of the t-statistic for TSLS
and LIML are typically less good for N/Ky=3, but are typically within .02 for N/K, =20.

Table 5 summarizes Monte Carlo coverage rates for conventional 95% TSLS and LIML
confidence intervals, constructed as the estimate + 1.96 standard errors. When A'MK, is small or
when p is near one, the t-stalistic has a skewed and heavy-tailed distribution, and the standard
confidence intervals have coverage rates which can differ substantially from their purported levels,
confirming the results of Nelson and Startz (§992b). For example, whenp = .99, )\'MK2 = 0, and
Ky = 4, only 1% of conventional *9$%" TSLS confidence intervals contain the true value of 8.
LIML confidence intervals have much better coverage rates than TSLS confidence intervals for the
cases with Ky=4 and N'NMKq # 0. Although when MNK, is small confidence intervals based on
the TSLS or LIML t-statistic have incorrect coverage rates, both in finite samples and
asymptotically (in the sense of section 2) the AR statistic has an exact FK;.N-K:-I distribution in
this design. Thus confidence intervals formed by inverting the AR statistic will have coverage
rates equal to the stated confidence tevel both in finite samples and asymp!oncally In the
simulations here, AR confidence intervals are constructed using the asymptotic "Kz’KZ

distribution of AN(GD) gather than its exact F distribution, so the actual coverage rates are less
than 95%.

Results for design 1§ are summarized in figures 4-TforKy = 100 and N/K = 20, and in
tables 6 - 10 for additional values of K4, N/K,, and N'MK4. Asin design 1, the asymptotic
approximations to the distribution of the estimators is good, both capturing the qualitative features
of the pdf (figures 4 and 6) and having quantiles which ate close to the finite-sample quantiles
(1ables 6 and 8). As the theoretical expressions suggest, the finite-sampte distributions and their
asymptolic approximations concentrate near the probability limit of the OLS estimator for A'NK,
small, As N'NKq increases, the distribution of aTSLS moves towards its true value, 0. As
found in design 1, when A'MKq # 0 the distribution of the LIML estimator is more centrally

located around its true value than is TSLS.
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As in design 1, the local-to-zero asymptotics also provide good approximations to the pdf
(figures 5 and 7) and quantiles (tables 7 and 9) of the t-statistics, at least for NIKz = 20. The
extent of the nonnormality of the distribution of tygy g is evident in figure 5 for A'MK, ranging
hetween 0 and 10, with Ko=100 and p=.5: the distribution is shifted and stightly skewed, even for
NMK9=10. Not surprisingly, this bias and nonnormality results in poor coverage rates for
conventional TSLS “95%" confidence intervals, as documented in table 10. For example, with
K,=100, N'NMKy=.25, and p=_5, the coverage rate of the usual confidence interval is zero. In
contrast, the distribution of YLIML is typically more centered around zero and conventional LIML
"95%" confidence intervals have better coverage rates than TSLS (table 10), even though LML
clearly can have a nonnormal distribution (figure 7). In this design, because the errors are drawn

from a xz

distribution the AR statistic does not have an exact F distribution but has an asymptotic
xlz(z as shown in theotem 3. Nonetheless, in contrast to the conventional confidence intervals,
confidence intervals constructed by inverting the AR statistic have coverage rates which are close
(o their asymptotic coverage level.

These resu.lts suggest that the asymptotic resulls in section 2 provide a good approximation to
the finite-sample disteibutions in cases of interest, even with very few observations per
instrument. As the number of observations per instrument increases, the quality of the
approximation improves. In particular, the asymplotics provide good approximations to the cases
highlighted by Nelson and Startz (1990a,b) and deliver the same qualitative implications. The
asymptotics provide a good approximation to the many-instrument case studied with N°MK, =0 by

Bound, Jacger and Baker (1993), and more generally for positive values of A'AK4 as well.

B. Quantitative Summaries of the Asymptotic Distributions

Figures 8 - 11 plot summary measures of the asymptotic TSLS and LIML distributions and
constitute the main numerical results of the paper. Figure 8 plots the ratio of the asymptotic
TSLS bias 1o the OLS bias, E*/6, for values of K, ranging from 2 (0 100 and values of A'MK,
ranging from 0 10 20. Figure 9 plots the-coverage rates for TSLS 95% confidence intervals. (The
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case Ky=1is dropped from figure 8, but not figures 9-11, because aTSLS has no fiest moment
tor Ky=1.) The ratio of the median LIML bias to the OLS bias, median(A*({*)/0), and the
«overage rates of canventional 95% LIML confidence intervals are respectively shown in figures 10
and 11. As discussed following theorems 1 and 4, these summary measures depend only on |p},
MNK,, and Ky Each figure includes separate graphs (or 1ol =.2, {o] =.5. lo} =.75 and |p} =.9%.

From figure 8 it is apparent that the relative bias of TSLS is targely a function of N'AMK,. A
useful tule of thumb, refated to the modified estimator proposed in equation (2.22), is that the
satio of the TSLS bias to the OLS bias is approximately 1/(1+NNKjp). Thus for N'MK, = 4,
roughly 20% of the OLS bias remains. It is also apparent from figure 10 that LIML is
approximately median unbiased for nearly all cases in which A'NK, = 5. Anderson (1982) and
others have noted this feature of LIML in the Gaussian/fixed instrument case through numerical
evaluation of finite-sampte distributions. The ability of LIML to produce median-unbiased
estimates even with very weak instruments (M'NK, 2 .S) contrasts sharply with TSLS.

Coverage rates for TSLS confidence intervals are more sensitive 10 K, and || as can be seen
from figure 9. In patticular, coverage rates generally fall as K, increases ot N WK, decreases.
and the rate at which the coverage rates fall increase with |p|. For example, when |p| =.2, coverage
gates are near 95% for all K2 once )\'NKZ is greater than 10. In contrast, when |p| =.99, coverage
rates approach 95% only for combinations of relatively large M'AMKy and small K. Thus the
TSLS coverage rate is quite sensilive to the parameters of the mode! and Jow coverage raies Can
persist even when MWK, is large. Coverage rates for LIML confidence intervals are much less
sensitive than TSLS to K4 and [p] (figure 11) and in an absolute sense the coverage rates can be
considered fairly good: for | < K, < 100, NNK, 21, and {o] = .2..5,.75, and .99, e asymplolic
coverage rates lie between 81.4% and 99.8%. For A'NMKq 210, the asyinptolic coverage rates lie
between 94.5% and 98%.

These results suggest five conclusions. First, the asymptotics of section 2 provide good
approximations to the sampling distributions of the LIML and TSLS estimators and their t-

statistics in a wide range of designs, which suggests that useful lessons far praciice can be based

=26 -



on these asymptotic distributions. Second, TSLS can exhibit large relative bias, which is well
approximated by (1 +)\‘MK2)'|. Third, coverage rates of TSLS confidence intervals deteriorate
dramatically as A'AK, decreases, especially for K, or |p| large. Fourth, LIML is approximately
median unbiased, even for A'A/Ky as small as .5. Fifth, coverage rates of LIML confidence

intervals are reasonably accurate and deteriorate seriously only for }.')\IKZ <1t

4. Use of the Results in Emplrical Applications

This work leads to some concrete quantitative guidelines for applications of instrumental
variable regression with a single dependent varlable in samples of the size typically found in
modern econometric research, say with at least 20 observations per instrument. As discussed
following theorems ! and 4, the asymptotic distributions of the relative errot of the TSLS and
LIML estimators (respectively (aTSLS'ﬁO)m and (BLIML’BO)IB) and of trgp g and 4 g
dcpend on only three parameters: the number of instruments Ky, A'MKo, and the corsetation p.
In a given application K, is of course known but to apply the distribution theory and figures 8 -
11 requires estimates of A'NKz and p.

Empirical evidence on A'NKz can be obtained from the F-statistic (F)y) from the first stage
regression, testing the hypothesis that the coefficients on the instruments are zero. From theorem
1(d), Fyy-1 is an asymptotically unbiased estimator of A’A/K,. The researcher could go further
and construct a confidence interval for A'A/K, by inverting the asymptotic noncentral x;2(2
distribution of K2FN' This might be warranted if K4 is small (so the spread of the distribution
of Fy is large) or if the figures suggest that conclusions about bias and coverage rate are sensilive
to small changes in A’MK, in the case at hand.

The correlation p is of course unknown but we suspect that, in many applications, a "ballpark”
cstimate of p can be obtained which will be suitable for applying the asymptotics. Hypothetical
values of p can be deduced from aOLS and various hypothetical values of 3. Because BOLS";()
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[
Bo= Tyy/Oyyr P = plim(aow-ﬁo)(awlauu)/’ = e(awlauu)%. The reduced-form ecror variance

0, is consistently estimated by SW. the squared standard error of the first stage regression.
Given By, o, is estimated consistently by the standard error of the regression of y-YB, on X.
This permits estimation of p as a function of fg- Of course, By is the main object of interest and
is unknown, so this procedure does not provide an estimator of p in the usual sense; rather, the
hypothetical values of B typicatly will rely on a-priori economic reasoning. However, the
purpose here is only lo ascertain whether the standard distributions are reliable rather than to
estimate p consistently. This argues for using a range of 8¢ and thus a range of p 1o reach
canclusions about disteibutions in the problem at hand.

Given K, and these estimates of p and AWK, the hias and coverage rates of the various
LIML and TSLS statistics can be deduced by inspection of figures 8 - 11 or by simulation of the
selevant limiting representations in section 2. If NNMK4 is sufficiently large, both TSLS and
LIML bias and coverage rates might be judged satisfactory and inference can proceed in the
conventional way. In other cases, TSLS inference might be unreliable but the figures will suggest
that the LIML estimator and confidence intervals are more reliable; the figures indicate that, for
MMKy 2 Sand 2 < Ip] < .99, LIML is approximately median unbiased and conventional 95%
LIML confidence intervals have coverage rates of at least 90%. In the event that both TSLS and
LIML estimators and confidence intervals have unacceplable bias and coverage rates, a
theoretically valid alternative is (o construct Anderson-Rubin (1949) confidence intervals, perhaps

using the split-sample approach discussed in section 2D.

5. Applicatlon to the Returns to Educatlion
This section interprets Angrist and Krueger's (1991) estimates of the returns to education in

light of the foregoing distribution theory. The analysis builds on Angrist and Krueger's insight

that the quarter of birth, and quarter of birth interacted with other covariates, can Serve as
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instruments for education in an earnings equation. Quarter of birth may be a useful instrument,
they reasoned, because it is randomly distributed across the population, yel affects educational
attainment through a combination of the age at which a person begins school and the compulsory
schooling laws in a person’s state. However, in many cases their first-stage F-statistics are low,
raising the possibility that inference based on standard asymptotics might be unreliable here.

We use Angrist and Krueger's (1991) data, which is drawn from the 5% Public Use Micro
Sample of the 1980 U.S. Census. For detalls of construction, see Appendix 1 of Angrist and
Krueger (l99l).7 The sample includes men born between 1930 and 1949 with positive carnings in
1979 and no missing data on any of the relevant variables, As in Angrist and Krueger, the sample

is split into two ten year birth cohorts.

A. Results and General Discussion

Regression results are reported in table 11. The top panel contains results for men born in
1930-39, and thc bottom panel contains results for the 1940-49 cohort. The first rows of each
pane! contain the results of estimating the effect of education on log weekly earnings by OLS and
TSLS in four basic specifications. All specifications use dummy variables to contro! for race,
SMSA, marital status, region, and year of birth. We further control for age (measured in quarter
years) and agc2 in column three, and for state of birth in column four, Three quarter-of-birth
dummies are used as instruments in column onpe. Columns two and three add (quarter-of-
birth) X (year-of-birth) interactions to the instrument list (27 additional instruments), for a total of
30 instruments in column 2 and 28 instruments in column 3 (due to the inclusion of age and
agcz). Finally, column four adds (quarter-of-birth) X (state-of-birth) interactions to the instrument
list, for a total of 178 instruments.

The asympiotic results help to interpret several features of table 1. Consistent with the
theoretical predictions, as the first-stage F falls and the number of instruments increases
{specifications 11, U1l, and 1V), the TSLS point estimates move towards the OLS point estimates and
the TSLS standard errors (spuriously) decrease. For the 1930-39 cohort, the LIML and the
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combined OLS-TSLS estimates are fairly stable across specifications I, 1 and IV, ranging from
084 to .102, and the estimates do not approach the OLS estimate as more instruments are added
and Fy falls. The differences between the AR and LIML confidence intervals and those from
TSLS are striking. When the first-stage F is large, as for specification 1, the LIML and AR
confidence intervals coincide closely with the usual asymptotic confidence interval from TSLS.
However for the specifications in which the first-stage FF is small (specifications 1§ - V), the
LIML and especially the AR and split-sample AR confidence intervals are naticably larger than
those given by TSLS.

The second panel of Table 11 contains estimation results for the 1940-49 cohost.  Although the
TSLS estimates are Jess stable across specifications for this cohort, they also approach the OLS
estimate as the first-stage F falls, The LIML and combined OLS-TSLS estimator are also less
stable. LIML confidence intervals remain larger than TSLS intervals. AR confidence intervals
are null for specifications I, 11 and 11, that is, there is no 3 that yields an AN(ﬂ) statistic which
lies below the 95% critical value, This arises because the AR statistic also tests, and in this case
rejects, the over-identifying restrictions. Basmann's (1960) test of the overidentifying restrictions,
reported in the last row of each panel of Table 2, also rejects at the 5% level for these
specifications in the 1940-49 cohort. (Note however that the Basmann test rejections, except
perhaps for specification I, must be interpreted cautiously in light of theorem 2 and the
subsequent discussion.) In contrast, the split-sample AR confidence intervals, which do not test
the overidentifying restrictions, are nonempty and substantially larger than the TSLS confidence
intervals for specifications 1§, 11l and IV, These results point to the instruments being invalid for
this cohort.

This suggests that care must be taken in interpreting AR confidence intervals. These
confidence intervals are the set of § for which neither B = Bg nor the overidentifying restrictions
ate rejected. If the overidentifying restrictions are false, then spuriously short (or empty)
confidence intervals on @ arise, in the sense that their shormess arises not from precision in

estimation of 8 but from the rejection of the overidentifying restrictions. To illustrate these
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issues, AN(B) is plotted as a function of @ for each of the specifications given in Table L1 in

figure 12 for the 1930-39 cohort and in figure 13 for the 1940-49 cohort; 95% critical values are
marked with dotted lines in each figure. Note that only for specification | is Ay (0) tightly
concentrated. For the other specifications Ap(B) is less concentrated about its minimum, and
flattens out dramatically away from the minimum. Because Ap(f) is a ratio of quadratics in Bg. it
always has a maximum and asymptotes as § -+ 1 oo, This raises the possibility of disjoint conflidence
sets, which we found in Monte Carlo simulations but not in this empirical application.

Figure 13 lllustrates the problems with the AR confidence intervals when the model is poorly
specified. In specifications [, Il and 111, failure of the overidentifying restrictions increases Ap(8)
to the point where it always lies above the critical value. Thus we can reject the joint hypothesis
that 8 = B, and the overidentifying restrictions hold. This leads to empty confidence intervals,
that is, there is no value of @ for which the joint hypothesis is not rejected. Were a confidence
level more nearly equal to unity used, the AR intervals could be nonempty and tight. However,
this would be misleading, since the tightess of the AR intervals in this case, and their emptiness
at the 95% confidence level in fact reflects the rejection of one or more of the overidentifying

restrictions.

B. Choice of Preferred Specification

The steategy of section 4 is now used to suggest which of the results in table 11 are most
reliable. This entails making an educated guess about p (or a range of p), estimating A"NK,, and
then using figures 8 - 11 to ascertain which if any of the various statistics are to be preferred.
The rejection of the overidentifying restrictions and null AR confidence intervals for the 1940-49
cohort teads us to focus on the results for the 1930-39 cohort,

The valuc p=-.2 was chosen as a plausible value and was computed as follows. Recall thatp =
O(owluuu)% . In specification | of tabte 11, the effect of a year of education on earnings is
estimated as .063 (OLS) and .099 (TSLS). Taking the TSLS estimate as the true value, we have

#==-.036. Combining this with the standard error of the first stage regression (3'¢V=3. 18) and
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of the second stage regression (G’fuu .63) produces an estimate of p=-.2. A more cxiyeme
_assumption is that the true coefficient is .15; this would yield a value of p=-.5. Qur conclusions

ahout the teliability or unreliability of the estimators or \-statistics, and about the choice of

preferred specification, are insensitive (o the use of p=-.5. Alternatively, economic reasoning

about omitted variable bias (innate ability is unohserved and omitted hut is positively corrclated

with bath education and carnings) suggests that 0>0 and thus p> 0. Necausep=.2and p= .5

correspond approximately to 8 = 03 and g = -.03 and because figures B-11 depend only on a1,

the analysis here applies equally for these small or even negative values of 5.

In specification I, FN-:!O.S; according to figures 8 - 11 with KZ-J. )\'MK2=29.S and |o|=.20r
|p] =.5. both TSLS and LIML are effectively unbiased and their confidence intervals have coverage
rates close to 95%. In specification 11, for K, =10, AMK4=3.7, and |p] =.2 the LIML estimate is
median unbiased, the TSLS blas is approximately 20% of the OLS bias and coverage rates for
1SLS and LIML confidence intervals are 92% and 93% for Jp| =.2, but less for TSLS if lp|=.5. We
therefore rely on the LIML or AR results in specification 11 and pul less weight on the TSLS
results. In specification 1), for Ky =28, N'NVKy=.6, and |p| =.2, LIML remains approximately
median unbiased, the TSLS bias grows to 63% of the OLS bias, and coverage rates of TSLS and
LIML confidence intervals fall to 85% and 86%, although these coverage rates fall off sharply as
NNK, drops and smaller vatues of N'NK, are also consistent with the obsesved F of 1.6. Here,
both TSLS and LIML confidence intervals are unreliable and AR intervals are preferred. Finally,
for specification IV, with Ko=178, MNMKy=.9, and |} =.2, we use the case in figures 8-11 with
Kp= 100. Here, LIML is median unbiased, TSLS bias Is 50% of the OLS bias, and coverage raies
for TSLS and LIML are 70% and 85%. Again TSLS is unreliable but LIML Is arguably
satisfactorily behaved, albeit with a confidence interval which is somewhal too tight. In
specifications 11, 11§ and 1V, values of |p] = .5 would accentuate the preference of AR over LIML
and especially LIML over TSLS.

Using the estimators supported by the asymplotics, our estimates of the refusns (0 cducation

are reasonably siable across specifications, ranging from .084 to .010, with the exceplion of
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specification 11 in which the LIML estimator is very imprecise and TSLS is arguably badly
biased. Among the AR confidence intervals, the tightest occurs in specification [ with 3
instruments and is (.05, .15). Among those TSLS and LIML confidence intervals that we suspect
to have at least 90% coverage rates, the tightest occurs for LIML in specification Il with 30
instruments and is (.05, .12). Overall, this analysis confirms the main conclusion of Angrist and
Krueger that OLS estimates are if anything biased downward. While our prefersed point estimates
of the returns to education are higher than theirs, our confidence intervals are wider than their

unreliable TSLS intervals.

6. Conclusions

Tt approach developed in this paper reduces the analysis of distributions of instrumental
\ esiales statistics (o a straightforward calcutation followed by Monte Carlo simulation of the
honting representations, which involve few nuisance paramelers and low (Kz) dimensional random
varnables. The resulling approximations seem to work well in moderately large sample sizes, say
20 observations per instrument. The numerical results confirm conclusions from the finite-sample
literature such as those summarized by Mariano (1982), In particular the dependence of the bias of
TSLS on the first-stage F and the relatively lower bias of LIML, and extend them to nonGaussian
errors with stochastic instruments. Moreover, the results demonstrate that, because of the
nonstandard distribution of the TSLS estimator, many statistics involving this estimator, such as
the Basman test of overidentifying restrictions and the DWH test for endogeneity, have large-

2 approximations.

sample null distributions which differ from their conventional normal or x
Whien the first stage F is small, not just the point estimates but almost all the siatistics

conventionally uscd in instrumental variables analysis have distributions which are suspect.
However, figures 8 - 11 can be used in practice to ascertain when these problems are likely to

arise.
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Although the applications discussed here involve a single included endogenous variable, the
approach can be extended (o multiple included endogenous variables. The split-sample AR
intervals (2.25) might result in shorter intervals than the fuli-sample AR intervals (2.24), but the
cxtent to which gains arc possible in the local-to-zero seiting has not been investigated here.
Finally, the joint asymptotic distribution of (say) (Fyy. trsps) depends only on (A'NK,, ). given
Kot this raises the possibility of constructing hounds-type intervals for p either by Scheffe or
Nonferroni methids,  In any event, while this paper has suggesiedd guidelines for recoguizing when
comventinnal inference might he misteading, the hest allernative cconmetric strategy in thal

circnmstance remains unresolved. These and related issues are the topic of ongoing rescarch.
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Appendix

I Before proving theorems 1 and 2, we state and prove a lemma which collects various results about

sample moments. Recall hatZt = MyZ, ¥4 = MyY etc.,and €4 = p, 1yt

Lemma Al. Suppose that (2.1), (2.2), and assumptions L' and M hold. Then the following hold
jointly:

(2) uwlud/NR %

® YlulNBg

(©) vl Rew

@ 2tz INB Ly, DpyThEyg = Vzz

@) (21 ziyRatuty «> o 2

0 @t ziyhzt vty es o,

@ @zttt => ol sy

M 2wt = > o0 ) PNy,

M L1 = o (N2 (N4r) = oy vg.

where (zv' zu')' is distributed N{Q, i}®le). where {1 is defined following (2.6).

Proof. Al limits in this proof iovoke assumption M and those involving x invoke assumption L.
@ ol ub N = WU N N = wuN o) By,

() YL ul /N = Y'MyuiN = 22 MyuiN + vMyuiN = viuiN + op(t) B oy,
@ YEYi N e ezt 2l oiN 4 202 v N 4 v v N, Now w7t 21 /N B 0. Also, because

a0 X'NRO and ZvINBO, a2L vL/N = 2 [ZwIN - @ XN XNy (X vin) B 0 and
vbvimNB, oyl viinE,,,
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(d) This follows directy [rom assumption M.

(e) (D Let

(A.12) 2, =0 AV B 2007y - Eaxl o )
(A.10) 2, = 08V B 200z, - E2xE oY xo)
(A.10) n = (-2 Ay - p2y)

where VZZ =Lgz* ’:ZXE-)l(XxXZ' Because (\PZU' "Xu. \ ‘i!x",‘)' - N(0, N@EL), direc
calculation confirms that (z,,, z;) * N(O, ﬁ®|Kz)‘ Now,

Nz m NAZ0 - @ XNOC N B0 = > ¥, - By Rt
NBzL L w B2y - @XMy N A0 = > ¥, - 7o xy-
$0
.l. ] l ‘% "A l ] 1. ‘.h 'l %
(Z7'Z- M) ' (N“Z 'u")=> v zz("zu'ﬂzxxxx"xu) - Guulu
. R , ) . )
@bzt My A Az vty = > Vgvg, - TzxE Ve = Tviiy

(g) Seth = VY g/0"3 . Then by result (f) of this lemma,

[
=> V’zszg + o":,'vzv - a'ev()wzv).

(h) Resulis (¢) and (g) above yicld,
?-L |u.l- = (Y .L vz.l. “zl lzl)'l(z-l. lu.l-) - > (vaﬂuu)%(k"‘lv)'lu-

(i) Result (g) above yields,

.36 -



glogt vt zhyztztyl@t vty => o, Mz 0tz ) =0y O

Proof of theotem |

(3) From the definition umTSLS- ‘GTSLS -IJO = (Y 1.9d )"(? Lyt ). By lemma Al Lt as

(0gyoyy) T+ 2Ny Letn be as defined in (A.Lc). Then,

Prsts - Po = > Guulou) ¥z, lozy + (-01) oty
= Ovlhr] + xvzlv:‘

since ploy,fo,)" = Guyltyy = 00 [ayLo2Vay 1 =

(b) Consider 3,,,,/0,,,. From lemma Al and part (a) of this theorem, we have:

"

Sufue = 0 Y g Y L By HNK Doy,

= (ud ¥ L Brg s Bglut-Y L Bys s BPNN-K oy,

e tul s 20t v g ey + YV By s B VINK Dy,
m > (0, - 20,,6° + owﬂ'z)lauu = |- 2p(awlouu)%ﬁ’ + (awlauu)ﬂ’z.

(€) Rewrite brgp g 10 (2.9 38 g1 s = Guyfoyy) HBpsysAgHay, /T '8 )" ). From temma
Al ? 1.9 1. Tyy¥3. SO from part (a) of this theorem, we have

! R
(a'rsl__s-ﬂ(})l(ﬂuul9 . .?l)h = (auu'law) /1(9"”’3 + nvz.’vj)lv':/,’
[} ) ) [}
= pvllvg' + (l-pz)/'vzlvg - v4lv§‘.

Combining this expression with the limit of suu""uu in part (b) yields the result in the theorem.
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(d) The Wald, LM and LR statistics are asymptotically equivalent under the local alternative L.
Consider the LM snistic, Fyy = {§4° 8L /KoY LY LIN-K ). The result stated in the theorem
follows directly from lemma Al {c) and (i). W]

oretn 2

(a) Under the local alternative (2.16),
Drsisfp = B Lo iy @tuy+ @t ety etz

From theorem 1(a), (¥ o )'l(? 1y J') => f§*. From Lemma Al(d), (g). and (i),
@iyttt ozly o> vtz V08 vp). Ths,

BrsisBp => B° + 43z Viqdie], = 0y

(b) Consider i'P Lii. Now i = yt . - comud oY Brg B so
G'leﬁ = “Zl ozl )"A(zl uul ) y %‘zl 'Yl)m’rsw'ﬁ)r
b ziyztudy .o ety g ).

Applying lemma Al{e) and (g) and part (a) of this theorem yu his,

A'P ~ 1h ' I/l

WPz Lu=>oy,lz;- ("w!"uu) A+, 0881 {2, - (oyytoy,) (A +2,)88).
Nexi consider 0'0/N:

SN = ot ud N 20t Y LN B + (YA Y NPy 50

=> oy - 20,88 + °wf3&2-
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O
Xpeg = UMz LI GIN)
. !
= > (o020, 3 ""waaz) l"uu('u""vv"'uu' s '-vmal'ilu-(owlouu)"“(h +7,084).

which yields the result in the thearem.
The asympiotic equivalence of xftal(Kz-l) and Fig, , umder the aull and local altermative (d £1))
follows from aoling thal theit anmérarnrs are identical fup 10 the factor K- 1) and their denannnatirs

are asymptotically equivalent: G'0/N -&'My, LN = P, LN B0, O

Lroof of theogem )
{a) Under the null B-nﬂ. from the definition of "N and femma Al, we have,

AN = fwt zhizt 2ty et bkt bt stz bz bz by et e ek
> 1.7,/K, - xlqul(z.
(b) Under the fixed aliernative 8 = By, y* - v gy = ul - vL(gy8,). By lomma A1,
2t 2ty Mzt v bggs e > oh i, - 0% B8 02
50

auu[z“'(avv',quu’'A(ao'ﬂ')(A + z\g)rllu'(a\cv’auu)'A(ﬂo'ﬂl)(A + lv)l-

Also, (yt . ¥ lﬂg)'(]l Y ‘lﬂo) =3 gy, - 20,,(8g:8,) + aw(ﬂo-ﬁl)z. Substitution of this and die
previous expression into the defindiion of AN(Bg) ylelds the result in the theorem. O

Ereof of theotem 4
(3) Letfpdfy) = {G - {;C/N], s0 thai fay corresponds o N times the value of { in the

.39 .-



determinantal equation, |G - {C| = 0. By standatd projection algebra, G = V(P24-Py)V =
vi ‘Pgl v1, where via (yl Yl)- Similarly, C = V'Mg.V = V"'MZ.LV'L. Define the 2 X2 matrix
Rby Ry =Ryy=1. Ryp=0, and Ry =-8. Decause [Ri=1, fiy(fpy) = IR'GR - §jyR'CR/N|. Now,

RGR = RVE Py aviR =t viyp et vh=>ate
RCR/N = ut Yiyed vyLyn-RGRINED

where the convcrgcrﬁc is joint and follows from lemma Al, and where Q L o {5 the 22 mavrix,
Gle- (°|uuzu °‘v v(’”zv))'("'uu'\l °l¢v()‘+l\r”

We first show that the smallest root of [Q - {Cl isO (N I) Let ¢y be any sequence increasing
0 infiaty with N, and consider the equatlon, ey’ f(ty) = 1ei PR'OR - (e [ IR'CRIN).
Now cNV'R GR converges In probability to the 2X2 zeto matrix, so [t follows that the roots of
"N"N‘ fp) converge in prabability to zero. Thus CN rN R o foral scquences tN tending to
infinity with N, hence [y is O, (I) and the smallest root of |G - {C| is O (N’ ).

Becsuse the solutionto s detem\lmnul equation is continuous in lis elemenu from the
continuous mapping theorem It follows that the Ilmiting distribution of the solutlon lo fN(fN) = 0
has the distribution of the solution to the limiting determinantal equatlon, *{({*) = 0, where *(D)
- |GLe.i0]. LtR = dh;(a'{?u. a":’v). s0flw K and GLe = RO*R, where G* is
defined tn theorem 4. Because Lhe roois of 1*(f) = 0 are the same as the roots of |ﬁ"|f’(n|ﬁ"1
= 0, this provides the representation of [*, namely as the smattest root of [G* - {{t] = 0

®) Letk = 1+ UNand A = BO+{N)-Bg. Then apth) = ap() 'oy(D). where

s = Yy kv by vt w gy by N s aammov ey nl
bpth = Y2l kv togpzipt - avtuln e qapoy iyt

From temma A1(b), {c), {¢). and (). apy and by have the limits,
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L ' »

@t b = > Loy (A2, (M +z,) - §), ("uu"vv)hl()‘+lv) 2, - ot))
where the convergence is uniform in { over compact sets. Thus,

AN = > (o0, PNz, 1) - 1 {202, - og),
The tesult ﬁLIML - B = > a*([*) follows by writing ‘“uu’”w)%’u = 8z, + xqand (uuulovv)v‘pf =
6%, by invoking the continuous mapping theorem and by noting that the limiting represeniations
are joint as a consequence of lemma Al. O
(c) By argumenis which parallel those used for G, in the proof of theorem §(b),

Suulk) => 0,11 - 2oloy fa, )84 + (0, 0, ,)8%D2).

Combining this expression, the limits given in the proof of part (b) of this thearem for an(f) and

by(2). and the limit for A(k)-8,, yields,
HK) = > ((A+2,)'2, - oM +2, ) (N+2)-TH1-2p(ey Jo, ) B8 (D) + (0, fa, 8" (021} 2.
The resull in the theorem for LIML follows by setling § = {*.

Proof of theotem 3
Write NA(3(k)-v) = Cy(§) 1B wheee

Ot = NIXX - (N AR ENY'Y + kg v i Byex)
B = N u- (N AXVENTYY + PR N Y+ kY Pa).
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Now Y'Pp.Y = YPz L oY = (N Ay whvz etz tezboyln iy x Nyzty, ahere
71 m (X 21 ), and similirly for Y'Pgzeu. The various sample moments have limils which are

cither oblained from lemma Al or can be cafculated directly:

NAXY = NBX(Zr 4 XS 4v) = > D7y + Dyxl + ¥y

NAZLY o NBZMy(Zr4Xe+v) = > Vy28 + (F24-Ezx iV xo)
Nzl w> *ZU'BZX:.}IO(*XU

Nlzbezde BdiagTyy. V27)

These limits imply,
CN(D = > Tyx - Ezxg+Txxl+ ¥y )Czxe+ Exxf+¥y,V/(Dy-ou )
BN = > ¥y - Ezx8+Exxl+¥x,) Doy, Do, D
where
Dy = (Ezxe+ Exxf+ ¥y Exx(Ezx8+ Exxt+ Vo)
+ (V2284 ¥y ExE R ) V2 V28 ¥z, TaxE Y x)
D) = (Cx8+xxl+ ¥x ' TV xa * (V228 +¥ 2, EzxE ¥ x) V220V 20 E2x k¥ xo)

In addition to the definitions of 2., 2., and n in (A. 1), further define:

3 )
(A.23) Ixu -g uunxx*xu
MIb) lxv - U-?vn%x‘xv
<L
{A.2¢) = (I-pz) A(txu - pryy)-

Direct calculation confirms that (zxu' z“‘ 'Xv' e’y is distributed N(0, ﬁ@l(x| +K;))' The
result in the theorem follows from substituling these definltions into the preceding limits for

Cytd and By(h, rearranging, and collecting terms. O
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Footnotes

1. ltis difficult to provide systematic evidence on this because first-stage F statistics are often
not reported. For example, a review of articles published in the American Economic Review
between 1988 to 1992 found I8 which used TSLS but none reported first-stage F's or partial R
In each of the 18 articles, econometric inference was performed using conventional asymptotic
normal approximations.

2. Although there is some recent work which has relaxed the normality assumption (e.g. Buse
(1992)), far less is known about the nonnormal than the normal case.

3. In the finite-sample literature with Z nonrandom, »'Z'Zx/o,, is referred to as the
concentration parameter. For Z stochastic, under assumptions L and M this has the probability
limit A\,

4. This follows by first noting that the distribution of (2. zu) for p=pq is the same as the
distribution of (z,,, -z,,) for p=-p,. Making the appropriate substitutions into (2.7) (divided by 6)
and into the representation for tyg g in theorem 1(c) respectively shows that the limiting
representations of (BTSLS'ﬁO)’o and tyg) g for p=p are the same as those of mTSLS'BOW and

'ITSLS for p"‘po.
5. We thank fean-Marie Dufour for suggesting to us the split-sample Anderson-Rubin test.

6. The distributions depend only on N'\ = h, say, so without loss of generalily the data were
. - [}
generated with A = (h/'. 0,...,0.

7. We thank David Jaeger for providing these data.
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~
Pinite Sample CDP of 8 -8, for Design I, EKvaluated
At Selected Quantilss of the Asymptotic Distzibuticn

TABLE )

values of finite sample CDF evaluated ar:

Parameters N/K; = § N/K, = 20
I3 AT A/K, .9 1 _20% S0% 80% 35% S5k 20% 50% 80% 5%
0.50 0 1 0.0 0.20 0.50 0.80 0.95 0.05 6.20 0.50 0.80 0.95
0.50 0.25 1 0.05 0.20 0.49 0.80 c.95 0.05 0.20 0.50 0.80 0.95
0.50 1 1 0.05 0.20 0.47 0.76 0.94 0.05 0.20 0.50 0.80 .95
0.50 10 1 0.09 0.23 0.49 0.74 0.88 0.06 0.21 9.50 0.79 0.94
0.50 0 4 0.05 0.20 0.51 0.80 0.95 0.05 0.20 0.51 0.80 0.94
9.50 0.25 4 0.05 0.20 0.48 0.79 0.95 0.05 0.20 0.49 0.79 0.95
0.50 1 4 0.06 0.20 0.49 0.77 0.94 0.05 0.20 0.50 0.80 0.95
0.50 10 4 0.07 0.22 0.50 0.78 0.93 0.05 0.20 0.50 0.80 0.95
0.99 0 b 0.05 0.20 0.50 0.80 0.95 0.06 0.20 0.50 0.80 0.95
0.99 0.25 1 0.04 0.17 c.43 0.83 0.96 0.05 0.20 0.50 0.82 0.95
0.99 1 1 0.05 0.17 0.42 0.69 0.95 0.05 0.20 0.49 0.78 0.95
0.99 10 1 0.08 0.22 0.47 0.72 0.87 0.06 0.21 0.49 0.78 0.93
0.99 o 4 0.04 0.20 0.49 0.79 0.95 0.05 0.20 0.49 0.80 0.95
0.99 0.25 4 .05 0.19 0.48 0.76 0.95 0.05 0.20 0.49 0.79 0.95
0.99 1 1 0.06 0.20 0.49 0.77 0.92 0.05 0.20 c.49 0.79 0.94
0.99 10 4 0.06 0.21 0.50 0.79 0.94 0.05 0.21 0.51 0.80 0.95

« Finite Sample CDF's based on 20,000 Monte Carlo draws.




Finite Sample CDF of t.., for Design I, Evaluated

TABLE 4

ol

At Selected Quantiles of the Asymptotic Distribution

Values ¢f finite sample CDF evaluated at:

Parameters N/K, = 5 N/K, = 20
2 A'A/K, K, S¥ 20% SOt 20% 5% 3.4 20t 50% 80% 55%
0.50 0 1 0.08 0.22 0.49 0.75 0.89 0.06 0.21 0.50 0.79 0.94
.50 0.25 1 0.08 0.21 0.48 0.75 0.89 0.05 0.20 0.49 0.79 0.94
6.50 1 1 0.09 0.21 0.48 0.77 0.50 0.06 0.20 0.50 0.80 0.94
0.50 10 1 0.10 0.20 0.49 0.77 0.50 0.06 0.20 0.50 0.80 0.94
0.50 Q 4 0.06 0.21 0.5 0.80 0.94 0.0S ©.20 0.51 0.80 0.95
0.50 0.25 4 0.06 0.20 0.49 0.79 0.93 0.05 0.20 0.50 0.80 0.95
0.50 1 4 Q.06 0.19 0.49 0.79 0.94 0.06 0.20 0.50 Q.80 0.95
0.50 10 4 0.06 0.21 0.50 0.79 0.954 0.0S 0.20 0.50 Q.80 0.8S
0.99 o] 1 0.05 0.19 0.47 0.74 .88 0.05 .20 0.49 Q.78 c.94
0.99 0.25 b8 0.0s 0.17 0.43 0.70 0.87 0.05 0.20 0.49 0.78 0.94
0.99 1 1 0.09 .16 0.44 0.71 0.88 0.07 0.18 0.50 0.78 0.94
0.99 10 1 0.11 Q.16 0.47 0.74 0.88 0.07 0.17 C.49 a.78 0.94
0.%9 0 4 0.05 0.20 0.50 8.79 0.53 0.05 0.20 0.49 0.80 0.94
0.99 0.25 q c.067 0.18 0.48 0.717 6.93 0.05 0.20 Q.50 0.79 C.94
0.99 b 4 Q.08 0.17 0.49 0.78 0.93 0.07 0.18 0.49 0.75 0.95
0.99 10 4 0.06 0.20 0.50 0.79 0.94 0.05 0.20 0.51 ¢.BO Q.95

* Finite Sample CDF’'s based on 20,000 Monte Carle draws.




TABLE 35

Coverage Rates For

Pinite Sample Coverags Rates For Design I
Tests at the 95% Confidence Level

Parameters N/K;=5 N/K;220
-] ATA/K, X, Cars Lo A-R Caers Tepn A-R
0.50 0 b2 ©.98 0.98 0.86 0.398 0.98 0.93
0.50 0.25 1 0.98 0.98 0.85 0.98 0.98 0.93
©.50 1 1l 0.97 €.57 0.85 0.98 0.98 0.53
0.50 10 1 0.96 Q.96 0.86 0.96 0.96 0.94
0.50 0 4 0.87 0.93 0.%0 .87 0.92 0.94
0.50 0.25 4 0.88 0.92 0.90 0.86 0.92 0.94
0.50 1 4 0.89 0.93 0.90 0.88 0.9 Q.94
0.50 10 4 0.94 0.95 0.5%0 0.94 0.95 Q.94
0.99 Q 1 0.47 0.47 0.85 0.39 0.39 0.93
0.99 0.25 1 0.70 0.70 0.86 0.68 0.68 0.54
0.99 1 1 0.82 0.82 0.85 0.81 0.82 0.93
0.99 10 1 0.93 0.93 0.86 0.92 0.91 0.93
0.99 0 4 > Tt c.28% 0.90 0.01 0.26 0.54
0.99 0.25 4 33 Q.90 0.15 0.80 0.94
0.99 1l 0.89 Q.90 0.45 0.89 0.94
9.99 10 +.38 0.94 0.90 0.88 0.94 0.94

+ Finite Sample Coverage rates pased on 20,000 Monte Carlo Draws.




Finite Sample COF of £ . .-8, for Design II, Bvaluated
At Selected Quantiles of the Asymptotic Distribution

Pad

TABLE &

Values of finite sample CDF evaluated at:

Paramerers N/X, = & R/K, = 20
p AT M/K, K. 5% 20t 50% 10k % 85% 5% 20% So% 80t 35
0.50 0 4 0.03 e.21 0.50 0.74 0.92 0.04 0.20 0.50 0.78 0.5%4
0.50 0.25 4 0.04 0.21 0.53 0.78 ©.94 0.04 0.20 0.51 0.80 0.95
0.50 b 4 0.03 0.20 0.55 0.82 0.96 0.04 0.20 0.52 0.81 0.96
0.50 10 4 0.02 0.17 0.57 0.84 0.95 0.03 0.139 0.53 0.82 0.95
0.50 0 100 0.10 0.26 0.50 0.73 0.88 0.06 0.22 0.51 0.77 0.93
0.50 0.25 100 0.08 0.25 0.5 0.7% 0.90 0.06 0.22 0.51 0.79 0.94
0.50 1 100 0.06 0.24 0.53 0.79 0.92 0.05 0.21 0.52 0.80 0.95
0.50 10 100 0.01 0.22 0.59 0.83 0.93 0.03 0.21 0.5% 0.81 0.54
0.20 o] 4 0.04 0.17 0.50 0.76 0.91 0.05 0.19 0.49 0.78 0.54
0.20 0.25 4 C.04 0.18 0.52 0.80 0.94 0.05 0.19 0.51 0.80 0.94
£.20 b3 4 0.04 0.18 0.53 0.82 Q.95 0.05 0.20 0.52 0.82 0.95
0.20 10 4 0.02 0.18 0.57 0.84 D.94 .04 0.20 0.53 0.82 0.%5
©.20 0 10C 0.05 0.21 0.51 0.78 0.92 0.05 .20 0.50 0.80 0.94
Q.20 0.25 100 0.05 0.21 0.51 0.79 0.93 0.04 0.20 0.51 0.79 Q.94
0.20 1 100 0.04 .21 0.53 0.81 0.5 0.04 0.21 0.51 0.80 0.94
0.20 10 100 0 0.20 0.57 0.93 Q.94 0.923 0.21 0.54 0.82 0.94

* Finite Sample CDf's based on 20,000 Monte Carlo draws.




TABLE 7

rinite Sample CDF of t., for Desigm II, Evaluated
At Selected Quantiles of the Asymptotic Distribution

Values of finite sample CDF evaluated at:

Parameters N/K, = S N/K;, = 20
o A A/Ky K, 5% 20% 1ok 1 80t 35% .4 20% 144 1 B0t 35%
0.50 0 4 0.07 0.20 .45 0.7 .85 o.ow 0.19 0.47 0.77 0.92
0.50 ¢.25 4 0.07 0.21 0.48 0.73 0.88 0.05 0.20 0.49 0.79 0.93
0.50 1 4 Q.07 0.22 0.51 0.79 .92 0.05 6.20 ¢.50 0.79 0.54
0.50 10 4 0.04 0.22 0.55 0.81 0.93 0.04 0.20 0.53 0.81 C.94
0.50 Q 100 0.06 0.23 .50 0.76 0.90 .06 0.21 9.851 Q.79 0.9
0.50 Q.25 100 0.06 Q.22 0.51 Q.78 0.93 8.05 0.21 0.50 0.80 0.55
0.50 1 10¢ 0.45 0.21 0.54 0.81 0.94 0.05 0.20 0.52 0.8 0.95
0.50 10 100 0.0 0.22 0.59 0.83 Q.94 0.03 0.21 Q.54 0.8 0.94
0.20 0 4 0.06 0.21 0.48 0.74 0.89 6.05 0.20 0.48 Q.78 0.94
0.20 0.25 4 0.07 0.22 0.50 0.76 0.90 0.05 0.20 0.50 0.79 0.9%4
0.20 1 4 .06 0.23 0.51 6.78 0.91 Q.06 0.21 0.52 0.79 0.94
0.20 10 4 0.03 0.22 0.56 c.80 0.92 0.04 0.21 0.53 0.81 0.94
0.20 0 100 0.9% 0.2 0.50 Q.79 0.34 .05 0.20 c.50 0.80 0.9%
0.20 0.25 100 0.05 0.20 0.51 0.80 0.94 0.04 0.20 0.50 0.80 0.954
0.20 1 100 0.04 ¢.21 0.53 c.8l Q.94 0.04 0.21 0.51 0.8% 0.9%5
0.20 10 100 0.01 0.20 0.57 0.83 0.93 0.03 0.21 0.54 0.82 0.94

« Finite Sample CDF’'s based on 20,000 Monte Carlo draws.




n

Pinite Sample CDP of B,,.-8, for Design II, Evaluated
At Selected Quantiles of the Asymptotic Distribution

TABLE 8

Values cof finite gsample CDF evaluated at:

Parameters N/K;, = S N/K; = 20
[ ATASK, X, 5% 20% 30 80% 35% 5% 20% So0% 80 35%
0.50 o] 4 0.05 0.2 Q.51 0.79 0.94 .05 0.21 0.51 0.80 0.95%
0.50 0.25 4 0.05 0.22 0.53 Q.83 0.95 0.05 0.21 0.51 0.81 0.95
0.50C 1 4 0.0S .20 0.55 0.84 0.97 e.0s 0.21 c.52 0.83 0.96
0.50 10 4 0.0 0.19 0.56 0.83 0.94 Q.04 0.21 0.52 0.81 Q.94
0.50 0 100 0.05 ¢.20 0.50 0.8¢0 0.95 0.05 0.20 0.50 0.80 0.95
0.50 ©.25 100 0.06 0.22 0.51 0.78 0.54 0.05 0.21 0.50 0.80 .55
0.50 1 100 0.04 0.21 0.53 0.80 0.92 0.04 0.20 0.52 0.31 0.94
0.50 10 100 Q.00 0.19 €.57 .82 0.93 0.03 0.20 0.54 0.81 0.94
0.20 0 4 0.0S 0.21 0.52 0.80 0.95 0.05 0.20 0.50 ©.81 0.9%5
0.20 0.25 4 0.05 .20 Q.53 0.83 0.96 0.05 .20 0.51 0.81 0.95
0.20 1 4 0.03 0.19 6.53 C.84 0.97 0.04 0.20 0.52 0.82 0.96
0.20 10 4 0.03 0.19 0.55 0.82 .54 0.04 0.21 0.52 0.80 Q.94
0.20 0 100 0.0%5 0.21 0.51 0.81 0.95 0.05 0.20 0.50 0.80 0.85
6.20 0.25 100 0.06 0.22 0.52 0.79 0.95 0.05 0.21 0.52 Q.80 0.95
0.20 1 100 .04 0.20 0.51 0.79 0.94 0.04 Q.20 Q.51 0.B0 ©.95
0.20 10 100 0.01 0.19 0.57 0.82 0.93 0.03 0.20 0.53 0.80 0.94

* Finite Sample CDF‘s basgsed on 20,000 Monte Carlo draws.




TABLE 9

Finite Sample CDF of t,.. for Design II. Evaluated
At Selectsd Quantiles of the Asymptotic Distributien

values of finite sample CDF evaluated at:

Parameters N/K, = 5 N/K, = 20
0 AT A /K, K, s¥ 20t s0v 80% 95% 5% 20% s0% 80% 95
0.50 0 4 0.06 0.22 0.51 0.77 0.90 0.05 0.21 0.51 0.79 0.94
0.50 0.25 4 0.07 0.24 0.53 0.80 0.93 ¢.06 Q.22 0.51 0.79 0.54
0.50 1 4 0.08 0.24 0.54 0.81 0.954 0.06 0.22 c.51 0.81 0.95
0.50 10 4 ¢.03 0.22 Q.56 0.890 0.92 0.04 0.21 6.52 0.80 0.94
0.50 0 1900 0.06 0.21 0.49 0.78 0.833 0.05 0.20 0.50 0.80 Q.94
0.50 0.25 100 0.06 0.22 0.51 0.78 0.93 Q.05 0.21 0.50 0.80 0.94
0.50 1l 100 0.04 0.21 0.53 0.80 0.93 0.04 0.230 0.52 0.81 0.94
0.50 10 100 0.00 0.20 0.57 0.82 0.93 0.03 0.20 0.54 Q.81 0.54
0.20 0o 4 ©.06 0.23 0.51 0.77 0.92 0.05 0.21 .50 0.79 C.9%4
0.20 0.25 4 0.07 0.24 0.52 0.79 0.93 0.05 0.21 0.50 0.80 0.94
0.20 1 4 0.06 0.24 0.53 0.79 0.93 0.06 0.22 0.52 0.80 0.95
0.20 10 4 0.03 0.22 0.55 0.79 0.92 0.04 G.22 0.52 0.79 G.94
0.20 o 100 0.06 0.22 0.51 0.79 0.54 0.05 0.20 0.50 0.79 Q.94
0.20 0.25 100 0.06 0.22 0.52 Q.79 Q.94 0.05 0.2 0.51 0.80 0.95
0.20 1l 100 0.04 0.21 0.51 Q.79 0.93 0.04 0.20 0.51 0.80 Q.94
0.20 10 100 Q.01 0.20 0.57 6.82 0.93 0.03 0.21 0.53 0.890 C.54

*» Finite Sample CDF’'s based on 20,000 Monte Carlo draws.




TABLE 10

Pinite Sample Coverage Rates For Design IIX
Tasts at the 95% Confidence Lavel

Coverage Rates For

Parameters N/K,=5 N/K,=20

p A ASK, X, Cogys T A=R Tess € A-R
0.5¢0 [ 4 .75 0.83 0.92 0.84 0.91 0.55
0.50 0.25 4 0.83 0.92 0.93 Q.85 c.91 0.85
0.50 1 4 0.88 0.93 0.93 0.88 .93 0.95
0.50 10 4 0.93 0.94 0.92 0.94 0.9% 0.95
0.50 o 100 o] 0.58 0.92 0 a.59 0.5
0.5¢C 0.25 lo0¢ +] 0.74 0.82 o] 0.76 0.94
0.50 1 i00 0.04 0.86 0.92 0.04 0.87 0.94
0.50 10 100 0.72 .94 0.92 0.64 0.95% 0.54
0.20 o 4 0.96 0.98 0.92 0.98 0.99 0.95
0.20 0.25% 4 0.96 ~.98 0.923 Q.98 0.98 0.95
c.20 1 4 0.96 0.97 Q.93 0.97 0.97 Q.95
0.20 10 4 0.95 0.95 0.92 C.95 0.95 0.55
0.20 o] 100 0.47 0.65 0.92 0.47 0.6¢6 0.94
0.20 0.25 100 0.56 0.68 0.92 0.56 0.%0 0.54
0.20 1 100 0.72 0.84 0.92 c.71 0.85 ~0.94
0.20 10 100 0.90 0.94 0.92 0.951 0.94 0.94

* Finite Sample Coverage rates based on 20,000 Monte Carlo

Draws.




Estimated Effects of Years of Education on Log Weakly

Table 11}

REarnings in the 1980 Cansus

) § 11 118 v
A. Men Born 1930-39
tn*329,509)
oLs 0632 .0612 0632 .0628
1S.R.) {.000)) {.000}) {.0003) {-000))}
TSLS .0990 . 0606 .0600 .0811
($.%.) {.0207} [.0164) {.0290) {.0109)
LIKL .0999 .0838 .0%74 .0962
{s.B.) {.0210) 1.0179) {.0385) {.-01%))
Combined .1002 .0852 .0546 .1023
A-R Confldsnce (.052,.158]) 1-.00),.179) {~.441,.490) {~.015,.240)
Interval
A-R Split-Sample [.0%4,.168) (~-.002,.134) {~o, ¢@) [~.073,.101)
confidence Interval
? (firet stage) 30.5) 4.747 1.61)3 1.869
{(P-valus} {.000) {.000) {.02)) {.000}
? {over~ID) 1.160 0.7178 0.72% 0.916
{P-Vslus) {.313) {.800) {.B849) {.181)
B. Hen Born 1940-49
(n=486,926)
oLS 0520 .0520 ,0521 .0516
(S.2) {.0003) {.0003) {.0003) {.0003)
TSLS -,0734 .0392 0779 06868
(S.E.) {.0273) (.0145) (.0239) {.0113)
LIML -.,0902 .0286 1242 .0878
{S.E.} {.0301} {.0197) {.0420) {.0178)
Combined -.078)3 L0371 .0928 .0829
A-n Confidence {e) ie} [®) 1.033,.148)
interval
A-R Split-Sample {-.13%,.010) {0,.111) 1.028,.24%) {-.035,.162)
confidenca Interval
Fifiret stage) 26.32 6.849 2.736 1,929
{P=-Value} {.000) {.000}) {.000) {.000)
F{over-1D) 4.847 ).226 1.87) 1.140
{P-Valua} {.008) {.000) {.004) {.098)
conkxole
Race,SHSA,married, Yes Yes Yes Yes
reglon, year of
birth dummlies
Age, Age? Mo No Yas Yas
State of Birth Ho Ho NO Yos
lnstrumente
Quarter of Birth Yas Yes Yes Yaa
{Quarter of birth) Ho Yes Yos Yes
u {year of birth)
(Quarter of birth) Ho No Ho Yen
X {state of blirth}
# lnstrumente J 30 20 178
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