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estimate of the attenuation bias to derive an estimator that is asymptotically unbiased as the
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We label this new estimator Unbiased Split Sample Instrumental Variables (USSIV). We apply
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There has been longstanding interest in the finite sample properties of Instrumental
Variables (IV) estimators.' In an influential early paper, Nagar (1959) used an
approximation argument to show that IV and other k-class estimators are biased toward the
probability limit of Ordinary Least Squares (OLS) estimates in small samples with normal
disturbances. Buse (1992) generalized this result to cases with non-normal disturbances.
The Nagar approximation result shows that, other things equal, the bias of IV is greater if
the excluded instruments explain a smaller share of the variation in the endogenous
variable. Nelson and Startz (1990) demonstrate that, in samples of the size typically used
in time series analyses, IV estimates and their t-ratios have non-normal distributions if the
first-stage R-square is low. These results suggest that extreme caution should be used when
interpreting I'V estimates based on small samples.

Recently, Bound, Jaegar and Baker (1993) (henceforth BJB) have argued that finite
sample bias may be a problem in cross-sectional studies that use large samples and employ
many excluded instruments. In particular, BIB single out some of the IV specifications in
our 1991 QJE article as evidence that finite sample bias could be severe even in large
samples. In our 1991 paper, we used quarter of birth as an instrument for education in
wage equations. We argued that quarter of birth is weakly correlated with years of
schooling because students generally enter first grade in the fall of the year in which they
turn six, but are permitted to drop out of school on their 16th birthday. Thus, students born
earlier in the calendar year are allowed to drop out of school after having completed fewer

years of schooling than students born later in the year. Because compulsory schooling laws

'Throughout the paper we use the terms Instrumental Variables and Two Stage Least
Squares (2SLS) interchangeably because 2SLS can be thought of as an IV estimator in which
the predicted endogenous regressor is used as the instrument.
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and school entry laws vary across states, in some specifications the instrument list included
interactions of quarter of birth with state-of-birth dummies.

Our analysis was primarily based on a sample of over 300,000 men from the 1980
Census. Most of the IV estimates of the return to education in our paper are slightly higher
than the OLS estimates. BJB argue that these results are due to having weak instruments,
and to "over fitting" the first-stage equation by including too many interaction terms in the
instrument list. One important finding that BIB note is that seemingly plausible IV
coefficient estimates (e.g., close to OLS) and standard errors can be obtained by using a
large number of instruments whose values are drawn from a random number generator in a
large sample. The possibility of such misleading inferences suggests the importance of
developing IV estimators that are not biased toward OLS.

In this paper, we propose a new instrumental variables estimator which we call Split
Sample Instrumental Variables (SSIV). SSIV works as follows: we randomly split the
sample in half, and use one half of the sample to estimate parameters of the first-stage
equation. We then use these estimated first-stage parameters to construct fitted values and
second-stage parameter estimates using data from the other half sample. This estimator is a
variation of the Two Sample Instrumental Variables (TSIV) estimator in Angrist and
Krueger (1992), in which one sample is randomly divided in half to provide two
independent samples.?

SSIV has several desirable properties vis-a-vis conventional IV and other k-class

*Altonji and Segal (1993) have recently discussed the use of sample-splitting to reduce bias
in certain GMM estimators.
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estimators. First, unlike conventional IV estimates, SSIV estimates are not biased towards
OLS estimates in finite samples. Instead, SSIV estimates are biased toward zero regardless
of the degree of covariance between structural and reduced form errors. Intuitively, the
bias that arises in SSIV estimation is similar to attenuation bias that arises from
measurement error in an independent variable in an OLS regression. Because the first-stage
parameters in SSIV are subject to sampling error, the predicted endogenous regressor is
measured with error. However, SSIV is a consistent estimator.

Second, we can obtain an unbiased estimate of the attenuation bias of SSIV.
Namely, the coefficient from a regression of the endogenous regressor on its predicted
value (using data from one half sample but first-stage parameters from the other) provides
an unbiased estimate of the attenuation bias. Moreover, the product of the SSIV estimate
and the inverse attenuation bias is asymptoticaﬂy unbiased as the number of instruments
grows, holding the number of observations per instrument constant. The asymptotic
approach we use to establish the properties of USSIV is similar to that used by Deaton
(1985) to study the behavior of estimators computed in repeated cross-sections of fixed
size. A similar approach has also been used recently by Bekker (1992) to study
conventional simultaneous equations estimators. It is worth noting that conventional IV and
SSIV are still biased under this form of asymptotics. We call the asymptotically unbiased
split sample estimator Unbiased Split Sample Instrumental Variables (USSIV).

In the remainder of the paper, we describe the properties of SSIV and USSIV. We
then use these estimators to estimate variations on the specifications reported in Angrist and

Krueger (1991). The SSIV and USSIV coefficient estimates have relatively small standard
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errors, and the estimates are similar to the conventional IV estimates in Angrist and
Krueger (1991). This suggests that small sample bias is not responsible for the conclusions
drawn from conventional IV in that article,

As a final check on the behavior of SSIV and USSIV estimators with extremely
weak instruments, we present IV estimates computed using artificial, uniformly distributed
instruments drawn from a random number generator. Using randomly generated
instruments, conventional IV estimates are similar to OLS and have relatively small
standard errors. But SSIV and USSIV estimates have very large standard errors and are not
statistically different from zero in this case. Thus, unlike conventional instrumental
variables estimators, SSIV and USSIV would correctly lead a researcher to conclude that

the random instruments are of no value.

1. Small Sample Bias in IV Estimates

Consider the following two-equation model, where to simplify notation we assume

there is one endogenous regressor:

¥i=Bowy +Bis; + g =Px g (1
X = mywy tm'wy, + o =7’z o @)
fori=1, ..., n observations; where y, is the dependent variable (e.g., log wages), and s, is

the endogenous regressor (e.g., years of schooling). z is a (k + p) x 1 vector of

instrumental variables that includes the p exogenous variables appearing in equation (1),
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Wq» plus k additional variables, wy; (e.g., quarter of birth dummies). Thus, there are k
excluded instruments, and k-1 over-identifying restrictions. x;is a (p + 1) x 1 vector that
includes the exogenous regressors and the endogenous regressor.
The data are more compactly denoted by an n x 1 vector Y, an n x (p+1) matrix X,

and an n x (k+p) matrix Z. From (1) and (2), we have

Y=XB + ¢

X=2Zn + 1.
The coefficient B3, is the scalar parameter of interest, assumed to be the last element in the
(p+1) x 1 vector B, and & is the (k + p) x (p + 1) matrix of reduced form parameters. We
assume that observations in the sample are independent and identically distributed, and that
the disturbances satisfy E(g; | z) = E(n; | z) = 0. The residual variance of ¢; is denoted c,’.

The vector of residual variances in equation (2), has one non-zero element in the last row

2

corresponding to s;. For this element, E[n’] = o,

and E(gm)) = o,

The core of the BJB critique is that the IV and 2SLS estimates in our 1991 paper
are contaminated by small sample bias, thereby causing the 2SLS estimates to resemble the
OLS estimates.” The bias toward OLS in a finite sample is easy to grasp intuitively. To
see this, consider an extreme example: suppose the values of the instruments (Z) are

randomly assigned. In any given sample, by chance some of the variation in X will be

explained by Z, the random instruments. Thus, the first-stage R-square will be greater than

*BIB also argue that estimates in Angrist and Krueger (1991) are biased because quarter
of birth is correlated with earnings for reasons other than compulsory attendance laws. In our
1991 paper, and in Angrist and Krueger (1992), we provide a detailed investigation of this
issue. Interested readers are referred to these articles for more on this point.
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0 in a finite sample. In this situation, the second stage parameter estimate will be biased
toward the probability limit of the OLS coefficient because, with randomly generated
instruments, the variation in X that is explained by the instruments will be like the "typical"
variation in X.

One problem with the BJB argument for small-sample bias in our 1991 paper is that
the bias should differ as the number of instruments changes. This is apparent from BIB’s
adaptation of the Buse (1992) and Nagar (1959) approximate bias formula. Using the
above notation for an example where the only exogenous regressor is a constant, the

approximate small sample bias of the 2S5LS slope estimate is:

o G’

_n n -
X (k-2) (3)
072] n’z’zZn

BJIB point out that n°Z’Zn/c,’k is the inverse of the population analog of the F-statistic for
a test of the instruments in the first-stage equation (i.e., substituting m for OLS estimates in
the usual F-statistic formula). From this formula, it is clear that if adding additional
instruments does not improve the fit of the first-stage equation, then (other things equal) the
approximate bias grows with the number of instruments.*

Yet for the middle-aged cohorts on whom we focused our analysis, the simple Wald
estimates (which use one excluded instrument) are statistically indistinguishable from 2SLS
estimates that use 3 quarter dummies interacted with 10 years of birth dummies as excluded

instruments (30 instruments), and from 2SLS estimates that add 50 state of birth dummies

“Staiger and Stock (1993) make a similar point.
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interacted with 3 quarter of birth dummies (a total of 180 instruments). These alternate
estimates are presented in Table 1. The remarkable consistency across these model
specifications could be compatible with the approximate bias formula in (3) if small-sample
bias is not much of a problem, or if the OLS estimates are themselves unbiased. A final
possibility is that the bias formula in (3) does not provide a very good approximation to the
first moments of 2SLS in this example.’

Nevertheless, one of the specifications that we reported -- that using a full set of
state-of-birth dummies interacted with quarter-of-birth dummies and quarter-of-birth
dummies interacted with year-of-birth dummies (180 instruments) -- may still be biased
towards the OLS results. We discovered this possibility by experimenting with 2SLS
estimates in a "worst-case” scenario in which the instruments are randomly generated. In
particular, we assigned quarter of birth dummies randomly from a random number
generator, and then used these random instruments to re-estimate models from our 1991
QJE paper. For most of these models, the 2SLS estimate of the schooling coefficient is
close to the OLS estimate of .06. The standard error for the 180-instrument specification
was surprisingly low with randomly assigned instruments, typically around .017. The
standard error for the 30-instrument model was higher, around .04 with random instruments.

BJB subsequently reported results from a similar set of simulation exercises in their
paper, focusing on the 180-instrument models. They conclude that "the similarity of the

average point estimates to the OLS results and of the average estimated standard errors to

*See Sargan (1974) for a discussion of the validity of the Nagar expansion. Note that the
Nagar/Buse approximate bias becomes infinite if the true = is zero.
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those using the actual quarter of birth data is striking.”

Note, however, that the estimated standard errors from this simulation exercise are
greater than the comparable 2SLS standard errors estimated using the actual data as
instruments (.009 and .016 for the 180-instrument and 30-instrument models). For a model
estimated using 180 quarter-of-birth interactions as instruments, the ratio of the estimated
variance using random instruments to the estimated variance with real instruments is 3.6 =
(.017/.009)2. This suggests that something is being accomplished by the real instruments.
Nevertheless, it is disturbing that I'V estimates with randomly generated instruments
produce a possibly misleading inference. In the remainder of this paper, we show that

misleading inferences of this nature are unlikely to occur using split-sample estimators.

2. Split Sample Instrumental Variables (SSIV)

2.1 Basic Results

The SSIV estimate is constructed by randomly dividing a single sample into two half
samples, denoted 1 and 2. Each sample consists of data matrices {Y,, X;, Z;} for j=1,2.
Sample 2 is used to estimate the first-stage equation. These first-stage parameters are then
combined with observations on Z, to form fitted values for X, in sample 1. Finally, Y, is
regressed on these fitted values and the exogenous regressors in sample 1. Algebraically,
the estimator is:

B, = Xy'Rp)'Xy'Y,

(4) = [X, 2,2, Z,)" Z,'Z, (Z,Z)" 2K (XS 22,2, 2,)Y ]

where



le = ZI(Z2'ZZ)-] Z,X,

is the cross-sample fitted value. Notice that for columns of X that are included in Z, the
estimated reduced form coefficient from sample 2 will be exactly equal to 1. The cross-
sample fitted value for exogenous regressors is therefore the actual value of the exogenous
regressors in sample 1.

An important feature of SSIV is the fact that, as long as observations from the two
half-samples are independent, the bias of the SSIV estimator can be expressed in a simple

form without approximation. The formal independence assumption we impose is

Assumption 1. The data matrices {Y,, X,, Z,} and {Y,, X,, Z,} are

jointly independent.

Assumption 1 is somewhat stronger than necessary, but seems a natural assumption to make
in our cross-section framework where the observations are i.i.d. and the samples have been
randomly divided. Assumption 1 implies that {Y,, X,} is jointly independent of {Y,, X,,

Z,} given Z,. This implication is used to prove the following:

Proposition 1.
E(B,) = E(6)p = 6p where 0 isa (pt+1) x (p+1) matrix,
0 = [X)Zy(Z,Z,)" Z)Z, (2,2,)" 2, KN (XY 22,2y 2K,

Let S,, represent the cross-sample fitted value of S, and let S, represent the
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endogenous regressor in sample 1. The lower-right-hand-corner element of @ is
equivalent to the coefficient on 8, from a regression of S, on §,, and all the
exogenous regressors. As shown below, this provides an estimate of the proportional

bias in SSIV of §,.

Proof. Substitute X,3 + ¢, for Y, in (4). Then we can write

B, =08 + [X)'Zy(Zy'Zy)" Z)'Zy (Zy'Zy)" Zy' Kol "Xy 22, 2y Zy'e]
Iterating expectations over Z,, we have

E[X,'Zy(Zy Zpy' 2,/ 2y (L))" 2y XV X 22, 2y 2y e

= E{ E[X,'Z(Z,))Z)" Z)'Z, (Y2 2y XXy ZHZ, 2y 2 ey | Z4) .

Using Assumption 1, this is

E{ E[X,'Z(Z,' Ty 2,2, (') 2K 'K ZAZ,'Z) ') - 2, -

Ele; | Z,] }, which is zero because E[e, | Z,] = 0.
Now, note that d is the matrix of coefficients from a regression of the columns of X, on
Z(Z,'Z,)'Z,'X,. We can write X, = [W,, S,1, and Z,(Z,'Z,)"'Z;’X, = [Wy; Syl

Regressing [Wy, S,] on [W,,; $,,] gives the matrix of coefficients:

where I, is a pxp identity matrix, BP is px1, BPH is a scalar equal to the coefficient on S,, in a
regression of S, on §,;, and W,,.

Note that for conventional IV estimators, # is always one. In SSIV estimation, & is a
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matrix of coefficients from a regression of X, on X,,, and reflects a kind of attenuation bias
arising from the use of reduced form coefficients from a separate sample. We illustrate this
point more formally for a special case where E[X; | X,,] is linear. Although this example is

not particularly realistic, we show in the next section that it illustrates some general features

of 8.5

Corollary 1.1. Suppose that E[X; | X,,] is linear. Then

(5a) 6 = E[0] = E[X,’X,]" E[Xy’X|]

(5b) = {r’E(ZZ )7 + co, L} {mE(ZZ )7}

where ¢ = tr{E[(Zz’Z?)"(Zl’Zl)]/n} and L, is a (k+p) dimensioned square matrix consisting

of all zeros except for a one in the lower right-hand corner.

Proof. If E[X, | X, is linear, then E[X;| X,] can be written X, {E[X; X;]"
E[%,,’X,]}. Since 8 = [X,"Xy]" [y’ X,], we can substitute for X, to show that E[f] =
E[X,,’X,,/n}"! * E[X,,’X,/n]. In the appendix, the moments in the numerator and
denominator aré simplified to complete the proof. The intuition behind equation (5b) is that
the denominator reflects the sampling variance in the estimated first stage parameters. Note
that if the cross-product matrices (Z'Z) in the two samples are the same, then ¢ = (k+p)/n.

The matrix L, reflects the fact that X includes only 1 endogenous regressor, s;.

One situation where E[X, | X,] is linear is when X,, and X, are jointly normally
distributed. X, is normally distributed if Z, and n are normally distributed. X,, will also be
approximately normally distributed in this case if n is large enough to make the sampling
variance of (Z,'Z,)'Z,'X, negligible.
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From (5b), it is apparent that if there are no exogenous variables, then the
proportional bias of SSIV is between zero and one -- that is, the SSIV coefficient will be
biased toward O in absolute value. More generally, (5b) implies a matrix attenuation bias,
familiar from multivariate measurement error models (e.g., Fuller 1975). Matrix attenuation
does not necessarily imply attenuation of the individual coefficients in the vector 3. In this
case, however, it does imply attenuation of the coefficient on the single endogenous
regressor, 8,. To see this write the (p+1) x (p+1) matrix, 7’E(Z;Z;’)w, as a partitioned
matrix,

P R
R" Q
where P is p x p, Q is a scalar, and R is a p x 1 vector. Given (3b), it is possible to show
that
Bo + [co, /(¢ + co,HIP'RE,
(6) 68 =
[¢/(¢ + coN]B,
where ¢ = [Q - R'P'R] is a positive scalar, so that ¢/(¢ + co,’) is necessarily between

zero and one. Equation (6) is derived in the appendix.

It is of interest to consider the bias formulas, /5b) and (6), in a number of special
cases. First, if the reduced form residual variance in Sample 2 (a,f) equals zero, SSIV
estimates are unbiased. Another case of interest is when the true reduced form coefficients,
w, are equal to zero (or are very small). In this case, it is apparent from equation (5) that

the SSIV estimate of 3, has expectation zero (or near zero). Moreover, increasing the
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number of instruments also tends to pull SSTV estimates towards zero. These results contrast
sharply with the tendency of conventional IV estimates to be biased towards OLS, or to

diverge to infinity if the true reduced form coefficients are zero:

2.2 Conventional Asymptotic Results for SSIV

We complete this section by summarizing important asymptotic properties of Bs:

Proposition 2. Define g(8) = [Z,'Y,/n, - Z,’X,/n,8], where n, = an, for some positive
fraction, @. Under standard conditions, n'?E[g,(8)] ~ N(0, ©2), where Q is a (p+k)x(p+k)
covariance matrix. If this holds, we have:
(i) n'"(B, - B) ~ N(O, V) where
¥ = C L, L) L, 00, 'E (L. L 'E)
and I, and T, denote population cross-product
matrices.
(ii) If 3 = 0 and E[€? | Z] = ¢.?, then SSIV is the most efficient TSIV estimator for

a given sample split.

Proof. This proposition is a straightforward application of results in our earlier paper on
TSIV (Angrist and Krueger 1992, Lemma 1). The general TSIV estimator is
[X,'Z,%"'X,' X, X, Z,8'Z,"Y,], where & is any positive definite weighting matrix. To see

that SSIV is a special case of TSIV, note that without changing asymptotic results, we can
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normalize each Z; by multiplying times (ZZ)'. Using the normalized instruments and
setting ® = (Z,"Z,)"! in the TSIV formula gives SSIV. In general, setting ®= Q' gives the
optimal TSIV estimator. If we assume E[¢* | Z] = 02 and §=0, then @ = 02 In that

case, choosing & = (Z,’Z,)"! gives the optimal TSIV estimator.

SSIV has a number of practical advantages over other TSIV estimators.” First, SSIV
is easy to compute using regression software. Second, if @ = I, 0?2, then the asymptotic
covariance matrix of SSIV simplifies to (E,E,'E,,)"e?. This is the usual form of the 2SLS
asymptotic covariance matrix. It can be computed from regression software by calculating
the true 2SLS residuals (using regressors and not fitted values) and then adjusting the

software-reported residual variance estimate.

3. Group Asymptotics

Proposition 1 characterizes the expectation of 3, without resorting to complicated
approximation arguments. A simple unbiased estimator of the proportional bias of 3, has
also been derived. To explore the nature of this bias further, without relying on normality or
linearity assumptions for simplifications, we develop an asymptotic argument that we think
captures important features of the finite sample behavior of J..

The approach we use is based on a parameter and data sequence that involves
replicating cross-sections of equal size to estimate the same parameter vector, 8. In the
context of Angrist and Krueger (1991), this replication process can be thought of as obtaining

additional instruments by adding new cross-sections for new years of data, or by adding
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additional cross-sections from new states, regions, or cohorts. The group-asymptotics
approach derives the limiting characteristics of 3, as the number of instruments grows, but
the number of observations per instrument is held fixed. This involves the same type of
argument used by Deaton (1985) in his study of panel data created from a time series of
cross-sections. The asymptotic results in Deaton’s paper are based on the time dimension of
the panel, rather than more conventional cross-section asymptotics. Our group-asymptotics
approach is also similar to the asymptotic argument used in Bekker’s (1992) study of
simultaneous equations estimators.

We think of each cross-section as representing a group of m observations (e.g., state
of birth), and each group as providing an additional excluded instrument. The t* cross-
section replication is assumed to contain data matrices of length m with observaticns on {Y,,
X, Z} for t =1, ..., T. We split these observations into data matrices for half-samples
{Y;, X;» Z;}, for j=1,2. For simplicity, we assume that the replications are i.i.d. An
important feature of this sequence of replications is that there is assumed to be a different
matrix of reduced form coefficients associated with each replication. In particular, we
assume that at each replication two half-samples and a reduced form coefficient matrix, =,
are drawn. The ,, are themselves i.i.d. random matrices satisfying E[X; - Zy7, | Z;] = 0
and E[(X, - Z,7)* | Z] = o, for j=1,2 and the residual component corresponding to s;.
Each T, is also assumed to be independent of the data in each half sample, and the two
samples for each replication are assumed to be independent of each other (as in Assumption
D).

The fact that #, varies with t motivates the use of interaction terms in the instrument
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list. The matrix of fitted values is therefore,
le = [X21,1'- <. le.z'- <. XZ[,T,]’

where X;,, = Z,(Zy'Zy)"' Z,'X,. Similarly, the data matrices from each replication are

stacked:
Y, =Y, .. .Y, L YT
X=X . . XN L X T
Z,=1[Z,,...2/,.... 4T
for j=1,2.

Consider the SSIV estimator constructed by pooling all replications and allowing a
separate reduced form for each replication. The resulting estimator can be written:
85 = (X21'X21)4X21'Y1

= [(I/TE, X21.1’X21.1/m 1" [(1/DE, X21,15Y1:/m ].

We define the group-asymptotic probability limit of B as the probability limit when the
number of groups becomes infinite while the group size is fixed. This probability limit furns
out to be similar to the expectation derived in Proposition 1, where a linear conditional

expectation was assumed. The corresponding group-asymptotic result is presented below:

Proposition 3. plim [(1/T)E, Xy /Ko /m ] (I/T)E, Xy, Y /m |

T—co
= {Elx/(Z,/Z,/m)7] + c"o,le}'IE[qu(’Z“’Zl,/m)ar(]B

where ¢* = tr{E[(Z,'Z,) (Z,,'Z,)])/m}.
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Proof. The first step is to note that

plim [(/TE Xy, /Xy /m 17 (UTE X, 'Yy /m ]

T—oo

= E[X,, /Xy /m]! * E[X;, 'Y, /m].

We also have,

Xoie = Zuw + Zy(Zo/ Zo) ' 2y ",

Yy = Zym + 108 + &y
The proof is completed by using these expressions and the independence assumption to
evaluate population moments, as in the proof of Corollary 1.1 (given in the Appendix). As

in Corollary 1.1, the matrix attenuation in Proposition 3, {E[x/(Z,/Z,/m)7] + c’0,’L,}"

'Blz('Z,'Z,/m)7], implies scalar attenuation of the coefficient §;.

Although Proposition 3 is a special kind of asymptotic result, the group-asymptotics
characterization of B, should provide at least as good an approximation to the first moments
of the SSIV estimator as Nagar-type approximation results. To see this, consider the group-
asymptotics probability limit of conventional 2SLS in T repeated cross-sections as T grows to
infinity. As in the proof of Proposition 3, the 2SLS estimator has group-asymptotics

probability limit

plim [(I/T) £ [X/X/m]" ((UT) ¥ (X, Y/m] = E[X/X/m]" * E[X/Y/m].

where,
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(M X, = Z(Z/Z)'L'X, = Zm, + Z(Z/Z2)"Z'n,

Y =@Zx +7)8 +¢.

In this case, ¢ and 7, are in the same sample and have covariance o, for the element of »,

corresponding to s;. Using (7) it is therefore possible to show that

@)  E[X’/X/m]' * E[X,Y/m]

= B + [k+p)/ml{E[r/(Z,/'Z/m)7] + [(k+p)/mlo, L.} Ei0,,

where £, is a (p + 1) vector consisting of zeros in the first p rowe and a 1 in the last row.’

From (8) it is apparent that 2SLS is not consistent under group asymptotics.®
Note that (8) is similar to the Nagar bias result used by Buse (1992) and BJB (see equation
(3), above). The principal difference between (8) and the Nagar approximation formula is
that, through the term a,,z in the denominator, (8) reflects sampling variability in estimates of
the reduced form. We conjecture that because of this, formula (8) will usually do a better
job characterizing the small-sample properties of conventional 2SLS estimators than will the

Nagar formula.

’As in the proof of Proposition 2, algebra for this result follows steps similar to those
outlined in the Appendix for Corollary 1.1 .

*Equation (8) is a variant of the result derived by Bekker (1992) using a parameter
sequence that fixes the explained sum of squares in the reduced form sum of squares, 7’Z’Zx,
while the number of instruments grows.
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4. Unbiased Split-Sample Estimation

It seems reasonable to try to improve on SSIV by inflating the estimates, J,, by the
inverse of the estimated proportional bias, #. The resulting estimator, &8, is not unbiased,
however, because it involves a nonlinear function of the (correlated) random variables 9 and
B,. Nevertheless, the inflated estimator is unbiased under the group-asymptotic argument
cutlined above. We therefore label this inflated estimator as an Unbiased Split-Sample
Instrumental Variables (USSIV) estimator.

Recall that & = [X,,'X,:]" [X,;'X,]. Then the USSIV estimator can be written

B = 07,
= [X21'X1]_1[X21’Y1] = [(I/T)L, XZl,t’Xh/m I' [(I/ITHE, le,t'Yn/m ]

Note that 8, can be constructed by using X, as an instrument foi X, in the regression

Yl = XIB + €.

Using X,, as an instrument for X, instead of including it directly as a regressor eliminates
the attenuation bias that arises from estimation of the first-stage reduced form.

The properties of 3, are summarized in the next proposition:

Proposition 4. (i) plim [(/T)E, X,, /X, /m "' [(I/DE, X;,,/Y)/m ]

T—oo

=B‘
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i) TY*(B, - B) ~ N(0, A) where

A= E[XIIIXZI,l/m]-lE[XZl,t'XZI,t/m]E[XZI,tlxlt/m]‘lasz

Proof. To prove (i) we need to show that

plim [(1/T)E, KXoy /X/m] = E[n,'Z,/Zyr/m]. Writing

T
ot = L2/ 2oy 2o/ Koy = Zyme + Zi(Zo/ Z) 2y my,
Xy = Zym + 1y
gives E[X;, /X,/m] = E[n,Z,/Z,7/m], exactly as in line (AS) of the proof to Corollary
1.1 . To derive the variance formula in (ii), substitute for Y, in f3,:
B, = Xu'X 1K'Vl = 8 + Ru/'Xi]"[Ka'e],
so that
T3, - B) = [(UTDE, Xy /Xy/m I * T U/DE, Xy /e,/m ]
~ E[X,, /Xy/m]? * T2[(W/T)E Xy, e/m ).
Using the fact that ¢, is mean independent of Xj,, with a scalar covariance matrix

coinpletes the proof.

Proposition 4 provides a basis for inference using USSIV under group-asymptotics.
The USSIV coefficient estimates and estimated asymptotic standard errors are also easy to
compute. Note that 3, is a just-identified 2SLS estimator in sample 1, so that it can be

written

Bu = [X1'Xz1(X21'le)'lxn'Xn]']X1'X21(X21'le)'lXu'Yl-
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The usual 2SLS covariance matrix estimator for a coefficient estimator of this form is
[X,'%,,(Xo' X, X, X 10,2, Multiplying this by mT provides a consistent estimate of A.
Conventional 2SLS standard errors therefore provide a consistent estimate of the sampling

variance of 3, under group-asymptotics.

5. Application: Angrist and Krueger (1991)
We apply SSIV and USSIV to the data set used by Angrist and Krueger (1991) to

estimate the monetary return to education. In that paper we argued that quarter of birth
provides a legitimate instrumental variable for years of schooling because children’s age at
school entry is related to their date of birth, and becausc compulsory schooling laws require
children to attend school until their 16th or 17th birthday. We found that quarter of birth is
weakly correlated with education and earnings for men born between 1920-49. Conventional
IV estimates of the return to education based on quarter of birth instruments are close to
OLS estimates, suggesting that omitted variables do not bias the OLS estimates. Her_e we
focus on estimates for men in their 40s because the age-earnings profile is fairly flat for this
age group. This avoids potential problems due to correlation between age and quarter of
birth.

The first two columns of Table 2 report OLS and IV estimates of the education
coefficient from log-wage equations. The analysis uses large samples from the 1980 and
1970 Censuses, and the specifications are :he same as in Angrist and Krueger (1991). The
IV model in Table 2 uses 30 quarter of birth x year of birth interactions as excluded

instruments. SSIV and USSIV results are in columns 3 and 4. The standard error for the
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SSIV estimates is about 50 percent greater than the conventional IV standard errors.
Moreover, each of the SSIV estimates is somewhat less than the corresponding IV estimates,
as one would expect since SSIV is biased toward zero. The SSIV estimate is above the OLS
estimate for the 1980 sample, whereas it is below it for the 1970 sample. But in each case
the SSIV and OLS estimates are not statistically different.

The proportional attenuation bias (6) of SSIV is estimated to be 78% in the 1980
'sample and 93% in the 1970 sample, with a standard error of about 12% in each case.
Column 4 reports the USSIV estimates.” These estimates inflate the SSIV estimates by the
inverse of . The USSIV estimates tend to be above the OLS estimates, and are remarkably
close to the conventional IV estimates.

The split sample approach can also be used to produce a visual impression of the
data. Specifically, we randomly split the sample in half and then removed year-of-birth
effects from earnings using one half of the sample, and removed year-of-birth effects from
education in the other haif. Finally, we graphed the average residual earnings by quarter of
birth against the average residual education by quarter of birth. Figures la and 1b show the
graphs for the 1970 and 1980 samples. The plots clearly show upward sloping relationships.
The slope of this line can be shown to be an SSIV estimacor in which each quarter of birth is
given equal weight. For both the 1970 and 1980 data, the slope is .069.

Table 3 contains a set of OLS, IV, SSIV and USSIV results for models estimated

using 150 quarter of birth x state of birth interactions as well 30 quarter of birth x year of

’The estimate of © for the schooling coefficient is estimated from a regression of actual
schooling in sample 1 on the cross-sample fitted schooling variable and all the exogenous
variables.
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birth interactions as the excluded instruments, with data from the 1980 Census sample. This
model has a first-stage F-statistic for the excluded instruments of 2.4 (compared to 4.8 in the
30 instrument model), and BJB and Staiger and Stock (1993) argue that IV estimates of these
models are likely to be severely biased as a result. For this 180-excluded-instruments
specification, the SSIV education coefficient is .031, about 40 percent as large as the IV
estimate. However, the estimated proportional attenuation bias of SSIV in this case is also
on the order of 40%. Thus, the USSIV estimate increases to .076, only slightly less than the
IV estimate and above the OLS estimate. This result suggests that finite sample bias is not a
not a serious prcblem with conventional IV here.

The SSIV and USSIV estimates reported in Tables 2 and 3 are based on a single
random split »f the data. To investigate the sensitivity of our results to alternative splits, we
conducted a small scale Monte Carlo exercise in which we randomly divided the sample and
calculated SSIV and USSIV cstimates 31 times, each time using a different (randomly
generated) sced number to split the data. The specifications estimated here use the 180
quarter of birth interactions as excluded instruments, as in Table 3. These results are
reported in the first two columns of Table 4. The aver;ige SSIV estimate is .048, with a
Monte Carlo standard deviation of .010 in 31 replications. This is somewhat higher than the
SSIV estimate reported in Table 3 for a similar specification.'” The median SSIV estimate
is .05, with upper and lower quartiles of .055 and .042.

The average estimate of the proportional attenuation bias in SSIV in these 31

"To save time and money, we omitted region dummies, marital status, the SMSA dummy,
and the race dummy from the first and second stages of the models used for the Monte Carlo
replications. The estimates in Table 4 and Table 3 are therefore not directly comparable.



24

replications (not shown in the table) is .433 with a Monte Carlo standard deviation of .05.
The average USSIV estimate is .112 with a standard deviation of .024. The lower and upper
quartiles for USSIV estimates are .099 and .129, giving an inter-quartile range of .03. This
is considerably larger than the SSIV inter-quartile range of .013. Overall, however, both the
SSIV and USSIV estimates with the actual instruments do not appear to be overly sensitive to
the sample split."!

Finally, we investigated the performance of SSIV and USSIV in circumstances when
the instruments have extremely weak explanatory power. In particular, we randomly
assigned individuals’ quarter of birth based on & uniform distribution with equal probability
of being born in each month. We then conducted another Monte Carlo exercise in which we
randomly divided the sample 31 times and estimated SSIV and USSIV for the 180-excluded-
instrument model each time. These results are reported in columns 2 and 4 of Table 4. In
general, SSIV and USSIV perform well in this situation. The SSIV coefficient estimates are
centered on zero, with a relatively small Monte Carlo standard deviation. Tue average
estimate of @ in this experiment is .086, suggesting substantial bias downwards. Such a low
value of 6 would be an indication that the instruments are exceedingly weak.

The USSIV coefficient estimates with randomly generated instruments are highly
variable, and their individual standard errors are high -- on the order of .13 -- which is about

double the OLS coefficient estimate. Although the USSIV coefficients are centered near

"In future work, we plan to explore this issue in a full-scale Monte Carlo study of SSIV,
USSIV, other split-sample estimators, and conventional IV estimators. The purpose of this new
study is to compare the estimators on mean-squaied error and other grounds and to develop
a framework for inferenc which accounts for variability due to the sample split in the reported
sampling variance.
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zero, the key result here is that they have huge sampling variances.

Simulations of both SSIV and USSIV using random instruments suggest these
estimators would lead a researcher to conclude that the random instruments are not useful.
In centrast, using the same randomly generated instruments in conventional IV estimation
yields a coefficient estimate of .057 with a standard error of .014. Thus, unlike SSIV and
USSIV, the conventional IV results look plausible and remarkably like OLS, even with

randomly assigned instruments.

6. Conclusion

Split sample IV has many advantages over conventional IV. In particular, SSIV is
biased toward zero, rather than toward the probability limit of the OLS estimate as is the
case in IV. Moreover, this result does not rely on approximations (which may not be valid)
as is the case wi‘h the Nagar (1959) and Buse (1990) IV bias formula. It is also possible to
derive an unbiased estimate of the attenuation bias of SSIV. This estimate can then be used
to inflate the SSIV estimate. The resulting estimator (USSIV) is asymptotically unbiased as
the number of instruments tends to infinity, holding the number of observations per
instrument fixed. In contrast, conventional IV is still biased under this type of asymptotics.

One shortcoming of the split-sample approach is that SSTV and USSIV estimators are
asyinptotically less efficient than conventional IV. But it is probably possible to improve the
efficiency of SSIV and USSIV by combining the estimates described here with parallel
estimates that use the opposite halves of the data to estimate the first and second stage

equations. This approach will use all of the data, although th: two estimates of the
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coefficient will not be independent. We are working on deriving the sampling variance of
the estimator in this case, and on developing more efficient split-sample estimators.

We have also applied SSIV and USSIV to the data used by Angrist and Krueger
(1991) to estimate the payoff to education. Our re-investigation shows that SSIV and USSIV
produce "reasonable" standard errors, and parameter estimates that are close to the
conventional IV and OLS estimates. Overall, we view these results as consistent with the
conclusions based on conventional IV in Angrist and Krueger (1991). All the IV estimators
used here -- 2SLS, SSIV, and USSIV -- lead to similar results for the 30 instrument
specifications, so that small-sample bias does not appear to be a problem for the 30-
instrument case. Our experiments with random instruments suggest that small-sample bias is
potenually a problem for conventional IV estimates in the 180 instrument specification, as
well as for the SSIV estimates, which are biased tcward zero. But the USSIV estimator
corrects the downward bias in SSIV estimates, and in this case generates estimates close to
2SLS 1or the 180-instrument specification.

Finally, our experiments with SSIV and USSIV show that these estimators dc not give
a misleading impression when the instruments are randomly assigned. This is a marked
contrast with conventional IV estimators. In simulations where we randomly generate the
instrumental variables, SSIV and USSIV tend to yield coeificients that are close to zero, and
the estimated standard errors for USSIV are large. These findings suggest that SSIV and
USSIV are likely to be a useful tool in cther applications where researchers are concerned

about the possibility of finite-sample bias in conventional I'V estimates
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Appendix

Proof of Corollary 1.1. We need to show that:
(Al) E[szﬁz“ﬂ] = {‘n"E(ZiZi’)T + CU,’ZL]}

(A2) E[%,,'X,/n] = {7’ E(Z;Z;)7}

where ¢ = tr{E[(Z,’Z,y(Z,’"Z)}/n} and L, is a (k+p) dimensioned square matrix consisting

of zeros except for a 1 in the lower right corner. Note that,
(A3) R = Z(ZYTY' LXK, = Zym + Zy(Z,'2) Ty,
(Ad) X, =2Z7x+ 1.
Using the independence of the two samples and the fact that E[n, | Z,] = 0,
E[#;,’%,,/n] simplifies to
E[x'Z’Zn/n] + E[n,'Z(Z,'Z)'Z,'Z,(Z,'Z,Y'Z, n,/n].

We have, E[#’Z’Zw/n] = {x’E(ZZ;)7} by virtue of i.i.d. sampling. To simplify

Eln,'ZAZ,' Z,)"Z,' Z(Z,' Z,Y'Z,'n,/n], let ,” be the column of 5, corresponding to s;.

Eln,'ZAZ,' Z,)" 2y Z\(Z,/ 2,) "2, /]
= Bln,"ZAZ,'Z)"' 2,/ Z(Z,'Z,) ' Z, 0, T/
Using properties of the trace operator, we have
Eln," ZAZ, 2y ' 2, Z(Zy Z,) 2y ;']
= Eltr{n,"' Zo(Z,'Z) ', Z(Zy Z)) "2, n, }]

= Eltr{Z,'n, "0, Z.(Z,Z,)'Z, yAVAYARSE

Then,

Tterating expectations, passing the expectation through the trace, and using the fact that

Elm,n" | Z,] = 0,1, gives
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Eltr{Z, 1, n, " ZAZy' 25" 2, Zy(Z,' Z,)*}] = Eltr{Z,'Z,(Z,'Z,)"}]0,>. This establishes Al.
To simplify A2, use A3 and A4 to write
(A5) E[%,/X,] = E[%'Z,'Z,7] + E[x'Z/n,] + Eln,'Zy(Z,’Z,Y' 2,/ Z;7]
+ Elny'Zo(Z,'Zy'Z, '}
Because the two samples are independent and 7; is mean-independent of Z;, only the first

term on the right hand side of A5 is non-zero.

Derivation of equation (6). Recall that 8 = [3,’ 8,]'. Write the (p+1) x (p+1) matrix,

7' E(Z,Z,)7, as a conformably partitioned matrix:

R’ Q,
where P isp x p, Q is a scalar, and Risp x 1. Also, letq = co,’. Using the partitioned
inversion formula (Theil 1971, p. 18), we have [x’E(ZZ)x]" =
P RI|* P! + P'RR'P(1/¢) -P'R(1/9)
(A6) =
R Q}, R’P(1/¢) (Ve) |,

where ¢ = Q - R'P'R is a scalar. We can use A6 to write

{w’E(ZZ 7w + co’Li}' =

P R _1
= [¢/(¢ + q)] -
R Q+q
Pl¢ + P'RR'P! -P'R Plqg 0
[ {(1/¢) b+ {/é) ]
PR’ 1 0 0

The first term in curly brackets equals {7’ E(ZZ;" )]
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Therefore, {x'E(ZZ)x + co,’L,}{x E(ZZ;" )T}

I, PR
= [¢/(¢ + P,y + [9/(d + Q]
0 0

Multiplying this times 8 gives equation (6) in the text. Because {x’E(ZZ;}7} is positive
definite, [’ E(Z,Z;)x]" must also be positive definite. Therefore, 1/¢ = 1/[Q - R'P'R],
which is the lower right diagonal element of [7’E(ZZ;")7]"', must be positive. This implies
that the proportional bias in estimates of 8, [¢/(¢ + Q)] = [¢/(¢ + co,,z)], is between 0 and

1.
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Table 1
Comparison of Estimates of Education Coefficient

from Angrist and Krueger (1991)

Excluded Instruments:

Parameter First Quarter Year*QOB  State*QOB
Year*QOB
(1) ) (3)

1980 Census, Men Born 1930-39

B 102 .089 .093
(.024) (.016) (.009)
First-stage 67.94 4.75 2.43

F-statistic

1970 Census, Men Born 1920-29

B 072 077 NA
(.022) (.015)
First-stage 65.60 4.54 NA

F-statistic

Number of excluded 1 30 180
instruments

Source: Angrist and Krueger (1991); the estimates in column (1) are

the Wald estimates from Table III, other estimates are from Tables

IV (column 2), Table V (column 2), and Table VII (column 2). Column
(1) includes no exogenous regressors, column (2) includes 9 year of birth
dummies as exogenous regressors, and column (3) includes 9 year of birth
and 50 state of birth dummies as exogenous regressors. Standard errors
are shown in parentheses.



Table 2

Various Estimates of Model with 30 Quarter of Birth x Year
of Birth Interactions used as Excluded Instruments

Type of Estimator

Parameter OLS v SSIV USSIV
(1) )] (3) 4)

1980 Census, Men Born 1930-39

B 063 081 070 .089
(.0003) (.016) (.023) (.030)
0 -- - 780 -
(.118)
First-stage F -- 475 241 2.41

1970 Census, Men Born 1920-29

B 070 .069 .059 .063
(.0004) (.015) (.023) (.024)
0 -- -- .934 -
(.127)
First-stage F -- 4.54 2.03 2.03

Notes: Models include 9 year of birth dummies, marital status, region dummies,
SMSA dummy and a race dummy as exogenous regressors. Sample size for 1980
sample for OLS and IV is 329,509; for SSIV and USSIV the first stage equation
was estimated with 164,474 observations and the second-stage with 165,035
observations. Sample size for 1970 sample for OLS and IV is 244,099; for SSIV
and USSIV the first stage equation was estimated with 121,956 observations and the
second-stage with 122,143 observations.



Table 3
Various Estimates of Model with 30 Quarter of Birth x Year of Birth Interactions and

150 and Quarter of Birth x State of Birth Interactions used as Excluded Instruments

Type of Estimator

Parameter OLS v SSIV USSIV
D (2) (3) 4

1980 Census, Men Born 1930-39

B .063 .083 .031 076
(.0003) (.009) . (.011) (.028)
6 -- -- 408 --
(.057)
First-stage I -- 2.43 1.70 1.70

Notes: Models include 9 year of birth dummies, 50 state of birth dummies, marital
status, region dummies, SMSA dummy and a race dummy as exogenous regressors.
Sample size for 1980 sample for OLS and IV is 329,509; for SSIV and USSIV the
first stage equation was estimated with 164,474 observations and the second-stage
with 165,035 observations.



Table 4
Results of 31 Monte Carlo Replications of Split

Summary Statistics for Education Coefficient

Actual Instruments Randcom Instruments
SSIV Ussiv SSIV UssIv

(1) (2) (3) {4)
Mean .048 112 .002 .021
Median .050 .114 .004 .034
Standard Deviation .010 .024 .014 .187
of Coefficients
25th Percentile .042 .099 -.006 -.080
75th Percentile .055 .129 .014 .133

Notes: Models include 9 year-of-birth dummies and 50 state-of-
birth dummies as exogenous regressors. The conventional IV
estimate and standard error with the random instruments is .057
(.014) .
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