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And the Lord said Because the cry of Sodom and
Gomorrah is great, and because their sin is very
grievous; 1 will go down now, and see whether they
have done altogether according to the cry of it,
which is come unto me, and if not, I will know ...
and Abraham drew near and said, wilt thou also destroy
the righteous with the wicked? Peradventure there
be fifty righteous within the city,; wilt thou also
destroy and not spare the place for the fifty
righteous that are therein?... and the Lord said,

if 1 find in Sodom fifty righteous within the city,
then I will spare all the place for their sakes"
Genesis 18 Verses 20-26, King James Version



The case for social experimentation implicitly rests on the belief that mean differences
in oulcomes - comparing those given a treatment with those denied it by randomization -
measure something of economic or social interest. Yet, as the quotation from Genesis reveals,
even in biblical times features other than mean outcomes were perceived to be of interest. Just
as Abraham convinced the Lord to spare Sodom and Gomorrah from destruction if he could find
50 sufficiently righteous persons living there, so many evaluators of contemporary social
programs would deem them successful if enough persons reaped sufficient benefits from them
even though the average participant did not. Voters might well oppose a social program with a
high estimated mean impact arising solely from a large beneficial program effect for a few
participants or a program that had substantial negative impacts on even a small fraction of
participants. Programs with a negative impact on certain types of participants may need lo be
retargeted toward those more likely to benefit from them. Features of the distribution of program
gains form the basis for all of these judgments.

Social experiments recover two distributions of outcomes - one for the treatment group
“and one for the control group - but cannot recover the joint distribution of outcomes or the
derived gain distribution because no person is observed in both treatment states. From the
outcome distributions for participants and non-participants, mean differences can be estimated.
However, without invoking additional assumplions one cannot use data from social experiments
to estimate the medjan impact from a program or the gain at the top deciles of the distribution
or any other measure that requires the joint distribution for its calculation. (Heckman (1992)).

This problem does not arise in the conventional econometric model that is widely used

to evaluate programs. As in all models of program evaluation, in the conventional model,



persons have two possible outcomes corresponding to the treated (Y,) and untreated (Y,) states.
We observe only one member of the pair of latent variables (Y1, Ye). If a person receives
treatment we set R = 1; R = 0 otherwise. In the conventional econometric approach, it is
further assumed that
Y, - Yo =«
where o is the same for everyone. Assuming they exist, the mean outcomes in the control and
treatment groups can be used to obtain o
o =EY,|R =1)-E®Y,]|R = 0),
We can derive the joint distribution of (Y,, Y,) from either marginal distribution since
knowledge of Y, implies knowledge of Y,:
Fi(Y) = Fo(Y, - a).
In a more familiar regression setting, follow Heckman and Robb (1985) or Bjorklund and
MofTitt (1987) and write outcome Y in mixture form as
Y = RY, + (1 - R)Y,.
Assuming a conventional econometric specification,
Yo=XB8+U, EU|X)=0
the conventional jdentical effect econometric model can be written as
Y =R(Y,-Y) + Y,
= Ra + X8 + U.
In an experimental setting, R is orthogonal to U and X. Least squares can be used to consistently
estimate « and 8 under standard rank conditions. The joint distribution of (Y, Y,) is produced

by estimating the distribution of U and adding back Ree + X8 if U is independent of X. Within



the conventional econometric framework, it is possible to answer all of the evaluation questions
that require knowledge of the joint distribution.

By assuming identical treatment effects for everyone, the conventional model imposes
strong restrictions on the data. A person’'s place in the Y, distributien is determined by hisfher
Place in the Y, distribution. The best person in the latent Y, distribution is the same as the best
person in the latent Y, distribution. The conventional model is robust to the randomization bias
that arises in a more general variable-treatment-impact model when randomization alters the
quality of the program’s treatment pool. (Heckman (1992)). Since the impact of treatment is the
same for everyone in the conventional economelric framework, estimates of program jmpact are
not affected by randomization. The case for social experimentation is made most strongly within
the context of this model.

Convenient and familiar though it is, the conventional model is not plausible. People are
likely to vary in their response to the same treatment and there are also likely to be important
unobserved differences in the treatments received within broadly measured treatment categories.
This paper considers how social experiments can be used to estimate or bound the distribution
of gains to participating in programs when o is not a constant, and there is variability in
tréatment impacts across persons.

The problem of bounding a joint distribution from knowledge of its marginals has been
studied by classical and Bayesian statisticians. Hoeffding (1940) and Frechet (1951) present
elementary bounds. More recently, Bayesians have drawn on and extended these ideas in
constructing bounds on posterior (joint outcome) distributions when only prior marginal

distributions are specified. Recent papers by Lavine, Wasserman, and Wolpert (1991), Berger



(1990) and Berger and Moreno (1992) exemplify this literature and provide many additional
references.

A considerable body of empirical experience with these bounds suggests that they are
often rather wide, especially for continuous outcome measures. (See Lavine et,al for a recent
demonstration of this point). Although much of this literature is not relevant to the problem of
bounding the distribution of program gains considered in this paper, the empirical evidence
reported in this paper is broadly consistent with previous findings. We analyze the outcomes
from the recent Job Training Partnership Act (JTPA) experiment conducted by Abt Associates
and the Manpower Demonstration Research Corporation for the U.S. Department of Labor. We
find that experimental evidence does pol settle important questions about the distribution of
program gains. It must be supplemented by additional information in the form of plausible
features of the distribution of outcomes, plausible dependence relationships among latent
outcomes, or plausible selection rules in order to provide meaningful bounds on the distribution
of program gains. Fairly strong positive dependence among latent outcomes is required in order
to produce plausible impact distributions.

This paper develops and applies methods for incorporating prior information into the
analysis of social experiments to produce credible estimates of the distribution of program
impacts. Several methods are developed and applied to analyze the distribution of program gains
using data from the JTPA experiment. These methods are motivated by intuitions about how
closely related persons’ treatment outcomes are to their control outcomes. Some of these
intuitions emerge from models of the program participation decision. We take as our point of

departure the conventional common effect model that specifies a tight deterministic relationship



between Y, and Y,. All of our methods can be seen as various ways of relaxing this tight
relationship and yet still deriving plausible information about the distribution of gains using
experimental data. We are unaware of any previous literature that specifies the joint dependence
between treatment and control outcomes in the manner we suggest.

The exposition of this paper proceeds as follows. First, we discuss what an experiment
does and motivate why it is interesting to know the full distribution of program gains, rather
than just its mean. Second, we examine the intrinsic uncertainty regarding the gain distribution
present in experimental data. Using JTPA data, we demonstrate the wide variety of distributions
of program impacts thal are consistent with the experimental evidence. Third, we present two
methods for incorporating prior information into the analysis of social experiments and apply
them to the JTPA data. Fourth, we use linear model random coefficient methods and
nonparametric deconvolution techniques to uniquely recover the distribution of program gains
in the case where gains are not known at the time decisions are made about participation in the

program. The paper concludes with a summary.

(1) The Evaluation Problem and How Experiments Partly Solve It
If analysts could observe (Y,, Y,) for everyone, there would be no evaluation problem.
One could form
A=Y,-Y,
and compute the gross gain to program participation for various populations of interest. For each
person, one could determine whether program participation raised or lowered outcomes. The

evaluation problem arises because we do not observe (Yo, Y,) for everyone.



Ordinary program and comparison group data enable determination of the conditional

outcome distributions for participants (d = 1) and non-participants (d = 0):

(la) F(y,|d = 1) (participant outcomes)
and
(1b) F(yo| d = 0) (non-participant outcomes).

We don't know Y, for participants or Y, for non-participants. We do not even know the

counterfactual conditional distributions:

(lc) F(yo|d = 1) (what participant outcomes
would have been had they not
participated)

and

(1d) F(y,|d = 0) (what non-participant outcomes
would have been had they
participated).

Since we don't observe both the treated and untreated states for participants or non-participants,

we also do nol know the joint distributions for participants and non-participants;

(le) F(yi Yol d = 1)
and
(1) F(yi, yo | d = 0).

Unless participation is random with respect to outcomes (i.e, F(y, [d = 1) = F(y, | d
= Q) and/or F(y,|d = 1) = F(y, | d = 0)) it is not possible to use program data, as

represented by (la) and (1b), to estimate either the mean impact of treatment on the treated:



E(Y,-Yo|d =1
or the mean impact of non-participation on the non-participants:
E(Yo-Y, }d =0).
From popixlations of program participants and non-participants, we can obtain

E(Y, | d = 1) - E(Y, | d = 0)

= E(Y,- Yo|d = 1) + {E(Yo | d = 1) - E(Y, | d = 0)}.
Only if there is no selection of participants on the basis of Yo will the term in braces be zero.
Under ideal conditions, randomized trials produce data that can be used to solve some
of these problems. The most commonly used point of randomization occurs at the stage of
program application and acceptance where a person declares interest in the program and would
ordinarily be offered treatment (d* = 1). (We distinguish d* from d to distinguish program
participation under random assignment from participation in an environment without random
assignment.) As before, R = | if a person actually receives treatment; R = 0 otherwise.
Assuming that randomization does not alter the population of accepted applicants, then
(A-1) F[R=1,4d"=1) =F@y, |d = 1)
where d = 1 is "accepted and admitted in an environment without randomization”. A further
assumption is that
(A-2) F(yo|R=0,d"= 1) = F(yo | d = 1),
Throughout this paper we maintain the assumption of no bias induced by randomization noting
anly in passing that there is much evidence against it. (Heckman (1992)). Under (A-1) and (A-

2), we may replace d* by d and we do so for the balance of this paper.

Under assumption (A-2), social experiments produce F(y, | d = 1). Randomized trials



do not recover (1d), because we cannot force non-participants to participate. Social experiments
do not recover (le) or (1) because we do not observe (Y,, Y,) together for either participants
or non-participants. Without invoking further assumptions, it is only possible to determine
features of the joint distribution that depend solely on F(y, | d = 1) and F(yo| d = 1). One
important feature is
E@A[d=1)=EY,-Yo|d=1)=EQY,|d=1)-EXY,|d=1)

Medians or other quantiles of the gain distribution cannot be consistently estimated from
marginal distributions. However, in the special case

Y - YYo=«
discussed in the introduction, where « is the same for everyone (or where o can be generalized
to depend on a set of observed variables X), the distribution of gains is degenerate since
everyone has the same gain. (This is sometimes called the "dummy endogenous variable"
model). In this case, ideal experiments recover the full joint distribution of the gains and there
is no randomization bias. (Heckman (1992)).

In the absence of randomization bias, social experiments determine the mean impact of
treatment on the treated. The current emphasis in the program evaluation literature on means
over medians or other quantiles of the impact distribution is largely a cultural artifact bound up
with the notion of the "average man” that has dominated thinking in statistics for more than one
hundred and thirty years. (See Stigler (1986)). In addition, the widely used regression model
of adjusted means presented in the introduction to this paper is the standard framework of
analysis for most social scientists. Yet, knowledge of the mean does not suffice to answer many

interesting questions if persons respond differently to treatment.



(2) Why Is It Interesting To Estimate The Distribution
of Program Gains For Participants?

Answers to many interesting evaluation questions require knowledge of the distribution
of program gains. From the standpoint of a detached observer of a social program (_Q.g a "social
planner”) who takes the base state values (denoted *0") as those that would prevail in the
absence of the program, it is of interest to know

(a) the proportion of people taking the program who benefit from it:
Pr(Y, > Yold=1)=Pr(A > 0|d = 1);
(b) the proportion of the total population benefitting from the program:
Pr(Y, > Yo [d = 1)Prd = 1) = Pr(d > 0] d = 1)-Pr(d = I);
(c)  selected quantiles of the impact distribution
igf{A:F(A | d = 1) > q}, where q is a quantile of the distribution.
() the distribution of gains at selected base state values
Fald=1Y,= Yo)-
Each of these measures can be defined conditional on observed characteristics X. Measure (a)
is of interest in determining how widely program gains are distributed among participants.
Detached observers with preferences over distributions of program outcomes would be unlikely
to assign the same weight to two programs with the same mean outcome, one of which produced
favorable outcomes for only a few persons while the other distributed gains more broadly. When
considering a proposed program, it is of interest to delermine the proportion of participants who
are harmed (i.¢ Pr(Y, < Y,|d = 1)) as a result of program participation. Negalive mean
impact results such as those found for certain groups in the national JTPA experiment might be

acceptable if most participants receive a positive gain from the program. These features of the
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outcome distribution are likely to be of interest to evaluators even if the persons studied do not
know both their Y, and Y, values in advance of participating in the program.

Measure (b), which is derived by multiplying measure (a) by the probability of
participation, determines the proportion of the entire population that benefits from the program,
assuming that costs are broadly distnibuted and are not perceived to be related to the specific
program being evaluated. If voters have correct expectations about the joint distribution of
program gains, it is of interest to students of positive political economy to determine if voting
is related to program benefits received by the electorate. Large program gains received by a few
persons may make it easier to organize interest groups in support of a program than if the same
gains are distributed more widely.

Evaluators interested in the distribution of program benefits would be interested in
measure (c). Evaluators with a special interest in the impact of a program on recipients in the
lower tail of the base state distribution would find measure (d) of great use. It reveals how the
distribution of gains depends on the base state for participants. This measure provides answers
to questions such as "do the distributions of gains for the participants who would be among the
worse off in the absence of a program stochastically dominate the distributions of gains for the
participants who would be among the better off in the absence of the program?" and "does the
program reduce inequality among participants?”

All of these measures require for their computation knowledge of features of the joint
distribution of outcomes for participants (formula (le)) which cannot be obtained from data
produced by a social experiment unless additional assumptions are invoked.

Information about the joint distribution of outcomes, if available, is also informative

t



about the structure of decision processes and the information sets used by the agents being
studied. Suppose that Y, and Y, are the net outcomes from participation and non-participation
respectively. If agents are uncertain about both their potential Y, and Y, values, but know the
distributions of these variables, then individual rationality combined with a monotonically
increasing utility function U(y) would have agents pick the option with the greatest utility:
d=1if § U(y)dFe(y) < § U(y)dF(y)
d = 0 otherwise,
(We suppress the dependence of U, F, and F, on X for notational simplicity). If U is concave,
a sufficient condition for d = | is that Y, second-degree stochastically dominates Yo L&, f
Fi(y)dy, < f Fo(yo)dy, for all z. Data from a social experiment do not provide the requisite

data for this test of rationality. Withou! invoking further assumptions social experiments only
provide information on Fy(y | d = 1) and F(y|d=

However, the distributions produced from an experiment can be used to check if
expeclations are rational. If persons choose d = 1, then it follows that for all persons in the
program

f UpdF(y |d = 1) > | UWdFfy | d = 1).

A necessary and sufficient condition for this to be true for all U is that Y, second order
stochastically dominates Y, given d = 1, so that fFl(y, |d = )y, < fFo(yo | d = Ddy,
for all z. This condition is reversed for a risk-lov-ing agent.

Neither of the preceding tests requires knowledge of the joint distributions F(y,, yo) and
F(y,, yo | d = 1). This is an intrinsic feature of choice under uncerlainty for agents who do not

know their position in both the Yo and the Y, distributions as Jong as there is no regret in agent's
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preferences (i.e. only the realized outcome affects choices). Suppose, however, that in advance
of participating in the program, persons know their own (Y,, Y,) values but that observers do
not. For such persons, givend = |,
Y, 2 Y,
is a requirement for rationality. In the population, the requirement becomes
Pr(Y, 2 Yo| Yo = yo,d = 1) = I,

This is a strong form of stochastic dominance. All of the mass of the Y, distribution is to the
right of y,.

More generally, persons may not know (Y,, Y,) but may make unbiased guesses (Yo' . Y,' )

about them in calculating program gains. In this case

Y, = Yo + &
and

yl' =Y, + ¢
where E(g, &) = (0,0)
and (80, &) L (Yo, Y)),

and "AL" denotes independence. In this case, conditioning on realized values produces positive
regression dependence (PRD) between Y, and Y, so that

Pr(Y, < y, | Yo = yo, d = 1) is non-increasing in y, for all y,.
This in turn implies that Y, is right-tail increasing in Y,. That is, Pr(Y, > y, | Yo > Yo. d =
1) is non-decreasing in y, for all y,. Intuitively, the higher is y,, the more the mass in the

conditional Y, distribution is shifted to the right so that "high values of Y, go with high values

of Y,". Y, being right tail increasing given y, implies that Y, and Y, (given d = 1) are posilive
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quadrant dependent: Pr(Y, S ¥, | Yo < yo, d = 1) = Pr(Y, 2 v, |d = 1) and Pr(Y, <
Yol Yy < y,d=1)2Pr(Yo < yo| d = 1). These implications are strict except in the case
where Y, and Y are binary random variables. In that case, these notions of dependence are all
equivalent. (See, g,g,, Tong (1980)). Common measures of dependence like the product-moment
correlation, Kandall’s lau and Spearman’s rho are all positive when there is positive quadrant
dependence.! Thus rationality imposes a restriction on the nature of the dependence between
Yoand Y, given d = 1. Evidence against such dependence is evidence against the Roy model.
(See, ¢.g. Heckman and Honore (1990), for an exposition of the Roy model). Even if Y, and
Y, are negatively correlated in the popuiation, they are positively correlated givend = 1 if
agents are income maximizers.

Finally, consider persons who d.o not know in advance either Y, or Y, and who do not
guess about these values in the manner suggested by the preceding example, but who know the
joint distribution of outcomes for participants (F(y,, y, } d = 1)). Persons randomized into the
program who receive outcome Y, = y, would express no ex-post regret about participating in
the program if

Ulyd 2 § U(y) dFly | yi, d = 1).
Persons randomized out would express regret in being randomized out and receiving Y, = Yo
if

Ulyd < § U(y) dFi(y | yo, d = 1).

Information about ex-post regret combined with knowledge of F(y,, y, | d = 1) would enable

"The result on the correlation coefficient follows trivially from Hoeffding (1940) who proves
that Cov(x,y) = { § {F(x,y) - Fi(x)Fy(y))dx dy where F is the joint distribution, F, is the
marginal distribution for X, F, is the marginal distribution for y.
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analysts to test for this form of agent rationality. This test requires knowledge of the joint

distribution of outcomes.

(3) Indeterminacy In Soclal Experiments: The Continuous Case
Assume access to a sample of N individuals in the treatment state and N in the non-
treatment stale. Suppose thal the outcomes are continuously distributed and that (A-1) and (A-2)
are valid so that there is no randomization bias. Ranking the individuals in order of their
oulcome value from the highest to the lowest, so that Yﬁ“ is the i* highest-ranked person in the

j distribution, and ignoring all ties, we obtain two data distributions:

Treatment Qutcome:F(y, | d=1) Non-Treatment Qutcome; F(y,| d = 1)
1) 1)
Y: Yf YO = Yé
i Yy

We know the marginal data distributions F(y, | d = 1) and F(y, | d = 1) but we do not know
where person i in the treatment distribution would appear in the non-treatment distribution.
Corresponding to the ranking of the treatment outcome distribution, there are N! possible
patterns of oulcomes in the associated non-treatment outcome distribution. By considering all
such possible permutations, we can form a collection C of possible gain distributions, i.e
alternative distributions of
Y, - ILY, ¢ =1,..,N!

where I, is a particular N X N permutation matrix of Y, in the set of all N! permutations

associating the ranks in the Y, distribution with the ranks in the Y, distribution. By considering
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all possible permutations, we obtain all possible sortings of treatment (Y,) and non-treatment
(Yo) outcomes using realized values from one distribution as counterfactuals for the other.

Collection C coincides with the set of extreme points of the set S of all cumulative
distribution functions having F(y, | d = 1) and F(y, | d = 1) as marginal distributions. (Whitt
(1976)). If the Y, and Y, are all distinct, then C corresponds to the set of all N X N permutation
matrices while the set of all cumulative distribution functions corresponds to the set of all N x
N doubly stochastic matrices. Moreover, the data distributions are dense in the space of all
probability measures in the topology of weak convergence. Thus in the limitas N -» oo, we can
obtain any admissible bivariate distribution that lies in S by operating on C using doubly
stochastic matrices. In other words, C is the convex hull of S. To simplify the analysis we work
with the data distributions, passing to the limit as required.

In the case of the "dummy endogenous variable” model or “additive unit treatment
model” - the model that assumes a constant treatment effect for all persons - or for a more
general model in which the treatment outcome is a deterministic function of observable variables,
there is only one admissible permutation:

n=I.
The best in one distribution is the best in the other distribution. In the additive treatment case,
Y, and Y, differ by a constant for each person. The common effect model assumes that the
treatment effect is identical at all quantiles of the gain distribution. A generalization of that
model preserves perfect dependence in the ranks between the two distributions but does not
require the impact to be the same at all quantiles of the base state distribution. Equating

quantiles across the two distributions, form pairs
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{()’o.yl)“"f Fi(yld=1) > q and inf Fi(y,|d=1) > q, 0 < g < l}
» Yo

and obtain a deterministic gain function:
A(yo) = yi(¥o) - Yo
For the case of absolutely continuous distributions with positive density at y, the gain function

can be written as

Ay = F{\(Fylygld = 1) - 3, .
Using standard methods, we can use experimentat data to test non-parametrically for the classical
common effect model. IObserve that we can form other pairings across quantiles by mapping
quantiles from the Y, distribution into quantiles from the Y, distribution using the map T:
T:q,-+q,.
The experimental data are consistent with all admissible transformations including qo = 1 - q,,
where the best in one distribution is mapped into the worst in the other. They cannot reject any
of these models or more general models that permit nondegenerate (Y,, Y,) distributions. We

present estimates of A(y,) after describing our data.

(a) The Data Used to Estimate Afy,)

The data analyzed in this paper were gathered as part of an experimental evaluation of
the training programs financed under Title II-A of the Job Training Partnership Act (JTPA). This
program provides classroom training in occupational skills, on-the-job training at private firms,
~ job search assistance, and other employment and training services to the economically

disadvantaged.
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The experiment was conducted at a non-random sample of sixteen of the more than 500
JTPA training sites around the country. Data were gathered on JTPA applicants randomly
assigned to either a treatment group allowed access to JTPA training services or to a control
group denied access to JTPA services for 18 months. Random assignment covered some or all
of the period from November 1987 to September 1989 at each site. A total of 20,601 persons
were randomly assigned. In this paper we only present results for women age 22 or more at the
time of random assignment.

Follow-up interviews were conducted with each person in the experimental sample during
the period from 12-24 months after random assignment. This interview gathered information on
employment, earnings, participation in government transfer programs, schooling, and training
during the period after random assignment. The response rate for this survey was around 84
percent. The sample used here includes only those adult women who (1) had a follow-up
interview scheduled at least 18 months after random assignment, (2) responded to the survey,
and (3) had useable earnings information for the 18 months after random assignment. This sub-
sample includes 5725 adult women.

The sample was chosen to match that used in the 18-month experimental impact study
by Bloom et al. (1993). As in that report, the earnings measure is the sum of seif-reported
earnings during the 18-months after random assignment. This earnings sum is constructed from
survey questions about the length, hours per week, and rate of pay on each job held during this
period. Outlying values for the eamings sum are replaced by imputed values as in the impact
report. However, imputed earnings values used in the report for adult female non-respondents

are not used here as they were not available at the time this paper was written. The employment
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measure used in this paper is based on the 16%, 17* and 18% months after random assignment,

A person is defined to be employed if she had any self-reported earnings in these months,

(b) Estimates

Figure 1A presents empirical evidence on the question of the constancy of the gain effect
across quantiles. It displays the estimate of A(y,) for adult women assuming that the best persons
in the "1" distribution are the best in the *0" distribution. More formally, it assumes that the
permutation matrix = = 1. Between the 25th and 85th quantiles the assumption of a constant
impact is roughly correct. It is grossly at odds with the data at the highest and lowest quantiles.
(Standard errors for the quantiles are obtained using standard methods described in Csbrgo
(1983)). Disaggregating by race, we obtain distinctive patterns. For white females, Figure 1B
shows a pattern of increasing levels of the gain at the higher quantiles. There is a similar but
less dramatic pattern for black females in Figure 1C. For hispanics in Figure 1D there is little
evidence of constancy - indeed there is a sharp decline at the higher quantiles. There are
dramatic differences in the gain at different quantiles for different schooling levels (see Figs. 1E-
1G). For the less schooled, there is strong evidence of a greater impact of training at the higher
base income levels. There is also a sharp rise in the estimated treatment effect in terms of the
base state income for the most schooled while for high school graduates the pattern is basically
flat.

(4) A Generalization and A Measure of Intrinsic Uncertainry
One plausible generalization of the strict preservation of ranks model permits there to be

some slippage in the ranks of a person’s position in the twe distributions, With slippage, the best
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in distribution Fy(y, | d = 1) may be near the top of distribution F,(y, | d = 1), but need not
be exactly at the top. Such positive dependence can arise from the utility-maximizing models of
Section (2) when Y, and Y, are net outcomes (up to some independent costs or error). Formally,
consider permulations that are restricted to satisfy
Iy =0for |i-j| >, 21

where  is some specified positive integer number of steps away from perfectly matched ranks
in the two distributions. By reducing ¢, we increase positive dependence and in the limit (p =
1) achieve perfect matching - the case that includes the traditional common treatment effect
model that guides most evaluation research. Setting ¢ = N produces all possible distributions
including the possibility that the best Y, may be the worst Y,. We develop this idea below,

To gauge the intrinsic uncertainty in the data, we assign equal weight to all permulations
in the data. Using the sample outcome distributions we can pair each Y, with each possible Y,
and in this way generate all possible permutational contrasls, The generated distributions can
be used to produce sample gain distributions for different assumed levels of disarray in the
matching across the distributions. In practice, two complications preclude the direct application
of this idea.

(A) There are unequal numbers in the two distributions (Ny, # Nyp). To circumvent this
problem, we propose permutation of quantiles of the two distributions using the distribution with
the smallest number of observations to set the spacing in the distribution with the large number.
Then min (Ny,, Ny,) is the number of quantile spacings considered in the distribution with more
observations. All elements in a given quantile class so determined would be treated as the same,

.2, by fixing all values at the within-quantile mean or median or by randomizing which

20



elements within each quantile in the larger distribution are associated with elements in the
smaller distribution.

(B) For N sufficiently big, it is computationally demanding to consider all possible
permulations. To solve this problem, we propose collapsing both distributions down to a small
number of quantile classes and using mean values within each quantile class to summarize the
class. Permutations are then done with respect to the reduced classes. Such permutations
obviously understate the full range of values that could be obtained from the original
distribution.

Using percentiles as the finest quantile partition, we obtain 100! possible different impact
or eamnings gain distributions. Without any prior information, any one of these permutation
patterns is equally likely. To examine the variation present in the experimental data, we take a
random sample of 100,000 from the population of 100! percentile permutations. Table 1A
presents means and selected quantiles of the distributions of the extremes and the Sth, 25th,
50th, 75th and 95th percentiles of the gain distributions corresponding to this sample of
permutations. Table IB presents means and selected quantiles of the distributions of other
parameters of interest for this sample of permulations, including the fraction with a positive
impact, the impact standard deviation, and several measures of the dependence between Y, and
Y,. Appendix A describes the construction of these statistics in greater detail.

The numbers in Table 1A and 1B reveal substantial variability in the quantiles of the gain
distribution within the sample of permutations. For example, the lowest percentile of the
me;iians is -$1999 compared to the highest percentile of $3636. The 5th percentile of the impact

distributions has an interquantile range of over $2500 in this sample. This table understates the
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true variation in the population since the permutations producing the most extreme values of the
impact percentiles - those wherein the best in one distribution are matched with either the best
or the worst in the other - are also very few in number. As a result, they appear very rarely
in random samples of this size.

Table 2 displays selected percentiles of the impact distnbution for the two extreme
permutations in which either (1) the two distributions are matched in ascending order or (2) the
distributions are matched in reverse order. These two special cases reveal wide variation, with
the 5th percentile of the gain distribution equal to $0 in the first case and -$22,350 in the other,
and the 95th percentile of the gain distnibution equal to $2003 in the first case and $23,351 in
the second.

Without additional information, the evidence from experimental dala is consistent with
a broad array of distributions of program impacts. In order to narrow down this class,
additional information is required. This paper considers a variety of additional plausible
assumptions that help to narrow the class of admissible distributions. Before turning to the list
of candidate assumptions, we first review existing statistical approaches to bouhding features of
the distribution of program gains only using the information in Fy(y, | d = 1) and Fy(y, | d=1).

(3) The Information About The Features of The Distribution of Program Gains

From An Ideal Randomized Experimeni: Results From The Statistics Literature

The problem of bounding the joint distribution F(y,, yo | d = 1) from the marginal
distributions F(y, | d = 1) and F(y, | d = 1) is a classical problem in mathematical statistics.
Hoeffding (1940) and Frechet (1951) demonstrate that the join.t distribution is bounded by two

functions of the marginal distributions:
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Max([F,(y, | d=1) + Fy(yo | d=1)-1,0] < F(y,, yo | d=1)
< Min[Fy(y, | d = 1), Fy(y, | d=1)].2

Riischendorf (1982) establishes that these bounds are tight (exhaust the information in the
marginals). Mardia (1970) establishes that both the lower bound and the upper bound are proper
probability distributions. At the upper bound, Y, is a non-decreasing function of Y, (almost
everywhere).. At the lower bound, Y, is a non-increasing function of Y, (almost everywhere).
These bounds are not helpful in bounding the distribution of A = Y, - Y,, although they bound
certain features of it.

Using the upper and lower bounding distributions, the literature establishes that if
k(Y,,Y,) is superadditive (or subadditive) then extreme values of

E(k(Y., Yo) {d = 1)

are obtained from the upper and lower bounding distributions.

"These inequalities are easy 1o establish. The upper inequality arises from the observation
that the probability of the joint event
Pr(Y, <y, Yo S Yo|d = 1)
can be no more than the probability of each single event, Pr(Y, < y, | d = 1) and Pr(Y, <
Yo | d = 1), and hence is less than or equal to the minimum of these two probabilities.
The lower bound on the distribution is obtained from the following argument. The
probability space can be partitioned into the following probability associated with the region (Y,
S ¥ Yo = yg) and its complement:

| =Pr(Y, Sy, Yo S yold =1
+Pr(Y, > 3, |d=1)+P(Yy> yo|d=1)
-PI'(Y| > Yh Yo) yOId= I).

The final three terms are the probability of the set complementary to (Y, < y,, Yo < yo). The
final term in this expression corrects for the overlap in the two sets (Y, > y,) and (Y, > yo
in evaluating the complementary set. Substituting Pr(Y, < y,, Yo S yo|d=1) = F(y,, yo | d
=1, 1-Fly|d=1)=Pr(Y, >y, |d=1),1-F(yo|d=1) =Pr(Y, > yo| d = 1) and
recognizing that Pr(Y, > y,, Yo > yo| d = 1) 2 0 and that probability distributions cannot
become negative, we obtain the lower bound.
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A function is superadditive if for all Y, < Yi, v, < Y,
0 < k(Yy, Yo) + k(Y,,Yo - k(Y,, Yo - k(Y,, Y,)
and subadditive if the inequality is reversed.®
Examples of superadditive functions are
k(Y, Yo =Y, Y, or
= (Y, + Y or
= Min(Y,, Y,) or
= f(Y, - Yo) where f is concave and continuous.
Examples of subadditive functions are
k(Yy,, Yo) = | Y, - Yo|? forp=1 or
= Max(Y,, Yy or
= f(Y, - Y,) where f is convex and continuous.
The indicator function 1(Y, = Y,) and the quantiles of the impact distribution are neither
superadditive nor subadditive.
Cambanis, Simons and Stout (1976) have established the following theorem which
demonstrates the usefulness of the bounding distributions for producing bounds on certain

subadditive or superadditive statistics produced from the joint distribution.

Theorem: Let E, denote the expectation with respect to the upper bound distribution and let E_

denote the expectation with Tespect to the lower bound distribution. Then if k(Y,,Y) is

superadditive (subadditive), the bound on E(k(Y,,Yo) | d = 1) is given by

’k i$ assumed to be Borel-measurable and right-continuous.
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E_(k(Y,, Yo) | d = 1) < E(k(Y,, Yo) | d = 1) < E,(k(Y,, Yo) |d = 1)
or
[E.(k(Y,, Yo) | d = 1) s E(k(Y, Y9 |[d = 1) S E_(k(Y,, Yo | d = 1)], respectively,
if either
(i) k(Yy, Yo) is symmetric and the expectations E(k(Y,, Y,) | d = 1) and
E(k(Y,, Yo) | d = 1) are finite; or
(i) the expectations of E(k(Y|, yo) | d = 1) and E(k(y,, Y,) | d = 1) are finite
for some y,, ¥y, and at least one of E (k(Y,, Yo) | d = 1) and
E_(k(Y,, Yo) | d = 1) are finite. M
Proof: See Theorem 2, p. 291 of Cambanis et,a] (1976). Tchen (1980) establishes these and

other results under different conditions.

Expectations of superadditive or subadditive functions of (Y,, Y,) attain extreme values
al the boundary distnbutions and so can be computed from the marginal distributions. Since
k(Y,, Yo) = Y,Y, is superadditive, the maximum attainable product-moment correlation rygy,
is obtained from the upper bound distribution while the minimum attainable product moment
correlation is obtained at the lower bound distribution. Since VAR(A) is a subadditive funcﬁon,
it is possible to bound the variance of A (= VAR(Y,) + VAR(Y,) - 2rygy, [VAR(Y )VAR(Y)]*)
and thus determine if the data are consistent with Y, - Y, = «, a constant, in which case
VAR(4) = 0. Tchen (1930) establishes that Kendall's + and Spearman’s p also attain their
extreme values at the bounding distributions. However, in general it is pot the case that useful

bounds on the quantiles of the (Y, - Y,) distribution can be derived from the Frechet-Hoeffding
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bounds. Only the extreme high and extreme low quantile values are obtained from the Frechet
bounds of the joint distribution. Table 3 presents the range of values of Iy,ve Kendall's tau,
Spearman’s p and [VAR(A)]" for the JTPA data. The ranges are rather wide but it is interesting
to abserve that the bounds rule out the common effect model, as VAR(A) is bounded away from
zero. They obviously do not rule out the deterministic case A(y,) as long as A is not a constant.
Before turning to methods for adding information so as to narrow the class of admissible
distributions, it is instructive to consider the case of a discrete - data 2 X 2 contingency lable

where the case for application of the Frechet-Hoeffding bounds is the most favorable.

(6) The Discrete Case

The Frechet-Hoeffding bounds apply to all bivariate outcome distributions.* Variables
may be discrete, continuous or both discrete and continuous. In order to fix ideas, it is helpful
to consider the most elementary case: that of a discrete outcome variable such as employment,
1t turms out to be the case most favorable for the application of the Frechet-Hoeffding bounds,
and so in this sense is misleading. Yet an analysis of the simple case is a fruitful point of
departure for the analysis used in the rest of this paper.

Those who enroll in a program may be employed or not employed after completing it.
Those who are randomized out of a program may also be employed or not employed in the
evaluation period, The following analysis is a simple application of the missing-cell literature
in contingency table analysis such as that given in Bishop, Fienberg and Holland (1975).

The latent distribution underlying this situation is bivariate binomial. Let (E, E) denote

‘Formulae for multivariate bounds are given in Tchen (1980) or Riischendorf (1982).
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the event "employed with treatment” and "employed without treatment”. (E,N) is the event
“employed with treatment, not employed without treatment”. Similarly, (N,E) and (N,N) refer
respectively to cases where (a) a person would not be employed if treated but would be
employed if not treated, and (b) the person would not be employed in either case, The
probabiliiies associated with these events are Py, Ppy, Pyp and Py, respectively.

This model can be written in the form of a contingency table, The columns refer to
employment and nonemployment in the untreated state, The rows refer to employment and non-

employment in the treated state.

Untreated
E N
E Pee Pey Pp.
Treated
N Pre Puoy Py
JP.E i oN
Figure 2

2 X 2 Table Representation

The evaluation problem arises from the fact that we do not observe the same person in
both the treated and untreated states. If we did, we could fill in the table and estimate the full

distnibution. Instead, with data from randomized trials we can estimate combinations of the table

parameters
(2a) Pg. = Ppg + Pgy (Employment Proportion Among Treated)
(2b) P = Ppg + Pyp (Employment Proportion Among Untreated).

The treatment effect is usually defined as
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3 T = Pey - Pyg,

the proportion of people who would switch from nonemployed to employed as a result of
treatment minus the proportion of persons who would switch from being employed to not being
employed as a result of receiving the treatment.

T is easily seen to be equal to

T = Pg, - Py
so that T can be estimated without bias by subtracting the proportion employed in the control
group (f’.,) from the proportion employed in the treatment group (5,.:.).

If we wish to decompose T into its two components, the experimental data do not give
an exact answer except in special cases. In terms of the contingency table presented in Figure
2, we know the row and column marginals but not the individual elements in the table. The case
in the 2 X 2 table corresponding to the common effect model for continuous outcomes restricts
the discrete outcomes to be either positive or negative so that either Pen of Py = 0. In this
case, the model becomes fully identified just as the common effect assumption in the continuous
case fully identifies the joint distribution.

More generally, the Frechet-Hoeffding bounds restrict the range of admissible values for
the cell probabilities. Their application in this case produces:

Max[Pg, + P,g-1,0] < Py < Min (P., P.p)
Max[Pg, - P,s, 0) < Pgy < Min (Pg., 1-P.p)
Max[-Pg, + P.g, 0] < Py < Min (1-Py., P.p)
Max([1-Pg, - P.;, 0} < Py < Min (1-Pg,, 1-P.p).

Table 4 presents the Frechet bounds for Py and Pgy. They are very wide. Even without
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taking into account sampling error, the experimental evidence for adult females is consistent with
Pyg ranging from .00 to .36. The range for Py, is equally large. Thus as many as 39% and as
few as 3% of adull females may have had their employment prospecls improved by participating
in the training program. As- many as 36% and as few as 0% may have had their employment
prospects diminished by participating in the program. From (3), we know that the net difference
(Pen - Pyp) = T, so that high values of Pgy are associated with high values of P,p. As few as
25% [(.64 - .39) x 100] and as many as 61% of the women would have worked whether or not
they entered the program (Pgz € (0.25, .61)).

From this evidence, we cannot distinguish between two stories. The first story is that the
JTPA program benefits many people by facilitating their employment but it also harms many
people is that they are less likely to work than if they had not participated. The second story is
that the program benefils and harms few people. Conditioning on other background variables
(results not shown) does not go far in resolving the fundamental uncertainty intrinsic in the data.
(7) Using Prior Information To Reduce The Intrinsic Uncertainty in Social Experiments: The

Case of The 2X2 Table

While disappointing, it is not surprising that classical probability theory unaided by prior
information only weakly restricts the range of admissible estimates of the distribution of program
gains. Previous studies by Lavine, Wasserman and Wolpert and others demonstrate that the
Frechet-Hoeffding bounds are rather wide in the analysis of data from clinical trials.

In many problems - and certainly in the problem studied in this paper - we have
additional information and intuition about the likely relationship between program and non-

program outcomes for each person. The Bayesian paradigm provides a convenient way to
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formalize this intuition and apply it to an analysis of the experimental data. In this paper we are
influenced by the robust Bayesian paradigm but we adopt a new class of priors. We consider
ranges of priors that capture the loose information provided by our intuition. The goal is to
partially reduce the uncertainty about the distribution of program gains, and features of the
distribution of program gains, without imposing false prior information onto the data and without
distorting the sample information revealed by the experiment. (See, ¢.g, Hartigan (1983) or
Berger (1985, 1990) for discussions of robust Bayesian analysis). The strength of the prior
required to obtain credible estimates from the available experimental data is a measure of the
lack of information in the data.

In.considen'ng outcomes like employment and eamings, plausible models of program
participation suggest that outcomes in the treatment slate are “positively related” to outcomes
in the non-treatment state for persons who self-select into training. As discussed in Section (2),
positive regression dependence for Y, given Y, and d = 1 is a consequence of many models of
rational choice. This presumption is strengthened by the widely-held intuition that more
motivated or more able persons apply to programs and are better at what they do regardless of
what it is than less able or motivated persons. Willis and Rosen (1979) feature this case in their
influential paper on college choice calling it the "one-factor" model. Less than perfect positive
dependence is the natural point of departure from the assumplion of perfect positive dependence
that characterizes the classical econometric evaluation literature.

In order to make this notion operational it is necessary to specify more precisely what
we mean by dependence. Notions of dependence in 2 X 2 tables are presented in Goodman and

Kruskal (1979) and in Bishop, Feinberg and Holland (1975). In terms of the table in Figure 2,
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the most commonly used measure of association between the two outcomes is the cross product

ratio:

P P
« = _EETNN

Pey Py
when o - I, the treatment and non-treatment outcomes are independent. This measure has
several advantages:
(i) It is invariant under the interchange of rows and columns.
(ii) It is invariant to the proportion of persons participating in the program.
(iii)  Itis interpretable and is the ratio of the odds of being employed in the no-
program state conditional on being employed in the program state
(Pee/Pey) and the odds of employment in the no-program state conditional
on not being employed in the program state (Pyc/Pys,).
By property (iii), the higher is «, the more likely it is for a person employed in the program
state to be employed in the no-program state. As the conditional (on employment in the program
state) odds ratioc of employment in the no-program state (Pg/Psy) becomes large and the
conditional (on no employment in the program state) odds ratio of employment in the no-
program state becomes small, o becomes large. In this case, workers in one state are very likely
to be workers in the other state, and nonworkers in one state are likely to be nonworkers in the
other state. In the case of reverse association, o -+ 0. Thus « is an attractive measure of the
association of outcomes for the 2 X 2 table.
It is well known that in the 2 X 2 table many diverse notions of positive dependence are

equivalent. Positive covariance, association, positive regression dependence, right tail increasing
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dependence and quadrant dependence all describe the same positive "association™ of E and N.
See, ¢.g. Esary, Proschan and Walkup (1967). Thus there is no loss in generality in using o or
its transform Q defined below.

Given «, the row and column marginals Pg, and P.p, and the requirement that the
probabilities sum to one, we can uniquely determine the elements of the 2 X 2 table. For adult

women from the JTPA experiment, Figure 3 presents this relationship in terms of Yule’s

measure of association Q, which lies in the interval [-1, 1}
_a -1
Q- a + 1

where Q = 0 when o = 1 (and the rows and columns are independent). Higher values of Q are
associated with greater dependence in outcomes in the two states (i.e. higher values of a). As
we specify higher values of Q we reduce both Pgy and Py, in absolute value. The difference Pyy
- Pyy, is the mean treatment effect T and is constant over all Q.

Intuitions that outcomes are strongly positively related across the two states translate into
statements that Q is positive and close to one. Rather than picking a specific value of Q, it seems
more plausible to present a weighted average value of Pgy and Py, placing more weight on
positive values of Q. It seems unreasonable to place too much emphasis on Q = 1; those
employed in one state are only deemed more likely to be employed in the other state.
Accordingly, it seems appropriate to use a prior or weighting function on Q that peaks in the
interval (.5, 1) and that allows for some slippage in status between the two states. We use a
spline prior of the general form presented in Figure 4 to produce posterior point estimates of the

elements in the table. This prior places most of its weight on values of Q that are positive and

32



bigger than 0.5 but does not place too much weight on 1. Using this prior, and varying its peak
and slopes, we produce a range of estimates for Peny Pog, Pyp and Py all of which have the
same mean treatment effect:
T =Pgy-Pyg.

For the four priors displayed in Table S, posterior estimates are shown in Table 6. Our
procedure places no restrictions on any combination of parameters that can be identified using
the experimental data. Instead we supplement the experimental data by postulating priors on
unidentified parameters. We thereby improve on the Hoeffding-Frechet bounds and reduce the

range of uncertainty about other unidentified parameters of interest.

(8) Extenslons To The Continuous Case
Plackett (1965) presents a bivariate distribution system with given marginal distributions
F, and F, that provides a fruitful point of departure for investigating the continuous case.
Plackett's distribution system is generated by one additional parameter y that plays a role
comparable to « in the 2 X 2 table.
Any bivariate distribution F(y,, y, | d = 1) can be dichotomized at some arbitrary point

(Y1,Yo). Setting

Pu = F()-’hio)
P = FI()-’I' d =1)- F(ffl.}}g' d=1
Pu = Fylyol d = 1) - F(y,,30] d = 1)

P2 =1 -Fy]d =1)-Fyy| d = 1) + F(y,y,| d = 1)

we can write the cross product ratio as
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_PuPn _ _ FG3d=D01-F\G, |d=1)-FyG,ld=1)

Py Py [F\0,|d=1)-FG,.5,|d=D)FGs|d=1)-F(,.5,d=1)]

which is clearly analogous to the parameter «, introduced in the analysis of 2 X 2 contingency

tables. For each ¢ we can generate a joint distribution F(y,,ye| d = 1) from ¢, F, and F,.

Mardia (1970) establishes that:

(i)
(i)

(iii)

F(y),Yo| d = 1) is a proper probability distribution

F(¥,,Yo| d = 1) attains the Frechet-Hoeffding upper bound as y -» oo and
it attains the lower bound as -+ 0.

¢ = 1 corresponds to independence, ¢ > 1 corresponds to positive
quadrant dependence, and ¢ < 1 corresponds to negative quadrant

dependence where quadrant dependence is defined below.

In this parameterization, ( is the same constant for all values of (y,, yo) and is a measure of

quadrant dependence. Recall that F(y,, yo) is positive (negative) quadrant dependent if F(y,,

Yol d=1) 2 (S)F(y, | d = 1)Fy(y, | d = 1). An immediate consequence is that Y, and Y,

are positvely correlated (given d = 1).

Kendall’s 7, Spearman’s p and the product-moment correlation r all increase as a

distribution becomes more positively quadrant dependent. Thus as  increases, those

conventional measures of dependence between Y, and Y, increase. As shown in Section (2),

under conditions of partial information about Y, and Y,, positive quadrant dependence (given

d = 1) is a consequence of rational choice by income maximizing agents who make unbiased

guesses about their post-program outcomes although actually a stronger form of dependence is

implied by rational choice behavior.
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Transforming ¢ into the interval (-1, 1] using Blomquist’s Q

produces a bivariate system that "fills in" the missing data in a manner that depends on the
strength of the quadrant dependence between Y, and Y,. When Q = |, we obtain the Frechet-
Hoeffding upper bound, where Y, and Y, are functionally related.

Table 7A presents quantiles of the impact distribution for each several values of Q in the
range [-1, 1]. Table 7B presents other parameters including the percentage of those treated with
a positive impact, the impact standard deviation, and several measures of dependence for the
same set of Q values. Details on the construction of these estimates and their standard errors
appear in Appendix B.

Eliminating the negative quadrant dependent distributions eliminates the extreme
vanability in the quantiles of the gain distribution. However, Table 7A reveals that it is
necessary to assume a high level of dependence between the treatment and non-treatment
outcomes to produce plausible variation in the 95-5 or 75-25 range in the impact distribution.

One way to explore the uncertainty in the data is to impose prior beliefs about Q. For
various specifications of the spline prior depicted in Figure 4, we produce estimates of
parameters of the gain distribution for different priors over Q. As before, these priors place all
(or almost all) of their weight on positive values of Q. Table 8 presents the posteriors resulting
from applying the priors displayed in Table 5. Figures 5,6,7 show how the median, the 75®
percentile and the fraction benefitting from the program vary with the posterior mean of Q over

a larger set of 19 prior distributions listed in Appendix C. The variability in the experimental
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dala is greatly reduced when spline priors emphasizing strong positive dependence are imposed.

An important limitation of this approach is that the dependence relationship between Y,
and Y, given d = | is very tightly specified. Although Blomquist’s Q is analogous to the
dependence relationship specified by Yule's Q for the 2 X 2 table, as we trace out Yule's Q
over [-1,1], we recover all 2 X 2 Tables. We do not recover all bivariate distributions using
Plackett’s distribution when we vary Blomquist's Q over the same interval. Put more formally,
the Plackett family is not dense in the space of all bivariate distributions. There are many
bivariate distributions for continuous data that do not have the same value of Q for all y,, Y,
values, which is the defining property of the Plackett class. A more general approach specifies
priors over the permulations of the data distributions introduced in Section (3). We turn to this

approach next.

(9) Putting Priors Over Permiuations of The Data Distributions

The evidence presented in Section (3) suggests that the range of impacts estimated from
all permutations of the data distributions is rather wide. As in the preceding section, it is useful
to consider mild perturbations away from the case of perfect positive ranking of Y, and Y,. In
this section, we consider a measure of disarray from perfect ranking that characterizes all
possible bivariate dala distributions and that is based on a somewhat more intuitively satisfying
measure of dependence than Blomquist’s Q. We assume in this section that the data are from
absolutely continuous distributions and we assume no ties in the sample distribution.

Consider any permutation of the Y, associated with the Y, via permutation rule II. Y,

and Y, are perfectly arrayed if IT = I. For other permutations, there is some level of disarray.
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An inversion (relative to the perfectly increasing rank order assumed for Y,) is said to occur
each time, in bipary comparisons, an element in the Y, array is bigger than a succeeding
element, going down the full Y, array from the first element to the fast,

Thus for a four-element array 2,3,1,4, taken from {1,2,3,4}, there are {wg inversions
(2 before 1 and 3 before 1). More generally, for any permutation of the Y, associated with the
Y, we can define the total number of inversions in the array as

] (N
veX T & hu-{‘lf”é 75”}

] i<y 0 otherwise

V may range from 0 to %4 N(N-1), with the former value arising in the case of perfect positive
dependence in the ranks and the latter value arising when there is perfect jpverse ranking.

Kendall’s rank correlation measure 7 may be written as

h
4y 4):,);; v

NN - 1) NN - 1)

It normalizes 7 to lie in the interval [-1, 1]. (See, ¢,g, Kendall, (1970) and Daniels (1944,
1948)). All bivariate data distributions with the given marginals are produced by letting 7 vary
over the entire interval. This is a major advantage by comparison with distributions produced
from the Plackett class. While other measures of distance between permutations have been
proposed, (Critchlow (1985)), r has many convenient properties and is a natural point of
departure for our analysis.

Since h; is a superadditive function (fixing the Y, ranking), and since sums of

superadditive functions are superadditive, we know from the theorem stated in Section 5 that r
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attains its maximum value at the Frechet-Hoeffding upper bound and its minimum value at the
Frechet-Hoeffding lower bound. Thus we can characterize the bounding distributions as
producing minimal and maximal disarray between Y, and Y,. By specifying r we pick a level
of dependence between the two outcomes and hence a level of permutational disarray. 7 is a
measure of slippage in the ranks with 7 = 1 corresponding to perfect rank correlation. Varying
7 between -1 and 1 traces out all possible permutational distributions.

Given two joint distribution F(y,, yo | d = 1) and F™(y,, y, | ¢ = 1), F* is more
concordant than F® if they both share common marginals and F® > F® for all (y,, yo) .e. F*®
has more mass near the diagonal y, = y, than F®, Kendall's tau is higher for the more
concordant distribution, as is intuitively satisfactory.® (See Schriever, 1987).

Using the sample distributions we can pair each Y, with each possible Y, and, subject
to the limitations already discussed, generate all possible permutational contrasts. The generated
distributions can be used to produce sample gain distributions for different assumed levels of
disarray.

Table 9A and 9B present estimates of quantiles of the gain distribution and other
parameters of interest conditional on various values of r. Table 10 presents measures of
association and selected percentiles of the posterior gain distribution for the four priors listed in
Table 5, now defined over 7 rather than Q. Priors 1 and 2, which place most of their weight on
the strongly positively dependent permultations, reduce the variability in the percentile gain

distributions the most. The percentile gains seem most credible for prior 1. Note, however, that

*Blomquist’s Q shares the same property. However, the conventional product-moment
correlation coefficient does not share this property.
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by any measure of dependence, this prior requires a strong positive relationship between Y, and
Y,. A central conclusion of this analysis and the analysis of the Plackett family is that plausible
posterior gain distributions require high measures of positive dependence. The evidence from
both the Plackelt class and the class of priors placed on permulations indicates that a majority
of the adult female participants benefitted from the program,

Our use of the quantiles of the implied gain distnbution to calibrate the plausibility of a
prior is indirect. It would be more direct to place priors on the quantiles of the gain distribution
rather than to operate indirectly through alternative measures of dependence. The main problem
with this approach is computational.

To understand the problem, observe that for absolutely continuous Y,, Y, the density of
gains is obtained from the joint density of (Y,, Y,):

f(a) = | flyo+ A, yo | d = 1) dy,.

The p* quantile of the gain distribution is

A’ = inf F,(2) > p.
4

Any prior on 4,, say.g(A,,), imposes implicit restrictions on the dependence between Y, and Y,
given the marginal distributions. Dependence between Y, and Y, is implicitly specified by
selecting g, and it must be specified consistently.
Let K denote a function that combines the marginal densities using some measure of
dependence # (which may be vector valued) to create a joint density.
K(fi(yo + A | d = 1), fo(yo | d = 1):6).

In the Plackett family, § = ¢ and K is specified as in Mardia. For the permulational families,
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@ = 7, and K is given by enumerating all possible permutational arrays. A major difficulty is
inferring the prior for 8, say ¢(6), given the prior g(4,) for the quantiles. Even if this difficulty
is overcome, we are left with computation of the posterior:
[ § K(filyo+ Al d = 1), folyo | d = 1); O)dy, $(8)d0.

Deducing the prior on § and compuling the posterior of 4 are major computational problems.
Qur procedure of imposing priors on the dependence bc.tween Y, and Y, directly circumvents
the first problem and simplifies the second. We use our prior information about the ptausibility -
or implausibility - of gains at certain quantiles to place more or less weight on the values of the

dependence parameter & indicating a high level of dependence.

(10) Allowing For Mass Points ar Zero in The Population

In many cases - and in particular for the JTPA earnings data - it is plausible that there
are mass points at zero for Y, and Y,. (Obviously the mass points may be at some place other
than zero, may be different for Y, than for Y,, and there may be multiple mass points. We
consider only the simplest case in this paper). The analysis of this case combines the analysis
of Section (6) with the analysis of Section (9). However, a new result is required because it is
necessary to maich the zeros for one outcome measure with the continuous outcome components
for the other.

Define the following notation: Let Pr(Y, = 0,d = 1) = P, > O and Pr(Y, = 0,d =
1) = P,y > 0. The density of Y, for Y, > O is

fly, |y, >0,d=1)

while the density of Y, for Y, > 0 is
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f(yo| yo > 0,d = 1).

In constructing bounds for the joint distribution of (Y,, Y,) we must allow for Yo, = 0 to be

paired with continuous Y,, for Y, = 0 to be paired with continuous Yo, and for Y, and Y, to

both be discrete or continuous.

We propose the following three step generalization of the procedures used in Sections (6)

and (9).

Step 1: Using the methods of Section (6), bound the Joint distribution of the indicators

of positive earnings. Let E, = 1 if earnings Y, > 0; E, = 0 otherwise. Let E,=1ifY, >0

E, = 0 otherwise.
P||=PI'(Y, >0'Y0>0|d=

P|0=Pr(Y|>0,Y0=0|d=

|

P01=PT(Y|=0,Y,>0Id

Po=Pr(Y,=0,Y,=0]|d =

1) =Pr(E, = land E; = 1)
1) = Pr(E, = | and E, = 0)
1) =Pr(E, = Q0 and E;, = 1)

1) = Pr(E, = 0 and E, = 0).

We know the left hand side of each of the following equations but the available

population information does not afford a further resolution into the components on the right hand

side.
Pi. =Py + P, =
P =1-P,

and
Py =Py + P, =
Py =1-P,.

Pr(Y, > 0| d

Pr(Y, > 0] d

1)

1)

Following the procedure outlined in Section (3), we can represent all of the possible 2 X 2
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tables with fixed marginals by varying Q over the interval [-1, 1]. Each value of Q produces
unique values for Py, i, j = 0,1.
Step 2: Next derive bounds on
fy Iy >0,%=0,d=1andf(yo|y, =0,y > 0,d = 1).

We know the left hand side of the following equations:

4 >0) = >0,y,=0,d =1 10
(4a) fly, > 0) = fnly, > 0, 3, )Pu —
+ fyly, >0, y >0d=1)L
11N » Yo ' P v Py
and

P

(4b) ﬁy0|y°>0) =ﬂy0|yo > 0, Y = 0,d=1 0l
Py, + Py
+ f0lyy > 0,5, >0,d = 1)#
Py + Py,

The weights on the densities are given by specifying Q in Step 1.
We may construct f(y, | y, > 0, y, = 0, d = 1) by weighting f(y, | y, > 0, d = 1):
f(y, | 1> 0, yo=0,d=1) =1y, |y, > 0,d = Dwyy, |y, > 0)

where we require that w,(y, | y, > 0) = 0 and
l = fﬂ)’tlyl > Osyo = O:d = l)d}’l = fﬂy||y| > Ovd = 1)w|(y||y| > O)d)'| .
0 0

Similarly we may construct

f(yoly, =0,y0>0,d=1) =f(yo |, o> 0,d = 1) wo(yo | Yo > O
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with wolYo | Yo > 0) = O and

I = f Rolyy > 0d = Dwy(y,ly, > 0)dy,.
0
For consistency with (4a) and (4b), we require:

foly, > 0)(1 - _’.v_‘Pl_O]

(5q) .ﬂyl |y| > 0:)’0 >0) = P “+Plo
1
[Pu + P:o)
e
(5b) ﬂyob'| > 0,)’0 >0) = p 1o
1
(Pn + Po:)

It is easy to verify that the left hand sides integrate to one over the full supports of y; and y,,

respectively. For them to be proper densities, it is required for 5(a) that

P
L ataow 20 for all y, in the support of Y,

10

and for (5b) that

P
L 12w20 for all y, in the support of Y,.
o1

These conditions bound the amount of the mass that can be transferred to one part of the

distribution from the other parts. Moreover, the pairs of weights
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and
i1 01
bear a reciprocal relationship within each pair. For example, weighting f(y, | v, > 0) by
placing more mass at the low values of y, to obtain f(y, | yi > 0, yo = 0) ("zero values of y,
are associated with low values of y,) necessitiates placing more mass at the high values of y, to
obtain f(y, | yi > 0, yo > 0, d = 1). Independence is captured by selecting w, = 1 and w, =
1.
Two weighting schemes can be ordered in terms of their positive dependence by the

amount of mass they transfer near the origin. Thus for

y, € (0, €)
w, induces more positive dependence in the interval than w; " if

w, > w, .
This ordering can be defined more generally by noting that w, induces more positive dependence

than w, if

[ fo,1n>0.d= w0y, > Oy, 2 [ f,13,>0d= D)w;" Oy, > O)dy, -
0 0

If this relationship is true for all £ ¢ Supp(Y,), then w, is a uniformly more positively dependent
weighting scheme than w; . In that case the random variable induced by wy is stochastically

smaller than the random variable induced by w, -
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Step 3: Use (5a) and (5b) as the marginals for the permutation procedure developed in
Section (9).H
Proceeding in this fashion, we can specify priors over Q, (w,, w,), and the inversion
classes 7 for Y; > 0, Y, > 0 to produce posteriors on the Joint distribution of (Y,, Y.
Presumably, the priors should be jointly specified. Priors specifying high values of Q, 7 and (w,,
Wo) in the neighborhood of the origin would be postulated. However, this joint positive
dependence is not strictly required provided the consistency conditions on the weights are
satisfied.
Table 11 presents the joint distribution of (E,, E,) for adult women for selected values
of Yule's Q. This table gives results for the first step of our three step procedure. 1t differs from
Table 6 because earnings over the entire 18 month period are considered rather than employment
in months 16, 17 or 18 as presented in the previous table. As Q increases, the probability of a
favorable outcome from the program increases. For all values of Q, the program produces net
employment gains (e, P(Y, > 0, Yo, = 0) > P(Y, =0, Y, > 0).
Table 12 presents the empirical results from stages 2 and 3. We parameterize the
weighting function for stage two in the following different ways:
w. = point mass placed at opposite extremes (i.e, for Y, = 0, place as much mass as
possible at the extreme upper value of Y,; for Y, = 0, place as much mass as
possible at extreme upper values of Y).

Wo = | (independence; denoted w, in the table)

w o« a-+ bq a=1,b=3

W, = point mass placed at same extremes (i.e, for Y, = 0, place as much mass as
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feasibte near Y, = 0; for Y, = 0 place as much mass as feasible near Y, = 0).
These weighting functions are depicted in Figure 11,

Reading down the third and fourth columns of Table 12, the mean values of Y, and Y,
allocated to the (0, Y,) and (Y,, 0) cells decline as they must. As the weights range from w. to
w,, more of the mass of the Y, given y;, = 0 and Y, given y, = 0 distnbutions is concentrated
near zero. The mean values of Y, and Y, must rise as a consequence of S(a) and S(b). (See
columns six and seven of these tables). As w,(y, | yi > 0) decreases for higher values of y,, the
mass of f(y, | y, > 0, yo > 0) necessarily increases in the upper tail. Similar remarks apply to
the behavior of fo(ye | yo > 0) as high end values are downweighted.

There are several interesting features of the estimated gain distribution. First, for
virtually the entire range of dependence parameters, the median impact is positive. The median
impact is never greater than $1100 for the full eighteen month period. Second, unless very high
positive dependence is specified for the continuous outcome measures of dependence, (the 7
parameter), the interquartile range on the gain distribution is very large. Third, for most
configurations of the dependence parameters, more persons benefit from participation than non-
participation. This number is oblained by multiplying the number in the final column of the table
(which presents the proportion of the persons with positive earnings in both states who benefit
from participating in the program) by the proportion of persons in the celt Y, > 0, Y, > 0
(obtained from Table 11) and adding the proportion of persons with earnings in the program
state but no earnings in the no-program state (P(Y, > 0, Y, = 0)). However, this is not
universally true. Consider the case Q = 1, w. and 7 = .9 given in Table 12. For this case

41.2% of the persons benefit from the program, 20% do not have their status changed, and
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38.8% of the persons are harmed.

Summary statistics of the overall impact distribution are presented in Table 13. This
distribution is formed by combining the types of three conditional distributions. The final two
columns of the table reveal that for no combination of values of the dependence parameters are
a majority of women harmed by participating in the program. Yet for some values, a majority
do not gain. For some configurations of the dependence parameters, as many as 20% of the
women do not change their status by participating.

Confirming the impression of Table 12, the interquartile range is plausible only for high
values of Q and r and for weighting functions w, and w,. The median gain ranges from -455
to 714. For virutally all configurations with positive dependence parameters, the median is

positive.

(11) Deconvolution When Gains Are Nor Anticipated At The
Time Program Participation Decisions Are Made

Another type of dependence restriction postulates that the gain, 4, is independent of the
base Y, so
Yo Aa|d =1
Then
Y, = Y, + Ra, Ra 1 Y,,
where R = 1 if a person is randomized into the experiment and R = 0 otherwise, and where
the conditioning on d = 1 is left implicit.

This condition would be satisfied if the gain A can not be forecast at the time decisions
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are made about program participation. This case is extensively discussed in Heckman and Robb
(1985, p.181) and is intermediate between the common-effect model and the variable - impact
model when the impact is anticipated by agents.
We may write the density of Y, as a convolution of Yq and 4:
Af,(y,|R= Ld=D)=fAfR=1,d=1)=ffy,|R=0,d=1)
where "*" denotes convolution. Within this context, we may consider “densities” with mass
points, such as occurs at zero eamings in our data from the JTPA experiment.

Exploiting the independence of Y, and 4, the characteristic function of Y,

E(e""|d=1) = f "™ dF(y,|d=1)

may be written as

E(e"'|d=1) = E(e" |d=1)E(e""|d=1)

SO

E(e")d=1) = E(e""|d=1){E""|d=1) = o(1) .
Then®
(See, ¢.g Kendall and Stuart, Vol. 1, 1977, p. 98). We can therefore recover the distribution of

A from the distributions of Y, and Y, produced by the experiment.

“The ratio of two characteristic functions need not be a characteristic function. By Bochner's
Theorem (see, ¢,g, Gnedenko (1974)), for ¢(t) to be a characteristic function, it must satisfy
©(0) = 1 and (t) must be positive definite. This hypothesis could be tested using the methods
presented in Heckman, Robb and Walker (1989). The test would consist of checking if the ratio
of the two sample characteristic functions is “within sampling variation” of being positive
definite.
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= =2 1 + _[ 7 [euA‘P(-‘)_e-"A(P(I)]
(6) F(a|d=1) 5 * 3 f- - dr.

Deconvolution is known to be a numerically treacherous operation (Jansson (1984)).
Therefore before undertaking a deconvolution analysis, it is of some interest to examine a linear
model approach to estimating the variance of A using random coefficient models. If the variance
is negligible, there is no point in undertaking more elaborate deconvolution operations. Our
discussion of this approach helps to establish a link between our analysis and previous work by
Heckman and Robb (1985).

(@) A Random Cocfficient Approach
Selting Y, = XB + U as in the introduction to the paper, we obtain a conventional
random coefficient model
Y = RY, + (1 - R)Y, = X8 + RA + U.
Using standard variance components models, we may write E(A) = A, e = A- Ao obtain
Y=X8+RA+¢e¢R+ U E(eR + U | X,R) = 0.
The assumed independence between A and Y, translates into independence between £ and U. The
increased variance in the residuals for participants can be used to estimate VAR(e). From
participant residuals, we can identify
VAR(e + U) = VAR(e) + VAR(U).
From non-participant residuals, we can identify
VAR(U).

thus we can 1est an implication of the assumption that A 1L U by using the empirical analogs
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of VAR(e + U) and VAR(U) for participants and non-participants respectively.’

Table 14 presents estimates based on this approach. There is mild evidence in support
of the hypothesis that VAR(A) > 0, suggesting that a more elaborate deconvolution approach
to estimating the distribution of A is likely to be fruitful. If we maintain normality of Y, and Y,
(given d = 1 and X), the distribution of 4 is then normal with mean Aand variance A. The line
in Figure 12 labelled "Normal CDF" plots the graph of the cumulative distribution of the gain
from treatment for participants obtained from the conventional variance components approach
based on normality of the residuals.

(b) Empirical Deconvolution

A more general and robust approach exploits formula (4) and the empirical characteristic
functions for Y, and Y, to estimate the distribution of A. Details of the implementation of the
deconvolution procedure are given in Appendix D. Figure 12 plots the estimated distribution
function. It is clearly non-normal. Table 15 presents parameters calculated from this distribution.

The evidence suggests that under this information assumption about 18% of adult women were

"We note parenthetically that the random coefficient mode! with gain unknown at the time
program enrollment decisions are made is a halfway house between the ordinary variable
coefficient model and the common effect model. In an ordinary non-experimental selting, we
write

Y = dy, + (1 - d)Y,
s0

Y=XB+dA+ U
and Y = X8 + dA + [U + de).
By assumption, E(d | €,X) = 0 so the only form of selection rises if E(U | d,X) # 0. Thus
standard instrumental variable estimators can be used to consistently estimate A just as in the
common effect model. See Heckman and Robb (1985) for further detatls. Assuming that U is
homoscedastic, the variance of & can be estimated using the residuals for those with d = 1 and
for those with d = O exploiting the fact that E(Ude) = 0. Thus VAR(U+ed [d = 1) -
VAR(U+¢d | d = 0) consistently estimates VAR(e).
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harmed by participating in the program. There is substantial mass (43%) at the origin with A
= 0. The density conditional on 4 > 0 is presented in Figure 13. The estimated variance of the
nonparametric gain distribution matches the variance for the gain distribution obtained from the

random coefficient model within the range of sampling error produced from the two estimates.

(12) Discussion and Summary

This paper considers the uncertainty about the joint distribution of treatment and non-
treatment outcomes that is an inherent feature of data produced from randomized social
experiments. In the special - but widely invoked - case in which the treatment and control
outcome distributions differ only by a constant or a deterministic function, social experiments
recover the joint distribution of outcomes. In the more general case they do not. Classical
probability bounds widely used in the literature on clinical trials restrict features of the outcome
distributions but still leave considerable variability in the eamnings data for the adult females
from the National JTPA Study that we analyze in this paper.

In the context of 1abor market outcomes, there is more information about the relationship
between outcomes in the treatment and control populations than is used in the classical
probability bounding literature with the conventional case here. With the conventional approach
to program evaluation assumes that treatment and contro! outcomes differ by a constant or a
deterministic function as our point of departure, we consider a somewhat more general case in
which the outcomes for the treatment and control state are “closely rclated”, and we define
several precise meanings of the term “related" that apply to mode!s with discrele, continuous and

mixed discrete/continuous outcomes.
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Our measure of dependence for continuous outcomes measures proximity in terms of the
distance in the ranks of outcomes in the treatment and control distributions. Qur measure for
discrete outcomes uses the cross product ratio defined for 2 X 2 tables. A combination of the
comntinuous measure and the discrete measure coupled with a more conventional measure of
stochastic ordering for univariate distributions is required to analyze models with both discrete
and continuous outcome measures. We demonstrate that restricling the range of admissible
dependence reduces the intrinsic uncertainty produced from randomized social experiments. We
also present Bayesian estimators for features of models that cannot be exactly identified in data
froin social experiments. These estimators also reduce the variability in the estimates of
interesting features of the joint outcome distribution. However, to produce credible estimates of
the distribution of program gains at selected quantiles requires that the dependence between
treatment and control outcomes be high and positive. Positive dependence is an outcome of
certain optimizing models of program choice.

We also use deconvolution methods for estimating the distribution of program gains when
agents do not know the gain from a program at the time program participation decisions are
made. We compare estimates from these models with estimates obtained from more conventional
random coefficient models.

Application of the methods developed in this paper to data on adult female earnings and
employment from the National JTPA experiment produces a range of distributions of program
impacts all of which indicate small but positive effects of the program. Median earnings gains
are positive for most distributions. Most people are not harmed by the program and for all

values of the dependence parameters we consider, employment gains are posilive. The most
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plausible earnings impact distributions are produced from models where the eamings in the
treated and untreated states are strongly positively dependent,

We have not exploited information about the choice process that can be used to
extrapolate experimental evidence to other environments where the ingredients of the decision
rule are different to recover the joint distributions F(y,, y,) or E(y,, y, | d = 0) rather than just
F(y,, yo | d = 1). The full joint distribution of outcomes can be recovered for participants and
non-participants (d = 0) in the Roy Mode! (Heckman and Honoré (1990)) or in the dependent
competing nisks model (Heckman and Honoré (1989)). Both of these models rely on the
assumption that agents participate in programs in order to maximize their incomes. It is possible
to recover the full joint distribution for all persons (d = 0 and d = 1) using only the data on
outcomes for controls and experimentals if there is sufficient variation in explanatory variables.
It is also possible to estimate the impact on these distributions of changes in regressors resulting
from policy changes that alter the package of conditioning variables confronting individuals. The
existing published literature demonstrates how this can be done and we do not repeat its findings
here. Viverberg (1993) presents bounds for the unidentified parameters of parametric versions
of the two sector model of self-selection with general self-selection rules.

Without prior information, social experiments answer only a few of the guestions of
interest to program evaluators. With the methods presented in this paper and in the published
literature, supplemented by a variety of forms of prior information, data from social experiments

can be used to answer a much wider variety of interesting policy questions.
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APPENDIX A
DESCRIPTION OF ALGORITHMS USED FOR PERMUTATIONS
This appendix describes the algorithms used to produce Tables 1,9A, 9B, 10, 11, 12 and
13. These tables involve samples of impact distributions obtained by permuting the percentiles

of the control and treatment outcome distributions.

Tables 1A and 1B

The total number of possible impact distributions obtained by percentile permutations
consistent with the observed control and treatment group outcome distributions is 100!. As it
is computationally infeasible to construct all of these permutatations, in Table 1A and 1B we
instead report results from a random sample of 100,000 of these permutations. Each
permutation is obtained by taking a set of uniform random deviates, indexing them, sorting
them, and then using the order of the sorted indices to permute the percentiles of the control
group outcome distribution. The permuted control group percentiles are then subtracted from
the treatment group percentiles to produce the impact distribution corresponding to the given
permutation.

The percentiles of each impact distribution generated in this manner are then retained
until the full sample of 100,000 has been generated. The mean and percentiles of the percentiles
and other parameters of the impact distributions corresponding to the sample of permutations are
reported in Tables 1A and 1B. The bootstrap standard errors are generated by repeating this
process 50 times with 50 different random samples of 100,000 permutations and 50 bootstrap
samples of earnings observations and then calculating the empirical standard deviations of the

obtained parameters.

Table 9

For Table 9, the algorithm of Hibbard (1963), cited in Knuth (1973) was used to draw
random samples of permutations conditional on a particular value of tau (number of inversions).

Fifty permutations were generated for each value of tau shown in the table. The table reports
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the median parameter value among these 50 permutations. Bootstrap standard errors were
obtained by repeating the process 50 times, each time with a new sample of permutations and

a bootstrap sample of earnings values.
Table 10

A similar but more involved procedure was used to calculate the posterior means
appearing in Table 10. Given the 100 percentile values, the number of possible pairwise
inversions in a given permutation ranges from a minimum of zero in the case where no changes
are made, up to a maximum of 4950 in the case where the elements are permuted into the
reverse order. Each possible number of inversions corresponds to a particular value of the

disarray statistic V through the relation:

V=% Yighy

where h; = 1 if x; > x; and h; = O otherwise. Each value of V corresponds to a particular

value of Kendall’s 7 through the relation:
r=1-[4V/ N N-1)]

where N is the number of elements, in this case 100, in each permutation.

The number of permutations corresponding to each possible number of inversions varies
from just one in the two perfectly ordered cases to its maximum value when there are 2475
inversions. Because of this variation, a random sample of permutations such as that used to
construct Tables 1A and 1B will not provide a sufficient number of permutations with values
of 7 close to 1 to allow accurate calculation of the posterior means.

Thus, for Table 10 a conditional random sample of 10 permutations was drawn at each
of 155 selected values of 7 (numbers of inversions) using the Hibbard (1963) algorithm. These
values were selected with the priors in mind, so that values of tau close to one are over-

represented. The mean of the random sample of permutations at each value of 7 was taken, and
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these means were then formed into a weighted posterior mean using the weights given by the
spline prior. In particular, the weight of each [r_,,7,] interval under a given prior equals the
area under the curve between the endpoints. Under a given prior, the posterior point estimate
of a parameter equals the sum over all of the intervals of the interval weight multiplied by the

mean of the parameter values associated with the endpoints of each interval.

Tables 11, 12 and 13

The values in Table 11 are obtained from the equations given in the text above. They
are rounded to the nearest whole percent.

The values in Tables 12 and 13 arise from a direct application of the three stage process
described in the text. As implemented here, the process begins with the two marginal
distributions expressed in terms of percentiles. For a given value of Q, percentiles correspond-
ing to zero earnings are allocated from both distributions to the (N,N) cell. Next, the remaining
zero earnings percentiles in each marginal distribution are matched to the non-zero earnings
percentiles in the other marginal distribution using the selected weighting function. In the case
of the weighting functions for perfect negative and perfect positive dependence, w. and w,
respectively, this is done only once. For the other two weighting functions, w, and w,, the
expected value is approximated by the mean of 50 random allocations of the zero percentiles to
the non-zero percentiles with equal probabilities for each non-zero percentile for w, and linearly
decreasing probabilities for w,. The mean impact and the distribution of impacts in each of the
two off-diagonal cells (N,E) and (E,N) is then calculated.

For each random allocation, the non-zero earnings percentiles remaining in the two
original marginal distributions form the marginal distributions for the final step. In that step,
for r = 1 or r = -1 the indicated permutation of the conditional control marginal is used to
construct the distribution of impacts conditional on positive earnings in both states. For 7 = 0.0
or 7= 0.9, a permutation with the selected value of 7 is randomly drawn and the elements of
the conditional control marginal distribution permuted in accord with it. The mean parameters
of the implied conditional impact distribution taken over a random sample of 50 permutations

with the given value of 7 are reported in the tables.
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Combining the impacts from each of the four cells and sorting yields the overall gain
distribution, whose estimated parameters appear in Table 13. In all cases, bootstrap standard
errors are obtained by replicating the entire three stage procedure for 50 bootstrap samples, each

constrainted to have the same value of Q as the original sample.
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APPENDIX B
DETAILED DESCRIPTION OF ALGORITHMS USED FOR THE PLACKETT CLASS

This appendix describes the data and algorithms used to obtain the reported statistics on
the distribution of earnings for the Plackett class of bivariate distributions consistent with given
marginals. This class includes the Frechet-Hoeffding bounding distributions. These statistics

appear in Tables 7A, 7B and 8.
A. Construction of the Distribution of Impacts

The marginal distributions of earnings for the control and treatment groups were
collapsed into a discrete distribution with 1001 bins. The first bin corresponds to zero earnings.
The next 1000 bins correspond to $100 intervals between $100 and $100,100, with an
observation assigned to bin i if its earnings were between $100i and $100(i+1). The CDF
corresponding to this distribution was constructed by summing up over the PDF. For selected
values of the parameter ¥, which indexes members of Plackett’s class, the bivariate distribution
was approximated using the 1001 by 1001 matrix of cells corresponding to each possible
combination of bins from the discretized control and treatment group earnings distributions for

each demographic group. The probability of each cell was calculated as
(A.1.1) f(Y1,Yo) = F(Y,,Yo) - F(Y, - dy, Yo) - F(Y,, Yo - dy) + F(Y, - dy;, Y, - dy)

where Y, and Y, are the income values associated with the left boundary of a given cell in the
discretized control and treatment group earnings distributions, dy, and dy, both equal the width

of a cell ($100), and where F(.,.) was calculated using
[S - {$? - 4y(y - DF,(YDF,(YP}"
2y - 1

where S =1+ [F(Y,)) + F(Yply - 1)
These are equations (8.1.4) and (8.1.5) in Mardia (1970).

F(Y,Y,) =

B-1



The equations F(Y,,Y,) = max{0,1-F,(Y,)-Fo(Yo)} and F(Y,,Y) = min{F,(Y,),Fy(Y,)}
were employed for the Frechet-Hoeffding lower and upper bounds, respectively. The
independence case, which is reached in the limit as y — 1, was calculated with y = 1.00001.
The 1mpact for each cell was set to Y, - Y,. Repeating this process for all 1,002,001 cells
yielded a distribution of impacts with the probability of each impact equal to the sum of the
probabilities of the cells with that impact.

The discrete earnings distributions imply a discrete distribution of impacts with each
impact a multiple of $100. This distribution was approximated with 1003 bins. The middle bin
represents a zero impact, which corresponds to a difference of less than $100 in absolute value
in the underlying continuous earnings values. The next 500 bins on each side of the zero impact
bin represent impacts from $100 to $50,100 and from -$100 to -$50,100. The final bin on each
end contains impacts over $50,100 in absolute value. Associated with each bin is the estimated

probability of obtaining that impact conditional on the selected value of y.

B. Construction of Statistics Relating to the Distribution of Impacts

Percentiles of the impact distribution were constructed by searching over the impact
distribution beginning at -$50,100 and recording the impact level where each percentage
boundary was crossed. The fraction of persons with positive, zero, and negative impacts was
obtained by collapsing the distribution of impacts into these three categories. The mean impact
and mean squared impact calculated from the distribution of impacts were used to construct the
impact variance. Note that the mean impacts reported here differ slightly from those in Bloom
et al. (1993) for the following reasons: (1) we did not use the imputed earnings values for the
adult female non-respondents, (2) the values reported in Bloom are from a regression including
nearly all of the measured baseline variables, and (3) we used discrete approximations to the
earnings distributions.

The correlation coefficient was calculated using (8.2.6) in Mardia (see footnote 4 above).
The integral in that equation was approximated numerically by summing the values of F(Y;,Y)-
F,(Y,)F(Y,) over all the cells used to calculate the bivariate distribution. This value represents

the sum of the heights of each of the approximating volumes which were summed together to
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approximate the volume under the surface. This sum was then multiplied by 100 x 100 =
10,000, which is the product of the lengths of the sides of each volume. This multiplication
yielded the covariance, from which the correlation was generated by dividing by the standard

deviations of the two earnings distributions as calculated from the discrete approximations.
C. Construction of Posterior Estimates Based on Spline Priors

The spline priors over Q are defined by eight parameters: al, bl, a2, b2, a3, b3, x, and
f(1). Fixing the height of the prior to be zero at Q = -1 fixes one parameter. The requirement
that the prior be continuous at zero and at x, constrains two more, while the fact that the
function equals f(1) at r = 1 constrains another. The requirement that the area under the prior
integrate to one constrains a fifth and final parameter, so that any choice of three of the
parameters determines the other five. In addition, the value of the prior must exceed zero at
both Q = 0 and Q = x,. Each prior was generated by selecting values for al, x,, and f(1) and
then solving for the remaining five parameters. The two inequalities were verified in each case.

The percentiles of the impact distribution, as well as the impact mean, variance, and
product-moment correlation, and other dependence parameters were then calculated for 241
values of Q corresponding to y equal to the Frechet upper and lower bounds and to 239 interior
values selected to over-represent values of Q closer to 1. These values of y were chosen to
provide reasonable coverage of the full range of possible values of Q, while placing a greater
emphasis on positive values of Q as that is where the priors concentrate their weight.

The 241 values of Q for define 240 intervals over [-1,1]. The weight of each interval
under a given prior equals the mean of the heights of the prior at the endpoints of the interval
multiplied by the length of the interval, where the length is just the distance between the two
values of Q that mark the endpoints of the interval. The contribution of each interval to the
posterior point estimate of a parameter equaled its weight multiplied by the mean of the
parameter values associated with the endpoints of the interval. The interval containing x, was
treated as two intervals with a common boundary at x, in constructing the weights and
contributions. Summing the contributions of all the intervals yielded the reported posterior

parameter estimate under a given prior.
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APPENDIX C

This appendix provides a list of the spline priors considered in the paper. For each one,
the three equations will be given along with the interval over which each equation is valid. The
probability of falling in each interval will also be reported.

L. -120.00 + 134.00x, X, < x <=1
0.00 + 0.68x, 0 <= x <=X,
0.00 + 0.00x, -1 <= x <0,

where P(-1 <= x < 0)
P(X, <=x < =1])

00, PO <=x < X)) = .27,
.73, and X, = .90.

2. -112.00 + 125.00x, X, < x <=1
0.11 + 0.44x, 0 <=x<=X,
0.11 + 0.11x, -l <=x <0,
where P(-1 <=x < 0) =.05, PO <=x < X)) = .27,
P(X, <=x <=1) = .68, and X, = .90.
3, -161.00 + 179.00x, X, < x <=1
0.05 + 0.05x, 0 <= x <=X,
0.05 + 0.05x, -1l <= x < 0,
where P(-1 <=x<0) =.03, PO <=x<X) = .07,
P(X, <=x <=1)= 091, and X, = .90.
4, -180.00 + 200.00x, X, < x <=1
0.00 + 0.00x, 0 <= x<=X,
0.00 + 0.00x, -1 <= x <0,
where P(-1 <=x < 0) = .00, PO <=x < X)) = .00,

P(X, <=x < =1) = 1.00, and X, = .90.

5. -67.00 + 77.00x, X, < x <=1
0.02 + 0.84x, 0 <=x<=X,
0.02 + 0.02x, -l <=x<0,
where P(-1 <=x < 0) = .0l, PO <=x < X)) = .34,

P(X, <=x <=1) = 0.65, and X, = .88.
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6. -80.00 + 91.00x, X, < x <=1
032 - 027, 0 <=x<=X,
032 + 0.32x, -1 <=x<0,
where P(-1 <=x < 0) = .06, PO <=x < X,) = .18,
P(X, <=x <=1) = 0.66, and X, = .88.
7. -75.00 + 86.00x, X, < x <=1
0.00 -+ 0.77x, 0 <=x<=X,
0.00 + 0.00x, -1 <=x <0,
where P(-1 <=x <0) = .00, P(O <=x < X)) = .30,
P(X, <=x <=1) =0.70, and X, = .88.
8. -92.00 + 105.00x, X, < x <=1
0.02 + 0.43x, 0 <=x <=X,
0.02 + 0.02x, -1 <=x <0,

where P(-1 <=x <0) = .0l,P0 <=x < X)) = .19,
P(X, <=x <=1) = 0.80, and X, = .88.
9. -110.00 + 125.00x, X, < x <=1
0.10 - 0.10x, 0 <=x<=X,
0.10 + 0.10x,-1 <=x <0,
where P(-1 <=x < 0) = .05, PO <=x < X) = .05,

P(X, <=x <=1) =0.90, and X, = .88.

10. -117.00 + 133.00x, X, < x <
0.02 + 0.02x, 0 <=x<
0.02 + 0.02x, -1 <=x<

where P(-1 <= x < 0)
P(X, <=x <=1)

01, PO <=x < X)) = .03,
0.96, and X, = .88.

11. -7.00 + 11.00x, X, < x <=1
0.06 + 092x, 0 <=x <=X,
0.06 + 0.06x, -1 <=x <0,
where P(-1 <=x <0) = .03, PO <=x < X)) = .27,

P(X, <=x <= 1) = 0.7, and X, = .70.
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-10.00 -+ 15.00x, X, < x <=1
0.00 + 0.71x, 0 <=x<=X,
0.00 + 0.00x, -1 <=x < 0,
where P(-1 <=x < 0) = .00, PO <=x<X)=.17,
P(X, <=x <= 1) = 0.83, and X, = .70.
-14.00 + 20.00x, X, < x <=1
0.12 - 0.17x, 0 <=x <=X,
0.12 + 0.12x, -1 <=x <0,
where P(-1 <=x < 0) = .06, PO <=x < X,) = .04,
P(X, <=x <= 1) = 0.90, and X, = .70.
-1.00  + 3.00x, X, < x<= 1
0.25 - 092x, 0 <=x<=X,
025 + 025x, -1 <=x<0,
where P(-1 <=x < 0) = 13, P(0 <=x < X;) = .32,
PX, <=x <=1 = 0.56, and X, = .60.
-5.00 + 9.00x, X, < x <= 1
000 + 067x, 0 <=x <=X,
0.00 + 0.00x, -1 <=x <0,
where P(-1 <=x < 0) = .00, PO <=x < X,) = .12,

PX, <=x<=1)= 0.88, and X, = .60.

-3.00 + 6.00x, X, < x <= 1
0.13 + 0.79x, 0 <=x <=X,
0.13 + 0.13x, -1 <=x <0,

where P(-1 <=x < 0) = 06, PO <=x < X)) = .22,
P(X, <=x <= 1) = 0.72, and X, = .60.

-1.00 + 3.00x, X, < X <=1

033 + 033, 0 <=x <=X,

033 + 0.33x, -1 <=x <0,

where P(-1 <=x < 0) = 17, PO <=x < X)) = .21,

P(X, <=x < =1) = 0.63, and X, = .50.
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18.

19.

-2.00 + 5.00x, X, <
0.00 + 1.00x, O <
0.00 + 0.00x, -1<
where P(-1 <

x <0 =
P(X, < =

x <

4.00 + 8.00x, X,
0.00 + 0.00x, O
0.00 + 0.00x, -1

where P(-1 <= x < ()
P(X, <=x <= 1)

<
<
<
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.00, PO <=x < X,) = .13,

1) = 0.88, and X, = .50.

<=1
<=X,
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X
X
X

o

<

.00, PO <= x < X,) = .00,
1.00, and X, = .50.
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APPENDIX D
CONSTRUCTION OF IMPACT DISTRIBUTION THROUGH DECONVOLUTION

This appendix describes the construction of the estimated impact distribution appearing
in Figure 11, and the corresponding conditional density shown in Figure 12. As noted in the

text, under the model

Y, = Xg + 4; + ¢ for treatment group members and

Y, = Xig + ¢ for control group members,

the CDF of the distribution of impacts can be obtained from the ratio of the characteristic
functions of the treatment and control data distributions under the assumption that 4, is
independent of ¢. The statistical foundations for this approach appear in Kendall and Stuart
(1977), Stefanski and Carroll (1990) and Carroll and Hall (1988). Horowitz and Markatou
(1993) present an application of this approach in an economic context.

Our implementation begins with the raw values for the sum of self-reported earnings in
the 18 months after random assignment. To maintain consistency with our other results, we
replace outlying values with the imputed values generated for this purpose by Abt Associates,
but do not use the imputed values generated by Abt for adult female non-respondents at 12 of
the 16 experimental sites. The earnings values were divided by 1000 prior to the estimation in
order to reduce the loss of precision during exponentiation.

The empirical characteristic functions for e and n, where = A + ¢, were obtained from

the control and treatment group earnings values, respectively. The standard formulae are:

. (N) = (N)' ¥, exp(ixY) for the control group
¢, (N) = (ND' ¥, exp(ixY) for the treatment group

where N, is the number of observations in the treatment group, N, is the number of observations
in the control group, and where estimates of the value of the characteristic function were

obtained at 10001 equally spaced frequencies N between -5 and 5. These limits on the
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frequencies were determined by examining a number of possible choices involving both wider

and narrower ranges and trading off the numerical problems induced by including higher

frequencies against the loss of accuracy due to narrowing the range of included frequencies.
Estimates of the value of the characteristic function of A, ¢,(N\), at the same 10001 values

of N were obtained by taking the ratio of the empirical characteristic functions for ¢ and A:
da(N) = &,(N) / 6. (N)

These estimates were used to obtain estimates of F(A), the CDF of the impact distribution,

through the relation:

F(A) = 05 + (n)'lf [Re(d,(A))sin(AR) - Im(d,(R))cos(AA)]dA
0

where Re() denotes the real portion a complex argument, Im() denotes the imaginary portion of
a complex argument, and where the numerical integration is carried out over the 10001 values
of N\ using the trapezoidal rule. Estimates of F(A) were obtained for 2001 evenly spaced values
of A between -50 and 50. The estimated CDF corresponding to these estimates appears in
Figure 11, while that portion of the PDF corresponding to positive impacts appears in Figure
12. The PDF and CDF shown in the figures have been smoothed using standard kernel-
smoothing techniques. We employ the empirical characteristic functions and the CDF, rather
than estimating the characteristic functions over smoothed data distributions and obtaining the
estimated the impact density directly, because the earnings data contain an important point mass
at zero.

Our experience with this procedure is that marginal increases or decreases in the number
of frequencies N\ used to approximate the characteristic functions has little effect on the substance
or stability of the estimates. Using half as many points in each case produces about the same
result. In addition, we found that applying the same procedure to. the empirical characteristic
function of one of the data distributions, rather than to the ratio of the two empirical

characteristic functions, produces estimates that are both reliable and stable. Problems in the
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form of negative estimated densities and/or substantial instability to choice of the range \ only
arise when using the ratio of the characteristic functions from the two distributions to estimate
the characteristic functions of the impact distribution. These problems may result either from
the failure of the independence assumption to hold, in which case the negative density estimates
may be correct, or from numerical factors associated with taking non-linear functions of the ratio
of two relatively small numbers. Numerical problems of the latter type are commonly reported

in the literature on deconvolution, see e. g. Jansson (1984).



" TABLE 1A
. ADULT FEMALES .
PERCENTILES OF PARAMETERS OF THE IMPACT DISTRIBUTION
RANDOM SAMPLE OF 100,000 PERCENTILE PERMUTATIONS
Statistic Distn of Distn of Distn of Distn of Distn of Distn of Distn ot
Minimum Sth Pctl 25th Pctl 50th Pctl 75th Pctl 95th Pctl Maximur
Mean -40690.34 -18278.74 -6426.64 272.31 7632.06 18991.88 595164
(6506.09) (713.35) (313.41) (133.26) (307.82) (675.32) (1235061
Minimum -48606.00 -22350.00 -10814.00 -1999.00 3340.50 12205.00 19207 1«
(7986.12) (818.59) (443.03) (333.23) (406.16) (34891 TRERRE
Sth Percentile -48606.00 -21348.00 -8114.00 -41.00 60)38.00 16173.00 43R0N.40
(7986.12) (913.24) (319.22) (119.48) (305.29) (532.35) (Y292.3"
25th Percentile -47551.00 -19512.00 -7055.00 0.00 6935.00 17789.00 54542
(7964.97) (802.85) (316.39) (0.00) (307.90) (611.23) (11791 .4
50th Percentile -41969.00 -18359.00 -6426.00 0.00 7647.00 19006.00 61318.tx
: (7097.89) (709.75) (305.08) (143.40) (297.03) (696.56) (13404002
75th Percentile -35049.00 -17035.00 -5787.00 510.00 8253.00 20275.00 (SR UNE
(5199.60) (641.74) (325.72) (226.50) (321.38) (733.39) (13845.22
95th Percentile -27450.00 -15409.00 -4777.00 1197.00 9297.00 22088.00 67136.00
(3498.30) (574.54) (290.52) (256.32) (322.02) (976.11) (13854833
Maximum -15713.00 -11280.00 -2274.00 3636.00 11707.00 23351.00 67156.00
' (1245.41) (526.96) (401.04) (326.56) (380.13) (680.61) (13854.83

1. Table updated on December 4, 1993
2. Bootstrap standard errors in parentheses.



TABLE 1B

ADULT FEMALES .
PERCENTILES OF PARAMETERS OF THE IMPACT DISTRIBUTION

RANDOM SAMPLE OF 100,000 PERCENTILE PERMUTATIONS

Statistic Distn of Distn of Distn of Distn of Distn of Distn of
Percent Impact Outcome Kendail’s Spearman’s Blomquist’s
Positive Std Dev Correlation Tau Rho Q
Mean 55.07 12767.97 0.0003 0.0001 0.0001 0.0001
(0.95) (766.15) (0.0003) (0.0002) (0.0003) (0.0003)
Minimum 43.00 8972.34 -0.3456 -0.3362 -0.5018 -0,4400
(1.26) (404.28) (0.0205) (0.0200) (0.0291) (0.0231)
Sth Percentile 50.00 11638.99 -0.1539 -0.1119 -0.1657 -0.1600)
(1.08) (690.87) (0.0034) (0.0004) (0.0006) (0.0000)
25th Percentile 53.00 12381.83 -0.0695 -0.0457 . -0.0677 -0.0800
(0.94) (753.44) (0.0004) (0.0003) (0.0004) (0.0000)
50th Percentile 55.00 12821.49 -0.0056 0.0004 0.0004 -0.0000
(0.99) (777.61) (0.0016) (0.0002) (0.0003) (0.0000)
75th Percentile 57.00 " 13218.09 0.0630 0.0461 0.0683 0.0800
(0.98) (793.33) (0.0019) (0.0003) (0.0004) (0.0000)
95th Percentile 60.00 13724 .41 0.1734 0.1119 0.1660 0.1600
(0.98) (805.03) (0.0019) (0.0004) (0.0005) (0.0000)
Maximum 68.00 14810.39 0.5135 0.3051 0.4415 0.4400
(1259 (839.73) (0.0409) (0.0199) (0.0268) (0.0266)

1. Table updated on December 4. 1993
2. Bootstrap standard errors in parentheses.




TABLE 2
ESTIMATED PARAMETERS OF THE IMPACT DISTRIBUTION
PERFECT POSITIVE ASSOCIATION AND
PERFECT NEGATIVE ASSOCIATION CASES
Abt 18 Month Impact Sample
Adult Females
Statistic Perfect Perfect
Positive Negative
Association Association
Minimum 0.00 -48606.00
Sth Percentile 0.00 -22350.00
25th Percentile 572.00 -11755.00
50th Percentile 864.00 580.00
75th Percentile 966.00 12791.00
95th Percentile 2003.00 23351.00
Maximum 3250.00 34102.00
Percent Positive 100.0 52.0
Impact Std Dev 1857.75 1643243
Outcome Correlation 0.9903 -0.6592
Kendall’s Tau 1.0000 -1.0000
Spearman’s Rho 1.0000 -1.0000
Blomquist’s Q 1.0000 -1.06000

1. Table updated on November 21, 1993

2. Values in this table calculated using percentiles of the two distributions.
3. Outliers replaced with Abt imputed values.

4. Imputed values for adult female non-respondents not included.



TABLE 3

CHARACTERISTICS OF THE DISTRIBUTION OF IMPACTS
ON EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT
AT THE FRECHET-HOEFFDING BOUNDS

Abt 18 Month Impact Sample
Adult Females

Statistic Lower Bound Upper Bound
Standard Deviation of Impacts 14968.76 674.50
(211.08) (137.53)
Correlation Between Outcomes -0.760 0.998
(0.013) (0.001)
Kendall's Tau -0.8969 0.9397
(0.0043) (0.0041)
Spearman’s Rho -0.9776 - 0.9867
(0.0016) (0.0013)

1. Table updated on December 7, 1993

2. Bootstrap standard errors in parentheses.

3. Oudiers replaced with Abt imputed values.

4. Imputed values for adult female non-respondents not included.



NOTES:

TABLE 4
FRACTION EMPLOYED
AND FRECHET-HOEFFDING BOUNDS ON THE PROBABILITIES Pgy AND Py
Adult Females
Abt 18 Month Impact Sample

Fraction Employed in 0.64
Treatment Group

Fraction Employed in Control Group 0.61
Bounds on Pgy [.03, .39]
Bounds on Py [.00, .36]

Employment Percentages are based on self-reported employment in months
16, 17 and 18 after random assignment.

P;; is the probability of having employment status i as a treatment and
employment status j as a control, where i and j take on the values E for

‘employed and N for not employed. The Frechet-Hoeffding bounds are given

by:

Pij Lo F'UB(Pi‘,) - min(PNj + PEJ , Pi“ + PiE) and
Pyy >= FLB(Py;) = max([Py; + Pg;] + [Py + Pyg] - 1, 0).

Adult female non-respondents not included in the sample.



TABLE §
SPLINE PRIORS OVER TAU AND Q USED FOR TABLES 6,8 AND 9

Spline prior over Tau or Q determined by:

al+bl for Xp<=X <=1
a2+b2 for 0<=X<Xp
a3 +b3 for -1<=X<0

where X = tau or Q as appropriate.

Prior 1:
al =-161, bl = 179, a2 = 0.05, b2 = 0.05, a3 = 0.05, b3 = 0.05
Xp = .90
P(-1 <= X <0) = .026 P(0 <=X < Xp) = .069 P(Xp <=X <= 1) = .905
Prior 2:
al =-4,bl = 8§, a2 =0.00, b2 = 0.00, a3 = 0.00, b3 = 0.00
Xp =0.50
P(-1<=X<0) = .000 P(0 <=X <Xp) = .000 P(Xp <= X <=1)= 1000
Prior 3:
al =.7,bl =11, a2 = 0.06, b2 = 0.92, a3 = 0.06, b3 = 0.06
XP =0.70
P(-1<=X<0) = .029 P(0 <=X <Xp) = .266 P(Xp <=X <=1) = .705
Prior 4:
al =-1,bl = 3, a2 = 0.25, b2 = 0.92, a3 = 0.25, b3 = 0.25
Xp =0.60

P(-1<=X<0) = .125 P(0 <=X <Xp) = .315 P(Xp <= X <= 1) = .560

L. Table updated on November 21, 1993



TABLE ¢
POSTERIOR ESTIMATES OF EMPLOYMENT PROBABILITIES
OBTAINED FROM SPLINE PRIORS OVER Q DISPLAYED IN TABLE 5§
Abt 18 Month Impact Sample
Adult Females

Statistic Prior 1 Prior 2 Prior 3 Prior 4
Prob(E.E) 0.5599 0.5242 0.5091 04739
(0.0061) (0.0054) (0.0050) (0.0043)

Prob(E.N) 0.0835 0.1192 0.1343 0.1695
(0.0011) (0.0019) (0.0022) (0.0029)

Prob(N.E) 0.0513 0.0870 0.1021 0.1373
(0.0159) (0.0155) (0.0153) (0.0149)

Prob(N,N) 0.3053 0.2696 0.2545 0.2193
(0.0124) (0.0123) (0.0122) (0.0121)

1. Table updated on November 23. 1993
2. Bootstrap standard errors in parentheses.



TABLE 7A
ADULT FEMALES ‘
PERCENTILES OF PARAMETERS OF THE IMPACT DISTRIBUTION AS Q VARIES

PLACKETT’S CLASS OF BIVARIATE DISTRIBUTIONS CONSISTENT WITH GIVEN MARGINALS
Q Minimum 5th Pctl 25th Pctl 50th Pctl 75th Pctl 95th Pctl Maximum

1.00 0.00 0.00 600.00 900.00 1000.00 1800.00 3200.00
(192.00) (31.05) (227.38) (267.80) (300.17) (541.72) (1166.10)

0.99 -7600.00 -2500.00 0.00 400.00 1600.00 4700.00 10300.00
(522.69) (304.29) (66.45) (239.34) (274.15 {336.37) {598.09)

0.95 -13800.00 -6200.00 -700.00 100.00 2500.00 8300.00 16400.00
(593.50) (328.77) (245.28) (178.03) (252.19) (324.49) (592.59)

0.90 -16600.00 -8300.00 -1400.00 0.00 3100.00 10500.00 19200.00
(644.43) (338.33) (255.54) (127.37) (253.95) (311.47) (631.52)

0.70 -21100.00 -12300.00 -3000.00 0.00 4700.00 14300.00 23900.00
(763.15) (379.07) (265.77) (79.40) (246.09) (327.59) {686.42)

0.50 -23300.00 -14300.00 -4100.00 0.00 5700.00 16200.00 26300.00
(983.06) (359.02) (271.90) (87.38) (229.77) (331.61) (775.46)

0.30 -25100.00 -15700.00 -4900.00 0.00 6600.00 17500.00 27900.00
(1018.45) (371.89) (254.35) (115.95) (237.89) (349.77) (814.98)

0.00 -26600.00 -17200.00 -6100.00 100.00 7700.00 15000.00 30000.00
(1020.43) (374.12) (277.46) (150.05) (240.83) (381.66) (904.35)

-0.30 -27500.00 -18500.00 -7200.00 300.00 8800.00 20200.00 31600.00.
(1220.75) " (428.14) (288.42) (193.33) (242.02) (397.13) (819.34)

-0.50 -29100.00 -19300.00 -8000.00 400.00 9600.00 21100.00 32200.00
(1317.15) (446.75) (278.03) (217.71) (222.14) (432.39) (725.88)

-0.70 -30200.00 -20100.00 -8800.00 500.00 10400.00 21900.00 33500.00
(1414.67) (424.08) (293.26) (245.67) (206.31) (420.42) (636.63)

-0.50 -30500.00 -20800.00 -10100.00 700.00 11500.00 23000.00 33600.00
(1849.43) (440.47) (317.84) (285.58) (214.70) (428.49) (717.50)

-0.95 -30500.00 -21100.00 -10600.00 800.00 12000.00 23100.00 33700.00
(181591) (475.50) (325.67) (302.65) (201.99) (389.87) (774.61)

-0.99 -30800.00 -21300.00 -11100.00 800.00 12600.00 23300.00 33900.00
(2046.48) (489.15) (352.31) (336.86) (234.88) (361.33) (746.36)

-1.00 -30800.00 -21300.00 -11400.00 900.00 12800.00 23300.00 34100.00
(2087.51) (487.28) (410.29) (415.93) 255.54) (344.07) (738.65)

1. Table updated on November 26. 1993
2.Q=(w- 1)/ (w+ 1)) where windexes members of Plackett's class.
3. Bootstrap standard errors in parentheses.




TABLE 7B
ADULT FEMALES .
PERCENTILES OF PARAMETERS OF THE IMPACT DISTRIBUTION AS Q VARIES
PLACKETT'S CLASS OF BIVARIATE DISTRIBUTIONS CONSISTENT WITH GIVEN MARGINALS
Q Percent Percent Impact Outcome Kendall's Spearman's
Positive Zero Std Dev Correlation Tau Rho
1.00 0.7909 0.2082 674.04 0.9983 0.9397 0.9867
(0.0264) (0.0123) (181.79) (0.0013) (0.0041) (0.0013)
0.99 0.5799 0.2074 2941.30 0.9335 0.8051 0.9419
(0.0418) (0.004%) (87.18) (0.0023) (0.0623) (0.0012)
0.95 0.5074 0.1748 4922 96 08112 0.6588 ).8396
(0.0327) (0.0037) (100.63) (0.0032) (0.0013) (0.U010)
0.90 0.4933 0.1544 6046.00 0.7143 0.5639 0.7513
(0.0193) (0.0036) (111.68) (0.0036) (0.0011) (0.0009)
0.70 0.4880 0.1131 8191.37 0.4741 0.3602 0.5149
(0.0124) (0.0032) (132.48) (0.0033) (0.0006) (0.0007)
0.50 0.4914 0.0897 9370.49 03113 0.2344 0.3445
(0.0102) (0.0029) (143.61) (0.0024) (0.0004) (0.0005)
0.30 0.4955 0.0724 10238.45 0.1775 0.1338 0.1994
(0.0090) (0.0025) (151.68) (0.001%) (0.0002) (0.0003)
0.00 0.5023 0.0505 11285.00 0.0015 0.0002 0.0003
(0.0078) (0.0022) (161.52) (0.0002) (0.0000) (0.0000)
-0.30 0.5067 0.0353 12209.29 -0.1705 -0.1336 -0.1991
(0.0072) (0.0015) (170.50) (0.0018) (0.0002) (0.0003)
-0.30 0.5101 0.0253 12817.82 -0.2903 -(0.2341 -0.3441
(0.0069) (0.0011) (175.98) (0.0032) (0.0004) (0.0006)
-0.70 0.5132 0.0158 13472.61 -0.4257 -0.3591 -0.5141
(0.0067) (0.0007) (181.74) (0.0050) (0.0007) (0.0008)
-0.90 0.5157 0.0066 14283.24 -0.6027 -0.5585 -0.7486
(0.0067) (0.0003) (188.63) (0.0079) (0.0015) (0.0011)
-0.95 0.5161 0.0043 14557.14 -0.6648 -0.6488 -0.8356
(0.0068) (0.0001) (190.87) (0.0090) (0.0020) (0.0013)
-0.99 0.5160 0.0025 14850.48 -0.7328 -0.7823 -0.9349
(0.0071) (0.0001) (192.91) (0.0103) (0.0030) (0.0016)
-1.00 0.5141 0.0027 14968.76 -0.7604 -0.8969 -0.9776
(0.0073) (0.0014) (194.10) (0.0110) (0.0043) (0.0016)

1. Table updated on November 27, 1993
2.Q=(w- 1)/ (y+ 1)) where windexes members of Placket's class.
3. Bootstrap standard errors in parentheses.
4. Zero impact refers to an estimated impact less than $100 in absolute value.




TABLE 8
POSTERIOR MEANS OF PARAMETERS OF THE IMPACT DISTRIBUTION
OBTAINED USING SPLINE PRIORS OVER Q DISPLAYED IN TABLE 5
PLACKETT CLASS OF BIVARIATE DISTRIBUTIONS CONSISTENT WITH GIVEN MARGINALS
Abt 18 Month Impact Sample
Aduit Females
Statistic Prior 1 Prior 2 Prior 3 Prior 4
{st Percentile -12160.59 -17100.91 -18137.67 -20939.14
(585.20) (671.64) (724.64) (828.75)
Sth Percentile -5522.52 -9092.73 -9989.33 -12323.70
(311.28) (343.51) (341.01) © (353.29)
25th Percentile -823.88 -1820.24 -2328.41 -3463.23
(181.38) (238.00) (239.80) (252.17)
Median 246.01 64.70 72.45 69.76
(192.32) (119.82) (125.06) (120.02)
75th Percentile 2530.99 3532.87 4019.94 5117.33
(257.75) (246.65) (243.97) (238.41)
95th Percentile 7674.33 11160.38 12017.25 14276.36
(322.65) (312.99) (315.87) (324.42)
99th Percentile 14969.14 19877.89 20956.16 2386945
(604.89) (650.26) (667.60) (705.74)
Pct Positive 0.5413 0.5029 0.5043 0.5000
(0.0297) (0.0194) (0.0183) (0.0144)
Pct Zero 0.1781 0.1454 0.1248 0.1092
(0.0038) (0.0033) (0.0033) (0.0029)
Impact Std Dev 4581.18 6457.92 6998.63 8353.76
(96.44) (114.06) (118.47) (131.57)
QOutcome Correlation 0.8005 0.6506 0.5742 0.4029
(0.0024) (0.0032) (0.0027) (0.0021)
Kendall's Tau 0.6690 0.5174 0.4576 0.3161
(0.0017) (0.0011) (0.0010) (0.0007)
Spearman’s Rho 0.8183 (0.6849 0.6036 0.4254
(0.0010) (0.0009) (0.0008) (0.0006)
Blomaquists Q 0.9000 0.8333 0.7332 0.5332
(0.0000) (0.0000) (0.0000) (0.0000)

1.
2.
kR
4.

Table updated on November 28, 1993
Bootstrap standard errors in parentheses.
Outliers replaced with Abt imputed values.
Imputed values for adult female non-respondents not included.

5. Zero impact refers to an estimated impact less than $100 in absolute value.




TABLE 9A
ADULT FEMALES .
PERCENTILES OF PARAMETERS OF THE IMPACT DISTRIBUTION AS TAU VARIES
RANDOM SAMPLES OF 50 PERCENTILE PERMUTATIONS

Tau Minimum 5th Pctl 25th Pctl 50th Pctl 75th Pct! 95th Pctl Maximum
1.00 0.00 0.00 572.00 864.00 966.00 2003.00 18550.00
(703.64) (47.50) (232.90) (269.26) (305.74) (343.03) (5280.67)

0.95 -14504.00 0.00 125.50 616.00 867.00 1415.50 48543.50
(1150.01) (360.18) (124.60) (280.19) (272.60) (391.51) (8836.49)

0.90 -18817.00 1168.00 0.00 487.00 876.50 2319.50 49262.00
(1454.74) (577.84) (29.00) (265.71) (282.77) (410.27) (6227.38)

0.70 -25255.00 -8089.50 -136.00 236.50 982.50 12158.50 55169.50
(1279.50) (818.25) (260.00) (227.38) (255.78) (614.45) (5819.28)

0.50 -28641.50 12037.00 -1635.50 0.00 1362.50 16530.00 38472.00
(1149.22) (650.31) (314.39) (83.16) (249.29) (329.44) (5538.14)

0.30 -32621.00 -14855.50 -3172.50 0.00 4215.50 16889.00 54381.00
(1843.48) (548.48) (304.62) (37.96) (244.67) (423.05) (5592.86)

0.00 -44175.00 -18098.50 -6043.00 0.00 7388.50 19413.25 60399.00
(2372.05) (630.73) (300.47) (163.17) (263.25) (423.63) (5401.02)

-0.30 -48606.00 -20566.00 -8918.50 779.50 9735.50 21093.25 65675.00
(1281.80) (545.99) (286.92) (268.02) (300.59) (462.13) (5381.91)

-0.50 -48606.00 -21348.00 -9757.50 859.00 10550.50 22268.00 67156.00
(1059.06) (632.55) (351.55) (315.37) (255.28) (435.78) (5309.90)

-0.70 -48606.00 -22350.00 -10625.00 581.50 11804.50 23351.00 A7156.00
(1059.06) (550.00) (371.38) (309.84) (246.58) (520.93) (3308.90)

-0.90 -48606.00 -22350.00 -11381.00 580.00 12545.00 23351.00 671356.00
(1059.06) (547.17) (403.30) (346.12) (251.07) (341.41) (5309.90)

-0.95 -48606.00 -22350.00 -11559.00 580.00 12682.00 23351.00 67156.00
(1059.06) (547.17) (404.67) (366.37) (255.97) (341.41) (5309.90)

-1.00 -48606.00 -22350.00 -11755.00 580.00 12791.00 23351.00 67156.00
(1059.06) (547.17) (411.83) (389.51) (253.18) (341.41) (5309.90)

1. Table updated on December 3. 1993
2. Bootstrap standard errors in parentheses.




TABLE 9B
ADULT FEMALES .
PARAMETERS OF THE IMPACT DISTRIBUTION AS TAU VARIES
RANDOM SAMPLES OF 50 PERCENTILE PERMUTATIONS
Tau Percent Impact Outcome Spearman’s Blomquist’s
Positive Std Dev Correlation Rho Q
1.00 100.00 1857.75 0.9903 1.0000 1.0000
(1.60) (480.17) (0.0048) (0.0000) (0.0000)
0.95 96.00 6005.96 0.7885 0.9676 0.9600
(3.88) (776.14) (0.0402) (0.0007) (0.0000)
0.90 88.00 6388.98 0.7591 0.9361 0.9200
(5.10) (474.65) (0.0257) (0.0015) (0.0062)
0.70 72.50 8160.36 0.5996 0.7921 0.7600
(5.30) (351.67) (0.0199) (0.0021) 0.0117)
0.50 58.00 9475.85 0.4561 0.6170 0.5600
4.3D) (327.81) (0.0161) (0.0029) (0.0181)
0.30 57.00 10584.06 0.3185 (0.4083 0.3600
(2.34) (290.72) (0.0129) (0.0026) (0.0151)
0.00 54.00 12879.21 -0.0147 -0.0093 0.0000
(1.1D) (259.24) (0.0106) (0.0012) (0.0123)
-0.30 54.00 14550.94 -0.2985 -0.4272 -0.3600
(0.89) (267.83) (0.0093) (0.0030) (0.0161)
-0.50 54.00 15294.88 -0.4359 -0.6300 -0.5600
(0.94) (274.34) (0.0122) (0.0031) (0.0175)
-0.70 53.00 15852.82 -0.5434 -0.8051 -0.7200
(0.86) (267.69) (0.0153) (0.0029) 0.0117)
-0.90 52.00 16265.17 -0.6254 -0.9544 -0.9200
(0.73) (267.49) (0.0174) (0.0015) (0.0039)
0.95 52.00 16376.95 -0.6479 -0.9880 -0.9600
(0.78) (267.35) (0.0180) (0.0005) (0.0000)
-1.00 52.00 16432.43 -0.6592 -1.0000 -1.0000
(0.81) (265.88) (0.0184) (0.0000) (0.0000)

1. Table updated on December 3. 1993
2. Bootstrap standard errors in parentheses.




TABLE 10

POSTERIOR MEANS OF PARAMETERS OF THE IMPACT DISTRIBUTION
OBTAINED USING SPLINE PRIORS OVER TAU DISPLAYED IN TABLE 5

Abt 18 Month Impact Sample

Adult Females

Statistic Prior 1 Prior 2 Prior 3 Prior 4
1st Percentile -13220.49 -19449.76 -21645.14 -27199.56
(1021.06) (890.81) (884.88) (918.06)
5th Percentile -1409.44 -3950.23 -5760.57 -9501.85
(209.55) (423.12) (39547) (421.88)
25th Percentile -110.36 -63.98 -721.83 -1968.22
(153.72) (117.85) (144 .62) (189.38)
Median 694 .43 459.49 422.85 326.63
(251.50) (233.38) (208.21) (177.28)
75th Percentile 1270.16 900.53 1575.02 276942
(279.13) (267.34) (260.50) (249.93)
95th Percentile 3089.25 5923.80 7504.75 11382.01
(384.99) (333.15) (322.71) (317.22)
99th Percentile 37326.58 49844.78 50484.57 54530.04
(5222.31) (5054.12) (5055.96) (5125.67)
Pct Positive 93.59 83.17 79.66 71.09
3.0 (4.34) (3.83) (34D
Impact Std Dev 4634.52 6578.09 7239.62 8867.16
(468.79) (390.29) (372.50) (333.93)
Outcome Correlation 0.8327 0.7205 0.6409 0.4628
(0.0169) (0.0179) (0.015%) (0.0119)
Kendalls Tau 0.9002 0.8334 0.7334 0.5333
(0.0000) (0.0000) (0.0000) (0.0000)
Spearmans Rho 0.9126 0.8797 0.7784 0.5746
(0.0005) (0.0006) (0.0005) (0.0005)
Blomquists Q 0.9008 0.8528 0.7570 0.5592
(0.0018) (0.0017) (0.0014) (0.0017)

1. Table updated on December 4, 1993

2. Bootstrap standard errors in parentheses.
3. Outiers replaced with Abt imputed values.
4. Imputed values for adult female non-respondents not included.




TABLE 11
ADULT FEMALES

JOINT PROBABILITIES OF ZERO AND NON-ZERO EARNINGS
IN THE TREATMENT AND CONTROL STATES

SUM OF EARNINGS IN THE 18 MONTH AFTER RANDOM ASSIGNMENT

Value of Q Q=-1.0 Q=00 Q=09 Q=10

ProbY(1)=0& Y(0)=0 0.00 0.05 0.14 0.20
(0.00) (0.00) (0.01) (0.01)

Prob Y(1) =0 & Y(0)>0 0.20 0.15 0.06 0.00
(0.01) (0.01) (0.01) {0.00)

Prob Y(1)>0 & Y(0)=0 0.23 0.18 0.09 0.03
(0.01) 0.01) 0.0 (0.01)

ProbY(1)>0 & Y(0)>0 0.57 0.62 071 0.77
0.01) (0.01) 0.01) (0.01)

1. Table updated on December 18, 1993
2. Bootstrap standard errors in parentheses.
3. Y(1) = camings in the treatment state; Y(0) = eamings in the control state.



TABLE 12
ADULT FEMALES
PARAMETERS OF CONDITIONAL DISTRIBUTIONS WHEN ONE OR BOTH OUTCOMES IS ZERO
EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT
Q w Tau | Cell(0,1) | Cell(1,0) | Cell(1,1)  Cell(1,1)  Celi(1,1)  Cell(1,1)  Celi(1,1) Cell(1,1)
E(Y0) E(Y1) E(Y1) E(Y0) Petl 25 Pctl 50 Pctl 75 Pr(Y1>Y0
100 w_ 100 20603 21806 6462 6327 65 140 221 86.0
(358) (380) (119) (210) (251) (248) (241) (6.6)
100 w0 1.00 9613 10659 10960 10184 46 484 1043 68.1
(324) (293) (194) (400) (322) (309) (332) (8.4)
100 wp 100 7561 8239 11936 10903 179 696 1232 75.3
(282) (227) (183) (371) (302) (317) (336) (10.0)
100 we 100 1844 2348 14313 12909 854 920 1093 100.0
(181) (81) (215) (247) (328) (318) (334) (14.0)
000 w_ 100 22475 23736 7138 7026 40 115 208 79.0
(412) (448) (123) (215) (256) (245) (237) (6.1)
000 w0 1.00 9752 10452 10995 10104 99 551 1034 733
(301) (304) (192) (390) (289) (294) (324) (8.1)
000 wp 100 7391 8061 11689 10675 157 646 1091 772
(312) (224) (183) (362) (275) (285) (301) (10.2)
000 w+ 100 1317 1826 13500 12145 845 911 1086 100.0
(161) (75) (200) (240) (307) (307) (324) (14.0)
090 w_ 100 29066 29943 8456 8427 42 92 195 69.0
(676) (761) (132) (233) (364) (244) (239) (5.3)
090 w0 1.00 9319 10113 10969 10096 197 525 883 83.6
(504) (446) (179) (394) (285) (286) (326) (9.7)
090 wp 100 7186 7540 11295 10276 332 676 952 87.4
(389) (329) (176) (412) (305) (312) (343) (10.4)
090 w+ 100 459 883 12139 10845 843 891 1011 100.0
(97) (56) (180) (224) (286) (285) (294) (14.0)
100 w_ 100 N.A. 43682 9595 10035 -110 88 192 63.6
(1931) (142) (406) (378) (254) (240) (4.9)
100 w0 100 N.A. 9327 10933 10035 356 561 768 97.7
(745) (168) (406) (272) (284) (335) (11.4)
100 wp 100 N.A. 6810 11031 10035 434 691 881 99.0
(587) (169) (406) (268) (302) (346) (12.4)
1.00  w+ 100 N.A. 327 11284 10035 835 890 1003 100.0
(50) (167) (406) (328) (280) (304) (13.4)

1. Table updated on December 22, 1993

2. All results conditional on d = 1. Bootstrap standard efrors in parentheses.

3. Y1 = camings in the treatment state; YO = camings in the control state. Cell(i,j) is defined so thati = 1 if Y1 >0 andi=0if Yl =0,j=1
ifYO>0and j=0if YO=O.

4. Weighting functions: w+ = perfect positive dependence; wp = partial positive dependence; w0 = independence: w_ = perfect negative de-
pendence. Pantial positive dependence is operationalized as a probability distribution over the non-zero percentiles of the treatment or control
camings distribution with which the zeros in the other distribution are matched. The probabilities decrease linearly from the lowest non-zero
percentile and are scaled so that the ratio of the probability of the lowest non-zero percentile is four times that of the highest non-zero per-
centile.

5. N.A. indicates parameters of cells that are empty for a given value of Q.



TABLE 12 (CONTINUED)
ADULT FEMALES
PARAMETERS OF CONDITIONAL DISTRIBUTIONS WHEN ONE OR BOTH OUTCOMES IS ZERO
EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT

Q W Tau | Cell@,1) | Cel(1,0) | Celll,l)  Cell(l,])  Cell(1,l)  Cell(l,l)  Cel(l,])  Cell(L:
E(Y0) E(Y1) E(YD) E(Y0) Pct125  Petl 50 Petl7S  Pr(Ylzy

2100 w_ 090 | 20603 21806 6462 6327 222 21 261 523
(358) (380) (119) (210) (276) (249) (220) (5.8)

2100 w0 090 9613 10659 10960 10184 424 294 862 58.7
(324) (293) (194) (400) (342) (300) (307) (15)

2100 wp 090 7561 8239 11936 10903 237 438 1078 63.6
(282) (227) (183) 371) (318) (301) (305) (8.4)

100 w+ 090 1844 2348 14313 12909 399 809 1063 873
(181) 81) (215) (247) (334) (322) (329) (12.4)

000 w_ 090 | 22475 23736 7138 7026 234 16 285 53.0
(412) (448) (123) (215) (283) (247) (218) (53)

000 w0 090 9751 10452 10995 10104 243 372 940 619
(301) (304) (192) (390) (315) (287) (302) (1.2)

000 wp 090 7391 8061 11689 10675 -126 411 970 66.2
(312) (224) (183) (362) (298) @71) (278) (8.5)

000 w+ 090 1317 1826 13500 12145 462 830 1114 879
(161) (75) (201) (240) (314) (294) (306) (12.5)

090 w_ 090 | 29066 29943 8456 8427 480 86 191 448
(676) (761) (132) (233) (366) (260) (230) (5.2)

090 w0 090 9319 10113 10969 10096 -159 264 663 65.4
(504) (446) (179) (394) (322) 273) (304) (8.0)

090 wp 090 7186 7540 11295 10276 33 364 761 713
(389) (329) (176) 412) (336) (295) (312) 8.5)

090  w+ 090 459 883 12139 10845 375 726 976 872
(97) (56) (180) (224) (301) (270) (285) (12.7)

100 w_ 090 N.A. 43682 9595 10035 513 36 287 49.6
(1931) (142) (406) (400) (266) (229) (5.4)

100 w0 090 N.A. 9327 10933 10035 82 384 700 74.8
(745) (168) (406) (321) (265) (292) (83)

100 wp 080 NA. 6810 11031 10035 156 488 802 79.4
(587) (169) (406) (316) (275) (302) ©.1)

100 w+ 090 N.A. 327 11284 10035 455 780 1062 87.1
(50) (167) (406) (370) (267) (267) (11.3)

1. Table updated on December 22, 1993
2. All results conditional on d = 1. Bootstrap standard errors in parentheses.
3. Y1 = camings in the treatment state; YO = earnings in the control state. Cell(i,j) is defined so thati= 1 if Y1 >0 and i =0 if Y1 =0, j= |
fY0>0and j=0if YO=0.

4. Weighring functions: w+ = perfect positive dependence; wp = partial positive dependence; w0 = independence; w_ = perfect negative de-
pendence. Partial positive dependence is operationalized as a probability distribution over the non-zero percentiles of the treatment or control
eamings distribution with which the zeros in the other distribution are matched. The probabilities decrease linearly from the lowest non-zero
percentile and are scaled so that the ratio of the probability of the lowest non-zero percentile is four times that of the highest non-zero per-

centile,

5.N.A. indicates parameters of cells that are empty for a given value of Q.



TABLE 12 (CONTINUED)
ADULT FEMALES
PARAMETERS OF CONDITIONAL DISTRIBUTIONS WHEN ONE OR BOTH OUTCOMES IS ZERO
EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT
Q W Tau | Cell(0,1) | Celi(10) | Celi(1,1)  Cell(1,1)  Cell(1,1)  Cell(1,1)  Cell(1,1) Cell(1,1
E(Y0) E(YD) E(Y]) E(Y0) Petl 25 Petl 50 Pctl 75 PrY1>Y:
-1.00 w_  0.00 20603 21805 6462 6327 -3998 189 4244 512
(358) (380) (119) (210) (297) (253) (281) (6.9)
-100 w0 0.00 9613 10659 10960 10184 -6296 365 7472 520
(323) (293) (194) (400) (461) (326) (375) (7.1)
-1.00 wp  0.00 7561 8239 11936 10903 -6258 700 7966 523
(282) (227 (183) (371) 427 (327 (386) (73)
-1.00 w+ 000 1843 2348 14313 12909 4625 999 6813 54.8
(181) 81) (215) (247) (359) (339) (396) (7.8)
000 w_  0.00 22475 23736 7138 7026 4377 48 4714 50.3
(412) (448) (123) (215) (290) (240) (271) (7.0)
000 w0  0.00 9752 10452 10995 10104 -5952 387 7525 513
(301) (304) (192) (390) (414) (270) (358) (7.1)
000 wp 0.0 7391 8061 11689 10675 -6228 453 7803 51.8
(312) (224) (183) (362) (401) (259) (325) (7.2)
000 w+ 0.0 1317 1826 13500 12145 4821 814 7146 539
(161) (75) (201) (240) (335) (301) (345) (1.7
090 w_  0.00 29066 29943 8456 8427 -5924 -190 5258 50.8
(676) (761) (132) (233) (314) (250) (320) (7.0)
090 w0  0.00 9319 10113 10969 10096 -6849 129 6985 520
(504) (446) (179) (394) (392) (267) (338) (1.2)
090 wp 0.0 7186 7540 11295 10276 -6824 206 7216 525
(389) (329) (176) (412) (412) (282) (350) (7.3)
090 w+  0.00 459 883 12139 10845 -6012 589 7052 54.6
97 (56) (180) (224) (300) (283) (344) (1.7
100 w_ 000 NA. 43682 9595 10035 -6564 5 6533 49.8
(1931) (142) (406) (395) (267) (292) (7.1)
100 w0 0.0 N.A. 9327 10933 10035 -6230 425 7606 51.7
(745) (168) (406) (388) (266) (308) (7.3)
100 wp 0.00 NA. 6810 11031 10035 -6139 568 7693 52.1
(587) (169) (406) (394) (270) 311) (74)
100 w+ 000 NA. 327 11284 10035 -5810 844 7840 53.5
(50) (167) (406) (399) (274) (305) (7.6)

1. Table updated on December 23, 1993
2. All results conditional on d = 1. Bootstrap standard errors in parentheses.
3. Y1 = camings in the treatment state; YO = camings in the control state. Cell(i,j) is defined so that i = 1 iff Y1 >0 and i = 0 i Y1 =0, j= |
fY0>0andj=0if YO =O.

4. Weighting functions: w+ = perfect positive dependence: wp = partial positive dependence; w0 = independence; w_ = perfect negative de-
pendence. Partial positive dependence is operationalized as a probability distribation over the non-zero percentiles of the treatment or control
earmings distribution with which the zeros in the other distribution are matched. The probabilities decrease linearly from the lowest non-zero
percentile and are scaled so that the ratio of the probability of the lowest non-zero percentile is four times that of the highest non-zero per-

centile.

5. N.A. indicates parameters of cells that are empty for a given value of Q.



TABLE 12 (CONTINUED)
ADULT FEMALES
PARAMETERS OF CONDITIONAL DISTRIBUTIONS WHEN ONE OR BOTH OUTCOMES IS ZERO

EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT
Q w Tau Cell©,1) | Cell1,0) | Celi(1,1)  Cell1,l)  Cell(1,1)  Cell(1,1)  Cell(L,1) Cell(1..
E(Y0) E(YD) E(YD) E(Y0) Petl 25 Petl 50 Pctl 75 Pr(Yizy
-1.000 w_ -1.00 20603 21805 6462 6327 -6803 77 7303 50.1
(358) (380) (119) (210) (332) (323) (234) (6.9)
2100 w0 -1.00 9613 10659 10960 10184 -10347 755 11029 51.8
(324) (293) (194) (400) @47) (406) (363) (71.0)
-1.00 wp  -1.00 7561 8239 11936 10903 -10298 848 11319 52.1
(282) (227) (183) (371) (396) (397) (358) (7.3)
2100w+ -1.00 1843 2348 14313 12909 -7688 920 9504 52.6
(181) (81) (215) (247) (338) (345) (416) (7.6)
000 w_  -1.00 22475 23736 7138 7026 -7621 88 7893 50.0
(412) (448) (123) (215) (331) (364) (225) (7.0)
000 w0  -1.00 9752 10452 10995 10104 -10184 666 11103 51.7
(301) (304) (192) (390) (395) (386) (368) (7.1)
000 wp  -1.00 7391 8061 11689 10675 -10258 756 11183 520
(312) (224 (183) (362) (390) (364) (311) (7.2)
000 w+  -1.00 1316 1826 13500 12145 -8354 915 10002 53.2
(161) (75) (200) (240) (357) @351) (403) (1.5)
090 w_  -1.00 29066 29943 8456 8427 9744 428 8797 50.7
(676) (761) (132) (233) (483) (357) (366) (6.9)
090 w0  -1.00 9319 10113 10969 10096 -10762 61 10547 51.6
(504) (446) (179) (394) @11) (404) (352) (7.1)
090 wp  -1.00 7186 7540 11295 10276 -10806 270 10651 522
(389) (329) (176) (412) (424) (407) (335) (1.2)
090 w+  -1.00 459 883 12139 10845 -9695 530 10327 53.5
o7 (56) (180) (224) (353) (324) (337) (7.3)
100 w_  -1.00 N.A. 43682 9595 10035 -10429 220 10404 50.7
(1931) (142) (406) (381) (374) (405) (6.9)
100 w0  -1.00 N.A. 9327 10933 10035 -10244 719 11219 51.8
(745) (168) (406) (371) (373) (384) (1.1)
100 wp  -1.00 N.A. © 6810 11031 10035 -10182 889 11286 51.8
(587) (169) (406) (372) (384) (367) (1.1)
100 w+  -1.00 NA. 327 11284 10035 -9820 1100 11381 520
(50) (167) (406) (383) G377 (352) (7.3)

1. Table updated on December 23. 1993
2. All results conditional on d = 1. Bootstrap standard errors in parentheses.
3. Y1 = camings in the treatment state: YO = camnings in the control state. Cell(i.j) is defined so thati= 1 if Y1 >0 and i = 0 if Y1 =0, j= 1
fY0>0and j=0if YO =0.
4. Weighting functions: w+ = perfect positive dependence: wp = partial positive dependence: w0 = independence: w_ = perfect negative de-
pendence. Partial positive dependence is operationalized as a probability distnbution over the non-zero percentiles of the treatment or control
earungs distnbution with which the zeros in the other distribution are matched. The probabilities decrease linearly from the lowest non-zero
percentile and are scaled so that the ratio of the probability of the lowest non-zero percentile is four times that of the highest non-zero per-

centile.

5. N.A. indicates parameters of cells that are empty for a given valuc of Q.



TABLE 13
ADULT FEMALES
PARAMETERS OF OVERALL IMPACT DISTRIBUTION - THREE STAGE CALCULATION
EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT
Tau = 1.00
Q \%J Min Pctl § Pctl 2§ Pctl 50 Pctl 75 Pctl 95 Max Pr(Y1>Y0) Pr(Y1l=Y0) |

-1.00 w_ -48606 -22350 -35 147 318 23351 67156 720 0.0
(1344) (525) (328) (241) (261) (340) (5498) (16.6) 4.4)

-1.00 w0 -28242 -14685 -514 477 1718 16027 37390 619 0.0
(1473) (525) (363) (287) (364) 431) (3029) 6.1) (0.6)

-1.00 wp -22816 -12306 -280 666 1891 13077 29576 66.0 0.0
(1786) (526) 273) (289) (348) (430) (2309) 6.7 (0.6)

-1.00 W+ -3958 -3029 708 898 1228 3831 18550 80.0 0.0
(329) (210) (236) (304) (285) (169) (5348) 0.9) (1.0)

0.00 w_ -48606 -22350 -35 108 279 23351 67156 67.0 5.0
(1344) (525) (304) (223) (259) (340) (5498) (17.9) 4.7)

0.00 w0 -26884 -13371 -182 531 1371 14343 32371 63.4 5.0
(1787) (592) (255) (260) (339) (515) (3012) (7.1) (0.8)

0.00 wp 22111 9614 -140 582 1355 11969 24238 65.9 5.0
(1221) (750) (212) (255) (307) (576) (2188) (6.2) (0.7)

0.00 W+ -2800 -1828 680 885 1100 2988 18550 80.0 50
237) (200) (236) (290) (303) (233) (5418) (0.9) (1.0)

0.90 w_ -48606 -22350 -35 69 205 23351 67156 58.0 14.0
(1344) (525) (292) (190) (231) (340) (5498) (18.6) (4.8)

0.90 w0 20011 -4010 40 412 923 8789 26254 68.4 140
(1695) (1685) (176) 237 (319) (620) (3380) (10.3) (1.6)

0.90 wp -16705 -2850 121 583 976 6586 20857 71.0 140
(1478) (1341) (171) (269) (334) (448) (1851) 9.5) (1.4)

0.90 w+ 771 -296 680 868 980 2003 18550 80.0 14.0
(351) (110) (236) (254) (275) (487) (5435) (0.9) (1.0)

1.00 w_ -21851 -1159 -35 33 181 318 67156 520 20.0
(1855) (1728) (295) (161) (221) (266) (5498) (18.6) (4.8)

1.00 w0 -79 -8 142 452 730 2524 20348 783 20.0
(7291) (501) (132) (237) (325) (899) (2461) (12.6) (3.2)

1.00 wp -19 -1 209 550 845 2560 19049 79.2 20.0
(7437) (464) (127) (261) 337) (882) (2994) (10.4) 2.9)

1.00 w+ 0 0 572 864 966 2003 18550 80.0 20.0
(7561) (440) (240) (269) (292) (602) (5342) 6.2) (1.0)

1. Table updated on December 22, 1993

2. All results conditional on d = 1. Bootstrap standard errors in parentheses.

3. Y1 = camings in the treamment state: YO = camnings in the control state. Cell(i,j) is defined so thati = 1 if Y1 >0 and i =0 if Y1 =0,j=1
ifYO>O0and j=0if YO =0.

4. Weighting functions: w+ = perfect positive dependence: wp = partial positive dependence; w0 = independence; w_ = perfect negative de~
pendence. Partial positive dependence is operationalized as a probability distribution over the non-zero percentiles of the treatment or control
eamings distribution with which the zeros in the other distribution are matched. The probabilities decrease linearly from the lowest non-zero
percentile and are scaled so that the ratio of the probability of the lowest non-zero percentile is four times that of the highest non-zero per-
centile.

5. N.A. indicates parameters of cells that are empty for a given value of Q.




TABLE 13 (CONTINUED)
ADULT FEMALES
PARAMETERS OF OVERALL IMPACT DISTRIBUTION - THREE STAGE CALCULATION
EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT
Tau = 0.90
Q w Min Pctl 5 Pctl 25 Petl 50 Pectl 75 Pctl 95 Max Pr(Y1>Y0) Pr(Yi=Y0)
-1.00 w_ -48606 -22350 529 36 1703 23351 67156 52.8 0.0
(1344) (525) (341) (248) (304) (340) (5499) (11.3) (1.4)
-1.00 w0 -28782 -15275 1243 319 1824 16931 51834 56.5 0.0
(1557) (688) (389) (274 (278) (412) (4529) (5.2) (0.5)
-1.00 wp -24295 -12982 -884 427 1812 14149 49334 59.3 0.0
(1946) (560) 297) (268) (248) 357) (4825) 5.1 (0.5)
-1.00 W+ -16246 -3323 -111 743 1226 4133 44727 72.8 0.0
(1610) (230) (173) (289) (274) (111) (5112) (3.9) (1.0
0.00 w_ 48606 -22350 -413 30 460 23351 67156 50.9 5.0
(1344) (525) (330) (213) (225) (340) (5498) (11.5) (1.6)
0.00 w0 -27883 -14198 -571 363 1352 15142 51127 56.3 5.0
(1882) (777) (306) (243) (309) (421) (4769) 6.0) (0.6)
0.00 wp -24059 -11325 -468 401 1249 12808 47098 59.0 5.0
(1403) (776) (263) (232) (269) (441) (4672) (5.6) (0.6)
0.00 W+ -16363 -2442 5 721 1151 3189 44613 72.5 5.0
(1503) (231) (122) (262) (271) (162) (5359) 4.0) (1.0
0.90 w_ 48606 -22350 -412 32 240 23351 67156 40.8 14.0
(1344) (525) (322) (170) (207) (340) (5498) (11.2) (1.3)
0.90 w0 22268 -7355 -236 234 711 11001 50295 55.4 14.0
(1868) (1431) (222) (201) (289) (403) (5271) (8.5) (0.9)
0.90 wp -20579 -6040 -153 294 816 8704 48826 59.6 14.0
(1819) (1300) 207) (224) (300) (341) (5015) (8.8) (0.9)
0.90 W+ -16806 -1286 19 606 936 1831 47796 709 14.0
(1265) (340) 59 (241) (257) (308) (5707) 4.7 (1.0
1.00 w_ -24808 -3790 -355 -10 235 4961 67156 41.2 20.0
(1582) (1578) (317) (149) (192) (558) (5498) (11.4) (1.3)
1.00 w0 | -18601 -1553 -69 290 634 4946 47663 60.6 200
(2428) (1420) (166) (189) (278) (482) (5262) (11.1) (1.6)
1.00 wp -18371 -1436 -31 369 730 4238 47414 64.2 200
(2437) (1414) (140) (206) (292) (439) (5264) (10.5) (1.6)
1.00 W+ -18219 -1233 -26 589 963 2008 47317 70.1 20.0
(2499) (1424) (96) (256) (262) (367)  (5519) (7.2) (1.1)

1. Table updated on December 22, 1993

2. All results conditional on d = 1. Bootstrap standard errors in parentheses.

3. Y1 = camings in the treatment state: YO = camings in the control state. Cell(i.j) is defined so thati= 1 if Y1 >0 and i =0 if Y1 = 0. j=1
ifYO>0and j=0if YO=O0.

4. Weighting functions: w+ = perfect positive dependence: wp = partial positive dependence: wQ = independence: w_ = perfect negative de-
pendence. Partial positive depeadence is operationalized as a probability distribution over the non-zero percentiles of the treatment or control
earmungs distribution with which the zeros in the other distribution are matched. The probabilities decrease linearly from the lowest non-zero
percentile and are scaled so that the ratio of the probability of the lowest non-zero percentile is four times that of the highest non-zero per-
centile.

5. N.A. indicates parameters of cells that are empty for a given value of Q.




TABLE 13 (CONTINUED)
ADULT FEMALES
PARAMETERS OF OVERALL IMPACT DISTRIBUTION - THREE STAGE CALCULATION
EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT
Tau = 0.0 |
Q w Min Pctl 5 Pctl 25 Pctl 50 Pctl 75 Pctl1 95 Max Pr(Y1>Y0) Pr(Y1=Y0)

-1.00 w_ 48606 -22350 -8433 455 9774 23351 67156 52.2 0.0
(358) (380) (119) (210) (297) (253) (281) (1.8) 0.2)

-1.00 w0 40052 -18507 -7012 492 8052 19491 58930 52.6 0.0
(324) (293) (194) (400) (461) (326) (375) (1.4) 0.1

-1.00 wp -37481 -17674 -6157 511 7437 17983 57496 52.8 0.0
(282) (227) (183) (371) (427) 327 (386) (1.3) 0.1)

-1.00 w+ -34460 -12249 2726 488 3791 13110 54424 54.3 0.0
(181) (81) (215) (247) (359) (339) (396) (1.6) 0.2)

0.00 w_ 48606 -22350 -6842 103 8219 23351 67156 49.2 5.0
(412) (448) (123) (215) (290) (240) (271) (1.6) 0.2)

0.00 w0 -39365 -18822 -6138 220 7506 18823 59196 49.8 5.0
(301) (304) (192) (390) (414) (270) (358) (1.2) (0.2)

0.00 wp -38673 -17082 -5728 247 6971 17992 57787 50.1 5.0
(312) (224) (183) (362) (401) (259) (325) 1.n 0.1)

0.00 w+ 36109 -13455 -2294 191 3452 14219 56095 51.4 5.0
(161) (75 (201) (240) (335) (301) (345) (1.4) 0.1

0.90 w_ 48606 -22350 -5356 2 6096 23351 67156 45.1 14.0
(1344) (525) (312) (6) (321) (340) (5498) 0.9) 0.1)

0.90 w0 -37641 -17547 -5051 8 6540 17950 57412 459 14.0
(2580) (1139) (316) an (306) (486) (5394) (0.8) 0.1)

0.90 wp -37396 -16875 4739 8 6196 17391 56930 46.3 14.0
(2621) (1235) 321 (15) (290) (418) (5338) 0.9) 0.1)

0.90 w+ -36383 -14804 -2573 21 4311 15937 56377 47.8 14.0
(1512) (509) (278) (23) (343) (433) (5496) 0.9) 0.7)

1.00 w_ 40733 -16334 4547 0 5379 17542 67156 414 20.0
(2482) (1431) (363) 0) 277) (464) (5498) (1.0 0.1)

1.00 w0 40365 -16126 4133 0 5772 17467 56609 42.8 20.0
(2589) (1387) (356) (2) (282) (409) (5340) (1.0) 0.1

1.00 wp 40291 -16041 -4076 0 5712 17241 56609 43.1 20.0
(2597) (1386) (366) 3) (274) 421) (5323) (1.0) 0.1

1.00 w+ -39945 -15645 -3750 0 5283 17164 56609 44.2 20.0
(2570) (1390) (362) 3) (286) 441) (5351) (1.0) 0.1

1. Table updated on December 23, 1993

2. All results conditional on d = 1. Bootstrap standard errors in parentheses.
3. Y1 = camings in the treatment state: YO = camings in the control state. Cell(i.j) is defined so that i= 1 if Y1 >0 and i = 0if Y1 =0.j= 1
ifYO>0andj=0if YO=0.
4. Weighting functions: w+ = perfect positive dependence: wp = partial positive dependence: w0 = independence: w_ = perfect negative de-
pendence. Partial positive dependence is operationalized as a probability distribution over the non-zero percentiles of the treatment or control
eamings distribution with which the zeros in the other distribution are matched. The probabilities decrease linearly from the lowest non-zero
percentile and are scaled so that the ratio of the probability of the lowest non-zero percentile is four times that of the highest non-zero per-

centile,

5. N.A. indicates parameters of cells that are empty for a given value of Q.




TABLE 13 (CONTINUED) i

ADULT FEMALES

PARAMETERS OF OVERALL IMPACT DISTRIBUTION - THREE STAGE CALCULATION ;

EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT

Tau =-1.0 |

Q w Min Petl 5 Pctl25  PelS0  Petl75  Petl95  Max | Pr(Y1>Y0)  Pr(YI=Y0)
2100 w_ | 48606  -22350  -11755 580 12791 23351 67156 52.0 0.0
(1344) (525) @s51)  (356) @21) (40)  (5498) (0.6) (0.4)
100 w0 | 48417 21631 -9450 714 10236 22766 66983 523 0.0
(1301) (1376) (G14) (200 251) (365)  (5497) (0.6) ©.2)
-1.00 48335 21207 8278 629 9158 22147 66943 527 0.0
(282) (227) (183) 3B71) (396) (397 (358) (1.0 (1.0)
100 w+ | 43673 -16472 -3284 427 4226 18197 62870 53.0 0.0
(1333) (543) (24)  (110) (156) @62)  (5554) 0.7) (0.8)
000 w_ | 48606  -22350  -10742 0 11931 23351 67156 49.0 5.0
(1344) (525) (475) 31) (281) (340)  (5498) (0.8) (0.4)
000 w0 | 48419  -21549 -8917 122 9979 22712 66999 50.0 5.0
(1341)  (1450) (329) (89) (256) (342)  (5500) (0.6) 0.2)
0.00 48389  -21231 -8005 112 9015 22225 66938 50.2 5.0
(1294) (1311) (344) (89) (290) (357)  (5497) (0.6) 0.2)
000  w+ | 44775  -17712 -2800 88 4011 19065 64127 51.0 50
(1342) (546) (253)  (100) (384) @32)  (5511) (0.8) 0.9)
090 w_ | 48606  -22350 -8783 0 10048 23351 67156 45.0 14.0
(1344) (525) (470) (0) (293) (340) (5498) 0.7) (0.4)
090 w0 | 48429  -21482 -7784 0 9197 2542 67001 45.6 14.0
(1216)  (1646) (407) ©) (309) (342)  (5501) 0.7 ©.1)
090  wp | 48400  -21349 -7401 0 8513 22381 66996 46.0 14.0
(1209)  (1580) 422) ©) (11) (352)  (5500) 0.7 0.2)
090  w+ | 46734  -19572 -5226 0 6393 21282 66104 47.0 14.0
(1349) (537) @31) ©) (432) (382)  (5519) (0.8) ©.7)
100  w_ | 48463  -21491 7412 0 8541 22948 67156 42.0 20.0
(1039) (1736) (480) ) (295) (337)  (5498) (0.7) 0.4)
100 w0 | 48459 21453 -7141 0 8562 22627 67020 42.9 20.0
(1038) (1735) @74) ©) (326) (354)  (5501) 0.7) 0.2)
1.00 48456 -21406 -7062 0 8369 22585 67020 29 20.0
(1038) (1735) 474) ©) (328) (B57)  (5501) 0.7 0.2)
100 w+ | 47898  -20911 6736 0 8040 22580 67020 43.0 20.0
(1047) (1728) @73) ©) (454) (360)  (5502) (0.8) 0.3)

1. Table updated on December 23. 1993

2. All results conditional on d = 1. Bootstrap standard errors in parentheses.
3.Y1 = eamings in the treatment state; YO = eamings in the control state. Cell(i.j) is defined so thati= 1 if Y1 > O and i =0 if Y] = 0.j=1
ifY0>0and j=0if YO=0.
4. Weighting functions: w+ = perfect positive dependence: wp = partial positive dependence: w0 = independence: w_ = perfect negative de-

pendence. Partial positive dependence is operationalized as a probability distribution over the non-zero perc

iles of the t

or control

eamnings distribution with which the zeros in the other distribution are matched. The probabilities decrease linearly from the lowest non-zero
percentile and are scaled so that the ratio of the probability of the lowest non-zero percentile is four times that of the highest non-zero per-

centile.

5. N.A. ndicates parameters of cells that are empty for a given value of Q.



TABLE 14

RANDOM AND FIXED COEFFICIENT MODEL ESTIMATES
IMPACT ON EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT

Abt 18 Month Impact Sample
Adult Females

Statistic Estimated Coefficient White Std Error White T Prob > | White T
Fixed Coeff Model - Mean Impact 601.42 201.37 2.99 0.0028
Random Coeff Model - Mean Impact 601.74 201.63 2.99 0.0028
Estimated Random Effect Variance 5160000 3286624 1.57 0.1162
Implied Random Effect Std Dev 2271 . -

1. Table updated on December 21, 1993

2. Fixed and random coefficient models include race/ethnicity, schooling and site indicators. Only the treatment coefficient
is treated as random.

3. Estimated impact variance obtained from a regression of the squared residuals from the fixed coefficient model on the
treatment indicator. The implied impact standard deviation is the square root of the variance estimate.

4. Oudiers replaced with Abt imputed values.

5. Imputed values for adult female non-respondents not included.



TABLE 15

IMPACT DENSITY ESTIMATES OBTAINED BY DECONVOLUTION
IMPACT ON EARNINGS IN THE 18 MONTHS AFTER RANDOM ASSIGNMENT

Abt 18 Month Impact Sample
Adult Females
Statistic Estimated Value
Mean Impact 614.00
Impact Standard Deviation 1675.00
Fraction with a Negative Impact 18.28
Fraction with a Zero Impact 42.88

1. Table updated on December 21. 1993

2. A zero impact is defined here as an impact less than or equal to $100 in absolute value.

3. Mean impact and impact standard deviation obtained from smoothed density. Fraction with negative impacts and frac-
tion with zero impact obtained from estimated (unsmoothed) CDF.

4. Outliers replaced with Abt imputed values.

5. Imputed values for adult female non-respondents not included.




Figure 1A
Treatment — Control Differences at Percentiles of the
18 Month Earnings Distribution

Perfect Positive Correlation Case
Adult Females
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1. Sample consists of ABT's experimental 18 — month study sample
2. ABT imputed values were used in place of oullying valucs )



Figure 1B
Treatment — Control Differences at Percentiles of the
18 Month Earnings Distribution

Perfect Positive Correlation Case
Adult Females — Whites
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1. Sample consists of ABT's experimental 18 — month study sample
2. ABT imputed values were used in place of outlying valucs



Figure 1C
Treatment — Control Differences at Percentiles of the
18 Month Earnings Distribution

Perfect Positive Correlation Case
Adult Females — Blacks
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1. Sample consists of ABT's experimental 18 - month study sample
2. ABT imputed values were used in place of outllying values



Figure 1D
Treatment — Control Differences at Percentiles of the
18 Month Earnings Distribution

Perfect Positive Correlation Case
Adult Females — Hispanics
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1. Sample consists of ABT's experimental 18 — month study sample
2. ABT imputed values were used in place of outlying valucs



Figure 1E
Treatment — Control Differences at Percentiles of the
18 Month Earnings Distribution

Perfect Positive Correlation Case
Adult Females — Schooling < 12 Years
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1. Sample consists of ABT's experimental 18 ~ month study sample
2. ABT imputed values were used in place of outlying vahies




Figure 1F
Treatment — Control Differences at Percentiles of the
18 Month Earnings Distribution

Perfect Positive Correlation Case
Aduit Females — Schooling = 12 Years
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Figure 1G
Treatment — Control Differences at Percentiles of the
18 Month Earnings Distribution

Perfect Positive Correlation Case
Adult Females — Schooling > 12 Years

Difference
7000

6000 1

1000 T~ ——

—1000

T | T I I S IR | | N I | | i i | i ]

10th/10th  20th/20th  30th/30th  40th/40th  50th/50th  60th/60th  70th/70th  80th/80th  90th/90th

Percentile (Control/Treatment)

1. Sample consists of ABT's experimental 18 — month study sample
2. ABT imputed values were used in place of outlying valucs



Employment Probabilities
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Cell Employment Probabilities As Functions of Q, Where

Figure 3: Adult Females
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Figure 4: Spline Prior Over Tau or Q
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Median Impact
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Figure 5
Median Impacts for Spline Priors Over Q
Adult Females
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75th Percentile Impact

6000

5000

4000

3000

2000

Figure 6
75th Percentile Impact for Spline Priors Over Q
Adult Females
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Fraction Pasitive
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Figure 7
Fraction With Positive Impact for Spline Priors Over Q
Adult Females
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Median Impact

800

600

400

200

Figure 8
Median Impacts for Spline Priors Over Tau
Adult Females

0.0

! [ I !
0.2 - 04 0.6 0.8

Posterior Mean Tau

1.0




75th Percentile Impact

5000

4000

3000

2000

1000

Figure 9
75th Percentile Impact for Spline Priors.Over Tau
Adult Females
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Figure 10

Fraction With Positive Impact for Spline Priors Over Tau
Adult Females
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Smoothed Estimated CDF
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Figure 12 - Smoothed Estimated CDF of Impacts
Adult Females
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Smoothed Estimated Density
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FIGURE 13 - Smoothed Estimated Impact Density For Impacts > 0
Adult Females
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